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ABSTRACT

In this paper, we study the notion of Smarandache zero divisor in semigroups and rings.
We illustrate them with examples and prove some interesting results about them.
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Throughout this paper, S denotes a semigroup and R a ring. They need not in general be
Smarandache semigroups or Smarandache rings respectively. Smarandache zero divisors
are defined for any general ring and semigroup.

Definition 1 Let S be any semigroup with zero under multiplication (or any ring R). We
say that a non-zero element a € S (or R) is a Smarandache zero divisor if there exists a
non-zero element b in S (or in R) such that a.b = 0 and there exist x, ye S\ {a, b, 0} (or
x,y€ R\ {a, b, 0}), x #y, with

I. ax=0orxa=0
2. by=0oryb=0and
3. xy#0oryx#0

Remark If S is a commutative semigroup then we will have ax =0 and xa=0, yb =0
and by = 0; so what we need is at least one of xa or ax is zero 'or' not in the mutually
exclusive sense.

Example 1 Let Z; = {0,1,2,...,11} be the semigroup under multiplication. Clearly, Z,; is
a commutative semigroup with zero. We have 6e€ Z;, is a zero divisor as 6.8 = O(mod
12). Now 6 is a Smarandache zero divisor as 6.2 = O(mod 12), 8.3 = 0(mod 12) and 2.3 #
O(mod 12). Thus 6 is a Smarandache zero divisor. It is interesting to note that for 3e Z,,
3.4 =0(mod 12) is a zero divisor, but 3,4 is not a Smarandache zero divisor for there does
not exist a x,yeZj, \ {0} x #y such that 3.x = O(mod 12) and 4y = O(mod 12) with xy #
O(mod 12).



This example leads us to the following theorem.

Theorem 2 Let S be a semigroup under multiplication with zero. Every Smarandache
zero divisor is a zero divisor, but not reciprocally in general.

Proof: Given S is a multiplicative semigroup with zero. By the very definition of a
Smarandache zero divisor in S we see it is a zero divisor in S. But if x is a zero divisor in
S, it need not in general be a Smarandache zero divisor of S. We prove this by an
example. Consider the semigroup Z;, given in example 1. Clearly 3 is a zero divisor in
Z1; as 3.4 =0(12) but 3 is not a Smarandache zero divisor of 12.

b

a
Example 2 Let Syo = {( a,b,c,de Z, = {0,1}} be the set of all 2 x 2 matrices
c

with entries from the ring of integers modulo 2. S,., is a semigroup under matrix

[1 0 00
multiplication modulo two. Now 0 0:| in Sy 18 a zero divisor as |:0 1] € Syxo 18 such
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Now take x = |:g (1):| and y = |:(1) ?)] in Syw. We have |:?) é][é g]:[g g] but
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Hence
0

0:| is a Smarandache zero divisor of the semigroup S,..

Example 3 Let Rz = {(aij )such thata; € Z, = {0,1,2,3}} be the collection of all 3x3

matrices with entries from Z;. Now Rsy; is a ring under matrix addition and
multiplication modulo four. We have

1 00
0 0 O |e Rsxsis a Smarandache zero divisor in Riygs.
0 0 2

For



1 0 0Yo 0o 0 0 00 0 0 0)(O 0 O
0 0 0JO I O0|=[0 O Oland|[O 3 20 O O |eRs, such that
0 0 210 2 2 0 00 0 0 2/J{0 2 2
1 0 0Yyo o o 0 0 O
0 0 0[O0 3 2|=|10 0 O
0 0 2/0 0 2 0 0 0
0 0 0Y1 o o 0 0 0
0 3 2/0 0 0|=|0 0 O
0 0 2/0 0 2 0 0 0
0 0 0Yo 0 O 0 00
01 0J]0 O Of=[0 0 O
0 2 210 2 2 0 00
0 0 0YO O O 0 0 0 0 0 0
0 0 0[O0 1T Of=[0 O O]#|/0 0 O
0 2 2]0 2 2 0 2 0 0 0 0
0 0 0Yo 0 0 0 00
0 3 2/0 0 O0f=(0 O O
0 0 2J]0 2 2 0 00
0 0 0Yo 0 O 0 0 O 0
0 0 0|0 3 2=|10 0 O0]=#]|0
0 2 2]0 0 2 0 2 0 0
1 00
So 0 O |is Smarandache zero-divisor in Rzys.
0 2

Example 4: Let Z;p = {0, 1, 2, ...., 19} be the ring of integers modulo 20. Clearly 10 is a
Smarandache zero divisor. For 10 . 16 = 0(mod 20) and there exists 5, 6 € Zy \ {0} with

5% 16 =0 (mod 20)
6 x 10 =0 (mod 20)
6 X 5=10(mod 20).

Theorem 3 Let R be a ring; a Smarandache zero divisor is a zero divisor , but not
reciprocally in general.



Proof: By the very definition, we have every Smarandache zero divisor is a zero divisor.
We have the following example to show that every zero divisor is not a Smarandache
zero divisor. Let Z;o = {0,1,2,...,9} be the ring of integers modulo 10.

Clearly 2 in Z,; is a zero divisor as 2.5 = O(mod 10) which can never be a Smarandache
zero divisors in Z;¢. Hence the claim.

Theorem 4 Let R be a non-commutative ring. Suppose xe R\{0} be a Smarandache zero
divisor; with xy = yx = 0 and a,be R\{0,x,y}satisfying the following conditions:

1. ax=0andxa#0,
2. yb=0and by #0 and
3. ab=0andba=0.

Then we have (xa + by)* = 0.

Proof: Given xe R\{0} is a Smarandache zero divisor such that xy = 0 = yx. We have
a,beR \ {0,x,y}such that ax = 0 and xa # 0, yb = 0 and by # 0 with ab =0 and ba # 0.
Consider (xa + by)® = xaby + byxa + xaxa + byby using ab =0, yx =0, ax = 0 and yb = 0
we get (xa + by)” =0.

Theorem 5 Let R be a ring having Smarandache zero divisor satisfying conditions of
Theorem 5, then R has a nilpotent element of order 2.

Proof: By Theorem 5 the result is true.
We propose the following problems.

Problem 1: Characterize rings R in which every zero divisor is a Smarandache zero
divisor.

Problem 2: Find conditions or properties about rings so that it has Smarandache zero
divisors.

Problem 3: Does there exists rings in which no zero divisor is a Smarandache zero
divisor ?

Problem 4: Find group rings RG which has Smarandache zero divisors ?

Problem 5: Let G be a group having elements of finite order and F any field. Does the
elements of finite order in G give way to Smarandache zero divisors ?
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