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Abstract

Physics as a generalized number theory program involves three threads: various p-adic physics
and their fusion together with real number based physics to a larger structure, the attempt to
understand basic physics in terms of classical number fields, and infinite primes discussed in this
article.

The construction of infinite primes is formally analogous to a repeated second quantization of
an arithmetic quantum field theory by taking the many particle states of previous level elementary
particles at the new level. Besides free many particle states also the analogs of bound states
appear. In the representation in terms of polynomials the free states correspond to products of
first order polynomials with rational zeros. Bound states correspond to nth order polynomials
with non-rational but algebraic zeros.

The construction can be generalized to classical number fields and their complexifications
obtained by adding a commuting imaginary unit. Special class corresponds to hyper-octonionic
primes for which the imaginary part of ordinary octonion is multiplied by the commuting imag-
inary unit so that one obtains a sub-space M8 with Minkowski signature of metric. Also in this
case the basic construction reduces to that for rational or complex rational primes and more com-
plex primes are obtained by acting using elements of the octonionic automorphism group which
preserve the complex octonionic integer property.

Can one map infinite primes/integers/rationals to quantum states? Do they have space-time
surfaces as correlates? Quantum classical correspondence realized in terms of modified Dirac
operator implies that if infinite rationals can be mapped to quantum states then the mapping of
quantum states to space-time surfaces automatically gives the map to space-time surfaces. The
question is therefore whether the mapping to quantum states defined by WCW spinor fields is
possible. A natural hypothesis is that number theoretic fermions can be mapped to real fermions
and number theoretic bosons to WCW (”world of classical worlds”) Hamiltonians. The crucial
observation is that one can construct infinite hierarchy of hyper-octonionic units by forming
ratios of infinite integers such that their ratio equals to one in real sense: the integers have
interpretation as positive and negative energy parts of zero energy states. One can construct also
sums of these units with complex coefficients using commuting imaginary unit and these sums
can be normalized to unity and have interpretation as states in Hilbert space. These units can
be assumed to possess well defined standard model quantum numbers. It is possible to map the
quantum number combinations of WCW spinor fields to these states. Hence the points of M8

can be said to have infinitely complex number theoretic anatomy so that quantum states of the
universe can be mapped to this anatomy. One could talk about algebraic holography or number
theoretic Brahman=Atman identity.

One can also ask how infinite primes relate to the p-adicization program and to the hierarchy of
Planck constants. The key observation is that infinite primes are in one-one correspondence with
rational numbers at the lower level of hierarchy. At the first level of hierarchy the p-adic norm
with respect to p-adic prime for this rational gives power p−n so that one has two powers of p - pn+

andpn− - since two infinite primes corresponding to fermionic vacua X±1, where X is the product
of all primes at given level of hierarchy, characterize the partonic 2-surface. The proposal inspired
by the p-adicization program is that ∆φ = 2π/pn defines angle measurement resolution crucial in
the construction of p-adic variants of WCW (”world of classical world”) as a union of symmetric
coset spaces by starting from discrete variants of the real counterpart of symmetric space having
common points with tis p-adic variant. The two measurement resolutions correspond to CD and
CP2 degrees of freedom. The hierarchy of Planck constants generalizes imbedding space to a
book like structure with pages identified in terms of singular coverings and factor spaces of CD
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and CP2. There are good arguments suggesting that only coverings characterized by integers na

and nb are realized. The identifications na = n+ and nb = n− lead to highly non-trivial physical
predictions and allow sharpen the view about the hierarchy of Planck constants. Therefore the
notion of finite measurement resolution becomes the common denominator for the three threads
of the number theoretic vision and give also a connection with the physics as infinite-dimensional
geometry program and with the inclusions of hyper-finite factors defined by WCW spinor fields
and proposed to characterize finite measurement resolution at quantum level.

Keywords: Infinite primes, arithmetic quantum field theory, second qantization, octonions, asso-
ciativity, holography.
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1 Introduction

The notion of prime seems to capture something very essential about what it is to be elementary
building block of matter and has become a fundamental conceptual element of TGD. The notion
of prime gains it generality from its reducibility to the notion of prime ideal of an algebra. Thus
the notion of prime is well-defined, not only in case of quaternions and octonions, but also for their
complexifications and one can speak about infinite primes in the case of hyper-quaternions and -
octonions, which are especially natural physically and for which numbers having zero norm correspond
physically to light-like 8-vectors.

1.1 The notion of infinite prime

The original motivation for the notion of infinite prime came from the first attempts to construct
TGD inspired theory of consciousness (around 1995) [5]. Suppose very naively that the 4-surfaces in
a given sector of the ”world of classical worlds” (WCW) are labelled by a fixed p-adic prime. The
natural expectation is that evolution by quantum jumps means dispersion in the space of these sectors
and leads to the increase of the p-adic prime characterizing the Universe. As one moves backwards
in subjective time (sequence of quantum jumps) one ends up to the situation in which the prime
characterizing the universe was p = 2. Should one assume that there was the first quantum jump
when everything began? If not, then it would seem that the p-adic prime characterizing the Universe
must be infinite. Second problem is that the p-adic length scales are finite and if the size scale of
Universe is given by p-adic length scale the Universe has finite sized: this does not make sense in TGD
framework. The only way out of the problems is the assumption that the p-adic prime characterizing
the entire Universe is literally infinite and that p-adic primes characterizing space-time sheets are
finite.

These argument, which are by no means central for the recent view about p-adic primes, motivated
the attempt to construct a theory of infinite primes and to extend quantum TGD accordingly. This
turns out to be possible. The recipe for constructing infinite primes is structurally equivalent with a
repeated second quantization of an arithmetic super-symmetric quantum field theory. At the lowest
level one has fermionic and bosonic states labeled by finite primes and infinite primes correspond to
many particle states of this theory. Also infinite primes analogous to bound states are predicted.
This hierarchy of quantizations can be continued indefinitely by taking the many particle states of the
previous level as elementary particles at the next level. It must be also emphasized that the notion
of infinity is relativistic. With respect to the p-adic norm infinite primes have unit norm for all finite
and infinite primes so that there is nothing to become scared of!

Construction could make sense also for hyper-quaternionic and hyper-octonionic primes although
non-commutativity and non-associativity pose technical challenges. One can also construct infinite
number of real units as ratios of infinite integers with a precise number theoretic anatomy. The
fascinating finding is that the quantum states labeled by standard model quantum numbers allow
a representation as wave fuctions in the discrete space of these units. Space-time point becomes
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infinitely richly structured in the sense that one can associate to it a wave function in the space of real
(or octonionic) units allowing to represent the WCW spinor fields. One can speak about algebraic
holography or number theoretic Brahman=Atman identity and one can also say that the points of
imbedding space and space-time surface are subject to a number theoretic evolution. In philosophical
mood one can of course also ask whether there exists a hierarchy of imbedding spaces in which the
imbedding space at the lower level represents something with infinitesimal size in the sense of real
topology and whether this hierarchy is accompanied also by a hierarchy of conscious entities.

This picture suggest that the Universe of quantum TGD might basically provide a physical rep-
resentation of number theory allowing also infinite primes. The proposal suggests also a possible
generalization of real numbers to a number system akin to hyper-reals introduced by Robinson in his
non-standard calculus [26] providing a rigorous mathematical basis for calculus. In fact, some rather
natural requirements lead to a unique generalization for the concepts of integer, rational and real.
Infinite integers and reals can be regarded as infinite-dimensional vector spaces with integer and real
valued coefficients respectively. Same generalization could make sense for all classical number fields
[22, 23, 24].

1.2 Infinite primes and physics in TGD Universe

Several different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

1.2.1 Infinite primes and super-symmetric quantum field theory

Consider next the physical interpretation.

1. The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization
of a super-symmetric arithmetic quantum field theory. This suggests that configuration space
spinor fields or at least the ground states of associated super-conformal representations [29]
(for super-conformal invariance see [29] could be mapped to infinite primes in both bosonic
and fermionic degrees of freedom. The process might generalize so that it applies in the case
of quaternionic and octonionic primes and their hyper counterparts. This hierarchy of second
quantizations means enormous generalization of physics to what might be regarded a physical
counterpart for a hierarchy of abstractions about abstractions about.... The ordinary second
quantized quantum physics corresponds only to the lowest level infinite primes.

2. The ordinary primes appearing as building blocks of infinite primes at the first level of the
hierarchy could be identified as coding for p-adic primes assignable to fermionic and bosonic
partons identified as 2-surfaces of a given space-time sheet. The hierarchy of infinite primes
would correspond to hierarchy of space-time sheets defined by the topological condensate. This
leads also to a precise identification of p-adic and real variants of bosonic partonic 2-surfaces as
correlates of intention and action and pairs of p-adic and real fermionic partons as correlates for
cognitive representations.

3. The idea that infinite primes characterize quantum states of the entire Universe, perhaps ground
states of super-conformal representations, if not all states, could be taken further. It turns out
that this idea makes sense when one considers discrete wave functions in the space of infinite
primes and that one can indeed represent standard model quantum numbers in this manner.

4. The number theoretical supersymmetry suggests also space-time supersymmetry TGD frame-
work. Space-time super-symmetry in its standard form is not possible in TGD Universe and
this cheated me to believe that this supersymmetry is completely absent in TGD Universe.
The progress in the understanding of the properties of the modified Dirac action however led
to a generalization of the space-time super-symmetry as a dynamical and broken symmetry of
quantum TGD [10].

Here however emerges the idea about the number theoretic analog of color confinement. Rational
(infinite) primes allow not only a decomposition to (infinite) primes of algebraic extensions of rationals
but also to algebraic extensions of quaternionic and octonionic (infinite) primes. The physical analog
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is the decomposition of a particle to its more elementary constituents. This fits nicely with the idea
about number theoretic resolution represented as a hierarchy of Galois groups defined by the extensions
of rationals and realized at the level of physics in terms of Jones inclusions [13] defined by these groups
having a natural action on space-time surfaces, induced spinor fields, and on configuration space spinor
fields representing physical states [8].

1.2.2 Infinite primes and physics as number theory

The hierarchy of algebraic extensions of rationals implying corresponding extensions of p-adic numbers
[25] suggests that Galois groups, which are the basic symmetry groups of number theory, should have
concrete physical representations using induced spinor fields and configuration space spinor fields
and also infinite primes and real units formed as infinite rationals. These groups permute zeros of
polynomials and thus have a concrete physical interpretation both at the level of partonic 2-surfaces
dictated by algebraic equations and at the level of braid hierarchy. The vision about the role of
hyperfinite factors of II1 and of Jones inclusions as descriptions of quantum measurements with finite
measurement resolution leads to concrete ideas about how these groups are realized.

G2 acts as automorphisms of hyper-octonions and SU(3) as its subgroup respecting the choice of a
preferred imaginary unit. The discrete subgroups of SU(3) permuting to each other hyper-octonionic
primes are analogous to Galois group and turned out to play a crucial role in the understanding of the
correspondence between infinite hyper-octonionic primes and quantum states predicted by quantum
TGD.

1.2.3 The notion of finite measurement resolution as the key concept

TGD predicts several hierarchies: the hierarchy of space-time sheets, the hierarchy of infinite primes,
the hierarchy of Jones inclusions identifiable in terms of finite measurement resolution[13], the dark
matter hierarchy characterized by increasing values of ~ [12], the hierarchy of extensions of a given p-
adic number field. TGD inspired theory of consciousness predictes the hierarchy of selves and quantum
jumps with increasing duration with respect to geometric time. These hierarchies should be closely
related.

The notion of finite measurement resolution turns out to be the key concept: the p-adic norm of
the rational defined by the infinite prime characterizes the angle measurement resolution for given
p-adic prime p. It is essential that one has what might be called a state function reduction selecting
a fixed p-adic prime which could be also infinite. This gives direct connections with cognition and
with the p-adicization program relying also on angle measurement resolution. Also the value the
integers characterizing the singular coverings of CD and CP2 defining as their product Planck constant
characterize the measurement resolution for a given p-adic prime in CD and CP2 degrees of freedom.
This conforms with the fact that elementary particles are characterized by two infinite primes. Hence
finite measurement resolution ties tightly together the three threads of the number theoretic vision.
Finite measurement resolution relates also closely to the inclusions of hyper-finite factors central for
TGD inspired quantum measurement theory with finite measurement resolution.

1.2.4 Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic quantum
field theories. Quantum classical correspondence leads to ask whether infinite primes could also code
for the space-time surfaces serving as symbolic representations of quantum states. This would a
generalization of algebraic geometry would emerge and could reduce the dynamics of Kähler action
to algebraic geometry and organize 4-surfaces to a physical hierarchy according to their algebraic
complexity. This conjecture should be consistent with two other conjectures about the dynamics of
space-time surfaces (space-time surfaces as preferred extrema of Kähler action and space-time surfaces
as quaternionic or co-quaternionic (as associative or co-associative) 4-surfaces of hyper-octonion space
M8).

Quantum classical correspondence requires the map of the quantum numbers of configuration space
spinor fields to space-time geometry. The modified Dirac equation with measurement interaction term
realizes this requirement. Therefore, if one wants to map infinite rationals to space-time geometry it
is enough to map infinite primes to quantum numbers. This map can be indeed achieved thanks to
the detailed picture about the interpretation of the symmetries of infinite primes in terms of standard
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model symmetries. The notion of finite measurement resolution allows to deduce much more detailed
about this correspondence. In particular, the rational defined by the infinite prime classifies the finite
sub-manifold geometry defined by the discretization of the partonic 2-surface implied by the finite
measurement resolution. Also a direct correlation between integers defining Planck constant and the
”fermionic” part of the infinite prime emerges.

1.3 Infinite primes, cognition, and intentionality

The correlation of infinite primes with cognition is the first fascinating possibility and this possibility
has stimulated several ideas.

1. One can define the notion of prime also for the algebraic extensions of rationals. The hierarchy
of infinite primes associated with algebraic extensions of rationals leading gradually towards
algebraic closure of rationals would in turn define cognitive hierarchy corresponding to algebraic
extensions of p-adic numbers.

2. The introduction of infinite primes, integers, and rationals leads also to a generalization of clas-
sical number fields since an infinite algebra of real (complex, etc...) units defined by finite ratios
of infinite rationals multiplied by ordinary rationals which are their inverses becomes possible.
These units are not units in the p-adic sense and have a finite p-adic norm which can be differ
from one. This construction generalizes also to the case of hyper- quaternions and -octonions
although non-commutativity and in case of octonions also non-associativity pose technical prob-
lems. Obviously this approach differs from the standard introduction of infinitesimals in the
sense that sum of infinitesimals (real zeros) is replaced by multiplication of real units meaning
that the set of real and also more general units becomes infinitely degenerate.

3. Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point -or more generally wave functions in the
space of the units associated with the point- might be even capable of representing the quantum
state of the entire physical Universe in its structure. For instance, in the real sense surfaces in
the space of units correspond to the same real number 1, and single point, which is structure-less
in the real sense could represent arbitrarily high-dimensional spaces as unions of real units. For
real physics this structure is completely invisible and is relevant only for the physics of cognition.
One can say that Universe is an algebraic hologram, and there is an obvious connection both
with Brahman=Atman identity of Eastern philosophies and Leibniz’s notion of monad.

4. In zero energy ontology hyper-octonionic units identified as ratios of the infinite integers associ-
ated with the positive and negative energy parts of the zero energy state define a representation
of WCW spinor fields. The action of subgroups of SU(3) and rotation group SU(2) preserv-
ing hyper-octonionic and hyper-quaternionic primeness and identification of momentum and
electro-weak charges in terms of components of hyper-octonionic primes makes this represen-
tation unique. Hence Brahman-Atman identity has a completely concrete realization and fixes
completely the quantum number spectrum including particle masses and correlations between
various quantum numbers.

5. One can assign to infinite primes at nth level of hierarchy rational functions of n rational argu-
ments which form a natural hierarchical structure in that highest level corresponds to a polyno-
mial with coefficients which are rational functions of the arguments at the lower level. One can
solve one of the arguments in terms of lower ones to get a hierarchy of algebraic extensions. At
the lowest level algebraic extensions of rationals emerge, at the next level algebraic extensions
of space of rational functions of single variable, etc... This would suggest that infinite primes
code for the correlation between quantum states and the algebraic extensions appearing in their
their physical description and characterizing their cognitive correlates. The hierarchy of infinite
primes would also correlate with a hierarchy of logics of various orders (hierarchy of statements
about statements about...).



2. Infinite primes, integers, and rationals 7

2 Infinite primes, integers, and rationals

The definition of the infinite integers and rationals is a straightforward procedure and structurally
similar to a repeated second quantization of a super-symmetric quantum field theory but including
also the number theoretic counterparts of bound states.

2.1 The first level of hierarchy

In the following the concept of infinite prime is developed gradually by stepwise procedure rather than
giving directly the basic definitions. The hope is that the development of the concept in the same
manner as it actually occurred would make it easier to understand it.

Step 1

One could try to define infinite primes P by starting from the basic idea in the proof of Euclid for
the existence of infinite number of primes. Take the product of all finite primes and add 1 to get a
new prime:

P = 1 +X ,
X =

∏
p p .

(2.1)

If P were divisible by finite prime then P −X = 1 would be divisible by finite prime and one would
encounter contradiction. One could of course worry about the possible existence of infinite primes
smaller than P and possibly dividing P . The numbers N = P − k, k > 1, are certainly not primes
since k can be taken as a factor. The number P ′ = P − 2 = −1 + X could however be prime. P is
certainly not divisible by P − 2. It seems that one cannot express P and P − 2 as product of infinite
integer and finite integer. Neither it seems possible to express these numbers as products of more
general numbers of form

∏
p∈U p+ q, where U is infinite subset of finite primes and q is finite integer.

Step 2

P and P − 2 are not the only possible candidates for infinite primes. Numbers of form

P (±, n) = ±1 + nX ,
k(p) = 0, 1, ..... ,
n =

∏
p p

k(p) ,

X =
∏

p p ,

(2.2)

where k(p) 6= 0 holds true only in finite set of primes, are characterized by a integer n, and are also
good prime candidates. The ratio of these primes to the prime candidate P is given by integer n. In
general, the ratio of two prime candidates P (m) and P (n) is rational number m/n telling which of
the prime candidates is larger. This number provides ordering of the prime candidates P (n). The
reason why these numbers are good canditates for infinite primes is the same as above. No finite prime
p with k(p) 6= 0 appearing in the product can divide these numbers since, by the same arguments
as appearing in Euclid’s theorem, it would divide also 1. On the other hand it seems difficult to
invent any decomposition of these numbers containing infinite numbers. Already at this stage one
can notice the structural analogy with the construction of multiboson states in quantum field theory:
the numbers k(p) correspond to the occupation numbers of bosonic states of quantum field theory in
one-dimensional box, which suggests that the basic structure of QFT might have number theoretic
interpretation in some very general sense. It turns out that this analogy generalizes.

Step 3

All P (n) satisfy P (n) ≥ P (1). One can however also the possibility that P (1) is not the smallest
infinite prime and consider even more general candidates for infinite primes, which are smaller than
P (1). The trick is to drop from the infinite product of primes X =

∏
p p some primes away by dividing

it by integer s =
∏

pi
pi, multiply this number by an integer n not divisible by any prime dividing s

and to add to/subtract from the resulting number nX/s natural number ms such that m expressible
as a product of powers of only those primes which appear in s to get
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P (±,m, n, s) = nX
s ±ms ,

m =
∏

p|s p
k(p) ,

n =
∏

p|Xs
pk(p), k(p) ≥ 0 .

(2.3)

Here x|y means ’x divides y’. To see that no prime p can divide this prime candidate it is enough to
calculate P (±,m, n, s) modulo p: depending on whether p divides s or not, the prime divides only the
second term in the sum and the result is nonzero and finite (although its precise value is not known).
The ratio of these prime candidates to P (+, 1, 1, 1) is given by the rational number n/s: the ratio
does not depend on the value of the integer m. One can however order the prime candidates with
given values of n and s using the difference of two prime candidates as ordering criterion. Therefore
these primes can be ordered.

One could ask whether also more general numbers of the form nX
s ±m are primes. In this case

one cannot prove the indivisibility of the prime candidate by p not appearing in m. Furthermore, for
s mod 2 = 0 and m mod 2 6= 0, the resulting prime candidate would be even integer so that it looks
improbable that one could obtain primes in more general case either.

Step 4

An even more general series of candidates for infinite primes is obtained by using the following
ansatz which in principle is contained in the original ansatz allowing infinite values of n

P (±,m, n, s|r) = nY r ±ms ,
Y = X

s ,
m =

∏
p|s p

k(p) ,

n =
∏

p|Xs
pk(p), k(p) ≥ 0 .

(2.4)

The proof that this number is not divisible by any finite prime is identical to that used in the previous
case. It is not however clear whether the ansatz for given r is not divisible by infinite primes belonging
to the lower level. A good example in r = 2 case is provided by the following unsuccessful ansatz

N = (n1Y +m1s)(n2Y +m2s) = n1n2X
2

s2 −m1m2s
2 ,

Y = X
s ,

n1m2 − n2m1 = 0 .

Note that the condition states that n1/m1 and −n2/m2 correspond to the same rational number or
equivalently that (n1,m1) and (n2,m2) are linearly dependent as vectors. This encourages the guess
that all other r = 2 prime candidates with finite values of n and m at least, are primes. For higher
values of r one can deduce analogous conditions guaranteing that the ansatz does not reduce to a
product of infinite primes having smaller value of r. In fact, the conditions for primality state that
the polynomial P (n,m, r)(Y ) = nY r +m with integer valued coefficients (n > 0) defined by the prime
candidate is irreducible in the field of integers, which means that it does not reduce to a product of
lower order polynomials of same type.

Step 5

A further generalization of this ansatz is obtained by allowing infinite values for m, which leads to
the following ansatz:

P (±,m, n, s|r1, r2) = nY r1 ±ms ,
m = Pr2(Y )Y +m0 ,
Y = X

s ,
m0 =

∏
p|s p

k(p) ,

n =
∏

p|Y p
k(p), k(p) ≥ 0 .

(2.5)

Here the polynomial Pr2(Y ) has order r2 is divisible by the primes belonging to the complement of
s so that only the finite part m0 of m is relevant for the divisibility by finite primes. Note that the
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part proportional to s can be infinite as compared to the part proportional to Y r1 : in this case one
must however be careful with the signs to get the sign of the infinite prime correctly. By using same
arguments as earlier one finds that these prime candidates are not divisible by finite primes. One must
also require that the ansatz is not divisible by lower order infinite primes of the same type. These
conditions are equivalent to the conditions guaranteing the polynomial primeness for polynomials of
form P (Y ) = nY r1 ± (Pr2(Y )Y + m0)s having integer-valued coefficients. The construction of these
polynomials can be performed recursively by starting from the first order polynomials representing
first level infinite primes: Y can be regarded as formal variable and one can forget that it is actually
infinite number.

By finite-dimensional analogy, the infinite value of m means infinite occupation numbers for the
modes represented by integer s in some sense. For finite values of m one can always write m as a
product of powers of pi|s. Introducing explicitly infinite powers of pi is not in accordance with the
idea that all exponents appearing in the formulas are finite and that the only infinite variables are X
and possibly S (formulas are symmetric with respect to S and X/S). The proposed representation
of m circumvents this difficulty in an elegant manner and allows to say that m is expressible as a
product of infinite powers of pi despite the fact that it is not possible to derive the infinite values of
the exponents of pi.

Summarizing, an infinite series of candidates for infinite primes has been found. The prime candi-
dates P (±,m, n, s) labeled by rational numbers n/s and integers m plus the primes P (±,m, n, s|r1, r2)
constructed as r1:th or r2:th order polynomials of Y = X/s: the latter ansatz reduces to the less gen-
eral ansatz of infinite values of n are allowed.

One can ask whether the p mod 4 = 3 condition guaranteing that the square root of −1 does not
exist as a p-adic number, is satisfied for P (±,m, n, s). P (±, 1, 1, 1) mod 4 is either 3 or 1. The value
of P (±,m, n, s) mod 4 for odd s on n only and is same for all states containing even/odd number of
p mod = 3 excitations. For even s the value of P (±,m, n, s) mod 4 depends on m only and is same for
all states containing even/odd number of p mod = 3 excitations. This condition resembles G-parity
condition of Super Virasoro algebras. Note that either P (+,m, n, s) or P (−,m, n, s) but not both
are physically interesting infinite primes (2m mod 4 = 2 for odd m) in the sense of allowing complex
Hilbert space. Also the additional conditions satisfied by the states involving higher powers of X/s
resemble to Virasoro conditions. An open problem is whether the analogy with the construction of
the many-particle states in super-symmetric theory might be a hint about more deeper relationship
with the representation of Super Virasoro algebras and related algebras.

It is not clear whether even more general prime candidates exist. An attractive hypothesis is that
one could write explicit formulas for all infinite primes so that generalized theory of primes would
reduce to the theory of finite primes.

2.2 Infinite primes form a hierarchy

By generalizing using general construction recipe, one can introduce the second level prime candidates
as primes not divisible by any finite prime p or infinite prime candidate of type P (±,m, n, s) (or more
general prime at the first level: in the following we assume for simplicity that these are the only
infinite primes at the first level). The general form of these prime candidates is exactly the same as
at the first level. Particle-analogy makes it easy to express the construction receipe. In present case
’vacuum primes’ at the lowest level are of the form

X1

S ± S ,
X1 = X

∏
P (±,m,n,s) P (±,m, n, s) ,

S = s
∏

Pi
Pi ,

s =
∏

pi
pi .

(2.6)

S is product or ordinary primes p and infinite primes Pi(±,m, n, s). Primes correspond to physical
states created by multiplying X1/S (S) by integers not divisible by primes appearing S (X1/S). The
integer valued functions k(p) and K(p) of prime argument give the occupation numbers associated with
X/s and s type ’bosons’ respectively. The non-negative integer-valued function K(P ) = K(±,m, n, s)
gives the occupation numbers associated with the infinite primes associated with X1/S and S type
’bosons’. More general primes can be constructed by mimicking the previous procedure.
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One can classify these primes by the value of the integer Ktot =
∑

P |X/S K(P ): for a given value
of Ktot the ratio of these prime candidates is clearly finite and given by a rational number. At given
level the ratio P1/P2 of two primes is given by the expression

P1(±,m1,n1,s1K1,S1

P2(±,m2,n2,s2,K,S2)
= n1s2

n2s1

∏
±,m,n,s(

n
s )K

+
1 (±,n,m,s)−K+

2 (±,n,m,s) . (2.7)

Here K+
i denotes the restriction of Ki(P ) to the set of primes dividing X/S. This ratio must be

smaller than 1 if it is to appear as the first order term P1P2 → P1/P2 in the canonical identification
and again it seems that it is not possible to get all rationals for a fixed value of P2 unless one allows
infinite values of N expressed neatly using the more general ansatz involving higher power of S.

2.3 Construction of infinite primes as a repeated quantization of a super-
symmetric arithmetic quantum field theory

The procedure for constructing infinite primes is very much reminiscent of the second quantization of
an super-symetric arithmetic quantum field theory in which single particle fermion and boson states are
labeled by primes. In particular, there is nothing especially frightening in the particle representation
of infinite primes: theoretical physicists actually use these kind of representations quite routinely.

1. The binary-valued function telling whether a given prime divides s can be interpreted as a
fermion number associated with the fermion mode labeled by p. Therefore infinite prime is
characterized by bosonic and fermionic occupation numbers as functions of the prime labeling
various modes and situation is super-symmetric. X can be interpreted as the counterpart of
Dirac sea in which every negative energy state state is occupied and X/s± s corresponds to the
state containing fermions understood as holes of Dirac sea associated with the modes labeled by
primes dividing s.

2. The multiplication of the ’vacuum’ X/s with n =
∏

p|X/s p
k(p) creates k(p) ’p-bosons’ in mode

of type X/s and multiplication of the ’vacuum’ s with m =
∏

p|s p
k(p) creates k(p) ’p-bosons’.

in mode of type s (mode occupied by fermion). The vacuum states in which bosonic creation
operators act, are tensor products of two vacuums with tensor product represented as sum

|vac(±)〉 = |vac(X
s

)〉 ⊗ |vac(±s)〉 ↔ X

s
± s (2.8)

obtained by shifting the prime powers dividing s from the vacuum |vac(X)〉 = X to the vacuum
±1. One can also interpret various vacuums as many fermion states. Prime property follows
directly from the fact that any prime of the previous level divides either the first or second factor
in the decomposition NX/S ±MS.

