Neutrosophic Bilinear Algebras and their Generalizations

W.B.VASANTHA KANDASAMY FLORENTIN SMARANDACHE

W. B. Vasantha Kandasamy Florentin Smarandache

NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS

Svenska fysikarkivet
Stockholm, Sweden
2010

Svenska fysikarkivet (Swedish physics archive) is a publisher registered with the Royal National Library of Sweden (Kungliga biblioteket), Stockholm.

Postal address for correspondence:
Näsbydalsvägen 4/11, 18331 Täby, Sweden

Peer-Reviewers:
Prof. Mihàly Bencze, Department of Mathematics
Áprily Lajos College, Braşov, Romania
Prof. Ion Patrascu, Department of Mathematics, Fratii, Buzesti College Craiova, Romania
Dr. Fu Yuhua, 13-603, Liufangbeili
Liufang Street, Chaoyang district, Beijing, 100028 P. R. China

Copyright © Authors, 2010
Copyright © Publication by Svenska fysikarkivet, 2010

Copyright note: Electronic copying, print copying and distribution of this book for non-commercial, academic or individual use can be made by any user without permission or charge. Any part of this book being cited or used howsoever in other publications must acknowledge this publication. No part of this book may be reproduced in any form whatsoever (including storage in any media) for commercial use without the prior permission of the copyright holder. Requests for permission to reproduce any part of this book for commercial use must be addressed to the Author. The Author retains his rights to use this book as a whole or any part of it in any other publications and in any way he sees fit. This Copyright Agreement shall remain valid even if the Author transfers copyright of the book to another party.

ISBN: 978-91-85917-14-3

CONTENTS

Dedication 5
Preface 7
Chapter One
INTRODUCTION TO BASIC CONCEPTS 9
1.1 Introduction to Bilinear Algebras and their Generalizations 9
1.2 Introduction to Neutrosophic Algebraic Structures 11
Chapter Two
NEUTROSOPHIC LINEAR ALGEBRA 15
2.1 Neutrosophic Bivector Spaces 15
2.2 Strong Neutrosophic Bivector Spaces 32
2.3 Neutrosophic Bivector Spaces of Type II 50
2.4 Neutrosophic Biinner Product Bivector Space 198
Chapter Three
NEUTROSOPHIC n-VECTOR SPACES 205
3.1 Neutrosophic n-Vector Space 205
3.2 Neutrosophic Strong n-Vector Spaces 276
3.3 Neutrosophic n-Vector Spaces of Type II 307
Chapter Four
APPLICATIONS OF NEUTROSOPHIC n-LINEAR ALGEBRAS 359
Chapter Five
SUGGESTED PROBLEMS 361
FURTHER READING 391
INDEX 396
ABOUT THE AUTHORS 402

DEDICATION

This book is dedicated to the memory of Thavathiru Kundrakudi Adigalar (11 July 1925-15 April 1995), a spiritual leader who worked tirelessly for social
development and communal harmony. His powerful writings and speeches provided a massive impetus to the promotion of Tamil literature and culture. Moving beyond the realm of religion, he was also actively involved in bringing change at the grassroots level. During his lifetime and after, he was celebrated for his successful efforts to develop poverty-stricken villages around Kundrakudi through planning, support and continued intervention. His initiatives for rural development earned praise even from Indira Gandhi, the then Prime Minister of India. Although he headed a famed religious center, Kundrakudi Adigalar maintained a scientific outlook towards the world and paid special attention to the educational uplift of poor people across caste, community or religion. The services rendered by him to society are endless, and the dedication of this book is a small gesture to pay homage to that great man.

PREFACE

This book introduces the concept of neutrosophic bilinear algebras and their generalizations to n -linear algebras, $\mathrm{n}>2$.

This book has five chapters. The reader should be well-versed with the notions of linear algebras as well as the concepts of bilinear algebras and n - linear algebras. Further the reader is expected to know about neutrosophic algebraic structures as we have not given any detailed literature about it.

The first chapter is introductory in nature and gives a few essential definitions and references for the reader to make use of the literature in case the reader is not thorough with the basics. The second chapter deals with different types of neutrosophic bilinear algebras and bivector spaces and proves several results analogous to linear bialgebra.

In chapter three the authors introduce the notion of n-linear algebras and prove several theorems related to them. Many of the classical theorems for neutrosophic algebras are proved with appropriate modifications. Chapter four indicates the probable applications of these algebraic structures. The final chapter suggests about 80 innovative problems for the reader to solve.

The interesting feature of this book is that it has over 225 illustrative examples, this is mainly provided to make the reader understand these new concepts. This book contains over 60 theorems and has introduced over 100 new concepts.

The authors deeply acknowledge Dr. Kandasamy for the proof reading and Meena and Kama for the formatting and designing of the book.

Chapter One

InTRODUCTION TO BASIC CONCEPTS

This chapter has two sections. In section one basic notions about bilinear algebras and n-linear algebras are recalled. In section two an introduction to indeterminacy and algebraic neutrosophic structures essential for this book are given.

1.1 Introduction to Bilinear Algebras and their Generalizations

In this section we just recall some necessary definitions about bilinear algebras.

DEFINITION 1.1.1: Let $(G,+, \bullet)$ be a bigroup where $G=G_{1} \cup$ G_{2}; bigroup G is said to be commutative if both $\left(G_{1},+\right)$ and $\left(G_{2}\right.$, -) are commutative.

DEFINITION 1.1.2: Let $V=V_{1} \cup V_{2}$ where V_{1} and V_{2} are two proper subsets of V and V_{1} and V_{2} are vector spaces over the same field F that is V is a bigroup, then we say V is a bivector space over the field F.

If one of V_{1} or V_{2} is of infinite dimension then so is V. If V_{1} and V_{2} are of finite dimension so is V; to be more precise if V_{1} is
of dimension n and V_{2} is of dimension m then we define dimension of the bivector space $V=V_{1} \cup V_{2}$ to be of dimension $m+n$. Thus there exists only $m+n$ elements which are linearly independent and has the capacity to generate $V=V_{1} \cup V_{2}$.

The important fact is that same dimensional bivector spaces are in general not isomorphic.

Example 1.1.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where V_{1} and V_{2} are vector spaces of dimension 4 and 5 respectively defined over rationals where $V_{1}=\left\{\left(a_{i j}\right) \mid a_{i j} \in Q\right\}$, collection of all 2×2 matrices with entries from Q . $\mathrm{V}_{2}=\{$ Polynomials of degree less than or equal to 4 with coefficients from Q\}. Clearly V is a finite dimensional bivector space over Q of dimension 9. In order to avoid confusion we can follow the following convention whenever essential. If $\mathrm{v} \in \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ then $\mathrm{v} \in \mathrm{V}_{1}$ or $\mathrm{v} \in \mathrm{V}_{2}$ if $\mathrm{v} \in \mathrm{V}_{1}$ then v has a representation of the form ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, 0,0,0,0$, 0) where ($\left.x_{1}, x_{2}, x_{3}, x_{4}\right) \in V_{1}$ if $v \in V_{2}$ then $v=\left(0,0,0,0, y_{1}, y_{2}\right.$, $\mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}$) where $\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}\right) \in \mathrm{V}_{2}$.

DEFINITION 1.1.3: Let $V=V_{1} \cup V_{2}$ be a bigroup. If V_{1} and V_{2} are linear algebras over the same field F then we say V is a linear bialgebra over the field F.

If both V_{1} and V_{2} are of infinite dimensional linear algebras over F then we say V is an infinite dimensional linear bialgebra over F. Even if one of V_{1} or V_{2} is infinite dimension then we say V is an infinite dimensional linear bialgebra. If both V_{1} and V_{2} are finite dimensional linear algebra over F then we say $V=V_{1}$ $\cup V_{2}$ is a finite bidimensional linear bialgebra.

Examples 1.1.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\{$ set of all $\mathrm{n} \times \mathrm{n}$ matrices with entries from Q$\}$ and V_{2} be the polynomial ring $\mathrm{Q}[\mathrm{x}] . \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a linear bialgebra over Q and the linear bialgebra is an infinite dimensional linear bialgebra.

Example 1.1.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\mathrm{Q} \times \mathrm{Q} \times \mathrm{Q}$ abelian group under ' + ', $\mathrm{V}_{2}=$ \{set of all 3×3 matrices with entries from Q$\}$ then $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a bigroup. Clearly V is a linear
bialgebra over Q . Further dimension of V is $12 ; \mathrm{V}$ is a 12 dimensional linear bialgebra over Q.

The standard basis is $\left\{\left(\begin{array}{ll}0 & 1\end{array}\right),(100),(001)\right\} \cup$

$$
\begin{aligned}
& \left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\right. \\
& \left.\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

DEFINITION 1.1.4: Let $V=V_{1} \cup V_{2}$ be a bigroup. Suppose V is a linear bialgebra over F. A non empty proper subset W of V is said to be a linear subbialgebra of V over F if
i. $\quad W=W_{1} \cup W_{2}$ is a subbigroup of $V=V_{1} \cup V_{2}$.
ii. W_{1} is a linear subalgebra over F.
iii. W_{2} is a linear subalgebra over F.

For more refer [48, 51-2]. For n-linear algebra of type I and II, refer[54-5].

1.2 Introduction to Neutrosophic Algebraic Structures

In this section we just recall some basic neutrosophic algebraic structures essential to make this book a self contained one. For more refer [36-43, 53].

In this section we assume fields to be of any desired characteristic and vector spaces are taken over any field. We denote the indeterminacy by ' I ', as i will make a confusion, as it denotes the imaginary value, viz. $\mathrm{i}^{2}=-1$ that is $\sqrt{-1}=\mathrm{i}$. The indeterminacy I is such that $\mathrm{I} . \mathrm{I}=\mathrm{I}^{2}=\mathrm{I}$.

