An introduction to the Smarandache Square Complementary function

Felice Russo
Via A. Infante
67051 Avezzano (Aq) Italy
felice.russo@katamail.com

Abstract
In this paper the main properties of Smarandache Square Complementary function has been analyzed. Several problems still unsolved are reported too.

The Smarandache square complementary function is defined as [4],[5]:

$$
\operatorname{Ssc}(\mathrm{n})=\mathrm{m}
$$

where m is the smallest value such that $m \cdot n$ is a perfect square.
Example: for $\mathrm{n}=8, \mathrm{~m}$ is equal 2 because this is the least value such that $m \cdot n$ is a perfect square.

The first 100 values of $\operatorname{Ssc}(\mathrm{n})$ function follows:

n	Ssc (n)	n	Ssc (n)		Ssc (n)		n	Ssc (n)
1	1	26	26	51	51	76	19	
2	2	27	3	52	13	77	77	
3	3	28	7	53	53	78	78	
4	1	29	29	54	6	79	79	
5	5	30	30	55	55	80	5	
6	6	31	31	56	14	81	1	
7	7	32	2	57	57	82	82	
8	2	33	33	58	58	83	83	
9	1	34	34	59	59	84	21	
10	10	35	35	60	15	85	85	
11	11	36	1	61	61	86	86	
12	3	37	37	62	62	87	87	
13	13	38	38	63	7	88	22	
14	14	39	39	64	1	89	89	
15	15	40	10	65	65	90	10	
16	1	41	41	66	66	91	91	
17	17	42	42	67	67	92	23	
18	2	43	43	68	17	93	93	
19	19	44	11	69	69	94	94	
20	5	45	5	70	70	95	95	
21	21	46	46	71	71	96	6	
22	22	47	47	72	2	97	97	
23	23	48	3	73	73	98	2	
24	6	49	1	74	74	99	11	
25	1	50	2	75	3	100	1	

Let's start to explore some properties of this function.

Theorem 1: $\operatorname{Ssc}\left(n^{2}\right)=1$ where $n=1,2,3,4 \ldots$

In fact if $k=n^{2}$ is a perfect square by definition the smallest integer m such that $m \cdot k$ is a perfect square is $\mathrm{m}=1$.

Theorem 2: $\operatorname{Ssc}(p)=p$ where p is any prime number
In fact in this case the smallest m such that $m \cdot p$ is a perfect square can be only $\mathrm{m}=\mathrm{p}$.

Theorem 3: $\operatorname{Ssc}\left(p^{n}\right)=\left\lvert\, \begin{aligned} & \mid \text { if } n \text { is even } \\ & \mid p \text { if } n \text { is odd }\end{aligned} \quad\right.$ where p is any prime number.

First of all let's analyze the even case. We can write:

$$
p^{n}=p^{2} \cdot p^{2} \cdot \ldots \ldots . . \cdot p^{2}=\left|p^{\frac{n}{2}}\right|^{2} \text { and then the smallest } \mathrm{m} \text { such that } p^{n} \cdot m \text { is a perfect square is } 1 .
$$

Let's suppose now that n is odd. We can write:

$$
p^{n}=p^{2} \cdot p^{2} \cdot \ldots \ldots . . \cdot p^{2} \cdot p=\left|p^{\left\lfloor\frac{n}{2}\right\rfloor}\right|^{2} \cdot p=p^{2\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor\right.} \cdot p
$$

and then the smallest integer m such that $p^{n} \cdot m$ is a perfect square is given by $m=p$.

Theorem 4: $\operatorname{Ssc}\left(p^{a} \cdot q^{b} \cdot s^{c} \cdot \ldots . \ldots . . \cdot t^{x}\right)=p^{\text {odd }(a)} \cdot q^{\text {odd }(b)} \cdot s^{\text {odd }(c)} \cdot \ldots \cdot t^{\text {odd }(x)}$ where p, q, s, \ldots, t are distinct primes and the odd function is defined as:

$$
\operatorname{odd}(n)=\begin{array}{ll}
\mid 1 & \text { if } n \text { is odd } \\
\mid 0 & \text { if } n \text { is even }
\end{array}
$$

Direct consequence of theorem 3.