3. This picture applies at each level of infinity. At a given level of hierarchy primes P correspond to
all the Fock state basis of all possible many-particle states of second quantized super-symmetric
theory. At the next level these many-particle states are regarded as single particle states and
further second quantization is performed so that the primes become analogous to the momentum
labels characterizing various single-particle states at the new level of hierarchy.

4. There are two nonequivalent quantizations for each value of S due to the presence of ± sign
factor. Two primes differing only by sign factor are like G-parity +1 and −1 states in the sense
that these primes satisfy P mod 4 = 3 and P mod 4 = 1 respectively. The requirement that
−1 does not have p-adic square root so that Hilbert space is complex, fixes G-parity to say +1.
This observation suggests that there exists a close analogy with the theory of Super Virasoro
algebras so that quantum TGD might have interpretation as number theory in infinite context.
An alternative interpretation for the ± degeneracy is as counterpart for the possibility to choose
the fermionic vacuum to be a state in which either all positive or all negative energy fermion
states are occupied.
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5. One can also generalize the construction to include polynomials of Y = X/S to get infinite
hierarchy of primes labeled by the two integers r1 and r2 associated with the polynomials in
question. An entire hierarchy of vacuums labeled by r1 is obtained. A possible interpretation
of these primes is as counterparts for the bound states of quantum field theory. The coefficient
for the power (X/s)r1 appearing in the highest term of the general ansatz, codes the occupa-
tion numbers associated with vacuum (X/s)r1 . All the remaining terms are proportional to s
and combine to form, in general infinite, integer m characterizing various infinite occupation
numbers for the subsystem characterized by s. The additional conditions guaranteing prime
number property are equivalent with the primality conditions for polynomials with integer val-
ued coefficients and resemble Super Virasoro conditions. For r2 > 0 bosonic occupation numbers
associated with the modes with fermion number one are infinite and one cannot write explicit
formula for the boson number.

6. One could argue that the analogy with super-symmetry is not complete. The modes of Super
Virasoro algebra are labeled by natural number whereas now modes are labeled by prime. This
need not be a problem since one can label primes using natural number n. Also 8-valued spin
index associated with fermionic and bosonic single particle states in TGD world is lacking (space-
time is surface in 8-dimensional space). This index labels the spin states of 8-dimensional spinor
with fixed chirality. One could perhaps get also spin index by considering infinite octonionic
primes, which correspond to vectors of 8-dimensional integer lattice such that the length squared
of the lattice vector is ordinary prime: ∑

k=1,...,8

n2k = prime .

Thus one cannot exclude the possibility that TGD based physics might provide representation
for octonions extended to include infinitely large octonions. The notion of prime octonion is well
defined in the set of integer octonions and it is easy to show that the Euclidian norm squared for
a prime octonion is prime. If this result generalizes then the construction of generalized prime
octonions would generalize the construction of finite prime octonions. It would be interesting to
know whether the results of finite-dimensional case might generalize to the infinite-dimensional
context. One cannot exclude the possibility that prime octonions are in one-one correspondence
with physical states in quantum TGD.

These observations suggest a close relationship between quantum TGD and the theory of infinite
primes in some sense: even more, entire number theory and mathematics might be reducible to
quantum physics understood properly or equivalently, physics might provide the representation of basic
mathematics. Of course, already the uniqueness of the basic mathematical structure of quantum TGD
points to this direction. Against this background the fact that 8-dimensionality of the imbedding space
allows introduction of octonion structure (also p-adic algebraic extensions) acquires new meaning.
Same is also suggested by the fact that the algebraic extensions of p-adic numbers allowing square
root of real p-adic number are 4- and 8-dimensional.

What is especially interesting is that the core of number theory would be concentrated in finite
primes since infinite primes are obtained by straightforward procedure providing explicit formulas for
them. Repeated quantization provides also a model of abstraction process understood as construc-
tion of hierarchy of natural number valued functions about functions about ...... At the first level
infinite primes are characterized by the integer valued function k(p) giving occupation numbers plus
subsystem-complement division (division to thinker and external world!). At the next level prime is
characterized in a similar manner. One should also notice that infinite prime at given level is char-
acterized by a pair (R = MN,S) of integers at previous level. Equivalently, infinite prime at given
level is characterized by fermionic and bosonic occupation numbers as functions in the set of primes
at previous level.

2.4 Construction in the case of an arbitrary commutative number field

The basic construction recipe for infinite primes is simple and generalizes even to the case of algebraic
extensions of rationals. Let K = Q(θ) be an algebraic number field (see the Appendix of [14] for
the basic definitions). In the general case the notion of prime must be replaced by the concept of
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irreducible defined as an algebraic integer with the property that all its decompositions to a product
of two integers are such that second integer is always a unit (integer having unit algebraic norm, see
Appendix of [14]).

Assume that the irreducibles of K = Q(θ) are known. Define two irreducibles to be equivalent if
they are related by a multiplication with a unit of K. Take one representative from each equivalence
class of units. Define the irreducible to be positive if its first non-vanishing component in an ordered
basis for the algebraic extension provided by the real unit and powers of θ, is positive. Form the
counterpart of Fock vacuum as the product X of these representative irreducibles of K.

The unique factorization domain (UFD) property (see Appendix of [14]) of infinite primes does
not require the ring OK of algebraic integers of K to be UFD although this property might be forced
somehow. What is needed is to find the primes of K; to construct X as the product of all irreducibles of
K but not counting units which are integers of K with unit norm; and to apply second quantization to
get primes which are first order monomials. X is in general a product of powers of primes. Generating
infinite primes at the first level correspond to generalized rationals for K having similar representation
in terms of powers of primes as ordinary rational numbers using ordinary primes.

2.5 Mapping of infinite primes to polynomials and geometric objects

The mapping of the generating infinite primes to first order monomials labeled by their rational zeros
is extremely simple at the first level of the hierarchy:

P±(m,n, s) =
mX

s
± ns→ x± ±

m

sn
. (2.9)

Note that a monomial having zero as its root is not obtained. This mapping induces the mapping of
all infinite primes to polynomials.

The simplest infinite primes are constructed using ordinary primes and second quantization of an
arithmetic number theory corresponds in one-one manner to rationals. Indeed, the integer s =

∏
i p

ki
i

defining the numbers ki of bosons in modes ki, where fermion number is one, and the integer r defining
the numbers of bosons in modes where fermion number is zero, are co-prime. Moreover, the generating
infinite primes can be written as (n/s)X ±ms corresponding to the two vacua V = X ± 1 and the
roots of corresponding monomials are positive resp. negative rationals.

More complex infinite primes correspond sums of powers of infinite primes with rational coefficients
such that the corresponding polynomial has rational coefficients and roots which are not rational but
belong to some algebraic extension of rationals. These infinite primes correspond simply to products
of infinite primes associated with some algebraic extension of rationals. Obviously the construction
of higher infinite primes gives rise to a hierarchy of higher algebraic extensions.

It is possible to continue the process indefinitely by constructing the Dirac vacuum at the n:th
level as a product of primes of previous levels and applying the same procedure. At the second level
Dirac vacuum V = X ± 1 involves X which is the product of all primes at previous levels and in
the polynomial correspondence X thus correspond to a new independent variable. At the n:th level
one would have polynomials P (q1|q2|...) of q1 with coefficients which are rational functions of q2 with
coefficients which are.... The hierarchy of infinite primes would be thus mapped to the functional
hierarchy in which polynomial coefficients depend on parameters depending on ....

At the second level one representation of infinite primes would be as algebraic curve resulting as
a locus of P (q1|q2) = 0: this certainly makes sense if q1 and q2 commute. At higher levels the locus
is a higher-dimensional surface.

2.6 How to order infinite primes?

One can order the infinite primes, integers and rationals. The ordering principle is simple: one can
decompose infinite integers to two parts: the ’large’ and the ’small’ part such that the ratio of the
small part with the large part vanishes. If the ratio of the large parts of two infinite integers is different
from one or their sign is different, ordering is obvious. If the ratio of the large parts equals to one,
one can perform same comparison for the small parts. This procedure can be continued indefinitely.

In case of infinite primes ordering procedure goes like follows. At given level the ratios are rational
numbers. There exists infinite number of primes with ratio 1 at given level, namely the primes with
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same values of N and same S with MS infinitesimal as compared to NX/S. One can order these
primes using either the relative sign or the ratio of (M1S1)/(M2S2) of the small parts to decide which
of the two is larger. If also this ratio equals to one, one can repeat the process for the small parts of
MiSi. In principle one can repeat this process so many times that one can decide which of the two
primes is larger. Same of course applies to infinite integers and also to infinite rationals build from
primes with infinitesimal MS. If NS is not infinitesimal it is not obvious whether this procedure
works. If NiXi/MiSi = xi is finite for both numbers (this need not be the case in general) then the

ratio M1S1

M2S2

(1+x2)
(1+x1)

provides the needed criterion. In case that this ratio equals one, one can consider use

the ratio of the small parts multiplied by (1+x2)
(1+x1)

of MiSi as ordering criterion. Again the procedure

can be repeated if needed.

2.7 What is the cardinality of infinite primes at given level?

The basic problem is to decide whether Nature allows also integers S , R = MN represented as infinite
product of primes or not. Infinite products correspond to subsystems of infinite size (S) and infinite
total occupation number (R) in QFT analogy.

1. One could argue that S should be a finite product of integers since it corresponds to the require-
ment of finite size for a physically acceptable subsystem. One could apply similar argument
to R. In this case the set of primes at given level has the cardinality of integers (alef0) and
the cardinality of all infinite primes is that of integers. If also infinite integers R are assumed
to involve only finite products of infinite primes the set of infinite integers is same as that for
natural numbers.

2. NMP is well defined in p-adic context also for infinite subsystems and this suggests that one
should allow also infinite number of factors for both S and R = MN . Super symmetric analogy
suggests the same: one can quite well consider the possibility that the total fermion number of
the universe is infinite. It seems however natural to assume that the occupation numbers K(P )
associated with various primes P in the representations R =

∏
P P

K(P ) are finite but nonzero
for infinite number of primes P . This requirement applied to the modes associated with S would
require the integer m to be explicitly expressible in powers of Pi|S (Pr2 = 0) whereas all values
of r1 are possible. If infinite number of prime factors is allowed in the definition of S, then the
application of diagonal argument of Cantor shows that the number of infinite primes is larger
than alef0 already at the first level. The cardinality of the first level is 2alef02alef0 == 2alef0 .
The first factor is the cardinality of reals and comes from the fact that the sets S form the
set of all possible subsets of primes, or equivalently the cardinality of all possible binary valued
functions in the set of primes. The second factor comes from the fact that integers R = NM
(possibly infinite) correspond to all natural number-valued functions in the set of primes: if only
finite powers k(p) are allowed then one can map the space of these functions to the space of
binary valued functions bijectively and the cardinality must be 2alef0 . The general formula for
the cardinality at given level is obvious: for instance, at the second level the cardinality is the
cardinality of all possible subsets of reals. More generally, the cardinality for a given level is the
cardinality for the subset of possible subsets of primes at the previous level.

2.8 How to generalize the concepts of infinite integer, rational and real?

The allowance of infinite primes forces to generalize also the concepts concepts of integer, rational and
real number. It is not obvious how this could be achieved. The following arguments lead to a possible
generalization which seems practical (yes!) and elegant.

2.8.1 Infinite integers form infinite-dimensional vector space with integer coefficients

The first guess is that infinite integers N could be defined as products of the powers of finite and
infinite primes.

N =
∏
k

pnk

k = nM , nk ≥ 0 , (2.10)
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where n is finite integer and M is infinite integer containing only powers of infinite primes in its
product expansion.

It is not however not clear whether the sums of infinite integers really allow similar decomposition.
Even in the case that this decomposition exists, there seems to be no way of deriving it. This would
suggest that one should regard sums ∑

i

niMi

of infinite integers as infinite-dimensional linear space spanned by Mi so that the set of infinite integers
would be analogous to an infinite-dimensional algebraic extension of say p-adic numbers such that
each coordinate axes in the extension corresponds to single infinite integer of form N = mM . Thus
the most general infinite integer N would have the form

N = m0 +
∑

miMi . (2.11)

This representation of infinite integers indeed looks promising from the point of view of practical
calculations. The representation looks also attractive physically. One can interpret the set of integers
N as a linear space with integer coefficients m0 and mi:

N = m0|1〉+
∑

mi|Mi〉 . (2.12)

|Mi〉 can be interpreted as a state basis representing many-particle states formed from bosons labeled
by infinite primes pk and |1〉 represents Fock vacuum. Therefore this representation is analogous to a
quantum superposition of bosonic Fock states with integer, rather than complex valued, superposition
coefficients. If one interprets Mi as orthogonal state basis and interprets mi as p-adic integers, one
can define inner product as

〈Na, Nb〉 = m0(a)m0(b) +
∑
i

mi(a)mi(b) . (2.13)

This expression is well defined p-adic number if the sum contains only enumerable number of terms
and is always bounded by p-adic ultrametricity. It converges if the p-adic norm of of mi approaches
to zero when Mi increases.

2.8.2 Generalized rationals

Generalized rationals could be defined as ratios R = M/N of the generalized integers. This works
nicely when M and N are expressible as products of powers of finite or infinite primes but for more
general integers the definition does not look attractive. This suggests that one should restrict the
generalized rationals to be numbers having the expansion as a product of positive and negative primes,
finite or infinite:

N =
∏
k

pnk

k =
n1M1

nM
. (2.14)

2.8.3 Generalized reals form infinite-dimensional real vector space

One could consider the possibility of defining generalized reals as limiting values of the generalized
rationals. A more practical definition of the generalized reals is based on the generalization of the
pinary expansion of ordinary real number given by

x =
∑
n≥n0

xnp
−n ,

xn ∈ {0, .., p− 1} . (2.15)
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It is natural to try to generalize this expansion somehow. The natural requirement is that sums
and products of the generalized reals and canonical identification map from the generalized reals to
generalized p-adcs are readily calculable. Only in this manner the representation can have practical
value.

These requirements suggest the following generalization

X = x0 +
∑
N

xNp
−N ,

N =
∑
i

miMi , (2.16)

where x0 and xN are ordinary reals. Note that N runs over infinite integers which has vanishing finite
part. Note that generalized reals can be regarded as infinite-dimensional linear space such that each
infinite integer N corresponds to one coordinate axis of this space. One could interpret generalized
real as a superposition of bosonic Fock states formed from single single boson state labeled by prime
p such that occupation number is either 0 or infinite integer N with a vanishing finite part:

X = x0|0〉+
∑
N

xN |N > . (2.17)

The natural inner product is

〈X,Y 〉 = x0y0 +
∑
N

xNyN . (2.18)

The inner product is well defined if the number of N :s in the sum is enumerable and xN approaches
zero sufficiently rapidly when N increases. Perhaps the most natural interpretation of the inner
product is as Rp valued inner product.

