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Abstract
In this paper the main properties of Smarandache Square Complementary
function has been analyzed. Several problems still unsolved are reported too.

The Smarandache square complementary function is defined as[4],[5]:
Ssc(n)=m
where misthe smalest vaue such that m>n isaperfect square.

Example: for n=8, misequd 2 becausethisistheleast vadue suchthat mxn isa perfect square.

Thefirst 100 vaues of Ssc(n) function follows:

n Ssc(n) n Ssc(n) n Ssc(n) n Ssc(n)
1 1 26 26 51 51 76 19
2 2 27 3 52 13 77 77
3 3 28 7 53 53 78 78
4 1 29 29 54 6 79 79
5 5 30 30 55 55 80 5
6 6 31 31 56 14 81 1
7 7 32 2 57 57 82 82
8 2 33 33 58 58 83 83
9 1 34 34 59 59 84 21
10 10 35 35 60 15 85 85
11 11 36 1 61 61 86 86
12 3 37 37 62 62 87 87
13 13 38 38 63 7 88 22
14 14 39 39 64 1 89 89
15 15 40 10 65 65 90 10
16 1 41 41 66 66 91 91
17 17 42 42 67 67 92 23
18 2 43 43 68 17 93 93
19 19 44 11 69 69 94 94
20 5 45 5 70 70 95 95
21 21 46 46 71 71 96 6
22 22 47 47 72 2 97 97
23 23 48 3 73 73 98 2
24 6 49 1 74 74 99 11



Let's gart to explore some properties of this function.

Theorem 1: Ssc(n®)=1 wheren=1,2,3,4...

In fact if k=n? is a pefect square by definition the smalest integer m  such tha mxk is a
perfect squareis m=1.

Theorem 2: Ssc(p)=p where p isany prime number

In fact in this case the smdlest m such that mxp is a perfect square can be only m=p.

| 1 ifniseven
Theorem 3: Ssc(p")= | where p isany prime number.
| p ifnisodd

Firg of dl let'sandyzetheeven case. We can write:

and then the smdlest m such that p" xm isaperfect squareis 1.

Let's suppose now that nisodd. We can write:
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Xp=p T Xp

p" = p? xp® X...xp° xp =|p

and then the smdlest integer m such that p" xm is a perfect square is given by m=p.

Theorem 4: Sso(p? Xq° X8° X....... % *) = poid@ »qoub) xgodd©) x ¢4 \wherep,q, s, ..., tare
distinct primes and the odd function is defined as:
| 1 ifnisodd

odd(n)=
| O ifniseven



Direct consequence of theorem 3.

Theorem 5: The Ssc(n) function is multiplicative, i.e. if (n,m)=1then Ssc(nxm) = Ssc(n) xSsc(m)

Without loss of generdity let's suppose that n = p? >q° and m=s°®%® wherep, g, s, t are distinct
primes. Then:
&(n >¢n) = $:( pa qu )GC >¢d) = podd(a) )qodd(b) )Godd(c) ><todd(d)

according to the theorem 4.

On the contrary:
$:(n) - &( pa )qb) - podd(a) ><qodd(b)
$:(m) - S&:(SC >¢d) = Sodd(c) ><todd(d)

Thisimpliesthat: Ssc(n»m) = Ssc(n)xSsc(m) ged

Theorem 6: If n=p*>xy°x....xp° then Ssc(n) = Ssc(p?) xSsc(p®) %.....55sc(p°)  wherepis
any prime number.

According to the theorem 4:

Ssc(n) - podd(a) xpodd(b) X xpodd(s)

and:

&C( pa) - podd(a)
$:( pb) = podd(b)

and so on. Then:

Sso(n) = Ssc( p*) XSsc(p”) X..... XSc( p°) qed

Theorem 7: Ssc(n)=n if nissquarefreg, that isif the prime factors of n are all distinct. All prime
numbers, of course are trivially squarefree[ 3] .



Without loss of generdlity let's supposethat n = p xq where p and g are two digtinct primes.
According to the theorems 5 and 3:

Ssc(n) = Ssc(p>xq) = Ssc(p) XSsc(g) = p>g=n  ged

Theorem 8: The Ssc(n) function is not additive :

Infact for example:  Ssc(3+4)=Ssc(7)=7<>Ssc(3)+Ssc(4)=3+1=4

Anyway we can find numbers m and n such that the function Ssc(n) is additive. In fact if:

m and n are squarefree
k=m+nis squarefree.

then Ssc(n) is additive.
In fact in this case Sso(m+n)=Ssc(k)=k=m+n and Ssc(m)=m Ssc(n)=n according to theorem 7.