Here we recall the notion of neutrosophic groups. Neutrosophic groups in general do not have group structure.

DEFINITION 1.2.1: Let ($G,{ }^{*}$) be any group, the neutrosophic group is generated by I and G under * denoted by $N(G)=\{\langle G$ $\cup I), *\}$.

Example 1.2.1: Let $\mathrm{Z}_{7}=\{0,1,2, \ldots, 6\}$ be a group under addition modulo 7. $\mathrm{N}(\mathrm{G})=\left\{\left\langle\mathrm{Z}_{7} \cup \mathrm{I}\right\rangle\right.$, ' + ' modulo 7$\}$ is a neutrosophic group which is in fact a group. For $\mathrm{N}(\mathrm{G})=\{\mathrm{a}+\mathrm{bI}$ / a, b $\left.\in \mathrm{Z}_{7}\right\}$ is a group under ' + ’ modulo 7. Thus this neutrosophic group is also a group.

Example 1.2.2: Consider the set $\mathrm{G}=\mathrm{Z}_{5} \backslash\{0\}$, G is a group under multiplication modulo $5 . \mathrm{N}(\mathrm{G})=\{\langle\mathrm{G} \cup \mathrm{I}\rangle$, under the binary operation, multiplication modulo 5$\}$. $\mathrm{N}(\mathrm{G})$ is called the neutrosophic group generated by $G \cup I$. Clearly $N(G)$ is not a group, for $I^{2}=I$ and I is not the identity but only an indeterminate, but $\mathrm{N}(\mathrm{G})$ is defined as the neutrosophic group.

Thus based on this we have the following theorem:
Theorem 1.2.1: Let ($G,{ }^{*}$) be a group, $N(G)=\{\langle G \cup I\rangle$, * $\}$ be the neutrosophic group.

1. $N(G)$ in general is not a group.
2. $N(G)$ always contains a group.

Proof: To prove $\mathrm{N}(\mathrm{G})$ in general is not a group it is sufficient we give an example; consider $\left\langle\mathrm{Z}_{5} \backslash\{0\} \cup \mathrm{I}\right\rangle=\mathrm{G}=\{1,2,4,3$, I , 2 I, 4 I, 3 I\}; G is not a group under multiplication modulo 5. In fact $\{1,2,3,4\}$ is a group under multiplication modulo 5.N(G) the neutrosophic group will always contain a group because we generate the neutrosophic group $\mathrm{N}(\mathrm{G})$ using the group G and I . So $G \underset{\neq}{\subset}(G)$; hence $N(G)$ will always contain a group.

Now we proceed onto define the notion of neutrosophic subgroup of a neutrosophic group.

DEFINITION 1.2.2: Let $N(G)=\langle G \cup I\rangle$ be a neutrosophic group generated by G and I. A proper subset $P(G)$ is said to be a neutrosophic subgroup if $P(G)$ is a neutrosophic group i.e. $P(G)$ must contain a (sub) group of G.

Example 1.2.3: Let $\mathrm{N}\left(\mathrm{Z}_{2}\right)=\left\langle\mathrm{Z}_{2} \cup \mathrm{I}\right\rangle$ be a neutrosophic group under addition. $\mathrm{N}\left(\mathrm{Z}_{2}\right)=\{0,1, \mathrm{I}, 1+\mathrm{I}\}$. Now we see $\{0, \mathrm{I}\}$ is a group under + in fact a neutrosophic group $\{0,1+\mathrm{I}\}$ is a group under ' + ' but we call $\{0, \mathrm{I}\}$ or $\{0,1+\mathrm{I}\}$ only as pseudo neutrosophic groups for they do not have a proper subset which is a group. So $\{0, \mathrm{I}\}$ and $\{0,1+\mathrm{I}\}$ will be only called as pseudo neutrosophic groups (subgroups).

We can thus define a pseudo neutrosophic group as a neutrosophic group, which does not contain a proper subset which is a group. Pseudo neutrosophic subgroups can be found as a substructure of neutrosophic groups. Thus a pseudo neutrosophic group though has a group structure is not a neutrosophic group and a neutrosophic group cannot be a pseudo neutrosophic group. Both the concepts are different.

Now we see a neutrosophic group can have substructures which are pseudo neutrosophic groups which is evident from the following example.

Example 1.2.4: Let $\mathrm{N}\left(\mathrm{Z}_{4}\right)=\left\langle\mathrm{Z}_{4} \cup \mathrm{I}\right\rangle$ be a neutrosophic group under addition modulo $4 .\left\langle\mathrm{Z}_{4} \cup \mathrm{I}\right\rangle=\{0,1,2,3, \mathrm{I}, 1+\mathrm{I}, 2 \mathrm{I}, 3 \mathrm{I}, 1$ $+2 \mathrm{I}, 1+3 \mathrm{I}, 2+\mathrm{I}, 2+2 \mathrm{I}, 2+3 \mathrm{I}, 3+\mathrm{I}, 3+2 \mathrm{I}, 3+3 \mathrm{I}\} . \mathrm{o}\left(\left\langle\mathrm{Z}_{4} \cup\right.\right.$ $\mathrm{I}\rangle)=4^{2}$.

Thus neutrosophic group has both neutrosophic subgroups and pseudo neutrosophic subgroups. For $T=\{0,2,2+2 I, 2 I\}$ is a neutrosophic subgroup as $\{02\}$ is a subgroup of Z_{4} under addition modulo 4. $\mathrm{P}=\{0,2 \mathrm{I}\}$ is a pseudo neutrosophic group under ' + ' modulo 4.

DEFINITION 1.2.3: Let K be the field of reals. We call the field generated by $K \cup I$ to be the neutrosophic field for it involves the indeterminacy factor in it. We define $I^{2}=I, I+I=2 I$ i.e., I $+\ldots+I=n I$, and if $k \in K$ then $k . I=k I, O I=0$. We denote the neutrosophic field by $K(I)$ which is generated by $K \cup I$ that is $K(I)=\langle K \cup I\rangle .\langle K \cup I\rangle$ denotes the field generated by K and I.

Example 1.2.5: Let R be the field of reals. The neutrosophic field of reals is generated by R and I denoted by $\langle R \cup I\rangle$ i.e. $R(I)$ clearly $\mathrm{R} \subset\langle\mathrm{R} \cup \mathrm{I}\rangle$.

Example 1.2.6: Let Q be the field of rationals. The neutrosophic field of rationals is generated by Q and I denoted by $\mathrm{Q}(\mathrm{I})$.

DEFINITION 1.2.4: Let $K(I)$ be a neutrosophic field we say $K(I)$ is a prime neutrosophic field if $K(I)$ has no proper subfield, which is a neutrosophic field.

Example 1.2.7: Q(I) is a prime neutrosophic field where as R(I) is not a prime neutrosophic field for $\mathrm{Q}(\mathrm{I}) \subset \mathrm{R}(\mathrm{I})$.

DEFINITION 1.2.5: Let $K(I)$ be a neutrosophic field, $P \subset K(I)$ is a neutrosophic subfield of P if P itself is a neutrosophic field. $K(I)$ will also be called as the extension neutrosophic field of the neutrosophic field P.

We can also define neutrosophic fields of prime characteristic p (p is a prime).

DEFINITION 1.2.6: Let $Z_{p}=\{0,1,2, \ldots, p-1\}$ be the prime field of characteristic $p .\left\{Z_{p} \cup I\right\rangle$ is defined to be the neutrosophic field of characteristic p. Infact $\left\{Z_{p} \cup I\right\rangle$ is generated by Z_{p} and I and $\left\langle Z_{p} \cup I\right\rangle$ is a prime neutrosophic field of characteristic p.

Example 1.2.8: $\mathrm{Z}_{7}=\{0,1,2,3, \ldots, 6\}$ be the prime field of characteristic 7. $\left\langle\mathrm{Z}_{7} \cup \mathrm{I}\right\rangle=\{0,1,2, \ldots, 6, \mathrm{I}, 2 \mathrm{I}, \ldots, 6 \mathrm{I}, 1+\mathrm{I}, 1+$ $2 \mathrm{I}, \ldots, 6+6 \mathrm{I}\}$ is the prime field of characteristic 7 .

DEFINITION 1.2.7: Let $G(I)$ by an additive abelian neutrosophic group and K any field. If $G(I)$ is a vector space over K then we call $G(I)$ a neutrosophic vector space over K.

Elements of these neutrosophic fields will also be known as neutrosophic numbers. For more about neutrosophy please refer [36-43]. We see $Z_{n} \mathrm{I}=\left\{\mathrm{aI} \mid \mathrm{a} \in \mathrm{Z}_{\mathrm{n}}\right\}$ is a neutrosophic field called pure neutrosophic field. Likewise QI, RI and $\mathrm{Z}_{\mathrm{p}} \mathrm{I}$ are neutrosophic fields where p is a prime. Thus $Z_{5} \mathrm{I}=\{0, \mathrm{I}, 2 \mathrm{I}, 3 \mathrm{I}$, $4 \mathrm{I}\}$ is a pure neutrosophic field. For more about neutrosophic vector spaces please refer [53].

Chapter Two

Neutrosophic Linear Bialgebra

In this chapter we introduce the notion of neutrosophic linear bialgebras and describe a few properties about them. Strong neutrosophic linear bialgebra are also introduced. This chapter has four sections. In section one, we introduce the new notion of neutrosophic bivector space. Strong neutrosophic bivector spaces are introduced in section two. Section three introduces the notion of neutrosophic bivector space of type III. Section four studies the biinner product in strong neutrosophic bivector space.

2.1 Neutrosophic Bivector Spaces

In this section we introduce the notion of neutrosophic bivector spaces and study their properties.