The sum of two generalized reals can be readily calculated by using only sum for reals:

X + Y = x0 + y0 +
∑
N

(xN + yN )p−N ,

(2.19)

The product XY is expressible in the form

XY = x0y0 + x0Y +Xy0 +
∑

N1,N2

xN1yN2p
−N1−N2 ,

(2.20)

If one assumes that infinite integers form infinite-dimensional vector space in the manner proposed,
there are no problems and one can calculate the sums N1 +N2 by summing component wise manner
the coefficients appearing in the sums defining N1 and N2 in terms of infinite integers Mi allowing
expression as a product of infinite integers.

Canonical identification map from ordinary reals to p-adics

x =
∑
k

xkp
−k → xp =

∑
k

xkp
k ,

generalizes to the form

x = x0 +
∑
N

xNp
−N → (x0)p +

∑
N

(xN )pp
N , (2.21)

so that all the basic requirements making the concept of generalized real calculationally useful are
satisfied.

There are several interesting questions related to generalized reals.
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1. Are the extensions of reals defined by various values of p-adic primes mathematically equivalent
or not? One can map generalized reals associated with various choices of the base p to each
other in one-one manner using the mapping

X = x0 +
∑
N

xNp
−N
1 → x0 +

∑
N

xNp
−N
2 .

(2.22)

The ordinary real norms of finite (this is important!) generalized reals are identical since the
representations associated with different values of base p differ from each other only infinitesi-
mally. This would suggest that the extensions are physically equivalent. It these extensions are
not mathematically equivalent then p-adic primes could have a deep role in the definition of the
generalized reals.

2. One can generalize previous formulas for the generalized reals by replacing the coefficients x0
and xi by complex numbers, quaternions or octonions so as to get generalized complex num-
bers, quaternions and octonions. Also inner product generalizes in an obvious manner. The
8-dimensionality of the imbedding space provokes the question whether it might be possible to
regard the infinite-dimensional configuration space of 3-surfaces, or rather, its tangent space, as
a Hilbert space realization of the generalized octonions. This kind of identification could perhaps
reduce TGD based physics to generalized number theory.

2.9 Comparison with the approach of Cantor

The main difference between the approach of Cantor and the proposed approach is that Cantor
uses only the basic arithmetic concepts such as sum and multiplication and the concept of successor
defining ordering of both finite and infinite ordinals. Cantor’s approach is also purely set theoretic.
The problems of purely set theoretic approach are related to the question what the statement ’Set is
Many allowing to regard itself as One’ really means and to the fact that there is no obvious connection
with physics.

The proposed approach is based on the introduction of the concept of prime as a basic concept
whereas partial ordering is based on the use of ratios: using these one can recursively define partial
ordering and get precise quantitative information based on finite reals. The ordering is only partial
and there is infinite number of ratios of infinite integers giving rise to same real unit which in turn
leads to the idea about number theoretic anatomy of real point.

The ’Set is Many allowing to regard itself as One’ is defined as quantum physicist would define it:
many particle states become single particle states in the second quantization describing the counterpart
for the construction of the set of subsets of a given set. One could also say that integer as such
corresponds to set as ’One’ and its decomposition to a product of primes corresponds to the set as
’Many’. The concept of prime, the ultimate ’One’, has as its physical counterpart the concept of
elementary particle understood in very general sense. The new element is the physical interpretation:
the sum of two numbers whose ratio is zero correspond to completely physical finite-subsystem-infinite
complement division and the iterated construction of the set of subsets of a set at given level is
basically p-adic evolution understood in the most general possible sense and realized as a repeated
second quantization. What is attractive is that this repeated second quantization can be regarded
also as a model of abstraction process and actually the process of abstraction itself.

The possibility to interpret the construction of infinite primes either as a repeated bosonic quanti-
zation involving subsystem-complement division or as a repeated super-symmetric quantization could
have some deep meaning. A possible interpretation consistent with these two pictures is based on the
hypothesis that fermions provide a reflective level of consciousness in the sense that the 2N element
Fock basis of many-fermion states formed from N single-fermion states can be regarded as a set of
all possible statements about N basic statements. Statements about whether a given element of set
X belongs to some subset S of X are certainly the fundamental statements from the point of view of
mathematics. Hence one could argue that many-fermion states provide cognitive representation for
the subsets of some set. Single fermion states represent the points of the set and many-fermion states
represent possible subsets.
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3 Can one generalize the notion of infinite prime to the non-
commutative and non-associative context?

The notion of prime and more generally, that of irreducible, makes sense also in more general number
fields and even algebras. The considerations of [16] suggests that the notion of infinite prime should
be generalized to the case of complex numbers, quaternions, and octonions as well as to their hyper
counterparts which seem to be physically the most interesting ones [16]. Also the hierarchy of in-
finite primes should generalize as also the representation of infinite primes as polynomials although
associativity is expected to pose technical problems.

3.1 Quaternionic and octonionic primes and their hyper counterparts

The loss of commutativity and associativity implies that the definitions of quaternionic and octonionic
primes are not completely straightforward.

3.1.1 Basic facts about quaternions and octonions

Both quaternions and octonions allow both Euclidian norm and the Minkowskian norm defined as a
trace of the linear operator defined by the multiplication with octonion. Minkowskian norm has the
metric signature of H = M4 ×CP2 or M4

+ ×CP2 so that H can be regarded locally as an octonionic
space. Both norms are a multiplicative and the notions of both quaternionic and octonionic prime are
well defined despite non-associativity. Quaternionic and octonionic primes have length squared equal
to rational prime.

In the case of quaternions different basis of imaginary units I, J,K are related by 3-dimensional
rotation group and different quaternionic basis span a 3-dimensional sphere. There is 2-sphere of
complex structures since imaginary unit can be any unit vector of imaginary 3-space.

A basis for octonionic imaginary units J,K,L,M,N,O, P can be chosen in many manners and
fourteen-dimensional subgroup G2 of the group SO(7) of rotations of imaginary units is the group
labeling the octonionic structures related by octonionic automorphisms to each other. It deserves to
be mentioned that G2 is unique among the simple Lie-groups in that the ratio of the square roots of
lengths for long and short roots of G2 Lie-algebra are in ratio 3 : 1 [30]. For other Lie-groups this ratio
is either 2:1 or all roots have same length. The set of equivalence classes of the octonion structures is
SO(7)/G2 = S7. In the case of quaternions there is only one equivalence class.

The group of automorphisms for octonions with a fixed imaginary part is SU(3). The coset space
S6 = G2/SU(3) labels possible complex structures of the octonion space specified by a selection
of a preferred imaginary unit. SU(3)/U(2) = CP2 could be thought of as the space of octonionic
structures giving rise to a given quaternionic structure with complex structure fixed. This can be seen
as follows. The units 1, I are SU(3) singlets whereas J, J1, J2 and K,K1,K2 form SU(3) triplet and
antitriplet. Under U(2) J and K transform like objects having vanishing SU(3) isospin and suffer
only a U(1) phase transformation determined by multiplication with complex unit I and are mixed
with each other in orthogonal mixture. Thus 1, I, J,K is transformed to itself under U(2).

3.1.2 Quaternionic and octonionic primes

Quaternionic primes with p mod 4 = 1 can correspond to (n1, n2) with n1 even and n2 odd or
vice versa. For p mod 4 = 3 (n1, n2, n3) with ni odd is the minimal option. In this case there is
however large number of primes having only two components: in particular, Gaussian primes with
p mod 4 = 1 define also quaternionic primes. Purely real Gaussian primes with p mod 4 = 3 with
norm zz equal to p2 are not quaternionic primes, and are replaced with 3-component quaternionic
primes allowing norm equal to p. Similar conclusions hold true for octonionic primes.

The reality condition for polynomials associated with Gaussian infinite primes requires that the
products of generating prime and its conjugate are present so that the outcome is a real polynomial
of second order.

3.1.3 Hyper primes

The notion of prime generalizes to hyper-quaternionic and octonionic case. The factorization n20−n23 =
(n0 + n3)(n0 − n3) implies that any hyper-quaternionic and -octonionic prime has one particualr
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representative as (n0, n3, 0, ...) = (n3 + 1, n3, 0, ...), n3 = (p − 1)/2 for p > 2. p = 2 is exceptional: a
representation with minimal number of components is given by (2, 1, 1, 0, ...).

Notice that the interpretation of hyper-quaternionic primes (or integers) as four-momenta implies
that it is not possible to find rest system for them if one assumes the entire quaternionic prime as
four-momentum: only a system where energy is minimum is possible. The introduction of a preferred
hyper-complex plane necessary for several reasons- in particular for the possibility to identify standard
model quantum numbers in terms of infinite primes- allows to identify the momentum of particle in
the preferred plane as the first two components of the hyper prime in fixed coordinate frame. Note
that this leads to a universal spectrum for mass squared.

For time like hyper-primes the momentum is always time like for hyper-primes. In this case it is
possible to find a rest frame by applying a hyper-primeness preserving G2 transformation so that the
resulting momentum has no component in the preferred frame. As a matter fact, SU(3) rotation is
enough for a suitable choice of SU(3). These transformations form a discrete subgroup of SU(3) since
hyper-integer property must be preserved. Massless states correspond to a null norm for the corre-
sponding hyper integer unless one allows also tachyonic hyper primes with minimal representatives
(n3, n3 − 1, 0, ...), n3 = (p − 1)/2. Note that Gaussian primes with p mod4 = 1 are representable
as space-like primes of form (0, n1, n2, 0): n21 + n22 = p and would correspond to genuine tachyons.
Space-like primes with p mod 4 = 3 have at least 3 non-vanishing components which are odd integers.

The notion of ”irreducible” (see Appendix of [14]) is defined as the equivalence class of primes
related by a multiplication with a unit and is more fundamental than that of prime. All Lorentz
boosts of a hyper prime combine to form an irreducible. Note that the units cannot correspond to
real particles in corresponding arithmetic quantum field theory.

If the situation for p > 2 is effectively 2-dimensional in the sense that it is always possible to
transform the hyper prime to a 2-component form by multiplying it by a suitable unit representing
Lorentz boost, the theory for time-like hyper primes effectively reduces to the 2-dimensional hyper-
complex case when irreducibles are chosen to belong to H2. The physical counterpart for the choice
of H2 would be the choice of the plane of longitudinal polarizations, or equivalently, of quantization
axis for spin. This hypothesis is physically highly attractive since it would imply number theoretic
universality and conform with the effective 2-dimensionality. Of course, the hyper-octonionic primes
related by SO(7, 1) boosts need not represent physically equivalent states.

Also the rigorous notion of hyper primeness seems to require effective 2-dimensionality. If effective
2-dimensionality holds true, hyper integers have a decomposition to a product of hyper primes mul-
tiplied by a suitable unit. The representation is obtained by Lorentz boosting the hyper integer first
to a 2-component form and then decomposing it to a product of hyper-complex primes.

3.2 Hyper-octonionic infinite primes

The infinite-primes associated with hyper-octonions are the most natural ones physically because of
the underlying Lorentz invariance. It is however not possible to interpret them as as 8-momenta with
mass squared equal to prime. The proper identification of standard model quantum numbers will be
discussed later.

3.2.1 Should infinite primes be commutative and associative?

The basic objections against (hyper-)quaternionic and (hyper-)octonionic infinite primes relate to the
non-commutativity and non-associativity.

In the case of quaternionic infinite primes non-commutativity, and in the case of octonionic infinite
primes also non-associativity, might be expected to cause difficulties in the definition of X. Fortu-
nately, the fact that all conjugates of a given finite prime appear in the product defining X, implies
that the contribution from each irreducible with a given norm p is real and X is real. Therefore the
multiplication and division of X with quaternionic or octonionic primes is a well-defined procedure,
and generating infinite primes are well-defined apart from the degeneracy due to non-commutativity
and non-associativity of the finite number of lower level primes. Also the products of infinite primes
are well defined, since by the reality of X it is possible to tell how the products AB and BA differ. Of
course, also infinite primes representing physical states containing infinite numbers of fermions and
bosons are possible and infinite primes of this kind must be analogous to generators of a free algebra
for which AB and BA are not related in any manner.
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The original idea was that infinite hyper-octonionic primes could be mapped to polynomials and
one could assign to these space-time surfaces in analogy with the identification of surfaces as zero locii
of polynomals. Although this idea has been given up, it is good to make clear its problematic aspects.

1. The sums of products of monomials of generating infinite primes define higher level infinite
primes and also here non-commutativity and associativity cause potential technical difficulties.
The assignment of a monomial to a quaternionic or octonionic infinite prime is not unique since
the rational obtained by dividing the finite part mr with the integer n associated with infinite
part can be defined either as (1/n)×mr or mr×(1/n) and the resulting non-commuting rationals
are different.

2. If the polynomial associated with infinite prime has real-rational coefficients, these difficulties do
not appear. The problem is that the polynomials as such would not contain information about
the number field in question.

3. Commutativity requirement for infinite primes allows real-rationals or possibly algebraic exten-
sions of them as the coefficients of the polynomials formed from hyper-octonionic infinite primes.
If only infinite primes with complex rational coefficients are allowed and only the vacuum state
V± = X±1 involving product over all primes of the number field, would reveal the number field.
One could thus construct the generating infinite primes using the notion of hyper-octonionic
prime for any algebraic extension of rationals.

The idea about mapping of infinite primes to polynomials in turn defining space-time surfaces is
non-realistic. The recent view is more abstract and based on the mapping of wave functions in the space
of hyper-octonion units assignable to single imbedding space point by its number-theoretic anatomy
and a further mapping of quantum numbers to the geometry of space-time surface by the coupling
of the modified Dirac action to the quantum numbers via measurement interaction. In this approach
one cannot assume commutatitivity of hyper-octonionic primes at any level. The problems due to
non-commutativity and non-associativity are however circumvented by assuming that permutations
and associations of are represented as phase factors and therefore do not change the quantum state.
This means the introduction of association statistics besides permutation statistics. Besides Fermi and
Bose statistics one can consider braid statistics. Note that Fermi statistics makes sense only when the
fermionic finite primes appearing in the state do not commute.