Theorem 5: $\operatorname{The} \operatorname{Ssc}(n)$ function is multiplicative, i.e. if $(n, m)=1$ then $\operatorname{Ssc}(n \cdot m)=\operatorname{Ssc}(n) \cdot \operatorname{Ssc}(m)$

Without loss of generality let's suppose that $n=p^{a} \cdot q^{b}$ and $m=s^{c} \cdot t^{d}$ where $\mathrm{p}, \mathrm{q}, \mathrm{s}, \mathrm{t}$ are distinct primes. Then:
$\operatorname{Ssc}(n \cdot m)=\operatorname{Ssc}\left(p^{a} \cdot q^{b} \cdot s^{c} \cdot t^{d}\right)=p^{\text {odd }(a)} \cdot q^{\text {odd }(b)} \cdot s^{\text {odd }(c)} \cdot t^{\text {odd }(d)}$
according to the theorem 4.

On the contrary:
$\operatorname{Ssc}(n)=\operatorname{Ssc}\left(p^{a} \cdot q^{b}\right)=p^{\operatorname{odd}(a)} \cdot q^{\operatorname{odd}(b)}$
$\operatorname{Ssc}(m)=\operatorname{Ssc}\left(s^{c} \cdot t^{d}\right)=s^{o d d(c)} \cdot t^{o d d(d)}$
This implies that: $\operatorname{Ssc}(n \cdot m)=\operatorname{Ssc}(n) \cdot \operatorname{Ssc}(m) \quad$ qed

Theorem 6: If $n=p^{a} \cdot q^{b} \cdot \ldots \cdot p^{s}$ then $\operatorname{Ssc}(n)=\operatorname{Ssc}\left(p^{a}\right) \cdot \operatorname{Ssc}\left(p^{b}\right) \cdot \ldots \ldots \cdot \operatorname{Ssc}\left(p^{s}\right) \quad$ where p is any prime number.

According to the theorem 4:
$\operatorname{Ssc}(n)=p^{\text {odd }(a)} \cdot p^{\text {odd }(b)} \cdot \ldots \ldots \cdot p^{\text {odd }(s)}$
and:
$\operatorname{Ssc}\left(p^{a}\right)=p^{o d d(a)}$
$\operatorname{Ssc}\left(p^{b}\right)=p^{\text {odd }(b)}$
and so on. Then:

$$
\operatorname{Ssc}(n)=\operatorname{Ssc}\left(p^{a}\right) \cdot \operatorname{Ssc}\left(p^{b}\right) \cdot \ldots \ldots \cdot \cdot \operatorname{Ssc}\left(p^{s}\right) \quad \text { qed }
$$

Theorem 7: $\operatorname{Ssc}(n)=n$ if n is squarefree, that is if the prime factors of n are all distinct. All prime numbers, of course are trivially squarefree [3].

Without loss of generality let's suppose that $n=p \cdot q$ where p and q are two distinct primes. According to the theorems 5 and 3:
$\operatorname{Ssc}(n)=\operatorname{Ssc}(p \cdot q)=\operatorname{Ssc}(p) \cdot \operatorname{Ssc}(q)=p \cdot q=n \quad$ qed

Theorem 8: The Ssc(n) function is not additive. :
In fact for example: $\quad \operatorname{Ssc}(3+4)=\operatorname{Ssc}(7)=7\langle>\operatorname{Ssc}(3)+\operatorname{Ssc}(4)=3+1=4$

Anyway we can find numbers m and n such that the function $\operatorname{Ssc}(n)$ is additive. In fact if:
m and n are squarefree
$\mathrm{k}=\mathrm{m}+\mathrm{n}$ is squarefree.
then $\operatorname{Ssc}(\mathrm{n})$ is additive.
In fact in this case $\operatorname{Ssc}(\mathrm{m}+\mathrm{n})=\operatorname{Ssc}(\mathrm{k})=\mathrm{k}=\mathrm{m}+\mathrm{n}$ and $\operatorname{Ssc}(\mathrm{m})=\mathrm{m} \operatorname{Ssc}(\mathrm{n})=\mathrm{n}$ according to theorem 7 .