DEFINITION 2.1.1: Let $V=V_{1} \cup V_{2}$ where each V_{i} is a neutrosophic vector space over the same field F and $V_{i} \neq V_{j}, V_{i}$ $\nsubseteq V_{j}$ and $V_{j} \nsubseteq V_{i} ; 1 \leq i, j \leq 2$, then we define V to be a neutrosophic bivector space over the real field F.

Note: We assume here F is just a real field that is F is Q or Z_{n} or R or C. (n a prime $\mathrm{n}<\infty$).

We will illustrate this by some simple examples.
Example 2.1.1: Let $\mathrm{V}_{1}=\langle\mathrm{Q} \cup \mathrm{I}\rangle=\mathrm{N}(\mathrm{Q})=\{\mathrm{a}+\mathrm{bI} \mid \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ be a neutrosophic vector space over Q . Take

$$
\mathrm{V}_{2}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\},
$$

a neutrosophic vector space over $\mathrm{Q} . \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a neutrosophic bivector space over Q .

Example 2.1.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{N}(\mathrm{Q})[\mathrm{x}]\} \cup\{(\mathrm{a}, \mathrm{b}, \mathrm{c}) \mid \mathrm{a}, \mathrm{b}$, $c \in N(Q)\} . V$ is a neutrosophic bivector space over Q.

Now we will define a quasi neutrosophic bivector space.
DEFINITION 2.1.2: Let $V=V_{1} \cup V_{2}$ be such that V_{1} is a vector space over the real field F and V_{2} is a neutrosophic vector space over F. We define $V=V_{1} \cup V_{2}$ to be a quasi- neutrosophic bivector space over F.

We will give some examples of quasi neutrosophic bivector spaces.

Example 2.1.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\left\{\mathrm{Z}_{7}[\mathrm{x}] \mid\right.$ all polynomials in the variable x with coefficients from Z_{7} \} is a vector space over Z_{7} and $\mathrm{V}_{2}=\left\{\left(\mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I}\right)=\{(\mathrm{a}\right.$, $\left.\left.\mathrm{b}, \mathrm{c}, \mathrm{d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{7} \mathrm{I}\right\}\right\}$ is a neutrosophic vector space over
Z_{7}. Then $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a quasi neutrosophic bivector space over Z_{7}.

Example 2.1.4: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\{\mathrm{Q} \times \mathrm{Q} \times \mathrm{Q} \times \mathrm{Q} \times$ $R\}=\{(a, b, c, d, e) \mid a, b, c, d \in Q$ and $e \in R\}$ is a vector space over Q and $\mathrm{V}_{2}=\{\mathrm{QI} \times \mathrm{Q} \times \mathrm{QI} \times \mathrm{Q} \times \mathrm{QI}\}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}) \mid \mathrm{a}, \mathrm{c}$, $e \in Q I$ and $b, d \in Q\}$ is a neutrosophic vector space over Q. Thus $V=V_{1} \cup V_{2}$ is a quasi neutrosophic bivector space over Q.

Now we define substructures of these structures.

DEFINITION 2.1.3: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the field F. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be such that W is a neutrosophic bivector space over F, then we define W to be a neutrosophic bivector subspace of V over F.

We will illustrate this by some examples.
Example 2.1.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$

$$
=\left\{\mathrm{Z}_{3} \mathrm{I} \times \mathrm{Z}_{3} \mathrm{I} \times \mathrm{Z}_{3} \mathrm{I} \times \mathrm{Z}_{3} \mathrm{I}\right\} \cup\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{3}\right)\right\}
$$

be a neutrosophic bivector space over the field Z_{3}. Let $\mathrm{W}=\mathrm{W}_{1}$ $\cup W_{2}$

$$
=\left\{(\mathrm{a}, \mathrm{~b}, 0,0) \mid \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{3} \mathrm{I}\right\} \cup\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{3} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a neutrosophic bivector subspace of V over the field Z_{3}.

Example 2.1.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$

$$
=N(Q)[x] \cup\left\{\left.\left(\begin{array}{llll}
\mathrm{a} & \mathrm{~b} & \mathrm{e} & \mathrm{~g} \\
\mathrm{c} & \mathrm{~d} & \mathrm{f} & \mathrm{~h}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{QI}\right\}
$$

be a neutrosophic bivector space over the field Q . Let $\mathrm{W}=\mathrm{W}_{1}$ $\cup W_{2}$

$$
=\mathrm{QI}[\mathrm{x}] \cup\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{e} & \mathrm{~g} \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{e}, \mathrm{~g} \in \mathrm{QI}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is a neutrosophic bivector subspace of V over the field Q .

DEFINITION 2.1.4: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the field F. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be such that W is only a quasi neutrosophic bivector space over F; that is one of W_{1} or W_{2} is only a neutrosophic vector space over F and other is just a vector space over the field F; then we call W to be a pseudo quasi neutrosophic bivector subspace of V over the field F.

Example 2.1.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\left(\mathrm{Z}_{5} \mathrm{I} \times \mathrm{Z}_{5} \mathrm{I} \times \mathrm{Z}_{5} \mathrm{I}\right)$ a neutrosophic vector space over Z_{5} and $V_{2}=N\left(Z_{5}\right)[x]$ a neutrosophic bivector space over $\mathrm{Z}_{5} . \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a neutrosophic bivector space over the field Z_{5}.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\mathrm{Z}_{5} \mathrm{I} \times\{0\} \times\{0\}\right\} \cup\left\{\mathrm{Z}_{5} \mathrm{I}[\mathrm{x}]\right\} \subseteq \mathrm{V}_{1}$ $\cup \mathrm{V}_{2}$; W is a pseudo quasi neutrosophic bivector subspace of V over Z_{5}.

Example 2.1.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in R I\right\} \cup \\
& \left\{\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array} a_{5}\right.\right. \\
& b_{1}
\end{aligned} \mathrm{~b}_{2}
$$

be a neutrosophic bivector space over the field Q .
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in \mathrm{QI}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Q} ; 1 \leq \mathrm{i} \leq 5\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a pseudo quasi neutrosophic bivector subspace of V over the field Q .

DEFINITION 2.1.5: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the field F. Suppose $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ is such that W is just a bivector space over the field F then we define W to be a pseudo bivector subspace of V over the field F.

We will give some examples of this notion.
Example 2.1.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\}
$$

$\cup\left(\left\{N\left(Z_{11}\right) \times N\left(Z_{11}\right) \times N\left(Z_{11}\right) \times N\left(Z_{11}\right)\right)\right.$ be a neutrosophic bivector space over the field Z_{11}. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{11}\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{11}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a bivector space over Z_{11}. Thus W is a pseudo bivector subspace of V over the field Z_{11}.

Example 2.1.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(\mathrm{Q}) ; 1 \leq \mathrm{i} \leq 6\right\}
$$

$\cup\{\mathrm{N}(\mathrm{Q}) \times \mathrm{N}(\mathrm{Q}) \times \mathrm{N}(\mathrm{Q}) \times \mathrm{N}(\mathrm{Q})\}$ be a neutrosophic bivector spaces over the field Q .
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Q ; 1 \leq i \leq 6\right\}
$$

$\cup(\mathrm{Q} \times \mathrm{Q} \times\{0\} \times\{0\})\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo bivector subspace of V over the field Q .

DEFINITION 2.1.6: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the field F. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be such that W is a neutrosophic bivector space over the subfield $K \subseteq F$. Then we call W to be a neutrosophic special bivector subspace of V over the subfield K of F.

We will give some examples.
Example 2.1.11: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{RI}[\mathrm{x}]\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{RI}\right\}
$$

be a neutrosophic bivector space over the field R . Take $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}=\{\mathrm{QI}[\mathrm{x}]\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{~d} \in \mathrm{RI}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a neutrosophic special bivector subspace of V over the subfield Q of R .

Example 2.1.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=(\mathrm{RI} \times \mathrm{RI} \times \mathrm{RI}) \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in R I ; 1 \leq i \leq 8\right\}
$$

be a neutrosophic bivector space over the field $\mathrm{Q}(\sqrt{2})$. Take W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{(\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI})\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{RI} ; 1 \leq \mathrm{i} \leq 4\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is a neutrosophic special bivector subspace of V over the subfield $\mathrm{Q} \subseteq \mathrm{Q}(\sqrt{2})$.

DEFINITION 2.1.7: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the field F. If V has no neutrosophic special bivector subspace then we call V to be a neutrosophic special simple bivector space over F.

Example 2.1.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI} \times \mathrm{QI}\} \cup\{\mathrm{QI}[\mathrm{x}]\}$ be a neutrosophic bivector space over the field $\mathrm{F}=\mathrm{Q} . \mathrm{V}$ is a neutrosophic special simple bivector space over Q as Q has no proper subfield.

Example 2.1.14: Let $\left.\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{Z}_{23} \mathrm{I} \times \mathrm{Z}_{23} \mathrm{I} \times \mathrm{Z}_{23} \mathrm{I} \times \mathrm{Z}_{23} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{23} \mathrm{I}\right\}
$$

be a neutrosophic bivector space over the field Z_{23}. V is a neutrosophic special simple bivector space over Z_{23} as Z_{23} is a prime field.

In view of these examples we have the following interesting theorem.

THEOREM 2.1.1: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the field F. If F is a prime field of characteristic zero or a prime p then V is a neutrosophic special simple bivector space over F.

Proof: Given F is a prime field of characteristic zero or a prime p, so F has no subfields. Thus for no $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ can be neutrosophic special bivector subspace of $V=V_{1} \cup V_{2}$ as F has no subfield. Hence the claim.

Now we proceed onto define the notion of neutrosophic bilinear algebra.