3.2.2 The construction recipe for hyper-octonionic infinite primes

The following argument represents the construction recipe for the first level hyper-octonionic primes
without the restriction to rational infinite primes. If the reduction is possible always by a suitable G2

rotation then the construction of the infinite primes analogous to bound states is obtained in trivial
manner from that for rational variants of these primes. The recipe generalizes to the higher levels in
trivial manner.

Each hyper-octonionic prime has a number of conjugates obtained by applying transformations of
G2 respecting the property of being hyper-octonionic integer.

1. The number of conjugates of given finite prime depends on the number of non-vanishing com-
ponents of the the prime with norm p in the minimal representation having minimal energy.
Several primes with a given norm p not related by a multiplication with unit or by automor-
phism are in principle possible. The degeneracy is determined by the number of elements of a
subgroup of Galois group acting non-trivially on the prime.

Galois group contains the permutations of 7 imaginary units and 7 conjugations of units consis-
tent with the octonionic product. X is proportional to pN(p) where N(p) in principle depends
on p.

There could exist also G2 transformations which change the number of components of the infinite
prime. They satisfy tight number theoretical constraints since the quantity

∑7
i=1 n

2
i must be

preserved. For instance, for the transformation from standard form with two components to
that with more than two components one has n21(i) =

∑
k n

2
k(f). For the transformation from 2-

component prime to 3-component prime one has a condition characterizing Pythagorean triangle.
One can however consider also a situation when no such G2 transformation exist so that one
has several G2 orbits corresponding to the same rational prime.
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The construction itself would be relatively straightforward. Consider first the construction of the
”vacuum” primes.

1. In the case of ordinary infinite primes there are two different vacuum primes X ± 1. This is the
case also now. I turns out that this degeneracy corresponds to the spin and orbital degrees of
freedom for the spinor fields of WCW.

2. The product X of all hyper-octonionic irreducibles can be regarded as the counterpart of Dirac
vacuum in a rather concrete sense. Moreover, in the hyper-quaternionic and octonionic case the
norm of X is analogous to the Dirac determinant of a fermionic field theory with prime valued
mass spectrum and integer valued momentum components. The inclusion of only irreducible
eliminates from the infinite product defining Dirac determinant product over various Lorentz
boosts of pkγk −m.

3. Infinite prime property requires that X must be defined by taking one representative from each
G2 equivalence class representing irreducible and forming the product of all its G2 conjugates.
The standard representative for the hyper-octonionic primes can be taken to be time-like positive
energy prime unless one allows also tachyonic primes in which case a natural representative has
a vanishing real component. The conjugates of each irreducible appear in X so for a given norm
p the net result is real for each rational prime p.

The construction of non-vacuum primes is equally straighforward.

1. If the conjectured effective 2-dimensionality holds true, it is enough to construct hyper-complex
primes first. To the finite hyper-complex primes appearing in these infinite primes one can
apply transformations of G2 mapping hyper-octonionic integers to hyper-octonionic integers.
The infinite prime would have degeneracy defined by the product of G2 orbits of finite primes
involved. Every finite prime would be like particle possessing finite number of quantum states.
If there are several G2 orbits corresponding to the same finite prime exist they must be also
included and the conjectured effective 2-dimensionality fails.

2. An interesting question is what happens when the finite part of an infinite prime is multiplied by
light like integer k. The first guess is that k describes the presence of a massless particle. If the
resulting infinite integer is multiplied with conjugates kc,i of k an integer of form

∏
i kc,imX/n

having formally zero norm results. It would thus seem that there is a kind of gauge invariance
in the sense that infinite primes for which both finite and infinite part are multiplied with the
same light-like primes, are divisors of zero and correspond to gauge degrees of freedom. This
conclusion is supported by the interpretation of the projection of infinite prime to the preferred
hyper-complex plane as momentum of particle in a preferred M2 plane assigned by the hierarchy
of Planck constants to each CD and also required by the p-adicization.

3. More complex infinite hyper-octonionic primes can be constructed from rational hyper-complex
and complex infinite primes using a representation in terms of polynomials and then acting on
the finite primes appering in their expression by elements of G2 preserving integer property.
This construction works at all levels of the hierarchy and one might hope that it is all that is
needed. If there are several G2 orbits for given finite prime p one encounters a problem since
hyper-octonionic primes with more than 2 components do not allow associative and commutative
polynomial representations. The interpretation as bound states is suggestive.

4 How to interpret the infinite hierarchy of infinite primes?

From the foregoing it should be clear that infinite primes might play key role in quantum physics. One
can even consider the possibility that physics reduces to a generalized number theory, and that infinite
primes are crucial for understanding mathematically consciousness and cognition. Of course, one must
leave open the question whether infinite primes really provide really the mathematics of consciousness
or whether they are only a beautiful but esoteric mathematical construct. In this spirit the following
subsections give only different points of view to the problem with no attempt to a coherent overall
view.
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4.1 Infinite primes and hierarchy of super-symmetric arithmetic quantum
field theories

Infinite primes are a generalization of the notion of prime. They turn out to provide number theoretic
correlates of both free, interacting and bound states of a super-symmetric arithmetic quantum field
theory. It turns also possible to assign to infinite prime space-time surface as a geometric correlate
although the original proposal for how to achieve this failed. Hence infinite primes serve as a bridge
between classical and quantum and realize quantum classical correspondence stating that quantum
states have classical counterparts, and has served as a basic heuristic guideline of TGD. More pre-
cisely, the natural hypothesis is that infinite primes code for the ground states of super-symplectic
representations (for instance, ordinary particles correspond to states of this kind).

4.1.1 Generating infinite primes as counterparts of Fock states of a super-symmetric
arithmetic quantum field theory

The basic construction recipe for infinite primes is simple and generalizes to the quaternionic case.

1. Form the product of all primes and call it X:

X =
∏
p

p .

2. Form the vacuum states

V± = X ± 1 .

3. From these vacua construct all generating infinite primes by the following process. Kick out from
the Dirac sea some negative energy fermions: they correspond to a product s of first powers of
primes: V → X/s ± s (s is thus square-free integer). This state represents a state with some
fermions represented as holes in Dirac sea but no bosons. Add bosons by multiplying by integer
r, which decomposes into parts as r = mn: m corresponding to bosons in X/s is product of
powers of primes dividing X/s and n corresponds to bosons in s and is product of powers of
primes dividing s. This step can be described as X/s± s→ mX/s± ns.

Generating infinite primes are thus in one-one correspondence with the Fock states of a super-
symmetric arithmetic quantum field theory and can be written as

P±(m,n, s) =
mX

s
± ns ,

where X is product of all primes at previous level. s is square free integer. m and n have no common
factors, and neither m and s nor n and X/s have common factors.

The physical analog of the process is the creation of Fock states of a super-symmetric arithmetic
quantum field theory. The factorization of s to a product of first powers of primes corresponds to
many-fermion state and the decomposition of m and n to products of powers of prime correspond to
bosonic Fock states since pk corresponds to k-particle state in arithmetic quantum field theory.

4.1.2 More complex infinite primes as counterparts of bound states

Generating infinite primes are not all that are possible. One can construct also polynomials of the
generating primes and under certain conditions these polynomials are non-divisible by both finite
primes and infinite primes already constructed. As found, the conjectured effective 2-dimensionality for
hyper-octonionic primes allows the reduction of polynomial representation of hyper-octonionic primes
to that for hyper-complex primes. This would be in accordance with the effective 2-dimensionality of
the basic objects of quantum TGD.

The physical counterpart of n:th order irreducible polynomial is as a bound state of n particles
whereas infinite integers constructed as products of infinite primes correspond to non-bound but
interacting states. This process can be repeated at the higher levels by defining the vacuum state
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to be the product of all primes at previous levels and repeating the process. A repeated second
quantization of a super-symmetric arithmetic quantum field theory is in question.

The infinite primes represented by irreducible polynomials correspond to quantum states obtained
by mapping the superposition of the products of the generating infinite primes to a superposition of the
corresponding Fock states. If complex rationals are the coefficient field for infinite integers, this gives
rise to states in a complex Hilbert space and irreducibility corresponds to a superposition of states
with varying particle number and the presence of entanglement. For instance, the superpositions of
several products of type

∏
i=1,..,n Pi of n generating infinite primes are possible and in general give

rise to irreducible infinite primes decomposing into a product of infinite primes in algebraic extension
of rationals.

4.1.3 How infinite rationals correspond to quantum states and space-time surfaces?

The most promising answer to the question how infinite rationals correspond to space-time surfaces
is discussed in detail in the next section. Here it is enough to give only the basic idea.

1. In zero energy ontology hyper-octonionic units (in real sense) defined by ratios of infinite integers
have an nterpretation as representations for pairs of positive and negative energy states. Suppose
that the quantum number combinations characterizing positive and negative energy quantum
states are representable as superpositions of real units defined by ratios of infinite integers at each
point of the space-time surface. If this is true, the quantum classical correspondence coded by
the measurement interaction term of the modified Dirac action maps the quantum numbers also
to space-time geometry and implies a correspondence between infinite rationals and space-time
surfaces.

2. The space-time surface associated with the infinite rational is in general not a union of the space-
time surfaces associated with the primes composing the integers defining the rational. There the
classical description of interactions emerges automatically. The description of classical states in
terms of infinite integers would be analogous to the description of many particle states as finite
integers in arithmetic quantum field theory. This mapping could in principle make sense both
in real and p-adic sectors of WCW.

The finite primes which correspond to particles of an arithmetic quantum field theory present in
Fock state, correspond to the space-time sheets of finite size serving as the building blocks of the
space-time sheet characterized by infinite prime.

4.1.4 What is the interpretation of the higher level infinite primes?

Infinite hierarchy of infinite primes codes for a hierarchy of Fock states such that many-particle Fock
states of a given level serve as elementary particles at next level. The unavoidable conclusion is that
higher levels represent totally new physics not described by the standard quantization procedures. In
particular, the assignment of fermion/boson property to arbitrarily large system would be in some
sense exact. Topologically these higher level particles could correspond to space-time sheets containing
many-particle states and behaving as higher level elementary particles.

This view suggests that the generating quantum numbers are present already at the lowest level
and somehow coded by the hyper-octonionic primes taking the role of momentum quantum number
they have in arithmetic quantum field theories. The task is to understand whether and how hyper-
octonionic primes can code for quantum numbers predicted by quantum TGD.

The quantum numbers coding higher level states are collections of quantum numbers of lower level
states. At geometric level the replacement of the coefficients of polynomials with rational functions
is the equivalent of replacing single particle states with new single particle states consisting of many-
particle states.

4.2 Infinite primes, the structure of many-sheeted space-time, and the
notion of finite measurement resolution

The mapping of infinite primes to space-time surfaces codes the structure of infinite prime to the struc-
ture of space-time surface in a rather non-implicit manner, and the question arises about the concrete
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correspondence between the structure of infinite prime and topological structure of the space-time sur-
face. It turns out that the notion of finite measurement resolution is the key concept: infinite prime
characterizes angle measurement resolution. This gives a direct connection with the p-adicization
program relying also on angle measurement resolution as well as a connection with the hierarchy of
Planck constants. Finite measurement resolution relates also closely to the inclusions of hyper-finite
factors central for TGD inspired quantum measurement theory.

4.2.1 The first intuitions

The concrete prediction of the general vision is that the hierarchy of infinite primes should somehow
correspond to the hierarchy of space-time sheets or partonic 2-surfacse if one accepts the effective
2-dimensionality. The challenge is to find space-time counterparts for infinite primes at the lowest
level of the hierarchy.

One could hope that the Fock space structure of infinite prime would have a more concrete corre-
spondence with the structure of the many-sheeted space-time. One might that the space-time sheets
labeled by primes p would directly correspond to the primes appearing in the definition of infinite
prime. This expectation seems to be too simplistic.

1. What seems to be a safe guess is that the simplest infinite primes at the lowest level of the
hierarchy should correspond to elementary particles. If inverses of infinite primes correspond
to negative energy space-time sheets, this would explain why negative energy particles are not
encountered in elementary particle physics.

2. More complex infinite primes at the lowest level of the hierarchy could be interpreted in terms of
structures formed by connecting these structures by join along boundaries bonds to get space-
time correlates of bound states. Even simplest infinite primes must correspond to bound state
structures if the condition that the corresponding polynomial has real-rational coefficients is
taken seriously.

Infinite primes at the lowest level of hierarchy correspond to several finite primes rather than single
finite prime. The number of finite primes is however finite.

1. A possible interpretation for multi-p property is in terms of multi-p p-adic fractality prevailing
in the interior of space-time surface. The effective p-adic topology of these space-time sheets
would depend on length scale. In the longest scale the topology would correspond to pn, in some
shorter length scale there would be smaller structures with pn−1 < pn-adic topology, and so
on... . A good metaphor would be a wave containing ripples, which in turn would contain still
smaller ripples. The multi-p p-adic fractality would be assigned with the 4-D space-time sheets
associated with elementary particles. The concrete realization of multi-p p-adicity would be in
terms of infinite integers coming as power series

∑
xnN

n and having interpretation as p-adic
numbers for any prime dividing N .

2. Effective 2-dimensionality would suggest that the individual p-adic topologies could be assigned
with the 2-dimensional partonic surfaces. Thus infinite prime would characterize at the lowest
level space-time sheet and corresponding partonic 2-surfaces. There are however reasons to think
that even single partonic 2-surface corresponds to a multi-p p-adic topology.

4.2.2 Do infinite primes code for the finite measurement resolution?

The above describe heuristic picture is not yet satisfactory. In order to proceed, it is good to ask
what determines the finite prime or set of them associated with a given partonic 2-surface. It is good
to recall first the recent view about the p-adicization program relying crucially on the notion of finite
measurement resolution.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis ir-
respective of the value of M and measurement resolution does not depend on on the value of
M . Situation is different if one allows only the powers exp(i2πkM/N) for which kM < N holds
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true: in the latter case the measurement resolutions with different values of M correspond to
different numbers of Fourier components. If one regards N as an ordinary integer, one must
have N = pn by the p-adic continuity requirement.