Theorem 9: $\quad \sum_{n=1}^{\infty} \frac{1}{\operatorname{Ssc}(n)}$ diverges

In fact:

$$
\sum_{n=1}^{\infty} \frac{1}{\operatorname{Ssc}(n)}>\sum_{p=2}^{\infty} \frac{1}{\operatorname{Ssc}(p)}=\sum_{p=2}^{\infty} \frac{1}{p} \quad \text { where } \mathrm{p} \text { is any prime number. }
$$

So the sum of inverse of $\operatorname{Ssc}(\mathrm{n})$ function diverges due to the well known divergence of series [3]:

$$
\sum_{p=2}^{\infty} \frac{1}{p}
$$

Theorem 10: $\operatorname{Ssc}(n)>0$ where $n=1,2,3,4 \ldots$
This theorem is a direct consequence of $\operatorname{Ssc}(\mathrm{n})$ function definition. In fact for any n the smallest m such that $m \cdot n$ is a perfect square cannot be equal to zero otherwise $m \cdot n=0$ and zero is not a perfect square.

Theorem 11: $\quad \sum_{n=1}^{\infty} \frac{\operatorname{Ssc}(n)}{n}$ diverges

In fact being $\operatorname{Ssc}(n) \geq 1$ this implies that:

$$
\sum_{n=1}^{\infty} \frac{S s c(n)}{n}>\sum_{n=1}^{\infty} \frac{1}{n}
$$

and as known the sum of reciprocal of integers diverges. [3]

Theorem 12: $\quad \operatorname{Ssc}(n) \leq n$

Direct consequence of theorem 4.

Theorem 13: The range of $\operatorname{Ssc}(n)$ function is the set of squarefree numbers.
According to the theorem 4 for any integer n the function $\operatorname{Ssc}(\mathrm{n})$ generates a squarefree number.

Theorem 14: $0<\frac{\operatorname{Ssc}(n)}{n} \leq 1 \quad$ for $n>=1$

Direct consequence of theorems 12 and 10.

Theorem 15: $\frac{\operatorname{Ssc}(n)}{n}$ is not distributed uniformly in the interval]0,1]

If n is squarefree then $\operatorname{Ssc}(\mathrm{n})=\mathrm{n}$ that implies $\frac{\operatorname{Ssc}(n)}{n}=1$

If n is not squarefree let's suppose without loss of generality that $n=p^{a} \cdot q^{b}$ where p and q are primes.

Then:

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{\operatorname{Ssc}\left(p^{a}\right) \cdot \operatorname{Ssc}\left(p^{b}\right)}{p^{a} \cdot q^{b}}
$$

We can have 4 different cases.

1) a even and b even

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{\operatorname{Ssc}\left(p^{a}\right) \cdot \operatorname{Ssc}\left(p^{b}\right)}{p^{a} \cdot q^{b}}=\frac{1}{p^{a} \cdot q^{b}} \leq \frac{1}{4}
$$

2) a odd and b odd

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{\operatorname{Ssc}\left(p^{a}\right) \cdot \operatorname{Ssc}\left(p^{b}\right)}{p^{a} \cdot q^{b}}=\frac{p \cdot q}{p^{a} \cdot q^{b}}=\frac{1}{p^{a-1} \cdot q^{b-1}} \leq \frac{1}{4}
$$

3) a odd and b even

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{\operatorname{Ssc}\left(p^{a}\right) \cdot \operatorname{Ssc}\left(p^{b}\right)}{p^{a} \cdot q^{b}}=\frac{p \cdot 1}{p^{a} \cdot q^{b}}=\frac{1}{p^{a-1} \cdot q^{b}} \leq \frac{1}{4}
$$

4) a even and b odd

Analogously to the case 3 .