DEFINITION 2.1.8: Let $V=V_{1} \cup V_{2}$ where both V_{1} and V_{2} are neutrosophic linear algebras over the field F, then we define V to be a neutrosophic bilinear algebra over F.

We will illustrate this by some simple examples.
Example 2.1.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup(\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI})\}$ be a neutrosophic bilinear algebra over Q .

Example 2.1.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & 0 \\
\mathrm{~b} & \mathrm{c}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}_{29} \mathrm{I}\right\} \cup \cup\left\{\mathrm{Z}_{29} \mathrm{I}[\mathrm{x}]\right\},
$$

V is a neutrosophic bilinear algebra over the field Z_{29}.

Now as in case of neutrosophic bivector spaces we can define the following substructures.

DEFINITION 2.1.9: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over the field F. If $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ is a neutrosophic bilinear algebra over the field F then we call W to be a neutrosophic bilinear subalgebra of V over the field F.

We give an example.
Example 2.1.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & \mathrm{~d} & \mathrm{e} \\
0 & 0 & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\right\}
$$

$\cup\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\}$ be a neutrosophic bilinear algebra over the field Q .

Choose

$$
\mathrm{W}=\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
0 & \mathrm{~b} & 0 \\
0 & 0 & \mathrm{c}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{QI}\right\}
$$

$\cup\{\mathrm{QI} \times\{0\} \times\{0\} \times \mathrm{QI}\}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a neutrosophic bilinear subalgebra of V over Q .

DEFINITION 2.1.10: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over the field F. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over a subfield $K \subseteq F$; then we define W to be a neutrosophic special bilinear subalgebra of V over the subfield K of F. If V has no special neutrosophic bilinear subalgebra's then we call V to be a special neutrosophic simple bilinear algebra or neutrosophic special simple bilinear algebra.

We will illustrate this by some simple examples.
Example 2.1.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{RI}\right\}
$$

$\cup\{\operatorname{RI}[\mathrm{x}]$ be a neutrosophic bilinear algebra over the field R . Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\{\mathrm{QI}[\mathrm{x}]\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a neutrosophic special bilinear algebra over the subfield Q of the field R .

Example 2.1.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$

$$
=\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 9\right\}
$$

$\cup\{R I[x]\}$ be a neutrosophic bilinear algebra over Q . Clearly V is a neutrosophic special simple bilinear algebra.

Example 2.1.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{7} \mathrm{I}[\mathrm{x}]\right\} \cup\left\{\mathrm{Z}_{\mathrm{T}} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times\right.$ $\left.\mathrm{Z}_{7} \mathrm{I}\right\}$ be a neutrosophic bilinear algebra over the field $\mathrm{Z}_{7} . \mathrm{V}$ is a neutrosophic simple bilinear algebra.

In view of these examples we have the following theorem, the proof of which is left as an exercise for the reader.

THEOREM 2.1.2: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over the field F, where F is a prime field (i.e., F has no subfields other than itself). V is a neutrosophic special simple bilinear algebra.

DEFINITION 2.1.11: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over a field F. Suppose $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ and if W is only a bilinear algebra over the field F, then we call W to be a pseudo bilinear subalgebra of V over the field F.

Example 2.1.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\}
$$

$\cup\{\mathrm{Q} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{Q}\}$ be a neutrosophic bilinear algebra over Q , where $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Q}\right\}
$$

$\cup\{\mathrm{Q} \times\{0\} \times\{0\} \times\{0\}\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo bilinear subalgebra of V over the field F .

Example 2.1.22: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right)|\mid a, b, c, d, e, f, g, h, k \in N(R)\}\right.
$$

$\cup\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{N}(\mathrm{Q})\}$ be a neutrosophic bilinear algebra over the field Q . Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & \mathrm{~d} & \mathrm{e} \\
0 & 0 & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{R}\right\}
$$

$\cup\{(\mathrm{a}, \mathrm{b}, 0, \mathrm{~d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{d} \in \mathrm{Q}\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo bilinear subalgebra of V over Q .

DEFINITION 2.1.12: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over the field F. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be a proper bisubset of V which is just a neutrosophic bivector space over the field F. We define W to be a pseudo neutrosophic bivector subspace of V over F.

We will illustrate this by some simple examples.
Example 2.1.23: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI}, \mathrm{i}=0,1,2, \ldots, \mathrm{n} \leq \infty\right\} \cup \\
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
\end{gathered}
$$

be a neutrosophic bilinear algebra over the field Q . Let $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}=$

$$
\left\{\sum_{i=0}^{5} a_{i} \mathrm{i}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI}, \mathrm{i}=0,1,2, \ldots, 5\right\} \cup\left\{\left.\left(\begin{array}{ll}
0 & \mathrm{a} \\
\mathrm{~b} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{QI}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is a pseudo neutrosophic bivector subspace of V over Q .

Example 2.1.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{11} I\right\}
$$

$$
\cup\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I}, \mathrm{i}=0,1,2, \ldots, \mathrm{n} ; \mathrm{n} \leq \infty\right\}
$$

be a neutrosophic bilinear algebra over the field Z_{11}. Let $\mathrm{W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{11} I\right\} \cup\left\{\sum_{i=1}^{6} a_{0} x^{i} \mid a_{i} \in Z_{11} I, 1 \leq i \leq 6\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is only a pseudo neutrosophic bivector subspace of V as we see

$$
\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a}^{2}+\mathrm{bd} & \mathrm{ab} & \mathrm{ac} \\
\mathrm{ad} & \mathrm{bd} & \mathrm{~cd} \\
0 & 0 & 0
\end{array}\right) \notin \mathrm{W}_{1} .
$$

Similarly if we take $\mathrm{a}=2 \mathrm{x}^{6}+3 \mathrm{x}+1$ and $\mathrm{b}=\left(2 \mathrm{Ix}^{6}+3 \mathrm{Ix}+\mathrm{I}\right)$ $\left(3 \mathrm{x}^{4}+2 \mathrm{x}^{2}+\mathrm{I}\right)=6 \mathrm{Ix}^{10}+4 \mathrm{Ix}^{8}+2 \mathrm{Ix}^{6}+9 \mathrm{Ix}^{5}+6 \mathrm{Ix}^{3}+3 \mathrm{Ix}+3 \mathrm{Ix}^{4}+$ $2 \mathrm{Ix}^{2}+\mathrm{I} \notin \mathrm{W}_{2}$ but $\mathrm{a}, \mathrm{b} \in \mathrm{W}_{2}$. Thus W is only a neutrosophic bivector subspace of V and not a neutrosophic bilinear subalgebra of V over Z_{11}.

We have the following interesting theorem, the proof of which is left as an exercise for the reader.

THEOREM 2.1.3: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over the field F. V is clearly a neutrosophic bivector space over the field F. If V is a neutrosophic bivector space over the field F then in general V is not a neutrosophic bilinear algebra over the field F.

DEFINITION 2.1.13: Let $V=V_{1} \cup V_{2}$ where V_{1} is only a neutrosophic linear algebra over the field F and V_{2} is just a linear algebra over F then we define $V=V_{1} \cup V_{2}$ to be a quasi neutrosophic bilinear algebra over the field F.

We illustrate this by some examples.
Example 2.1.25: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{R}\right\} \cup\{(\mathrm{abcdef}) \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Q} \mathrm{I}\}
$$

be a quasi neutrosophic bilinear algebra over the field Q .
Example 2.1.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}\right\} ;
$$

V is a quasi neutrosophic bilinear algebra over the field Q .
DEFINITION 2.1.14: Let $V=V_{1} \cup V_{2}$ where V_{1} is a neutrosophic vector space over the field F and V_{2} is a neutrosophic linear algebra over the field F. $V=V_{1} \cup V_{2}$ is defined to be a pseudo neutrosophic quasi bilinear algebra over F.

We will illustrate this by some simple examples.
Example 2.1.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{e} \\
\mathrm{c} & \mathrm{~d} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\right\} \\
& \cup\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} .
\end{aligned}
$$

V is a pseudo neutrosophic quasi bilinear algebra over the field Q.

Example 2.1.28: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\sum_{i=0}^{8} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 8\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{RI}\right\} ;
\end{gathered}
$$

V is a pseudo neutrosophic quasi bilinear algebra over the field Q.

We can have for any neutrosophic bilinear algebra V a substructure which is a pseudo neutrosophic quasi bilinear subalgebra of V .

DEFINITION 2.1.15: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over a field F. Suppose $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ such that W_{1} is a neutrosophic vector space over F and W_{2} is a neutrosophic linear algebra over F then we define W to be a pseudo neutrosophic quasi bilinear subalgebra of V over the field F.

We will illustrate this by some simple examples.
Example 2.1.29: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\}$ be a neutrosophic bilinear algebra over the field Q . Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
0 & \mathrm{a} \\
\mathrm{~b} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{QI}\right\} \cup\{(\mathrm{a} 0 \mathrm{c} 0 \mathrm{e} 0) \mid \mathrm{a}, \mathrm{c}, \mathrm{e} \in \mathrm{QI}\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \mathrm{~W}$ is a pseudo neutrosophic quasi bilinear subalgebra of V over the field Q .

Example 2.1.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
&\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq \mathrm{n} \leq \infty\right\} \cup \\
&\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{Z}_{17} \mathrm{I}\right\}
\end{aligned}
$$

be a neutrosophic bilinear algebra over the field Z_{17}. Choose W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{gathered}
\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq \mathrm{n} \leq \infty\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{e} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{e} \in \mathrm{Z}_{17} \mathrm{I}\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is only a pseudo neutrosophic quasi bilinear subalgebra of V over the field Z_{17}.
We see

$$
\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{e} & 0
\end{array}\right) \in \mathrm{W}_{2}
$$

But

$$
\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{e} & 0
\end{array}\right)\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{e} & 0
\end{array}\right) \notin \mathrm{W}_{2} .
$$

Now we proceed onto define linear bitransformation of a neutrosophic bivector space and neutrosophic bilinear algebra over the field F .