2. One can also interpret N as a p-adic integer. For N = pnM , where M is not divisible by
p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k, which is infinite as a real

integer but effectively reduces to a finite integer K(p) =
∑N−1

k=0 Mkp
k. As a root of unity

the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M mod pn. The
phase would non-trivial only for p-adic primes appearing as factors in N . The corresponding
measurement resolution would be ∆φ = R2π/N if modular arithetmics is used to define the the
measurement resolution. This works at the first level of the hierarcy but not at higher levels.
The alternative manner to assign a finite measurement resolution to M/N for given p is as
∆φ = 2π|N/M |p = 2π/pn. In this case the small fermionic part of the infinite prime would fix
the measurement resolution. The argument below shows that only this option works also at the
higher levels of hierarchy and is therefore more plausible.

3. p-Adicization conditions in their strong form require that the notion of integration based on har-
monic analysis [20] in symmetric spaces [19] makes sense even at the level of partonic 2-surfaces.
These conditions are satisfied if the partonic 2-surfaces in a given measurement resolution can
be regarded as algebraic continuations of discrete surfaces whose points belong to the discrete
variant of the δM4

± × CP2. This condition is extremely powerful since it effectively allows to
code the geometry of partonic 2-surfaces by the geometry of finite sub-manifold geometries for a
given measurement resolution. This condition assigns the integer N to a given partonic surface
and all primes appearing as factors of N define possible effective p-adic topologies assignable to
the partonic 2-surface.

How infinite primes could then code for the finite measurement resolution? Can one identify the
measurement resolution for M/N = M/(Rpn) as ∆φ = ((M/R) mod pn)× 2π/pn or as ∆φ = 2π/pn?
The following argument allows only the latter option.

1. Suppose that p-adic topology makes sense also for infinite primes and that state function reduc-
tion selects power of infinite prime P from the product of lower level infinite primes defining the
integer N in M/N . Suppose that the rational defined by infinite integer defines measurement
resolution also at the higher levels of the hierarchy.

2. The infinite primes at the first level of hierarchy representing Fock states are in one-one corre-
spondence with finite rationals M/N for which integers M and N can be chosen to characterize
the infinite bosonic part and finite fermionic part of the infinite prime. This correspondence
makes sense also at higher levels of the hierarchy but M and N are infinite integers. Also other
option obtained by exchanging ”bosonic” and ”fermionic” but later it will be found that only
the first identification makes sense.

3. The first guess is that the rational M/N characterizing the infinite prime characterizes the mea-
surement resolution for angles and therefore partially classifies also the finite sub-manifold geom-
etry assignable to the partonic 2-surface. One should define what M/N = ((M/R) mod Pn)×
P−n is for infinite primes. This would require expression of M/R in modular arithmetics modulo
Pn. This does not make sense.

4. For the second option the measurement resolution defined as ∆φ = 2π|N/M |P = 2π/Pn makes
sense. The Fourier basis obtained in this manner would be infinite but all states exp(ik/Pn)
would correspond in real sense to real unity unless one allows k to be infinite P -adic integer
smaller than Pn and thus expressible as k =

∑
m<n kmP

m, where km are infinite integers smaller
than P . In real sense one obtains all roots exp(iq2π) of unity with q < 1 rational. For instance,
for n = 1 one can have 0 < k/P < 1 for a suitably chosen infinite prime k. Thus one would have
essentially continuum theory at higher levels of the hierarchy. The purely fermionic part N of
the infinite prime would code for both the number of Fourier components in discretization for
each power of prime involved and the ratio characterize the angle resolution.

The proposed relation betweeen infinite prime and finite measurement resolution implies very
strong number theoretic selection rules on the reaction vertices.
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1. The point is that the vertices of generalized Feyman diagrams correspond to partonic 2-surfaces
at which the ends of light-like 3-surfaces describing the orbits of partonic 2-surfaces join together.
Suppose that the partonic 2-surfaces appearing a both ends of the propagator lines correspond to
same rational as finite sub-manifold geometries. If so, then for a given p-adic effective topology
the integers assignable to all lines entering the vertex must contain this p-adic prime as a factor.
Particles would correspond to integers and only the particles having common prime factors could
appear in the same vertex.

2. In fact, already the work with modelling dark matter [12] led to ask whether particle could
be characterized by a collection of p-adic primes to which one can assign weak, color, em,
gravitational interactions, and possibly also other interactions. It also seemed natural to assume
that that only the space-time sheets containing common primes in this collection can interact.
This inspired the notions of relative and partial darkness. An entire hierarchy of weak and color
physics such that weak bosons and gluons of given physics are characterized by a given p-adic
prime p and also the fermions of this physics contain space-time sheet characterized by same
p-adic prime, say M89 as in case of weak interactions. In this picture the decay widths of weak
bosons do not pose limitations on the number of light particles if weak interactions for them are
characterized by p-adic prime p 6= M89. Same applies to color interactions.

The possibility of multi-p p-adicity raises the question about how to fix the p-adic prime charac-
terizing the mass of the particle. The mass scale of the contribution of a given throat to the mass
squared is given by p−n/2, where T = 1/n corresponds to the p-adic temperature of throat. Hence the
dominating contribution to the mass squared corresponds to the smallest prime power pn associated
with the throats of the particle. This works if the integers characterizing other particles than graviton
are divisible by the gravitonic p-adic prime or a product of p-adic primes assignable to graviton. If the
smallest power pn assignable to the graviton is large enough, the mass of graviton is consistent with
the empirical bounds on it. The same consideration applies in the case of photons. Recall that the
number theoretically very natural condition that in zero energy ontology the number of generalized
Feynman graphs contributing to a given process is finite is satisfied if all particles have a non-vanishing
but arbitrarily small p-adic thermal mass [7].

4.2.3 Interpretational problem

The identification of infinite prime as a characterizer of finite measurement resolution looks nice but
there is an interpretational problem.

1. The model characterizing the quantum numbers of WCW spinor fields to be discussed in the
next section involves a pair of infinite primes P+ and P− corresponding to the two vacuum
primes X ± 1. Do they correspond to two different measurement resolutions perhaps assignable
to CD and CP2 degrees of freedom?

2. Different measurement resolutions in CD and CP2 degrees of freedom need not be not a problem
as long as one considers only the discrete variants of symmetric spaces involved. What might
be a problem is that in the general case the p-adic primes associated with CD and CP2 degrees
of freedom would not be same unless the integers N+ and N− are assumed to have have same
prime factors (they indeed do if p0 = 1 is formally counted as prime power factors).

3. The idea of assigning different p-adic effective topologies to CD and CP2 does not look attractive.
Both CD and CP2 and thus also partonic 2-surface could however possess simultaneously both
p-adic effective topologies. This kind of option might make sense since the integers representable
as infinite powers series of integer N can be regarded as p-adic integers for all prime factors of
N . As a matter fact, this kind of multi-p p-adicity could make sense also for the partonic 2-
surfaces characterized by a measurement resolution ∆φ = 2πM/N . One would have what might
be interpreted as N+N−-adicity.

4. It will be found that quantum measurement means also the measurement of the p-adic prime
selecting same p-adic prime fromN+ andN−. IfN± is divisible only by p0 = 1, the corresponding
angle measurement resolution is trivial. From the point of view of consciousness state function
reduction selects also the p-adic prime characterizing the cognitive representation which is very
natural since quantum superpositions of different p-adic topologies are not natural physically.
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4.3 How the hierarchy of Planck constants could relate to infinite primes
and p-adic hierarchy?

Besides the hierarchy of space-time sheets, TGD predicts, or at least suggests, several hierarchies
such as the hierarchy of infinite primes, the hierarchy of Jones inclusions identifiable in terms of finite
measurement resolution[13], the dark matter hierarchy characterized by increasing values of ~ [12],
the hierarchy of extensions of given p-adic number field, and the hierarchy of selves and quantum
jumps with increasing duration with respect to geometric time. There are good reasons to expect that
these hierarchies are closely related. Number theoretical considerations give hopes about developing
a more quantitative vision about the relationship between these hierarchies, in particular between the
hierarchy of infinite primes, p-adic length scale hierarchy, and the hierarchy if Planck constants.

If infinite primes code for the hierarchy of measurement resolutions, the correlations between the
p-adic hierarchy and the hierarchy of Planck constants indeed suggest themselves and allow also to
select between two interpretations for the fact that two infinite primes N+ and N− are needed to
characterize elementary particles (see the next section).

Recall that the hierarchy of Planck constants in the most general situation corresponds to a
replacement M4 and CP2 factors of the imbedding space with singular coverings and factor spaces.
The condition that Planck constant is integer valued allows only singular coverings characterized by
two integers na resp. nb assignable to CD resp. CP2. This condition also guarantees that a given
value of Planck constant corresponds to only a finite number of pages of the ”Big Book” and therefore
looks rather attractive mathematically. This option also forces evolution as a dispersion to the pages
of the books characterized by increasing values of Planck constant.

Concerning the correspondence between the hierarchy of Planck constants and p-adic length scale
hierarchy there seems to be only single working option. The following assumptions make precise the
relationship between finite measurement resolution, infinite primes and hierarchy of Planck constants.

1. Measurement resolution CD resp. CP2 degrees of freedom is assumed to correspond to the
rational M+/N+ resp. M−/N−. N± is identified as the integer assigned to the fermionic part
of the infinite integer..

2. One must always fix the consideration to a fixed p-adic prime. This process could be regarded
as analogous to fixing the quantization axes and p would also characterize the p-adic cognitive
space-time sheets involved. The p-adic prime is therefore same for CD and CP2 degrees of
freedom as required by internal consistency.

3. The relationship to the hierarchy of Planck constants is fixed by the identifications na = n+(p)
and nb = n−(p) so that the number of sheets of the covering equals to the number of bosons in
the fermionic mode p of the quantum state defined by infinite prime.

4. A physically attractive hypothesis is that number theoretical bosons resp. fermions correspond
to WCW orbital resp. spin degrees of freedom. The first ones correspond to the symplectic
algebra [21] of WCW and the latter one to purely fermionic degrees of freedom.

Consider now the basic consequences of these assumptions from the point of view of physics and
cognition.

1. Finite measurement resolution reduces for a given value of p to

∆φ =
2π

pn±(p)+1
=

2π

pna/b
,

where n±(p) = na/b − 1 is the number of bosons in the mode p in the fermionic part of the
state. The number theoretical fermions and bosons and also their probably existing physical
counterparts are necessary for a non-trivial angle measurement resolution. The value of Planck
constant given by

~
~0

= nanb = (n+(p) + 1)× (n−(p) + 1)

tells the total number of bosons added to the fermionic mode p assigned to the infinite prime.
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2. The presence of ~ > ~0 partonic 2-surfaces is absolutely essential for a Universe able to measure
its own state. This is in accordance with the interpretation of hierarchy of Planck constants
in TGD inspired theory of consciousness. One can also say that ~ = 0 sector does not allow
cognition at all since N± = 1 holds true. For given p ~ = nanb = 0 means that given fermionic
prime corresponds to a fermion in the Dirac sea meaning n±(p) = −1. Kicking out of fermions
from Direac sea makes possible cognition. For purely bosonic vacuum primes one has ~ =
0 meaning trivial measurement resolution so that the physics is purely classical and would
correspond to the purely bosonic sector of the quantum TGD.

3. For ~ = ~0 the number of bosons in the fermionic state vanishes and the general expression
for the measurement resolution reduces to ∆φ = 2π/p. When one adds n±(p) bosons to the
fermionic part of the infinite prime, the measurement resolution increases from ∆φ = 2π/p
to ∆φ = 2π/pn±(p)+1. Adding a sheet to the covering means addition of a number theoretic
boson to the fermionic part of infinite prime. The presence of both number theoretic bosons
and fermions with the values of p-adic prime p1 6= p does not affect the measurement resolution
∆φ = 2π/pn for a given prime p.

4. The resolutions in CD and CP2 degrees of freedom correspond to the same value of the p-adic
prime p so that one has dicretizations based on ∆φ = 2π/pna in CD degrees of freedom and
∆φ = 2π/pnb in CP2 degrees of freedom. The finite sub-manifold geometries make sense in
this case and since the effective p-adic topology is same, the continuation to continuous p-adic
partonic 2-surface is possible.

p-Adic thermodynamics involves the p-adic temperature T = 1/n as basic parameter and the
p-adic mass scale of the particle comes as p−(n+1)/2. The natural question is whether one could
assume the relation T± = 1/(n±(p) + 1) between p-adic temperature and infinite prime and thus the
relations Ta = 1/na(p) and Tb = 1/nb(p). This identification is not consistent with the recent physical
interpretation of the p-adic thermodynamics nor with the view about dark matter hierarchy and must
be given up.

1. The minimal non-trivial measurement resolution with ni = 1 and ~ = ~0 corresponds to the
p-adic temperature Ti = 1. p-Adic mass calculations indeed predict T = 1 for fermions for
~ = ~0. In the case of gauge bosons T ≥ 2 is favored so that gauge bosons would be dark.
This would require that gauge bosons propagate along dark pages of the Big Book and become
”visible” before entering to the interaction vertex.

2. p-Adic thermodynamics also assumes same p-adic temperature in CD and CP2 degrees of free-
dom but the proposed identification allows also different temperatures. In principle the sepa-
ration of the super-conformal degrees of freedom of CD and CP2 might allow different p-adic
temperatures. This would assign to different p-adic mass scales to the particles and the larger
mass scale should give the dominant contribution.

3. For dark particles the p-adic mass scale would be by a factor 1/
√
pni(p)−1 lower than for ordinary

particles. This is in conflict with the assumption that the mass of the particle does not depend
on ~. This prediction would kill completely the recent vision about the dark matter.

5 How infinite primes could correspond to quantum states
and space-time surfaces?

The hierarchy of infinite primes is in one-one correspondence with a hierarchy of second quantizations
of an arithmetic quantum field theory. The additive quantum number in question is energy like quan-
tity for ordinary primes and given by the logarithm of prime whereas p-adic length scale hypothesis
suggests that the conserved quantity is proportional to the inverse of prime or its square root. For
infinite primes at the first level of hierarchy these quantum numbers label single particles states hav-
ing interpretation as ordinary elementary particles. For octonionic and hyper-octonionic primes the
quantum number is analogous to a momentum with 8 components. The question is whether these
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number theoretic quantum numbers could have interpretation as genuine quantum numbers. Quan-
tum classical correspondence raises another question. Is it possible to label space-time surfaces by
infinite primes? Could this correspondence be even one-to-one?