This prove the theorem because we don't have any point of $\operatorname{Ssc}(n)$ function in the interval $] 1 / 4,1[$

Theorem 16: For any arbitrary real number $\varepsilon>0$, there is some number $n>=1$ such that:

$$
\frac{\operatorname{Ssc}(n)}{n}<\varepsilon
$$

Without loss of generality let's suppose that $q=p_{1} \cdot p_{2}$ where p_{1} and p_{2} are primes such that $\frac{1}{q}<\varepsilon$ and ε is any real number grater than zero. Now take a number n such that: q

$$
n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}}
$$

For a_{1} and a_{2} odd:

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{p_{1} \cdot p_{2}}{p_{1}^{a_{1}} \cdot p_{2}^{a_{2}}}=\frac{1}{p_{1}^{a_{1}-1} \cdot p_{2}^{a_{2}-1}}<\frac{1}{p_{1} \cdot p_{2}}<\varepsilon
$$

For a_{1} and a_{2} even:

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{1}{p_{1}^{a_{1}} \cdot p_{2}^{a_{2}}}<\frac{1}{p_{1} \cdot p_{2}}<\varepsilon
$$

For a_{1} odd and a_{2} even (or viceversa):

$$
\frac{\operatorname{Ssc}(n)}{n}=\frac{p_{1}}{p_{1}^{a_{1}} \cdot p_{2}^{a_{2}}}=\frac{1}{p_{1}^{a_{1}-1} \cdot p_{2}^{a_{2}}}<\frac{1}{p_{1} \cdot p_{2}}<\varepsilon
$$

Theorem 17: $\operatorname{Ssc}\left(p_{k} \#\right)=p_{k} \#$ where $p_{k} \#$ is the product of first k primes (primordial) [3].
The theorem is a direct consequence of theorem 7 being $p_{k} \#$ a squarefree number.

Theorem 18: The equation $\quad \frac{\operatorname{Ssc}(n)}{n}=1$ has an infinite number of solutions.

The theorem is a direct consequence of theorem 2 and the well-known fact that there is an infinite number of prime numbers [6]

Theorem 19: The repeated iteration of the Ssc(n) function will terminate always in a fixed point (see [3] for definition of a fixed point).

According to the theorem 13 the application of Scc function to any n will produce always a squarefree number and according to the theorem 7 the repeated application of Ssc to this squarefree number will produce always the same number.

Theorem 20: The diophantine equation $\operatorname{Ssc}(n)=S s c(n+1)$ has no solutions.
We must distinguish three cases:

1) n and $n+1$ squarefree
2) n and $n+1$ not squareefree
3) n squarefree and $n+1$ no squarefree and viceversa

Case 1. According to the theorem $7 \operatorname{Ssc}(\mathrm{n})=\mathrm{n}$ and $\operatorname{Ssc}(\mathrm{n}+1)=\mathrm{n}+1$ that implies that $\operatorname{Ssc}(\mathrm{n})<>\operatorname{Ssc}(\mathrm{n}+1)$

Case 2. Without loss of generality let's suppose that:

$$
\begin{aligned}
& n=p^{a} \cdot q^{b} \\
& n+1=p^{a} \cdot q^{b}+1=s^{c} \cdot t^{d}
\end{aligned}
$$

where $\mathrm{p}, \mathrm{q}, \mathrm{s}$ and t are distinct primes.
According to the theorem 4:

$$
\begin{aligned}
& \operatorname{Ssc}(n)=\operatorname{Ssc}\left(p^{a} \cdot q^{b}\right)=p^{o d d(a)} \cdot q^{o d d(b)} \\
& \operatorname{Ssc}(n+1)=\operatorname{Ssc}\left(s^{c} \cdot t^{d}\right)=s^{\text {odd }(c)} \cdot t^{o d d(d)}
\end{aligned}
$$

and then $\operatorname{Ssc}(\mathrm{n})<>\operatorname{Ssc}(\mathrm{n}+1)$
Case 3. Without loss of generality let's suppose that $n=p \cdot q$. Then:

$$
\begin{aligned}
& \operatorname{Ssc}(n)=\operatorname{Ssc}(p \cdot q)=p \cdot q \\
& \operatorname{Ssc}(n+1)=\operatorname{Ssc}(p \cdot q+1)=\operatorname{Ssc}\left(s^{a} \cdot t^{b}\right)=s^{o d d(a)} \cdot t^{o d d(b)}
\end{aligned}
$$

supposing that $n+1=p \cdot q+1=s^{a} \cdot t^{b}$
This prove completely the theorem.