DEFINITION 2.1.16: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over a field F and $W=W_{1} \cup W_{2}$ be another neutrosophic bivector space over the same field F.

Define $T=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow W=W_{1} \cup W_{2}$ as follows $T_{i}: V_{i} \rightarrow W_{i}, i=1,2$ is just a neutrosophic linear transformation from V_{i} to W_{i}. This $T=T_{1} \cup T_{2}$ is a neutrosophic linear bitransformation of V into W. If $W=V$ then we call the neutrosophic linear bitransformation as neutrosophic linear bioperator. We denote it by $B N_{F}(V, W)=\{$ set of all neutrosophic linear bitransformations of $V=V_{1} \cup V_{2}$ to $\left.W=W_{1} \cup W_{2}\right\}$; $B N_{F}(V, W)=B N_{F}\left(V_{1}, W_{1}\right) \cup B N_{F}\left(V_{2}, W_{2}\right) . B N_{F}(V, V)=\{$ set of all neutrosophic linear bioperators of V to V and $B N_{F}\left(V_{1}, V_{1}\right) \cup$ $B N_{F}\left(V_{2}, V_{2}\right)=B N_{F}(V, V)$.

Interested reader can study the algebraic structures of $B N_{F}(V, W)$ and $B N_{F}(V, V)$. However we give an example of each.

Example 2.1.31: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{QI}\right\} \cup\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\right\}
$$

and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 5\right\}
$$

be neutrosophic bivector spaces over the field Q . Define $\mathrm{T}=\mathrm{T}_{1}$ $\cup \mathrm{T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ as follows:

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & 0
\end{array}\right)=(\mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

and

$$
\begin{aligned}
& T_{2}\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)=\left\{a+b x+\mathrm{cx}^{2}+\mathrm{dx}^{3}\right. \\
& \left.+\mathrm{ex}^{4}+\mathrm{fx}^{5} \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\right\} .
\end{aligned}
$$

Clearly $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is a neutrosophic linear bitransformation of V to W.

Example 2.1.32: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

$\cup\left\{\mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I}\right\}$ be a neutrosophic bivector space over the field $\mathrm{Z}_{7} . \mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: V=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$, where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$
and

$$
\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}
$$

is as follows.

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{c} & \mathrm{~d} \\
\mathrm{a} & \mathrm{~b}
\end{array}\right)
$$

and

$$
T_{2}(a, b, c, d)=(a, b+c, d, a+d)
$$

It is easily verified. T is a neutrosophic linear bioperator on V .

2.2 Strong Neutrosophic Bivector Spaces

In this section we for the first time introduce the notion of strong neutrosophic bivector spaces and study them.

DEFINITION 2.2.1: Let $V=V_{1} \cup V_{2}$ where V_{1} and V_{2} are neutrosophic additive abelian groups. Suppose $V=V_{1} \cup V_{2}$ is a neutrosophic bivector space over a neutrosophic field F then we call V to be a strong neutrosophic bivector space.

We will give some examples.

Example 2.2.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{5} \mathrm{I}[\mathrm{x}]\right\} \cup\left\{\mathrm{Z}_{5} \mathrm{I} \times \mathrm{Z}_{5} \mathrm{I} \times\right.$ $\left.\mathrm{Z}_{5} \mathrm{I}\right\}$ be a strong neutrosophic bivector space over the neutrosophic field $Z_{5} \mathrm{I}$.

Example 2.2.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in R I\right\} \cup \\
\left\{\left.\left(\begin{array}{cccccc}
a & b & c & d & e & f \\
g & h & i & j & k & 1
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j, k, l \in Q I\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the neutrosophic field QI.

DEFINITION 2.2.2: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field K. If $W=W_{1} \cup W_{2} \subseteq$ $V_{1} \cup V_{2}$; and if W is a strong neutrosophic bivector space over the neutrosophic field K, then we call W to be a strong neutrosophic bivector subspace of V over the neutrosophic field F.

We will illustrate this by some simple examples.

Example 2.2.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 6\right\}
$$

$$
\cup\left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq i \leq 8\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic field QI. Take W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$

$$
\begin{gathered}
=\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & a_{3} \\
0 & a_{4} & 0
\end{array}\right) \right\rvert\, a_{1}, a_{3}, a_{4} \in \mathrm{QI}\right\} \cup \\
\left.\left.\left\{\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0 \\
a_{5} & a_{6} \\
0 & 0
\end{array}\right) \right\rvert\, a_{1}, a_{2}, a_{5}, a_{6} \in \mathrm{QI}\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong neutrosophic bivector subspace of V over the field QI.

Example 2.2.4: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\} \cup\{\mathrm{QI}[\mathrm{x}]\}$ be a strong neutrosophic bivector space over the neutrosophic field QI. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{(\mathrm{QI} \times\{0\} \times \mathrm{QI}\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{8} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 8\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}$ is a strong neutrosophic bivector subspace of V over QI.
Let us define the notion of strong neutrosophic bilinear algebra.
DEFINITION 2.2.3: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over the neutrosophic field K, we define V to be strong neutrosophic bilinear algebra over K.

We will illustrate this by examples.

Example 2.2.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI}[\mathrm{x}]\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

be the strong neutrosophic bilinear algebra over the neutrosophic field QI.

Example 2.2.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field QI.

Example 2.2.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{11} \mathrm{I} \times \mathrm{Z}_{11} \mathrm{I} \times \mathrm{Z}_{11} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{Z}_{11} \mathrm{I}$.

DEFINITION 2.2.4: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic field K. If $W=W_{1} \cup W_{2}$ $\subseteq V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over K then we define W to be a strong neutrosophic bilinear subalgebra of V over the neutrosophic field K.

Example 2.2.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\}$ be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{K}=$ QI. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & 0 \\
0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\{(\mathrm{a}, 0,0, \mathrm{~d}, 0, \mathrm{f}) \mid \mathrm{a}, \mathrm{d}, \mathrm{f} \in \mathrm{QI}\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong neutrosophic bilinear subalgebra of V over $\mathrm{K}=\mathrm{QI}$.

Example 2.2.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{7} \mathrm{I}[\mathrm{x}]\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{Z}_{7} \mathrm{I}$.
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; \mathrm{i}=0,1,2, \ldots, \infty\right\} \cup\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong neutrosophic bilinear subalgebra of V over the neutrosophic field $\mathrm{Z}_{7} \mathrm{I}$.

DEFINITION 2.2.5: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic field K. Let $W=W_{1} \cup$ $W_{2} \subseteq V_{1} \cup V_{2}$ where W_{1} is just a neutrosophic vector space over the neutrosophic field K and W_{2} is a neutrosophic linear subalgebra over the neutrosophic field $K . W=W_{1} \cup W_{2}$ is defined to be a pseudo strong neutrosophic linear subalgebra of Vover K.

We will illustrate this situation by some examples.

Example 2.2.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I ; 1 \leq i \leq 9\right\}
$$

$\cup\left\{\mathrm{Z}_{7} \mathrm{I}[\mathrm{x}]\right\}$ be a neutrosophic bilinear algebra over the neutrosophic field $\mathrm{Z}_{7} \mathrm{I}$.
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
0 & 0 & \mathrm{~b} \\
0 & \mathrm{c} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \\
\left\{\sum_{i=0}^{n} a_{i} X^{2 i} \mid 0 \leq i \leq n ; i=0,1,2, \ldots, \infty\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo strong neutrosophic bilinear subalgebra of V over the field $\mathrm{Z}_{7} \mathrm{I}$.

Example 2.2.11: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{23} \mathrm{I}\right\}
$$

$\cup\left\{\mathrm{Z}_{23} \mathrm{I} \times \mathrm{Z}_{23} \mathrm{I} \times \mathrm{Z}_{23} \mathrm{I} \times \mathrm{Z}_{23} \mathrm{I}\right\}$ be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{Z}_{23} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
0 & \mathrm{~d} \\
\mathrm{a} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~d} \in \mathrm{Z}_{23} \mathrm{I}\right\}
$$

$\cup\left\{(000 \mathrm{~b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{23} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is a pseudo strong neutrosophic bilinear subalgebra of V over $\mathrm{Z}_{23} \mathrm{I}$.

Example 2.2.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI}[\mathrm{x}]\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Q I\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field QI. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI}\right\} \cup\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
0 & \mathrm{~b} & 0 \\
0 & 0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo strong neutrosophic bilinear subalgebra of V over the field QI.

DEFINITION 2.2.6: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic field K. Let $W=W_{1} \cup$ $W_{2} \subseteq V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field $K . W$ is defined as the strong pseudo neutrosophic bivector subspace of V over the field K.

We illustrate this by some examples.
Example 2.2.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{13} I\right\} \cup \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in Z_{13} I ; i=1,2, \ldots, \infty\right\}
\end{gathered}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field Z_{23} I. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left.\begin{array}{l}
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{23} \mathrm{I}\right\}
\end{array}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}$ is a strong pseudo neutrosophic bivector subspace of V over the field $\mathrm{Z}_{23} \mathrm{I}$.

Example 2.2.14: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\begin{array}{cccc}
\left.\left.\left\{\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right) \right\rvert\, a_{i} \in Z_{23} ; 1 \leq i \leq 16\right\}
\end{array}\right\} \\
\quad \cup\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in Z_{11} I ; i=1,2, \ldots, \infty\right\}
\end{gathered}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{Z}_{11} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 8\right\} \cup
$$

$$
\left\{\sum_{\mathrm{i}=0}^{6} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; \mathrm{i}=1,2, \ldots, 6\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is pseudo strong neutrosophic bivector subspace of V over $\mathrm{Z}_{11} \mathrm{I}$.