I have considered these questions already more than decade ago. The discussion at that time was
necessarily highly speculative and just a mathematical exercise. After that time however a lot of
progress has taken place in quantum TGD and it is highly interaction to see what comes out from the
interaction of the notion of infinite prime with the notions of zero energy ontology and generalized
imbedding space, and with the recent vision about how measurement interaction in the modified Dirac
action allows to code information about quantum numbers to the space-time geometry. The possibility
of this coding allows to simplify the discussion dramatically. If one can map infinite hyper-octonionic
primes to quantum numbers of the standard model naturally, then the their map of to the geometry
of space-time surfaces realizes the coding of space-time surfaces by infinite primes (and more generally
by integers and rationals). Also a detailed realization of number theoretic Brahman=Atman identity
emerges as an outcome.

5.1 A brief summary about various moduli spaces and their symmetries

It is good to sum up the number theoretic symmetries before trying to construct an overall view
about the situation. Several kinds of number theoretical symmetry groups are involved corresponding
to symmetries in the moduli spaces of hyper-octonionic and hyper-quaternionic structures, symmetries
mapping hyper-octonionic primes to hyper-octonionic primes, and translations acting in the space of
causal diamonds (CDs) and shifting. The moduli space for CDs labeled by pairs of its tips that its
pairs of points of M4 × CP2 is also in important role.

1. The basic idea is that color SU(3) ⊂ G2 acts as automorphisms of hyper-octonion structure
with a preferred imaginary unit. SO(7, 1) acts as symmetries in the moduli space of hyper-
octonion structures. Associativity implies symmetry breaking so that only hyper-quaternionic
structures are considered and SO(3, 1) × SO(4) acts as symmetries of the moduli space for
hyper-quaternionic structures.

2. CP2 parameterizes the moduli space of hyper-quaternionic structures induced from a given
hyper-octonionic structure with preferred imaginary unit.

3. Color group SU(3) is the analog of Galois group for the extension of reals to octonions and has
a natural action on the decompositions of rational infinite primes to hyper-octonionic infinite
primes. For given hyper-octonionic prime one can identify a subgroup of SU(3) generating a
finite set of hyper-octonionic primes for it at sphere S7. This suggests wave function at the orbit
of given hyper-octonionic prime in turn generalizing to wave functions in the space of infinite
primes.

4. Four-momenta correspond to translational degrees of freedom associated with the preferred
points of M4 coded by the infinite rational (tip of the light-cone). Color quantum numbers in
cm degrees of freedom can be assigned to the CP2 projection of the preferred point of H. As
a matter fact, the definition of hyper-octonionic structure involves the choice of origin of M8

giving rise to the preferred point of H.

These symmetries deserve a more detailed discussion.

1. The choice of global hyper-octonionic coordinate is dictated only modulo a transformation of
SO(1, 7) acting as isometries of hyper-octonionic norm and as transformations in moduli space
of hyper-octonion structures. SO(7) respects the choice of the real unit. SO(1, 3)× SO(4) acts
in the moduli space of global hyper-quaternionic structures identified as sub-structures of hyper-
octonionic structure. The choice of global hyper-octonionic structures involves also a choice of
origin implying preferred point of H. The M4 projection of this point corresponds to the tip of
CD. Since the integers representing physical states must be hyper-quaternionic by associativity
conditions, the symmetry breaking (”number theoretic compactification”) to SO(1, 3)× SO(4)
occurs very naturally. This group acts as spinor rotations in H picture and as isometries in M8

picture. The choice of both tips of CD reduces SO(1, 3) to SO(3).
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2. SO(1, 7) allows 3 different 8-dimensional representations (8v, 8s, and 8s). All these represen-
tations must decompose under SU(3) as 1 + 1 + 3 + 3 as little exercise with SO(8) triality
demonstrates. Under SO(6) ∼= SU(4) the decompositions are 1 + 1 + 6 and 4 + 4 for 8v and
8s and its conjugate. Both hyper-octonion spinors and gamma matrices are identified as hyper-
octonion units rather than as matrices. It would be natural to assign to bosonic M8 primes 8v
and to fermionic M8 primes 8s and 8s. One can distinguish between 8v, 8s and 8s for hyper-
octonionic units only if one considers the full SO(1, 3) × SO(4) action in the moduli space of
hyper-octonionic structures.

3. G2 acts as automorphisms on octonionic imaginary units and SU(3) respects the choice of pre-
ferred imaginary unit meaning a choice of preferred hyper-complex plane M4 ⊂M4. Associativ-
ity requires a reduction to hyper-quaternionic primes and implies color confinement in number
theoretical and as it turns also in physical sense. For hyper-quaternionic primes the automor-
phisms restrict to SO(3) which has right/left action of fermionic hyper-quaternionic primes and
adjoint action on bosonic hyper-quaternionc primes. The choice of hyper-quaternionic structure
is global as opposed to the local choice of hyper-quaternionic tangent space of space-time sur-
face assigning to a point of HQ ⊂ HO a point of CP2. U(2) ⊂ SU(3) leaves invariant given
hyper-quaternionic structure which are thus parameterized by CP2. Color partial waves can be
interpreted as partial waves in this moduli space.

5.2 Associativity and commutativity or only their quantum variants?

Associativity and commutativity conditions are absolutely essential notions in quantum TGD and
also in the mapping of infinite primes to the space-time sheets. Hyper-quaternionicity formulated in
terms of the modified gamma matrices defined by Kähler action fixes classical space-time dynamics
and a very beautiful algebra formulation of quantum TGD in terms of the complexified local Clifford
algebra of imbedding space emerges.

Associativity implies hyper-quaternionicity and commutativity requirement in turn leads to com-
plex rational infinite primes. Since one can decompose complex rational primes to hyper-quaternionic
and even hyper-octonionic primes, one might hope that this could allow to represent states which
consist of colored constituents. This representations has however the flavor of a formal trick and the
considerations related to concrete representations of infinite primes suggest that the rationality of
infinite primes might be a too restrictive condition.

A more radical possibility is that physical states are only quantum associative and commutative.
In case of associativity this means that they are obtained as quantum superpositions in the space
of real units over all possible associations performed for a given product of hyper-octonion primes
(for instance, |A(BC)〉 + |(AB)C〉). These states would be associative in quantum sense but would
not reduce to hyper-quaternionic primes. Also the notion of quantum commutativity makes sense.
The fact that mesons are quantum superpositions of quark-antiquark pairs which each corresponds
to different pair of hyper-quaternionic primes and are thus not representable classically, suggests that
one can require only quantum associativity and quantum commutativity.

5.3 The correspondence between infinite primes and standard model quan-
tum numbers

I have considered several candidates for the correspondence between infinite primes and standard
model quantum numbers. The confusing aspect has been the dual nature of hyper-octonionic primes.
One one hand they could be interpreted as components of 8-D momentum representing perhaps
momentum and other quantum numbers. On the other hand, they transform like representations of
SU(3) ⊂ G2 and behave like color singlets and triplets so that the idea about quantum superpositions
of infinite primes related by SU(3) action is attractive. The second puzzling feature is that there are
two kinds of infinite primes corresponding to two signs for the ”small” part of the infinite prime. The
following proposal leads to an interpretation for these aspects.

1. The number of components of hyper-octonionic prime is 8 as is the dimension of the Cartan
algebra of the product of Poincare group, color group SU(3) and electro-weak gauge group
SU(2)L ×U(1) defining the quantum numbers of particles. One might therefore dream about a
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number theoretic interpretation of elementary particle quantum numbers by intepreting hyper-
octonionic prime as 8-momentum. This form of the big idea fails. The point is that complexified
basis for octonions consists of two color singlets and color triplet and its conjugate. For a
given hyper-octonionic prime one can construct new primes by using a subgroup G of SU(3)
by definition respecting the property that the values of the components of prime as integers
and as a consquence also the modulus squared so that the primes are at sphere S7. This
group is analogous to Galois group. Identifying prime as an element of basis of quantum states,
one can form wave functions at the discrete orbit of given prime transforming according to
irreducible representations of color group. Triality t± 1 states correspond to color partial waves
associated with quarks and antiquarks and triality t = 0 states to gluons and leptons and their
color excitations. The states can be chosen to be eigenstates of the preferred hyper-octonionic
imaginary unit ie1. Additive four-momentum could be assigned the M2 part of the hyper-
octonion as will be found. Therefore the construction applies in special but natural coordinates
assignable to the particle required also by zero energy ontology and hierarchy of Planck constants
as well as by p-adicization program.

2. This construction gives only the quantum numbers assignable to color partial waves in configura-
tion space degrees of freedom. Also the quantum numbers assignable to imbedding space spinors
are wanted. Luckily, there are two kinds of infinite primes, which might be denoted by P± be-
cause the sign of the ”small” part of the infinite prime can be chosen freely. Super-conformal
symmetry [27] suggests that quantum numbers associated with spinorial and configuration space
degrees freedom can be assigned to the infinite primes of these two types.

(a) In the case of spinor degrees of freedom one can restrict the multiplets to those generated
by SU(2) subgroup of SU(3) identified as rotation group. The interpretation is in terms
of automorphism group of quaternions. Discrete subgroups of SU(2) generate the orbit
of given hyper-octonionic prime and one obtains finite number of SU(2) multiplets hav-
ing interpretation in terms of rotational degrees of freedom associated with the light-cone
boundary. In the case of fermions (bosons) only half odd integer (integer) spins are allowed.

(b) Remarkably, four of the hyper-octonionic units remain invariant under SU(2). Also now
only the hyper-complex projection in M2 ⊂ M4 can be interpreted as four-momentum in
the preferred frame and the interpretation as a counterpart of Dirac equation eliminat-
ing four complex non-physical helicities of the imbedding spinor of given chirality. The
states of same spin associated with the two spin doublets have interpretation as electro-
weak doublets. As a representation of SU(3) electro-weak doublets would correspond to
quark and antiquark in color isospin doublet. This leaves two additional quantum numbers
assignable to the color isospin singlets. The natural interpretation is in terms of electro-
magnetic charge and weak isospin. An analogous picture emerges also in the description of
super-symmetric QFT limit of TGD [10] replacing massless particles identified as light-like
geodesics of M4 with light like geodesics of M4×CP2 and assigning to them two quantum
numbers in the Cartan algebra of SU(3) and identified as electro-weak charges. Also con-
formal weight expressible in terms of stringy mass formula allows a description in terms of
infinite primes. What is not achieved is the number theoretical description of genus of the
partonic 2-surface and wave functions in the moduli space of the partonic 2-surfaces.

3. In this picture leptons, gauge bosons, and gluons correspond to an infinite prime of type P+

or P− whereas quarks as well as color excitations of leptons correspond to a pair of primes of
type P+ and P−. One can fix the notations by assigning color quantum numbers to P+ and and
spinorial quantum numbers to P−. Both P+ and P− contribute to four-momentum. Each pair of
infinite primes of this kind defines a finite-dimensional space of quantum states assignable to the
subgroups of SU(3) and SU(2) respecting the prime property. Needless to say, this prediction
is extremely powerful and fixes the spectrum of the quantum numbers almost completely!

4. An interesting question is whether one can require number theoretical color confinement in the
sense that the physical states resulting as tensor products of states assignable to a given infinite
prime in P+ are color singlets. This might be necessary to guarantee associativity. G2 singletness
would be even stronger condition but not possible for massless states. What is interesting is
that spin and color in well-defined sense separate from each other. One can wonder whether this
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relates somehow to the spin puzzle of proton meaning that quarks do not seem to contribute to
baryonic spin.

5. The appearance of discrete subgroups of SU(3) and SU(2) strongly suggests a connection with
the inclusions of the hyper-finite factors of type II1 characterized by these subgroups, which are
expected to play a fundamental role in quantum TGD. An interesting question is whether also
infinite subgroups could be involved. For instance, one can consider the subgroups generated
by discrete subgroup and infinite cyclic group and these might be involved with the inclusions
for which the index is equal to four. The appearance of these groups suggests also a connection
with the hierarchy of Planck constants and one can ask how the singular coverings defining the
pages of the book like structure relate to the moduli space of causal diamonds.

The rather unexpected conclusion is that the wave functions in the discrete space defined by infinite
primes are able to code for the quantum numbers of configuration space spinor fields and thus for
configuration space spinor fields. A fascinating possibility is that even M-matrix- which is nothing but
a characterization of zero energy state- could find an elegant formulation as entanglement coefficients
associated with the pair of the integer and inverse integer characterizing the positive and negative
energy states.

1. The great vision is that associativity and commutativity conditions fix the number theoretical
quantum dynamics completely. Quantum associativity states that the wave functions in the
space of infinite primes, integers, and rationals are invariant under associations of finite hyper-
octonionic primes (A(BC) and (AB)C are the basic associations), physics requires associativity
only apart from a phase factor, in the simplest situation +1/ − 1 but in more general case
phase factor. The condition of commutativity poses a more familiar condition implying that
permutations induce only a phase factor which is +/- 1 for boson and fermion statistics and a
more general phase for quantum group statistics for the anyonic phases, which correspond to
nonstandard values of Planck constant in TGD framework. These symmetries induce time-like
entanglement for zero energy stats and perhaps non-trivial enough M-matrix.

2. One must also remember that besides the infinite primes defining the counterparts of free Fock
states of supersymmetric QFT, also infinite primes analogous to bound states are predicted.
The analogy with polynomial primes illustrates what is involved. In the space of polynomials
with integer coefficients polynomials of degree one correspond free single particle states and one
can form free many particle states as their products. Higher degree polynomials with algebraic
roots correspond to bound states being not decomposable to a product of polynomials of first
degree in the field of rationals. Could also positive and negative energy parts of zero energy
states form a analog of bound state giving rise to highly non-trivial M-matrix?

5.4 How space-time geometry could be coded by infinite primes

Second key question is whether space-time geometry could be characterized in terms of infinite primes
(and integers and rationals in the most general case) and how this is achieved. This problem trivializes
by quantum classical correspondence realized in terms of the measurement interaction term in the
modified Dirac action.

1. The addition of the measurement interaction term to the modified Dirac action defined by Kähler
action implies that space-time sheets carry information about four-momentum, color quantum
numbers, and electro-weak quantum numbers. One must assing assign to the space-time sheet
assignable to a given collection of partonic 2-surfaces at least one pair of infinite primes or rather
wave function at the orbits of these primes under the group respecting the prime property. Pairs
of infinite-primes at the first level would characterize the quantum numbers assigned with the
partonic surface X2, that is the tangent space of the space-time surface at X2 fixing the initial
values for the preferred extremal of Kähler action.

