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Abstract 
In this paper the main properties of Smarandache Square Complementary 
function has been analyzed. Several problems still unsolved are reported too.  

 
 

 
The Smarandache square complementary function is defined as [4],[5]:    
 

Ssc(n)=m 
 
where m is the smallest value such that nm ⋅  is a perfect square. 
 
Example:  for n=8,  m is equal 2 because this is the least value such that  nm ⋅  is a perfect square. 
 
 
The first 100 values of Ssc(n) function follows: 
 
 
n     Ssc(n)           n    Ssc(n)           n   Ssc(n)             n   Ssc(n) 
------------------------------------------------------------------------------- 
1 1  26 26  51 51  76 19 
2 2  27 3  52 13  77 77 
3 3  28 7  53 53  78 78 
4 1  29 29  54 6  79 79 
5 5  30 30  55 55  80 5 
6 6  31 31  56 14  81 1 
7 7  32 2  57 57  82 82 
8 2  33 33  58 58  83 83 
9 1  34 34  59 59  84 21 
10 10  35 35  60 15  85 85 
11 11  36 1  61 61  86 86 
12 3  37 37  62 62  87 87 
13 13  38 38  63 7  88 22 
14 14  39 39  64 1  89 89 
15 15  40 10  65 65  90 10 
16 1  41 41  66 66  91 91 
17 17  42 42  67 67  92 23 
18 2  43 43  68 17  93 93 
19 19  44 11  69 69  94 94 
20 5  45 5  70 70  95 95 
21 21  46 46  71 71  96 6 
22 22  47 47  72 2  97 97 
23 23  48 3  73 73  98 2 
24 6  49 1  74 74  99 11 
25 1  50 2  75 3  100 1 
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Let's start to explore some properties of this function.  
 
 
 

Theorem 1: 1)( 2 =nSsc    where n=1,2,3,4... 
 

In fact if 2nk =  is a perfect square by definition the smallest integer m  such that km ⋅  is a 
perfect square is m=1. 
 
 
 
Theorem 2: Ssc(p)=p  where p is any prime number 
 
In fact in this case the smallest m such that pm ⋅  is a perfect square can be only m=p.  
 
 
 
                                        |   1   if n is even 
Theorem 3:  )( npSsc = |                                  where p is any prime number. 
                                        |   p   if n is odd 
 
   
First of all let's analyze the even case.   We can write: 
                                                                  

 

2

2222 .......
n

n ppppp =⋅⋅⋅=  and then the smallest m such that mp n ⋅  is a perfect square is 1. 

 
 
Let's suppose now that n is odd.   We can write: 
 

ppppppppp
nn

n ⋅=⋅=⋅⋅⋅⋅=






⋅





2
2

2

2222 .......  

 
 and then the smallest integer m such that mp n ⋅  is a perfect square is given by m=p.  
 
 
 

Theorem 4:  )()()()( ....)........( xoddcoddboddaoddxcba tsqptsqpSsc ⋅⋅⋅⋅=⋅⋅⋅⋅   where p ,q, s, …,, t are  
 
                      distinct primes and the odd function is defined as:  
 
 
                  |   1     if n is odd 
   odd(n)= 
                  |   0     if n is even 
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Direct consequence of theorem 3.  
 
  
Theorem 5: The Ssc(n) function is multiplicative, i.e.  if (n,m)=1 then  )()()( mSscnSscmnSsc ⋅=⋅   
 
                                                             

Without loss of generality let's suppose that ba qpn ⋅=  and  dc tsm ⋅=  where p, q, s, t are distinct 
primes. Then: 
 
 

)()()()()()( doddcoddboddaodddcba tsqptsqpSscmnSsc ⋅⋅⋅=⋅⋅⋅=⋅  
 
according to the theorem 4. 
 
 
On the contrary: 
 

)()()()( boddaoddba qpqpSscnSsc ⋅=⋅=  
 

)()()()( doddcodddc tstsSscmSsc ⋅=⋅=  
 
This implies that: )()()( mSscnSscmnSsc ⋅=⋅    qed 
     
 
                           

Theorem 6:  If   sba pqpn ⋅⋅⋅= .......   then )(......)()()( sba pSscpSscpSscnSsc ⋅⋅⋅=     where p is    
                     any prime number. 
      