DEFINITION 2.2.7: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic field K. Take $W=W_{1} \cup$ $W_{2} \subseteq V_{1} \cup V_{2}$ and $F \subseteq K$ (F a field and is not a neutrosophic subfield of K). If W is a neutrosophic bilinear algebra over the field F then we define W to be a pseudo strong neutrosophic bilinear subalgebra of V over the subfield F of the neutrosophic field K.

We will illustrate this by some examples.
Example 2.2.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; 0 \leq \mathrm{i} \leq \infty\right\}
$$

be a strong neutrosophic bilinear subalgebra of V over the neutrosophic field QI. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{QI}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; \mathrm{i}=0,1, \ldots, \infty\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}$ is a pseudo strong neutrosophic bilinear subalgebra of V over the subfield Q of $N(Q)$.

DEFINITION 2.2.8: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic field K. Let $W=W_{1} \cup$ $W_{2} \subseteq V$ be a bivector space over the real field $F \subseteq K$. We call W $=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ as a pseudo bivector subspace of V over the real subfield F of K.

We will illustrate this by some simple examples.
Example 2.2.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; \mathrm{i}=0, \ldots, \infty\right\}
$$

be a neutrosophic bilinear algebra over the neutrosophic field $\mathrm{N}(\mathrm{Q})$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Q}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{8} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q} ; \mathrm{i}=0,1,2, \ldots, 8\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, W is a pseudo bivector space over the field Q .
Example 2.2.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
0 & \mathrm{~b} & 0 \\
0 & 0 & \mathrm{c}
\end{array}\right) \right\rvert\, a, b, c \in \mathrm{Z}_{29} \mathrm{I}\right\}
$$

$\cup\left\{\left(\mathrm{N}\left(\mathrm{Z}_{29}\right) \times \mathrm{N}\left(\mathrm{Z}_{29}\right) \times \mathrm{N}\left(\mathrm{Z}_{29}\right) \times \mathrm{N}\left(\mathrm{Z}_{29}\right)\right)\right\}$ be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{N}\left(\mathrm{Z}_{29}\right)$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
0 & \mathrm{~b} & 0 \\
0 & 0 & \mathrm{c}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}_{29}\right\} \cup\left\{\left(\mathrm{Z}_{29} \times \mathrm{Z}_{29} \times\{0\} \times\{0\}\right)\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo bivector subspace of V over the field Z_{29}.

DEFINITION 2.2.9: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic field K. Let $W=W_{1} \cup$
$W_{2} \subseteq V_{1} \cup V_{2}$ be a bilinear algebra over a real subfield F of K. We define W to be a pseudo bilinear subalgebra of V over the field F.

We will illustrate this by some simple examples.
Example 2.2.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; \mathrm{i}=0,1, \ldots, \infty\right\}
\end{gathered}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{N}(\mathrm{Q})$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Q}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q} ; \mathrm{i}=0,1, \ldots, \infty\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo bilinear subalgebra of V over Q .
Example 2.2.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
a & b & c & d \\
0 & d & e & f \\
0 & 0 & g & h \\
0 & 0 & 0 & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in N\left(Z_{17}\right)\right\}
$$

$\cup\left\{\left(\mathrm{N}\left(\mathrm{Z}_{17}\right) \times \mathrm{N}\left(\mathrm{Z}_{17}\right) \times \mathrm{N}\left(\mathrm{Z}_{17}\right) \times \mathrm{N}\left(\mathrm{Z}_{17}\right) \times \mathrm{N}\left(\mathrm{Z}_{17}\right)\right)\right\}$ be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{N}\left(\mathrm{Z}_{17}\right)$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 \\
0 & 0 & 0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{17}\right\}
$$

$\cup\left\{\mathrm{Z}_{17} \times\{0\} \times \mathrm{Z}_{17} \times\{0\} \times \mathrm{Z}_{17}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo bilinear subalgebra of V over the field $\mathrm{Z}_{17} \subseteq \mathrm{~N}\left(\mathrm{Z}_{17}\right)$.

DEFINITION 2.2.10: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field K. Let $W=W_{1} \cup W_{2}$ be a strong neutrosophic bivector space over the same neutrosophic field K. Let $T: V \rightarrow W$ i.e., $T=T_{1} \cup T_{2}: V_{1} \cup V_{2}$ $\rightarrow W_{1} \cup W_{2}$ be a bimap such that $T_{i}: V_{i} \rightarrow W_{i}$ is a strong neutrosophic linear transformation from V_{i} to $W_{i} ; i=1,2$. We define $T=T_{1} \cup T_{2}$ to be a strong neutrosophic linear bitransformation from V to W. If $W=V$ then we call T to be a strong neutrosophic linear bioperator on V.

SNHom $_{K}(V, W)$ denotes the set of all strong neutrosophic linear bitransformations from V to W.
$S^{2} \mathrm{SHom}_{K}(V, V)$ denotes the set of all strong neutrosophic linear bioperator from V to V.

Interested reader is requested to give examples.
Also the study of substructure preserving strong neutrosophic linear bitransformations (bioperators) is an interesting field of research.

Now we proceed onto define bilinearly independent bivectors and other related properties.

DEFINITION 2.2.11: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field K. A proper bisubset $S=S_{1} \cup S_{2} \subseteq V_{1} \cup V_{2}$ is said to be a bibasis of V if S is a bilinearly independent biset and each $S_{i} \subseteq V_{i}$ generates V_{i}; that is S_{i} is a basis of V_{i} true for $i=1,2$.

DEFINITION 2.2.12: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field K. Let $X=X_{1} \cup X_{2} \subseteq$ $V_{1} \cup V_{2}$ be a biset of V, we say X is a linearly biindependent bisubset of V over K if each of the subsets X_{i} contained in V_{i} is a linearly independent subset of V_{i} over the $K ; i=1,2$.

The reader is expected to prove the following:
THEOREM 2.2.1: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field K. Let $B=B_{1} \cup B_{2}$ be a bibasis of V over K then B is a linearly biindependent subset of V over K. If $X=X_{1} \cup X_{2}$ be a bisubset of V which is bilinearly independent bisubset of V then X in general need not be a bibasis of V over K.

We will explain this by some examples.
Example 2.2.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{(\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI})\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid 0 \leq \mathrm{i} \leq \mathrm{n} \leq \infty ; \mathrm{a}_{\mathrm{i}} \in \mathrm{QI}\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic field QI. Let $B=B_{1} \cup B_{2}=\{(I, 0,0),(0, I, 0),(0,0, I)\} \cup\{I$, Ix, $\left.\mathrm{Ix}^{2}, \ldots, \mathrm{Ix}^{\mathrm{n}}, \ldots, \mathrm{Ix}^{\infty}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a bibasis of V over the neutrosophic field QI. Take $\left.X=X_{1} \cup X_{2}=\{I, 0,2 \mathrm{I}),(0,3 \mathrm{I}, \mathrm{I})\right\}$ $\cup\left\{\mathrm{I}, \mathrm{Ix}, \mathrm{Ix}^{2}, \mathrm{Ix}^{3}, \mathrm{Ix}^{7}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{X}$ is a linearly independent bisubset of V but is not a bibasis of V over QI .

Example 2.2.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{13} I\right\} \cup\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 6\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic field $\mathrm{Z}_{13} \mathrm{I}$. Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\begin{aligned}
& \left\{\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I}
\end{array}\right)\right\} \cup \\
& \left\{\left(\begin{array}{lll}
\mathrm{I} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & \mathrm{I} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \mathrm{I} \\
0 & 0 & 0
\end{array}\right)\right. \\
& \left.\left(\begin{array}{lll}
0 & 0 & 0 \\
\mathrm{I} & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \mathrm{I} & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & \mathrm{I}
\end{array}\right)\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, B is a bibasis of V over $\mathrm{Z}_{13} \mathrm{I}$. Take $\mathrm{X}=$

$$
\begin{gathered}
\left\{\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & \mathrm{I}
\end{array}\right)\right\} \cup \\
\left\{\left(\begin{array}{ccc}
3 \mathrm{I} & 0 & \mathrm{I} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \mathrm{I} & 4 \mathrm{I} \\
\mathrm{I} & \mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & \mathrm{I} & 0 \\
2 \mathrm{I} & 0 & 4 \mathrm{I}
\end{array}\right)\right\}
\end{gathered}
$$

$=X_{1} \cup X_{2} \subseteq V_{1} \cup V_{2}, X$ is only a linearly independent biset of V but is not a bibasis of V over $\mathrm{Z}_{13} \mathrm{I}$.

DEFINITION 2.2.13: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic field K. Let $X=X_{1} \cup X_{2} \subseteq$ $V_{1} \cup V_{2}$, if X is not a bilinearly independent bisubset of V then we say X is a bilinearly dependent bisubset of V.

Example 2.2.22: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 5\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic field QI. Let $\mathrm{X}=\mathrm{X}_{1} \cup \mathrm{X}_{2}=\{(\mathrm{I}, \mathrm{I}, 0,0),(0, \mathrm{I}, \mathrm{I}, 0),(0,0, \mathrm{I}, \mathrm{I}),(\mathrm{I}$, $\mathrm{I}, \mathrm{I}, \mathrm{I}),(3 \mathrm{I}, 2 \mathrm{I}, \mathrm{I}, 0)\} \cup\left\{\mathrm{I}, \mathrm{Ix}^{2}, 1+3 \mathrm{Ix}^{3}, 5 \mathrm{Ix}^{3}+3 \mathrm{Ix}^{2}, \mathrm{Ix}^{5}+3 \mathrm{Ix}+\right.$
$\left.5 \mathrm{Ix}^{2}+3 \mathrm{Ix}^{4}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$. It is easily verified X is a linearly dependent bisubset of V over QI.