¥
Theorem 9: § + diverges
n

n=1

In fact:

% where p is any prime number.

So the sum of inverse of Ssc(n) function diverges due to the well known divergence of series[3]:
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=2
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Theorem 10: Ssc(n)>0 wheren=1,2,34 ...

This theorem is a direct consequence d Ssc(n) function definition. In fact for any n the smdlest m
such tha mxn is a perfect square cannot be equd to zero otherwise m>xn=0 and zero is not a
perfect square.

¥
[o]

Theorem 11: g Sxe(n) diverges
n

n=1



Infact being Ssc(n) 3 1 thisimpliesthat:

s Ssc(n) >§1

n=1 n n=1 n

and as known the sum of reciprocd of integers diverges. [3]

Theorem 12:  Ssc(n) £n

Direct consequence of theorem 4.

Theorem 13: Therange of Ssc(n) function is the set of squarefree numbers.

According to the theorem 4 for any integer n the function Ssc(n) generates a squarefree number.

Theorem 14: O<w£l for n>=1
n

Direct consequence of theorems 12 and 10.

Theorem 15: () is not distributed uniformly in the interval 10,1]
n

If nissquarefree then Ssc(n)=n that implies () =1
n
If nisnot squarefree let's suppose without |oss of generdity that n = p® xq° wherep and g are

primes.

Then:

Ssc(n) _ Se(p?) XSse(p”)
n pa ><qb

We can have 4 different cases.



1) aeven and b even

Ssc(n) _ Sse(pt)xSe(pt) . 1 1

n p* >’ pi g’ 4
2) aodd and b odd
Ssc(n) _ Sso(p")sSse(p’) o pg o 1 1
n p* xq® pixg”  pTTgTt 4
3) aodd and b even
Sc(n) _ Sso(p)xSe(p’) - pA _ 1 o1
n p*xq° pPxq”  p*tg 4

4) aeven and b odd
Anaogoudy tothecase 3.

This prove the theorem because we don't have any point of Ssc(n) function in the interva ]1/4,1]

Theorem 16: For any arbitrary real number e >0, thereis some number n>=1 such that:

BN o
n

Without loss of generdlity let's supposethat g = p, xp, where p, and p, areprimes such that

—<e and e isany red number grater than zero. Now take a number n such that:
q

n = p xp3?



For a, and a, odd:

Som)_ pxp, 1 1 __

-1 -1
n Pt Xpyr Pt XprT P Xp,

For a, anda, even:

Ssc)__ 1 _ 1

n Pt Xpy? Py Xp;

<e

For a, odd and a, even (or viceversa):

S . p 1 1.

= <
-1
n PetXp3? PR P2 PLXP,

Theorem 17: Ssc(p, #) = p,# where p, # isthe product of first k primes (primordid) [3].

The theorem is adirect consequence of theorem 7 being p, # asquarefree number.

Theorem 18: The equation S(n) =1 hasaninfinite number of solutions.
n

The theorem is adirect consegquence of theorem 2 and the well-known fact thet thereisan

infinite number of prime numbers [6]

Theorem 19: The repeated iteration of the Ssc(n) function will terminate always in a fixed point

(see[3] for definition of a fixed point ).

According to the theorem 13 the application of Scc function to any n will produce dways a
squarefree number and according to the theorem 7 the repeated application of Ssc to this squarefree

number will produce always the same number.



Theorem 20: The diophantine equation Ssc(n)=Ssc(n+ 1) has no solutions.

We must distinguish three cases:
1) nand n+1 squarefree

2) nand n+1 not squareefree
3) n squarefree and n+1 no squarefree and viceversa

Case 1. According to the theorem 7 Ssc(n)=n and Ssc(n+1)=n+1 that implies
that Ssc(n)<>Ssc(n+1)

Case 2. Without loss of generdity let's suppose that:

n= pa )qb
n+l=p?xg° +1=¢s" %"

where p,g,sand t are distinct primes.
According to the theorem 4:

Ssc(n) = Ssc( p? >qb) - podd(a) >qodd(b)
$C(n +1) = S&:(SC >¢d) = gPdd(c) ygodd(d)

and then Ssc(n)<>Ssc(n+1)

Case 3. Without loss of generdity let's supposethat n = p xq. Then:

Ssc(n) = Sec(pxq) = pq
Seo(n+1) = Sec(p g +1) = Sec(s? %P = S 5¢ %)

supposing that n+1= pxq+1=s? %"

This prove completely the theorem.



