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Abstract: In this article we present two new results concerning the Smarandache Ceil

function. The first result proposes an equation for the number of fixed-point number of

the Smarandache ceil function. Based on this result we prove that the average of the

Smarandache ceil function is )(nΘ .

1. INTRODUCTION

In this section we review briefly the main results that are used in this article. These concern the

Smarandache ceil and functions. The Smarandache ceil function of order k [see

www.gallup.unm.edu/~smarandache] is denoted by NNS k →*:  and has the following

definition

( )*}|min{)( NnnxNxnS k
k ∈∀∈= M .  (1)

This was introduced by Smarandache [1993] who proposed many open problems concerning it.

Ibstedt [1997, 1999] studied this function both theoretically and computationally. The main

properties proposed in [Ibstedt, 1997] are presented in the following
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Therefore, if sa
s

a ppn ⋅⋅= ...1
1  is the prime number decomposition of n, then the equation of this

function is given by
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Based on these properties, Ibstedt proposed the following results
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Table 1 shows the values of the Smarandache ceil function of order 2 for n<25.

n )(2 nS N )(2 nS N )(2 nS N )(2 nS n )(2 nS

1 1 6 6 11 11 16 4 21 21

2 2 7 7 12 6 17 17 22 22

3 3 8 4 13 13 18 6 23 23

4 2 9 3 14 14 19 19 24 12

5 5 10 10 15 15 20 10 25 5

Table 1. The Smarandache ceil function.

The Mobius function ZN →:µ is defined as follows

1)1( =µ (6.a)

s
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otherwise 0)( =nµ . (6.c)

This is an important function both in Number Theory and Combinatorics because gives two

inversion equations. The first Mobius inversion formula [Chandrasekharan, 1970] is
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while the second Mobius formula is
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There are several equations concerning series involving the Mobius function [Apostol, 1976].

Among them an important series is
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that has the following asymptotic form
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2. THE ASYMPTOTIC DENSITY OF FIXED POINTS



In this section we present an equation for the asymptotic density of the function kS ’s fixed

points. The main result presented can also be found in [Keng, 1981] but we give it a detailed

proof.  We start by remarking that the function 2S  has quit many points. For example, there are

16 fixed points for the first 25 numbers.

Let )(xq  be the number of the fixed points less than x: })(:{#)( nnSxnxq k =≤= . We say that

the fixed points have the asymptotic density equal to a if a
x

xq
x

=
∞→

)(
lim .

Ibstedt [1997] found that if n is a square free number then it is a fixed point for 2S . Actually, the

result holds for any Smarandache ceil function.

Proposition 1. nnSppn ks =⇔⋅⋅= )(...1 .

Proof Let sa
s

a ppn ⋅⋅= ...1
1  be the prime number decomposition of n. The following equivalence

gives the proof:
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...,...,2,1,1,...,2,1, 1 .

Therefore, n is a square free number.           ♦

Proposition 2. ( )( ) free square is |!
2d

n
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Proof. Firstly, we prove that there is such as divisor. If sa
s

a ppn ⋅⋅= ...1
1  the prime number

decomposition, then 
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2d

n
 is the

product of all prime numbers that have odd power in the prime number decomposition of n. Now,

we prove that d is unique. Assume that there are distinct divisors such that 
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free. We can write this as follows rs qqdppdn ⋅⋅⋅=⋅⋅⋅= ...... 1
2
21

2
1 . Let p be a prime number

that does not appear in the both sites spp ,...,1  and rqq ,...,1   (choose that it is in the first). p



should also appear in the prime number decomposition of 2
2d . Therefore, we find that the power

of p is even for the right hand side and odd for the left hand side.         ♦

Proposition 3. 
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Proof. It is enough to prove this equation just for natural number. Consider n>1 a natural number.

Equation (10) becomes
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The inclusion 
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can be written uniquely as 1
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that it belongs to }free square is i :{
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id ≤⋅ , thus Equation (10) holds.                                 ♦

Consequence: Taking the number of elements in Equation (10) we find
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Based on this result and on Equations (7-8) the following theorem is found.

Theorem 4. [Keng] )(
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Proof. For 2yx = , Equation (12) gives  
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Equation (14) is transformed based on Equation (8.b) as follows
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Equation (13) is obtained from the last one by substituting 2yx = .         ♦
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Equation (15) gives that the asymptotic density for the fixed points of the Smarandache ceil

function is 
2

6
π

. Because ...607927.0
6

2
=

π
, we find that more than 60% of points are fixed

points. Equation (15) also produces an algorithm for approximating π  that is described in the

following.

Step 1. Find the number of fixed points for the Smarandache ceil function 2S .

Step 2. Find the approximation of π  by using 
)(

6
xq

x⋅
≈π .

3. THE AVERAGE OF THE SMARANDACHE CEIL FUNCTION

In this section we study the Θ complexity of the average of the Smarandache ceil function. Let
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)(  be the average of the Smarandache ceil function. Recall that

))(()( ngnf Θ=  if ( )( ) )()()(0, 21021 ngCnfngCnnCC ⋅≤≤⋅>∀>∃  [Bach, 1996].

Theorem 5. The Θ -complexity of the average )(nS k  is given by

)()( nnSk Θ= . (16)

 Proof.  This result is obtained from Equation (15). One inequality is obviously obtained as

follows 
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xq >∀> . Therefore, there are at least 50%

fixed points. Consider that )(21 ,...,2,1 nqiii ==  are the fixed points less than n for the

Smarandache ceil function. These obviously satisfy )(,...,2,1, nqjji j =≥ .

Now, we keep in the average only the fixed points
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that gives the  Θ -complexity is )()( nnSk Θ= .       ♦

This  Θ -complexity complexity gives that the average of the Smarandache ceil function is linear.

Unfortunately, we have not been able to find more details about the average function behavior.

What is ideally to find is 
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From Equation (17) we find the constant C is 
2

1

)(
lim

)(
lim

n

iS

n

nS
C

n

i
k

n

k

n

∑
=

∞→∞→
== .

Example. For the Smarandache ceil function 2S  we have found by using a simple

computation that ...3654.0
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This example makes us to believe that the following conjecture holds.

Conjecture: There is a constant 
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4. CONCLUSSIONS

This article has presented two important results concerning the Smarandache ceil

function. We firstly have established that the asymptotic density of fixed points is 
2

6

π
.

Based on this we have found the average function of the Smarandache ceil function

behaves linearly. Based on a simple computation the following Equation (18) has been

conjectured.
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