Example 2.2.23: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{2} \mathrm{I}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid 0 \leq \mathrm{i} \leq \infty ; \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I}\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field $\mathrm{Z}_{2} \mathrm{I} . \mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\left\{\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I}
\end{array}\right)\right\} \cup\left\{\mathrm{I}, \mathrm{Ix}, \mathrm{Ix}^{2}, \ldots, \mathrm{Ix}^{\mathrm{n}}, \ldots\right\}
$$

is a bibasis of B .

$$
\left\{\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
0 & \mathrm{I}
\end{array}\right),\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I}
\end{array}\right),\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I}
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0
\end{array}\right)\right\}
$$

$\cup\left\{\mathrm{I}+\mathrm{Ix}^{2}+\mathrm{Ix}^{3}+\mathrm{Ix}^{2}, \mathrm{Ix}^{2}, \mathrm{I}, \mathrm{Ix}, \mathrm{I}+\mathrm{Ix}^{2}\right\}$ is a linearly dependent bisubset of V over $\mathrm{Z}_{2} \mathrm{I}$. The number of bielements in the bibasis $B=B_{1} \cup B_{2}$ is the bidimension of $V=V_{1} \cup V_{2}$, denoted by $|B|$ $=\left(\left|\mathrm{B}_{1}\right|,\left|\mathrm{B}_{2}\right|\right)$.

If $|\mathrm{B}|=\left(\left|\mathrm{B}_{1}\right|,\left|\mathrm{B}_{2}\right|\right)=(\mathrm{n}, \mathrm{m})$ and if $\mathrm{n}<\infty$ and $\mathrm{m}<\infty$ then we say V is a finite bidimensional strong neutrosophic bilinear algebra (bivector space) over the neutrosophic field K. Even if one of m or n is ∞ or both m and n is infinite then we say the bidimension of V is infinite.

Example 2.2.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\}
$$

be a strong neutrosophic bivector space over the neutrosophic field QI. B $=B_{1} \cup B_{2}=$

$$
\left\{\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I}
\end{array}\right)\right\}
$$

$\cup\{(\mathrm{I} 00),(0, \mathrm{I}, 0)(0,0, \mathrm{I})\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; B is a bibasis of V over QI and the bidimension of V is finite $(4,3)$.

Example 2.2.25: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I}\right\} \cup\left\{\left(\mathrm{Z}_{2} \mathrm{I} \times \mathrm{Z}_{2} \mathrm{I}\right)\right\}
$$

be a strong neutrosophic bivector space over Z_{2} I. $B=B_{1} \cup B_{2}=$ $\left\{\mathrm{I}, \mathrm{Ix}, \mathrm{Ix}^{2}, \ldots, \mathrm{Ix}^{\mathrm{n}}, \ldots \infty\right\} \cup\{(\mathrm{I}, 0),(0, \mathrm{I})\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a bibasis of V over $\mathrm{Z}_{2} \mathrm{I}$. The bidimension of V is $(\infty, 2)$.

Example 2.2.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; \mathrm{i}=1,2, \ldots, \infty\right\} \cup \\
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{RI}\right\}
\end{gathered}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic field QI. $B=B_{1} \cup B_{2}=\left\{I, I x, \mathrm{Ix}^{2}, \ldots, \mathrm{Ix}^{\mathrm{n}}, \ldots\right\} \cup\{$ an infinite basis for $\left.\mathrm{V}_{2}\right\}$ is a bibasis of V over QI. Thus the bidimension of V is infinite and $|\mathrm{B}|=(\infty, \infty)$.

Example 2.2.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\{\mathrm{RI} \times \mathrm{RI}\}
$$

be a strong neutrosophic bivector space over the neutrosophic field QI. Take B $=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\left\{\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I}
\end{array}\right)\right\}
$$

\cup \{An infinite set\}, B is a bibasis of V over QI. The bidimension of V is $(4, \infty)$; thus the bidimension of V is infinite. It is interesting to note that if V and W are strong neutrosophic bivector spaces over the neutrosophic field K. Suppose bidimension of V is $\left(n_{1}, n_{2}\right)$ then we say the bidimension of V and W are the same if and only if W is just of bidimension (n_{1}, n_{2}) or ($\mathrm{n}_{2}, \mathrm{n}_{1}$).

DEFINITION 2.2.14: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two strong neutrosophic bivector spaces over the neutrosophic field K. Let $T=T_{1} \cup T_{2}$ be a bilinear transformation (linear bitransformation) from V to W defined by $T_{i}: V_{i} \rightarrow W_{j}, i=1,2$, $j=1,2$, such that $T_{1}: V_{1} \rightarrow W_{1}$ and $T_{2}: V_{2} \rightarrow W_{2}$ or $T_{1}: V_{1} \rightarrow$ W_{2} and $T_{2}: V_{2} \rightarrow W_{1}$. The bikernel of T denoted by $\operatorname{ker} T=\operatorname{ker} T_{1}$ \cup ker T_{2} where ker $T_{i}=\left\{v^{j} \in V_{i} \mid T\left(v^{\prime}\right)=0 ; i=1,2\right\}$. Thus biker $T=\left\{\left(v^{1}, v^{2}\right) \in V_{1} \cup V_{2} / T\left(v^{1}, v^{2}\right)=T_{1}\left(v^{1}\right) \cup T\left(v^{2}\right)=0 \cup 0\right\}$.

It is easily verified ker T is a proper neutrosophic bisubgroup of V. Further ker T is a strong neutrosophic bisubspace of V.

Example 2.2.28: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI}, 1 \leq \mathrm{i} \leq 6\right\} \\
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI}, 1 \leq \mathrm{i} \leq 8\right.
\end{array}\right\}
$$

be a strong neutrosophic bivector space over QI. $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ =

$$
\left\{\sum_{\mathrm{i}=0}^{7} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 7\right\} \cup\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI}, 0 \leq \mathrm{i} \leq 6\right\}
$$

be a strong neutrosophic bivector space over QI. Define a bimap $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2}$ by $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{2}$ and $\mathrm{T}_{2}:$ $\mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}$ such that

$$
\mathrm{T}_{1}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
0 & \mathrm{a}_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right)
$$

and

$$
\mathrm{T}_{2}\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} \\
\mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right)=\sum_{\mathrm{i}=0}^{7} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}
$$

where $a_{1} \rightarrow a_{0}, a_{2} \rightarrow a_{1}, a_{3} \rightarrow a_{2}, a_{4} \rightarrow a_{3}, a_{5} \rightarrow a_{4}, a_{6} \rightarrow a_{5}, a_{7} \rightarrow$ a_{6} and $\mathrm{a}_{8} \rightarrow \mathrm{a}_{7}$.
$\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is a linear bimap.

$$
\text { biker } \mathrm{T}=\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\} \cup\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\right\} .
$$

Interested reader can construct more examples in which biker T is a proper non zero neutrosophic bisubspace of V . We will prove results when we define strong neutrosophic n -vector spaces $n>2$, for $n=2$ gives the strong neutrosophic bivector space. Further neutrosophic bivector spaces (bilinear algebras)
and the strong neutrosophic bivector spaces (bilinear algebras) which we have defined in sections 2.1 and 2.2 are type I neutrosophic bivector spaces and strong neutrosophic bivector spaces respectively. In the following section we define type II neutrosophic bivector spaces (bilinear algebras).

2.3 Neutrosophic Bivector Spaces of Type II

In this section we proceed onto define neutrosophic bivector spaces of type II and neutrosophic linear bialgebras (or bilinear algebras) of type II. We discuss several interesting properties about them. We also give the difference between type I and type II neutrosophic bivector spaces.

DEFINITION 2.3.1: Let $V=V_{1} \cup V_{2}$ where V_{1} is a neutrosophic vector space over the real field F_{1} and V_{2} is a neutrosophic vector space over the real field F_{2} such that $F_{1} \neq F_{2}, F_{1} \nsubseteq F_{2}, F_{2}$ $\nsubseteq F_{1}$ and $V_{1} \neq V_{2}, V_{1} \nsubseteq V_{2}$ and $V_{2} \nsubseteq V_{1}$.

We call V to be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$ of type II.

We will illustrate this by some simple examples.
Example 2.3.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where

$$
\mathrm{V}_{1}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

be a neutrosophic vector space over the field Z_{7} and

$$
V_{2}=\left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in N(Q), 1 \leq i \leq 6\right\}
$$

is a neutrosophic vector space over the field $\mathrm{Q} . \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Q}$ of type II.

Example 2.3.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\{\mathrm{QI}[\mathrm{x}]\}$ a neutrosophic vector space over the field Q and $\mathrm{V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & 0 \\
0 & \mathrm{~d} & \mathrm{e} \\
0 & 0 & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{11}\right\}
$$

be a neutrosophic vector space over the field $Z_{11} . V=V_{1} \cup V_{2}$ is a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{11}$ of type II.

Example 2.3.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{V}_{1}=\left\{\mathrm{Z}_{13} \mathrm{I} \times \mathrm{Z}_{13} \mathrm{I} \times \mathrm{Z}_{13} \mathrm{I}\right.$ $\left.\times Z_{13} I\right\}$ is a neutrosophic vector space over the field Z_{13} and

$$
\mathrm{V}_{2}=\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{23}, 1 \leq \mathrm{i} \leq 8\right\}
$$

be a neutrosophic vector space over the field $Z_{23} . V=V_{1} \cup V_{2}$ is a neutrosophic bivector space over the bifield $F=Z_{13} \cup Z_{23}$ of type II.