N
Theorem 21:  § Ssc(k) > 6—x'2\| for any positive integer N.
P

k=1

The theorem is very easy to prove. In fact the sum of first N vaues of Ssc function can be separated
into two parts:

N N
a Ssck) + a Sse(k,)

k=1 k=1

where the firs sum extend over dl k;, squarefree numbers and the second one over al k, not
squarefree numbers.

According to the Hardy and Wright result [3], the asymptotic number Q(n) of squarefree numbers
£ N isgvenby:

Q(N) » 2N
p

and then:

8 Sso(k) = & Sso(k,)+ & Sse(k,) > 2N

2
k=1 k=1 ko=l

because according to the theorem 7, Ssc(k, ) = k; and the sum of first N squarefree numbersis
aways greater or equd to the number Q(N) of squarefree numbers£ N , namdly:

a k.3 Q(N)

k=1

N
Theorem 22: é_ Ssc(k) > for any positive integer N.
k=1 24n(N)

In fact:

& Sso(k) = § Sso(k) + 3 Sso(p) > § Sse(p)

p=2 p=2



because by theorem 2, Ssc(p)=p. But according to the result of Bach and Shallit [3], the sum of
fird N primes isasymptoticaly equal to:
N 2
24n( N)

and this completes the proof.

Ssc(n+1) “k and Ssc(n)
Ssc(n) Ssc(n+1)
integer number have an infinite number of solutions.

Theorem 23: The diophantine equations =k wherekisany

Let's suppose that nis a perfect square. In this case according to the theorem 1 we have:

Ssc(n +1)

T —ge(n+1) =k
Ssc(n)

On the contrary if n+1 isa perfect square then:

Ssc(n)

=Sc(n) =k
Ssc(n +1)

Problems.
1) Isthe difference |Ssc(n+1)-Ssc(n)| bounded or unbounded?
2) Isthe Sxg(n) function a Lipschitz function ?

A function issaid a Lipschitz function [3] if:

| Sse(m) - Se(k) | 5
|m- k]

where M is any integer

3) Study the function FSsc(n)=m. Here mis the number of different integers k such that Ssc(k)=n.

10



4) Solve the equations Ssc(n)=Ssc(n+1)+Ssc(n+2) and Ssc(n)+Ssc(n+1)=Ssc(n+2). |'s the number
of solutions finite or infinite?

5) Find dl the values of nsuchthat  Ssc(n) = Ssc(n+ 1) xSsc(n + 2)
6) Solve the equation Ssc(n) xSsc(n+1) = Ssc(n + 2)
7) Solve the equation Ssc(n) xSsc(n+1) = Ssc(n + 2) XSsc(n+3)

8) Find dl thevdues of nsuchthat S(n)* +Z(n)* = Ssc(n)* where S(n) is the Smarandache
function [1], Z(n) the Pseudo- Smarandache function [2] and k any integer.

9) Find the smallest k such that between Ssc(n) and Ssc(k+n), for n>1, thereis at least aprime.

10) Find al the vaues of n such that Ssc(Z(n))-Z(Ssc(n))=0 where Z isthe Pseudo Smarandache
function [2].

11) Study the functions Ssc(Z(n)), Z(Ssc(n)) and Ssc(Z(n))-Z(Ssc(n)).

12) Evduae lim SSC—I((k) where q(k) = é In( Ssc(n))

ke¥ Q( ) nE£k

13) Aretherem, n, k non-null positive integers for which Ssc(m>n) = mk xSsc(n) ?

14) Study the convergence of the Smarandache Square complementary harmonic series:

1
n=1 $Ca(n)

QJO-K

wherea>0 and belongsto R

15) Study the convergence of the series.

11



X1 = X
n=1 &(Xn)

Qo

where X, isany increasng sequence such that "Ql X, =¥

16) Evauae
8 In( Ssc(k))
a N /7
I|m k=2 lr( k)
n® ¥ n

Isthis limit convergent to some known mathematical congtant?

17) Solve the functiona equation:

Ssc(n)" +Ssc(n) ™t +...., +Ssc(n) =n

wherer isan integer 3 2.

18) What about the functiona equation:

Ssc(n)" +Ssc(n) !+, + Ssc(n) = kn
wherer and k aretwo integers 3 2.

¥
19) Evdluate § (- 1 x——
k=1 Ssc(k)

a Ssc(n)?
20) Evduate ————
‘é Ssc(n)




21) Evduae:

img —— § —— |
w4 e (f(n) 2 (Sso(n)))

for f(n) equd to the Smarandache function S(n) [1] and to the Pseudo- Smarandache function Z(n)
[2].
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