Theorem 21: $\quad \sum_{k=1}^{N} \operatorname{Ssc}(k)>\frac{6 \cdot N}{\pi^{2}}$ for any positive integer N.

The theorem is very easy to prove. In fact the sum of first N values of Ssc function can be separated into two parts:

$$
\sum_{k_{1}=1}^{N} S s c\left(k_{1}\right)+\sum_{k_{2}=1}^{N} S s c\left(k_{2}\right)
$$

where the first sum extend over all k_{1} squarefree numbers and the second one over all k_{2} not squarefree numbers.
According to the Hardy and Wright result [3], the asymptotic number $\mathrm{Q}(\mathrm{n})$ of squarefree numbers $\leq N$ is given by:

$$
Q(N) \approx \frac{6 \cdot N}{\pi^{2}}
$$

and then:

$$
\sum_{k=1}^{N} S s c(k)=\sum_{k_{1}=1}^{N} S s c\left(k_{1}\right)+\sum_{k_{2}=1}^{N} S s c\left(k_{2}\right)>\frac{6 \cdot N}{\pi^{2}}
$$

because according to the theorem 7, $\operatorname{Ssc}\left(k_{1}\right)=k_{1}$ and the sum of first N squarefree numbers is always greater or equal to the number $\mathrm{Q}(\mathrm{N})$ of squarefree numbers $\leq N$, namely:

$$
\sum_{k_{1}=1}^{N} k_{1} \geq Q(N)
$$

Theorem 22: $\quad \sum_{k=1}^{N} \operatorname{Ssc}(k)>\frac{N^{2}}{2 \cdot \ln (N)}$ for any positive integer N.

In fact:

$$
\sum_{k=1}^{N} S s c(k)=\sum_{k^{\prime}=1}^{N} S s c\left(k^{\prime}\right)+\sum_{p=2}^{N} S s c(p)>\sum_{p=2}^{N} S s c(p)
$$

because by theorem 2, $\operatorname{Ssc}(\mathrm{p})=\mathrm{p}$. But according to the result of Bach and Shallit [3], the sum of first N primes is asymptotically equal to:

$$
\frac{N^{2}}{2 \cdot \ln (N)}
$$

and this completes the proof.

Theorem 23: The diophantine equations $\frac{\operatorname{Ssc}(n+1)}{\operatorname{Ssc}(n)}=k$ and $\frac{\operatorname{Ssc}(n)}{\operatorname{Ssc}(n+1)}=k$ where k is any integer number have an infinite number of solutions.

Let's suppose that n is a perfect square. In this case according to the theorem 1 we have:

$$
\frac{\operatorname{Ssc}(n+1)}{\operatorname{Ssc}(n)}=\operatorname{Ssc}(n+1)=k
$$

On the contrary if $n+1$ is a perfect square then:

$$
\frac{\operatorname{Ssc}(n)}{\operatorname{Ssc}(n+1)}=\operatorname{Ssc}(n)=k
$$

Problems.

1) Is the difference $|\operatorname{Ssc}(\mathrm{n}+1)-\operatorname{Ssc}(\mathrm{n})|$ bounded or unbounded?
2) Is the $\operatorname{Ssc}(\mathrm{n})$ function a Lipschitz function?

A function is said a Lipschitz function [3] if:

$$
\frac{|S s c(m)-S s c(k)|}{|m-k|} \geq M \quad \text { where } \mathrm{M} \text { is any integer }
$$