 
According to the theorem 4: 
 

)()()( ......)( soddboddaodd pppnSsc ⋅⋅⋅=  
 
and: 
 

)(

)(

)(

)(
boddb

aodda

ppSsc

ppSsc

=

=
 

 
and so on. Then:          
 

)(......)()()( sba pSscpSscpSscnSsc ⋅⋅⋅=      qed 
 
 
Theorem 7:  Ssc(n)=n   if n is squarefree, that is if the prime factors of n are all distinct. All prime  
                     numbers, of course are  trivially squarefree [3].  
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Without loss of generality let's suppose that  qpn ⋅=  where p and q are two distinct primes. 
According to the theorems 5 and 3: 
 

nqpqSscpSscqpSscnSsc =⋅=⋅=⋅= )()()()(    qed 
 
 
Theorem 8 :  The Ssc(n) function is not additive.:  
  
In fact for example:  Ssc(3+4)=Ssc(7)=7<>Ssc(3)+Ssc(4)=3+1=4 
 
 
Anyway we can find numbers m and n such that the function Ssc(n) is additive.  In fact if: 
 
                m and n are squarefree 
        k=m+n is squarefree. 
 
then Ssc(n) is additive. 
In fact in this case Ssc(m+n)=Ssc(k)=k=m+n  and  Ssc(m)=m  Ssc(n)=n according to theorem 7. 
 
 

Theorem 9:    ∑
∞

=1 )(
1

n nSsc
  diverges 

 
 
In fact: 
    

∑ ∑ ∑
∞

=

∞

=

∞

=

=>
1 2 2

1
)(

1
)(

1

n p p ppSscnSsc
 where p is any prime number. 

 
 
So the sum of inverse of Ssc(n) function diverges due to the well known divergence of series [3]: 
      

∑
∞

=2

1

p p
 

                                                                                         
 
 
Theorem 10:  Ssc(n)>0   where n=1,2,3,4 ... 
 
This theorem is a direct consequence of  Ssc(n) function definition. In fact for any n the smallest m 
such that nm ⋅   is a perfect square cannot be equal to zero otherwise nm ⋅ =0 and zero is not a 
perfect square. 
   
 
 

Theorem 11:    ∑
∞

=1

)(

n n
nSsc

  diverges 
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In fact being 1)( ≥nSsc  this implies that: 
 

∑ ∑
∞

=

∞

=

>
1 1

1)(

n n nn
nSsc

 

 
and as known the sum of reciprocal of integers diverges. [3]  
 
 
 
Theorem 12:   nnSsc ≤)(   
 
Direct consequence of theorem 4. 
 
 
                                                                                                     
Theorem 13:  The range of Ssc(n) function is the set of squarefree numbers.  
 
According to the theorem 4 for any integer n the function Ssc(n) generates a squarefree number.  
 
 
 

Theorem 14:   1
)(

0 ≤<
n

nSsc
    for n>=1 

 
 
Direct consequence of theorems 12 and 10. 
 
 
           

Theorem 15:   
n

nSsc )(
  is not distributed uniformly in the interval ]0,1] 

         
 

If n is squarefree then Ssc(n)=n that implies  1
)( =

n
nSsc

 

                                     
                                                                              

If n is not squarefree let's suppose without loss of generality that ba qpn ⋅=    where p and q are 
primes. 
 
Then: 
 
 
 

ba

ba

qp
pSscpSsc

n
nSsc

⋅
⋅= )()()(

 

 
We can have 4 different cases.     
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      1) a even and b even       
 
 

4
11)()()( ≤

⋅
=

⋅
⋅=

baba

ba

qpqp
pSscpSsc

n
nSsc

 

 
 
 
      2) a odd and b odd 
 

4
11)()()(

11
≤

⋅
=

⋅
⋅=

⋅
⋅=

−− bababa

ba

qpqp
qp

qp
pSscpSsc

n
nSsc

 

 
 
   
      3) a odd and b even 
 

4
111)()()(

1
≤

⋅
=

⋅
⋅=

⋅
⋅=

− bababa

ba

qpqp
p

qp
pSscpSsc

n
nSsc

 

 
 
 
 
      4) a even and b odd 
 
 
      Analogously to the case 3 . 
    