2. Zero energy ontology implies a hierarchy of CDs within CDs and this hierarchy as well as the
hierarchy of space-time sheets corresponds naturally to the hierarchy of infinite primes. One
can assign standard model quantum numbers to various partonic 2-surfaces with positive and
negative energy parts of the quantum state assignable to the light-like boundaries of CD. Also
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infinite integers and rationals are possible and the inverses of infinite primes would naturally
correspond to elementary particles with negative energy. The condition that zero energy state
has vanishing net quantum numbers implies that the ratio of infinite integers assignable to zero
energy state equals to real unit in real sense and has has vanishing total quantum numbers.

3. Neither quantum numbers nor infinite primes coding them cannot characterize the partonic
2-surface itself completely since they say nothing about the deformation of the space-time sur-
face but only about labels characterizing the WCW spinor field. Also the topology of partonic
2-surface fails to be coded. Quantum classical correspondence however suggests that this cor-
respondence could be possible in a weaker sense. In the Gaussian approximation for functional
integral over the world of classical worlds space-time surface and thus the collection of partonic
2-surfaces is effectively replaced with the one corresponding to the maximum of Kähler function,
and in this sense one-one correspondence is possible unless the situation is non-perturbative. In
this case the physics implied by the hierarchy of Planck constants could however guarantee
uniqueness. One of the basic ideas behind the identification of the dark matter as phases with
non-standard value of Planck constant is that when perturbative description of the system fails,
a phase transition increasing the value of Planck constant takes place and makes perturbative
description possible. Geometrically this phase transition means a leakage to another sector of
the imbedding space realized as a book like structure with pages partially labeled by the values
of Planck constant. Anyonic phases and fractionization of quantum numbers is one possible
outcome of this phase transition. An interesting question is what the fractionization of the
quantum numbers means number theoretically.

5.5 How to achieve consistency with p-adic mass formula

The first argument against the proposal that infinite primes could code for four-momentum in preferred
coordinates is that the logarithms of finite primes and even less those of hyper-octonionic primes are
natural from the point of view of p-adic mass calculations predicting that the mass squared of particle
behaves as 1/p for Tp = 1 (fermions) and 1/p2 for Tp = 1/2 (gauge bosons). This difficulty might be
circumvented.

5.5.1 Ordinary primes

Consider first ordinary primes for which the inverse always exists.

1. One can map finite primes p to phase factors exp(i2π/p). The roots of unity play the role of
primes in the decomposition of the roots of unity exp(i2π/n), n =

∏
i p

ni
i . 1/n is expressible as

a sum of form

1

n
=

∑
i

Pi ,

Pi =
ki
pni
i

. (5.1)

giving

exp(
i2π

n
) = exp(i2π

∑
i Pi) = exp(i2π

∑
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ki
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i

) . (5.2)

Apart from a common normalization factor one can interpret the coefficients Pi as energy like
quantities assigned to the single particle states. The power pni

i would correspond to various
p-adic inverse temperature 1/Tp = 2ni in this expansion.

2. The representation in terms of phase factors is not unique since P k
i and P k

i + npki define the
same phase. This non-uniqueness is completely analogous to the non-uniqueness of momentum
in the presence of a discrete translational symmetry and can be interpreted in terms of lattice



5.5 How to achieve consistency with p-adic mass formula 33

momentum. Physically this corresponds to a finite measurement resolution. Also in the formu-
lation of symplectic QFT defining one part of quantum TGD only phases defined by the roots
of unity appear and similar non-uniqueness emerges and is due to the discretization serving as
a space-time correlate for a finite measurement resolution implying UV cutoff.

3. Mass squared is proportional to 1/p2i so that only the p-adic temperatures Tp = 1/2ni are
possible for rational primes. For more general primes one can however have also a situation in
which the modulus square of prime is ordinary prime. For instance, Gaussian (complex) primes
P = m + in satisfy |P |2 = p for p mod 4 = 1 and |P |2 = p2 for p mod 4 = 3 (for example,
rational prime 5 decomposes as 5 = (2 + i)(2 − i)). Therefore it is possible to have states
satisfying M2 ∝ 1/p, p ordinary prime for hyper-octonionic primes. These primes correspond
to the rational primes decomposing to the products of ordinary primes and also also higher
roots of p might be possible. The finite prime assignable to the hyper-octonionic prime has a
natural interpretation as the p-adic prime assignable to an elementary particle. In zero energy
ontology this assignment makes sense also for virtual particles having interpretation as pairs
of positive and negative energy on mass shell particles assignable to the light-like throats of
wormhole contact.

5.5.2 Hyper-octonionic primes with inverse

Consider next the situation for hyper-octonionic primes when the integers in question have inverse.
We are interested only in the longitudinal part of infinite prime in M2. The phase factor makes sense
also in the case of hyper-octonionic primes if the condition |P | > 0 holds true so that one has massive
particles in 8-D sense possibly resulting via p-adic thermodynamics. If the imaginary unit appearing
in the exponent is the imaginary unit i appearing in the complexification of octonions, the exponent
has the character of a phase factor for hyper-octonionic primes. The reason is that 1/P = P ∗/|P |2 is
hyper-octonionic number of form O0 + iO1, where O1 is a purely imaginary octonion. The exponent
in the phase factor is therefore 2π(iO0 − O1) and involves only imaginary units, and one can write
exp(i2π(O0 + iO1)) = exp(iO0)×exp(−O1). Both factors are phase factors. This condition analogous
to unitarity is one further good reason for hyper-octonions and Minkowskian signature.

5.5.3 Light-like hyper-octonionic primes

The proposed representation as a phase factor fails for massless particles since light-like hyper-primes
do not possess an inverse. One must therefore define the notion of primeness differently to see what
might be the physical interpretation of these primes. Since the multiplication of hyper-octonionic
integer by light-like prime yields zero norm prime, the natural interpretation would be as a gauge
transformation and one might consider gauge transformations obtained by exponentiating Lie algebra
with light-like coefficients.

One can consider two options depending on whether one requires that the relevant algebra has
unit or not.

1. For the first option hyper-octonionic light-like integers are of form n(1 + e) and the product
of two light-like integers ni(1 + e) is of form 2n1n2(1 + e). Here e could be arbitrary hyper-
octonionic imaginary unit consistent with the prime property. This does not however allow unit
light-like integer acting like unit since one has (1 + e)2 = 2(1 + e). All odd integers would be
primes.

2. The number E = (1 + e)/2 behaves as a unit. If one requires that unit is included in the algebra
integers can be defined as numbers of form nE so that their product is n1n2E and equivalent
with the ordinary product of integers so that primes correspond to ordinary primes.

One can construct the first level infinite primes from these primes just as in the case of ordinary
primes. Now however X =

∏
pi is replaced with X =

∏
n[(2n + 1)(1 + e)] for the first option and

equal to the X = E
∏
pi for the second option.

The multiplicative phase factor could be defined for both options as exp(i2πE/N) where N is a
light-like hyper-octonionic integer. This definition would eliminate the singular 1/E factor and the
situation reduces essentially to that for ordinary primes in the case of massless states. If the infinite
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prime P± is such that one can assign to it non-trivial multiplets in color or rotational degrees of freedom
(half odd integer spin for fermions) it must have a part in the complement of M2. For standard model
elementary particles this is always the case. The energy spectrum is of form 1/2(2m + 1) or 1/p.
For light-like hyper-octonions the projection to M2 is in general time-like and quantized. If one does
not allow the unit E in exponent the phase factor is ill-defined and one must identify the light-like
hyper-octonionic primes as gauge degrees of freedom.

M2 momentum is light-like only for states which are spinless color and electro-weak singlets hav-
ing no counterpart in standard model counterpart nor in quantum TGD. Therefore light-like hyper-
octonionic primes reducing to M2 could correspond to gauge degrees of freedom. M2 momentum is
of form P = (1, 1)/2(2m+ 1) for the first option and of form P = (1, 1)/p for the second option. Even
for graviton, photon, gluons, and right handed neutrino either hyper-octonionic prime is space-like
if the state is massless. Light-like hyper-octonions can however characterize massive states but the
proposed interpretation in terms of gauge degrees of freedom is highly suggestive.

If one interprets hyper-octonionic prime as 8-D momentum, which is of course not necessary in the
recent framework, one could worry about conflict with TGD variant of twistor program. In accordance
with associativity the role of 8-momentum in fermionic propagator is however taken by its projection
to the hyper-quaternionic sub-space defined by the modified gamma matrices at given point of space-
time sheet and masslessness holds for this projection so that 8-D tachyons are possible [11]. This is
highly analogous to the identification of the four-momentum as M2 projection of hyperfinite prime.

5.5.4 The treatment of zero modes

There are also zero modes which are absolutely crucial for quantum measurement theory. They
entangle with quantum fluctuating degrees of freedom in quantum measurement situation and thus
map quantum numbers to positions of pointers. The interior degrees of freedom of space-time interior
must correspond to zero modes and they represent space-time correlates for quantum states realized
at light-like partonic 3-surfaces. Quantum measurement theory suggests 1-1 correspondence between
zero modes and quantum fluctuating degrees of freedom so that also super-symmetry should have zero
mode counterpart. The recent progress in understanding of the modified Dirac action [7] leads to a
concrete identification of the super-conformal algebra of zero modes as related to the deformation of
the space-time surface defining vanishing second variations of Kähler action.

5.6 Complexification of octonions in zero energy ontology

The complexification of octonions plays a crucial role in the number theoretical vision and could be
regarded as its weakest point. It has however a natural physical interpretation in zero energy ontology.

1. CD has two tips, which correspond to the points of M4. For M4 the fixing of the quantization
axes requires choosing a time-like direction fixing the rest system. This direction is naturally
defined by the tips of CD. The moduli space for CDs is M4 ×M4

+. The realization of the
hierarchy of Planck constants forces also a choice of a space-like direction fixing the quantization
axes of spin.

2. In the case of CP2 the choice of the quantization axes requires fixing of a preferred point of
CP2 remaining invariant under U(2) subgroup of SU(3) acting linearly on complex coordinates
having origin at this point and containing also the Cartan subgroup. This fixes the quantization
axes of color hyper-charge. If the preferred CP2 points associated with the light-like boundaries
of CD are different they fix a unique geodesic circle of CP2 fixing the quantization axes for color
isospin. The moduli space is therefore (CP2)2.

3. The full moduli space is M4×M4
+×(CP2)2. In M8 description the moduli space would naturally

correspond to pairs of points of M4 and E4 so that the moduli space for the choices CDs and
quantization axes would be M4 ×M4

+ × (E4)2. This space can be regarded locally as the space
of complexified octonions.

4. p-Adic length scale hypothesis follows if the time-like distance between the tips of CDs is quan-
tized in powers of two so that a union of 3-D proper-time constant hyperboloids of M4

+ results.
Hierarchy of Planck constants implies rational multiples of these basic distances. Hyperboloids
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are coset spaces of Lorentz group and this suggests even more general quantization in which one
replaces the hyperboloids with spaces obtained by identifying the points related by the action
of a discrete subgroup of Lorentz group. This would give the analog of lattice cell obtained
and one would obtain a lattice like structure consisting of unit cells labeled by the elements of
the sub-group of Lorentz group. The interpretation of the moduli space of CDs as a discrete
momentum space dual to the configuration space is suggestive. In the case of CP2 similar quan-
tization could correspond to the replacement of CP2 with equivalence classes of points of CP2

under action of a discrete subgroup of SU(3).

5. Could this discrete space be identified as the space of hyper-octonionic primes as looks natural?
In other words, could the discrete points of the dual spaceM4

+×CP2 decompose to subsets in one-
one corresponds with the orbits of G+ and G− appearing in the reductions SO(7, 1)→ SO(7)→
G2 → SU(3)→ G+ for primes in P+ and SO(7, 1)→ SO(7)→ G2 → SU(3)→ SU(2)→ G− in
P−? One can also consider the subgroups of G2 respecting the hyperbolic prime property. This
would allow to integrate G+×G− multiplets to larger multiplets and get an over all view about
multiplet structure. An interesting question is whether SO(7, 1) could contain non-compact
discrete subgroups with infinite number of elements and respecting the property of being hyper-
octonionic prime. If this idea is correct, the dual space M4

+×CP2 would play a role of heavenly
sphere providing a representation for the quantum numbers labeling configuration space spinor
fields.

5.7 The relation to number theoretic Brahman=Atman identity

Number theoretic Brahman=Atman identity -one might also use the term algebraic holography -
states the number theoretic anatomy of single space-time point is enough to code for both WCW and
and WCW spinors fields- the quantum states of entire Universe or at least the sub-Universe defined by
CD. The entire quantum TGD could be represented in terms of 8-D imbedding space with the notion
of number generalized to allow real units defined as ration of infinite integers and having number
theoretical anatomy.

Before continuing it is perhaps good to represent the most obvious objection against the idea.
The correspondence between WCW and WCW spinors with infinite rationals and their discreteness
means that also WCW (world of classical worlds) and space of WCW spinors should be discrete.
First this looks non-sensible but is indeed what one obtains if space-time surfaces correspond to light-
like 3-surfaces expressible in terms of algebraic equations involving rational functions with rational
coefficients.

By the above considerations it is indeed clear that zero energy states correspond to ratios of infinite
integers boiling down to a hyper-octonionic unit with vanishing net four-momentum and electro-weak
charges. Configuration space spinor fields can be mapped to wave functions in the space of these units
and even the reduced configuration space consisting of the maxima of Kähler function could be coded
by these wave functions. The wave functions in the space of hyper-octonion units would be induced
by the discrete wave functions associated with the orbits of hyper-octonionic finite primes appearing
in the decomposition of the infinite hyper-octonionic primes of type P+ and P−. The net color and
quantum numbers and spin associated with the wave function in the space of hyper-octonionic units
are vanishing. Clearly, a detailed realization of number theoretic Brahman=Atman identity emerges
predicting reducing even the spectrum of possible quantum numbers to number theory.

In the original formulation of Brahman-Atman identity the description based on H was used.
This leads to the conclusion that that the analog of a complex Schrödinger amplitude in the space
of number-theoretic anatomies of a given imbedding space point represented by single point of H
and represented as 8-tuples of real units should naturally represent the dependence of WCW spinors
understood as ground states of super-conformal representations obtained as an 8-fold tensor power of
a fundamental representation or product of representations perhaps differing somehow. The 8-tuples
define a number theoretical analog of U(1)8 group in terms of which all number theoretical symmetries
are represented. This description should be equivalent with the use of single hyper-octonion unit.
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