3) Study the function $\operatorname{FSsc}(\mathrm{n})=\mathrm{m}$. Here m is the number of different integers k such that $\operatorname{Ssc}(\mathrm{k})=\mathrm{n}$.
4) Solve the equations $\operatorname{Ssc}(n)=\operatorname{Scc}(n+1)+\operatorname{Ssc}(n+2)$ and $\operatorname{Ssc}(n)+\operatorname{Ssc}(n+1)=\operatorname{Ssc}(n+2)$. Is the number of solutions finite or infinite?
5) Find all the values of n such that $\operatorname{Ssc}(n)=\operatorname{Ssc}(n+1) \cdot \operatorname{Ssc}(n+2)$
6) Solve the equation $\operatorname{Ssc}(n) \cdot \operatorname{Ssc}(n+1)=\operatorname{Ssc}(n+2)$
7) Solve the equation $\operatorname{Ssc}(n) \cdot \operatorname{Ssc}(n+1)=\operatorname{Ssc}(n+2) \cdot \operatorname{Ssc}(n+3)$
8) Find all the values of n such that $S(n)^{k}+Z(n)^{k}=S s c(n)^{k}$ where $\mathrm{S}(\mathrm{n})$ is the Smarandache function [1], $\mathrm{Z}(\mathrm{n})$ the Pseudo-Smarandache function [2] and k any integer.
9) Find the smallest k such that between $\operatorname{Ssc}(n)$ and $\operatorname{Ssc}(k+n)$, for $n>1$, there is at least a prime.
10) Find all the values of n such that $\operatorname{Ssc}(Z(n))-Z(\operatorname{Ssc}(n))=0$ where Z is the Pseudo Smarandache function [2].
11) Study the functions $\operatorname{Ssc}(Z(n)), Z(\operatorname{Ssc}(n))$ and $\operatorname{Ssc}(Z(n))-Z(\operatorname{Ssc}(n))$.
12) Evaluate $\lim _{k \rightarrow \infty} \frac{\operatorname{Ssc}(k)}{\theta(k)} \quad$ where $\theta(k)=\sum_{n \leq k} \ln (\operatorname{Ssc}(n))$
13) Are there $\mathrm{m}, \mathrm{n}, \mathrm{k}$ non-null positive integers for which $\operatorname{Ssc}(m \cdot n)=m^{k} \cdot \operatorname{Ssc}(n)$?
14) Study the convergence of the Smarandache Square complementary harmonic series:

$$
\sum_{n=1}^{\infty} \frac{1}{S s c^{a}(n)}
$$

where $\mathrm{a}>0$ and belongs to R
15) Study the convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{x_{n+1}-x_{n}}{\operatorname{Ssc}\left(x_{n}\right)}
$$

where x_{n} is any increasing sequence such that $\lim _{n \rightarrow \infty} x_{n}=\infty$
16) Evaluate:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} \frac{\ln (S s c(k))}{\ln (k)}}{n}
$$

Is this limit convergent to some known mathematical constant?
17) Solve the functional equation:

$$
\operatorname{Ssc}(n)^{r}+\operatorname{Ssc}(n)^{r-1}+\ldots \ldots \ldots+\operatorname{Ssc}(n)=n
$$

where r is an integer ≥ 2.
18) What about the functional equation:

$$
\operatorname{Ssc}(n)^{r}+\operatorname{Ssc}(n)^{r-1}+\ldots \ldots \ldots+\operatorname{Ssc}(n)=k \cdot n
$$

where r and k are two integers ≥ 2.
19) Evaluate $\sum_{k=1}^{\infty}(-1)^{k} \cdot \frac{1}{\operatorname{Ssc}(k)}$
20) Evaluate $\frac{\sum_{n} \operatorname{Ssc}(n)^{2}}{\left|\sum_{n} \operatorname{Ssc}(n)\right|^{2}}$
21) Evaluate:

$$
\lim _{n \rightarrow \infty}\left|\sum_{n} \frac{1}{S s c(f(n))}-\sum_{n} \frac{1}{f(S s c(n))}\right|
$$

for $\mathrm{f}(\mathrm{n})$ equal to the Smarandache function $\mathrm{S}(\mathrm{n})[1]$ and to the Pseudo-Smarandache function $\mathrm{Z}(\mathrm{n})$ [2].

References:

[1] C. Ashbacher, An introduction to the Smarandache function, Erhus Univ. Press, 1995.
[2] K. Kashihara, Comments and topics on Smarandache notions and problems, Erhus Univ. Press, 1996
[3] E. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 1999
[4] F. Smarandache, "Only Problems, not Solutions!", Xiquan Publ. Hse., 1993.
[5] Dumitrescu, C., Seleacu, V., "Some Notions and Questions in Number Theory", Xiquan Publ. Hse., Phoenix-Chicago, 1994.
[6] P. Ribenboim, The book of prime numbers records, Second edition, New York, Springer-Verlag, 1989