 
This prove the theorem because we don't have any point of Ssc(n) function in the interval ]1/4,1[ 
 
  
Theorem 16:  For any arbitrary real number 0>ε , there is some number n>=1 such that:    
 

ε<
n

nSsc )(
 

 
 
Without loss of generality let's suppose that 21 ppq ⋅=  where 1p  and 2p  are primes  such that  

ε<
q
1

  and ε  is any real number grater than zero. Now take a number n such that: 

 
 

21
21
aa ppn ⋅=  
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For 1a   and 2a  odd: 
 

ε<
⋅

<
⋅

=
⋅
⋅

=
−−

21
1

2
1

121

21 11)(
2121 pppppp

pp
n

nSsc
aaaa

 

 
 
 
 
For 1a  and 2a   even: 
 

ε<
⋅

<
⋅

=
2121

11)(
21 ppppn

nSsc
aa

 

 
 
 
For 1a  odd and 2a   even (or viceversa): 
 

ε<
⋅

<
⋅

=
⋅

=
−

212
1

121

1 11)(
2121 pppppp

p
n

nSsc
aaaa

 

           
 
 
 
Theorem 17:  #)#( kk ppSsc =   where #kp   is the product of first k primes (primordial) [3]. 
 

The theorem is a direct consequence of theorem 7 being #kp   a squarefree number. 
                                                            
 
 

Theorem 18:    The equation     1
)( =

n
nSsc

    has an infinite number of solutions. 

 
 
 The theorem is a direct consequence of theorem 2 and the well-known fact that there is an  
 infinite number of prime numbers [6]   
                           
 
 
Theorem 19:  The repeated iteration of the Ssc(n) function will terminate always in a fixed point     
                       (see [3] for definition of a fixed point ). 
 
  
According to the theorem 13 the application of Scc function to any n will produce always a 
squarefree number and according to the theorem 7 the repeated application of Ssc to this squarefree 
number will produce always the same number.     
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Theorem 20:  The diophantine equation Ssc(n)=Ssc(n+1) has no solutions. 
 
We must distinguish three cases: 
 
     1) n and n+1 squarefree 
     2) n and n+1 not squareefree  
     3) n squarefree and n+1 no squarefree and viceversa 
 
 
     Case 1.  According to the theorem 7 Ssc(n)=n and Ssc(n+1)=n+1 that implies    
                   that Ssc(n)<>Ssc(n+1) 
      
     Case 2.  Without loss of generality let's suppose that: 
               
 

dcba

ba

tsqpn

qpn

⋅=+⋅=+

⋅=

11
 

 
 
                     where p,q,s and t are distinct primes. 
  
          According to the theorem 4:  
 

)()(

)()(

)()1(

)()(
doddcodddc

boddaoddba

tstsSscnSsc

qpqpSscnSsc

⋅=⋅=+

⋅=⋅=

 

          and then Ssc(n)<>Ssc(n+1) 
 
      Case 3. Without loss of generality let's suppose that qpn ⋅= . Then: 
 
 

)()()()1()1(

)()(
boddaoddba tstsSscqpSscnSsc

qpqpSscnSsc

⋅=⋅=+⋅=+

⋅=⋅=
 

 
 

                     supposing that ba tsqpn ⋅=+⋅=+ 11  
 
                     This prove completely the theorem. 
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Theorem 21:    ∑
=

⋅>
N

k

N
kSsc

1
2

6
)(

π
 for any positive integer N. 

 
 
The theorem is very easy to prove. In fact the sum of first N values of Ssc function can be separated 
into two parts: 
 
 

∑ ∑
= =

+
N

k

N

k

kSsckSsc
1 1

21

1 2

)()(  

 
 
 
where the first sum extend over all 1k  squarefree numbers and the second one over all 2k  not 
squarefree numbers. 
According to the Hardy and Wright result [3], the asymptotic number Q(n) of squarefree numbers 

N≤  is given by:  
      

2

6
)(

π
N

NQ
⋅≈  

                       
  
and then: 
 

2
1

2
1 1

1

6
)()()(

21
π

N
kSsckSsckSsc

N

k

N

k

N

k

⋅>+= ∑∑ ∑
== =

 

 
 
because according to the theorem 7,  11 )( kkSsc =  and the sum of first N squarefree numbers is 
always greater or equal to the number Q(N) of squarefree numbers N≤  , namely: 
                       
 

∑
=

≥
N

k

NQk
1

1

1

)(  

 
 

Theorem 22: ∑
= ⋅

>
N

k N
N

kSsc
1

2

)ln(2
)(  for any positive integer N. 

 
 
 
In fact: 

∑∑ ∑∑
== ==

>+=
N

p

N

k

N

p

N

k

pSscpSsckSsckSsc
21 21'

)()()'()(  
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because by theorem 2,  Ssc(p)=p. But according to the result of Bach and Shallit [3],  the sum of 
first N primes  is asymptotically equal to: 
 

)ln(2

2

N
N

⋅
 

 
       
and this completes the proof. 
 
 

Theorem 23:  The diophantine equations  k
nSsc

nSsc
andk

nSsc
nSsc =

+
=+

)1(
)(

)(
)1(

 where k is any  

                        integer number have an infinite number of solutions. 
 
 
Let's suppose that n is a perfect square. In this case according to the theorem 1 we have: 
 
 

knSsc
nSsc

nSsc =+=+
)1(

)(
)1(

 

 
 
On the contrary if n+1 is a perfect square then: 
 

knSsc
nSsc

nSsc ==
+

)(
)1(

)(
 

 
 
 
 
 
Problems. 
 
 
1) Is the difference |Ssc(n+1)-Ssc(n)| bounded or unbounded? 
 
 
2) Is the Ssc(n) function a Lipschitz function ? 
    A function is said a Lipschitz function [3] if: 
 

M
km

kSscmSsc ≥
−
−

||
|)()(|

   where M is any integer  

 
 
3) Study the function FSsc(n)=m. Here m is the number of different integers k such that Ssc(k)=n. 
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4) Solve the equations Ssc(n)=Ssc(n+1)+Ssc(n+2) and Ssc(n)+Ssc(n+1)=Ssc(n+2). Is the number   
     of solutions  finite or infinite? 
 
 
5) Find all the values of n such that  )2()1()( +⋅+= nSscnSscnSsc   
 
 
6) Solve the equation  )2()1()( +=+⋅ nSscnSscnSsc   
 
 
7) Solve the equation  )3()2()1()( +⋅+=+⋅ nSscnSscnSscnSsc   
 
 

8) Find all the values of n such that  kkk nSscnZnS )()()( =+  where S(n) is the Smarandache  
    function [1], Z(n) the Pseudo-Smarandache function [2] and k any integer. 
 
 
9) Find the smallest k such that between Ssc(n) and Ssc(k+n), for n>1, there is at least a prime.  
 
 
 
10) Find all the values of n such that  Ssc(Z(n))-Z(Ssc(n))=0 where Z is the Pseudo Smarandache  
      function [2]. 
  
 
11) Study the functions Ssc(Z(n)), Z(Ssc(n)) and Ssc(Z(n))-Z(Ssc(n)). 
 
 

    

12)  Evaluate  
)(
)(

lim
k
kSsc

k θ∞→
    where  ∑

≤

=
kn

nSsck ))(ln()(θ    

            
 
                                                            

13)  Are there m, n, k non-null positive integers for which )()( nSscmnmSsc k ⋅=⋅ ? 
 
 
14)  Study the convergence of the Smarandache Square complementary harmonic series: 
 

∑
∞

=1 )(
1

n
a nSsc

 

 
       where a>0  and  belongs to R                                                         
 
 
15) Study the convergence of the series: 
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∑
∞

=

+ −

1

1

)(n n

nn

xSsc
xx

 

 
 
where  nx  is any increasing sequence such that  ∞=

∞→ nn
xlim   

 
 
 
16)  Evaluate: 
     

n
k

kSscn

k

n

∑
=

∞→

2 )ln(
))(ln(

lim  

 
 
 
    Is this limit convergent to some known mathematical constant?  
 
 
 
17) Solve the functional equation: 
 

nnSscnSscnSsc rr =+++ − )(........)()( 1  
 
 
   where r is an integer 2≥ . 
 
 
 
18) What about the functional equation: 
  

nknSscnSscnSsc rr ⋅=+++ − )(........)()( 1  
 
 
where r and k are two integers 2≥ .  
 
 
 
 

19) Evaluate  ∑
∞

=

⋅−
1 )(

1
)1(

k

k

kSsc
 

 
 
 

20) Evaluate  
2

2

)(

)(

∑

∑

n

n

nSsc

nSsc
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21) Evaluate:  
 

∑ ∑−
∞→

n n
n nSscfnfSsc ))((

1
))((

1
lim  

 
 
for f(n) equal to the Smarandache function S(n) [1] and to the Pseudo-Smarandache function Z(n) 
[2]. 
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