DEFINITION 2.3.2: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$ of type II. Let $W=W_{1} \cup W_{2}$ $\subseteq V_{1} \cup V_{2}$, if W is a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$ of type II, then we call W to be a neutrosophic bivector subspace of V over the bifield $F=F_{1} \cup F_{2}$ of type II.

We will illustrate this by examples.
Example 2.3.4: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I, 1 \leq i \leq 8\right\}
$$

be a neutrosophic bivector space of V over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup$ Z_{11} of type II. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \right\rvert\, a, b \in Z_{7} I\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{5} & a_{4} \\
a_{5} & a_{6} & 0
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I, i=1,2,4,5,6,3\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a neutrosophic bivector subspace of V over the bifield $Z_{7} \cup Z_{11}$ of type II.

Example 2.3.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{\mathrm{Z}_{13} \mathrm{I} \times \mathrm{Z}_{13} \mathrm{I} \times \mathrm{Z}_{13} \mathrm{I} \times \mathrm{Z}_{13} \mathrm{I} \times \mathrm{Z}_{13} \mathrm{I}\right\}$ be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{13}$ of type II. Take $\mathrm{W}=\mathrm{W}_{1} \cup$ $\mathrm{W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{QI}\right\} \cup\left\{(\mathrm{a} \text { a a a a }) \mid \mathrm{a} \in \mathrm{Z}_{13} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a neutrosophic bivector subspace of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{13}$.

Now we define a substructures on these neutrosophic bivector spaces over the bifield. It is pertinent to mention here that the term type II will be suppressed as one can easily understand by the very definition it is distinct from type I.

DEFINITION 2.3.3: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the real bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1}$ $\cup V_{2}$ and $K=K_{1} \cup K_{2} \subseteq F_{1} \cup F_{2}=F$. If W is a neutrosophic bivector space over the bifield $K=K_{1} \cup K_{2}$ then we call W to be a special subneutrosophic bivector subspace of V over the bisubfield K of F.

We will give an example of this definition.
Example 2.3.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{Q}(\sqrt{2}, \sqrt{3}) \mathrm{I} \times \mathrm{Q}(\sqrt{2}, \sqrt{3}) \mathrm{I}\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Q}(\sqrt{5}, \sqrt{7})\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q}(\sqrt{2}, \sqrt{3})$ $\cup \mathrm{Q}(\sqrt{5}, \sqrt{7})=\mathrm{F}$. Take $\mathrm{W}=\{\mathrm{Q}(\sqrt{2}) \mathrm{I} \times \mathrm{Q}(\sqrt{2}) \mathrm{I}\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Q}(\sqrt{5})\right\}
$$

$=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$, W is a special subneutrosophic bivector subspace of V over the subfield $\mathrm{Q}(\sqrt{2}) \cup \mathrm{Q}(\sqrt{5})=\mathrm{K}_{1} \cup \mathrm{~K}_{2} \subseteq$ $\mathrm{Q}(\sqrt{2}, \sqrt{3}) \cup \mathrm{Q}(\sqrt{5}, \sqrt{7})=\mathrm{F}$.

Now we define the neutrosophic bivector space V to be bisimple if V has no proper special subneutrosophic bivector subspace over a bisubfield.

We will illustrate this by some examples.
Example 2.3.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\{\mathrm{RI}\} \cup\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

be a neutrosophic bivector space over the real bifield $\mathrm{F}=$ $\mathrm{Q} \cup \mathrm{Z}_{7}$. We see the real bifield is bisimple; i.e., it has no subbifields or bisubfields. So V is a bisimple neutrosophic bivector space over F.

Example 2.3.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{2} \mathrm{I} \times \mathrm{Z}_{2} \mathrm{I} \times \mathrm{Z}_{2} \mathrm{I} \times \mathrm{Z}_{2} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{3} \mathrm{I}\right\}
$$

be a neutrosophic bivector space over the real bifield $\mathrm{F}=$ $Z_{2} \cup Z_{3}$. V is a bisimple neutrosophic bivector space over F. We see both Z_{2} and Z_{3} are prime fields of characteristic two and three respectively.

In view of this we have the following theorem.
THEOREM 2.3.1: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over a bifield $F=F_{1} \cup F_{2}$. If both F_{1} and F_{2} are prime fields then V is a bisimple neutrosophic bivector space over the real bifield $F=F_{1} \cup F_{2}$.

The proof of the above theorem is left as an exercise to the reader. A natural question arise; if one of the fields F_{1} and F_{2} alone is a prime field can we have some special type of substructures. In view of this we have the following definition.

DEFINITION 2.3.4: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the real bifield $F=F_{1} \cup F_{2}$ where one of F_{1} or F_{2} is a prime field. Let $W=W_{1} \cup W_{2}$ be such that W_{1} is a neutrosophic vector subspace of V1 over $K_{1} \subseteq F_{1}$ (F2 is a prime field) and W_{2} is a neutrosophic vector subspace of V_{2} over F_{2}; then we call $W=$ $W_{1} \cup W_{2}$ to be a quasi special neutrosophic bivector subspace of V over the quasi bisubfield $K_{1} \cup F_{2}$.
(If $F=F_{1} \cup F_{2}$ is a bifield, $K_{1} \subseteq F_{1}$ is a proper subfield of F_{1} then $K_{1} \cup F_{2}$ is called the quasi bisubfield of the bifield $F=F_{1}$ $\cup \mathrm{F}_{2}$). We will illustrate this by some examples.

Example 2.3.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{17} \mathrm{I}\right\}
$$

$\cup\{\mathrm{RI} \times \mathrm{RI} \times \mathrm{RI}\}$ be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{17} \cup \mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11})$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$

$$
\left.=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{17} \mathrm{I}\right\}\right\}
$$

$\{\mathrm{RI} \times\{0\} \times \mathrm{RI}\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}$ is a quasi special neutrosophic bivector subspace of V over the quasi bisubfield $\mathrm{Z}_{17} \cup \mathrm{Q}(\sqrt{2})$ of the bifield F.

Example 2.3.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{7} \mathrm{I}[\mathrm{x}]\right\} \cup\{\mathrm{RI} \times \mathrm{RI} \times \mathrm{RI}\}$ be a neutrosophic bivector space over the real bifield $\mathrm{Z}_{7} \cup \mathrm{R}$. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{9} \mathrm{a}_{\mathrm{i}} \mathrm{i}^{\mathrm{i}} \mid 0 \leq \mathrm{i} \leq 9 ; \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup\{\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI}\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a quasi special neutrosophic bivector subspace of V over the real quasi bifield $\mathrm{Z}_{7} \cup \mathrm{Q} \subseteq \mathrm{Z}_{7} \cup \mathrm{R}$.

Now we proceed on to define the notion of bibasis of the neutrosophic bivector space of type II.

DEFINITION 2.3.5: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space of type II over the bifield $F=F_{1} \cup F_{2}$. Let $B=B_{1} \cup B_{2} \subseteq$ $V_{1} \cup V_{2}$ be a bisubset of V such that B_{i} is a linearly independent bisubset of V_{i}; and generates V_{i} for $i=1,2$, then we call B to be bibasis of V over the bifield $F_{1} \cup F_{2}=F$.

We will illustrate this by some simple examples.

Example 2.3.11: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I ; 0 \leq i \leq 6\right\} \cup \\
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{5} I ; 1 \leq i \leq 8\right\}
\end{gathered}
$$

be a neutrosophic bivector space of type II over the bifield $\mathrm{F}=$ $\mathrm{Z}_{7} \cup \mathrm{Z}_{5}$.

Take B $=\mathrm{B}_{1} \cup \mathrm{~B}_{2}$

$$
\left.\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & \mathrm{I}
\end{array}\right)\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, B is a bibasis of V over the bifield.

$$
\begin{aligned}
& =\left\{\left(\begin{array}{lll}
\mathrm{I} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & \mathrm{I} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \mathrm{I} \\
0 & 0 & 0
\end{array}\right),\right. \\
& \left.\left(\begin{array}{lll}
0 & 0 & 0 \\
\mathrm{I} & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \mathrm{I} & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & \mathrm{I}
\end{array}\right)\right\} \\
& \cup\left\{\begin{array}{l}
\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I} \\
0 & 0 \\
0 & 0
\end{array}\right), ~
\end{array}\right.
\end{aligned}
$$

Example 2.3.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in \mathrm{QI}\right\} \cup\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a \\
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in \mathrm{Z}_{37} \mathrm{I}\right\}
$$

be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}=$ $\mathrm{Q} \cup \mathrm{Z}_{37}$. Take $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\left\{\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I}
\end{array}\right)\right\} \cup\left\{\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I}
\end{array}\right)\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$, B is a bibasis of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{37}$.

DEFINITION 2.3.6: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$. Let $P=P_{1} \cup P_{2} \subseteq V_{1} \cup V_{2}$ be a proper bisubset of V such that each P_{i} is a linearly independent subset of V_{i} over $F_{i} ; i=1,2$; then we define $P=P_{1}$ $\cup P_{2}$ to be a bilinearly independent bisubset of V over the bifield $F=F_{1} \cup F_{2}$ or P is defined to be the linearly biindependent bisubset of V over the bifield $F=F_{1} \cup F_{2}$.

It is interesting and important to note that every bibasis is a linearly biindependent bisubset, but a linearly biindependent bisubset need not in general to be a bibasis of V over the bifield F.

We will illustrate this situation by an example.

Example 2.3.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{RI}\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 3\right\}
\end{gathered}
$$

be a neutrosophic bivector space of type II over the bifield $\mathrm{F}=$ $\mathrm{Q} \cup \mathrm{Z}_{7}$. Take $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\begin{gathered}
\left\{\left(\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I}
\end{array}\right),\right\} \cup \\
\left\{\left(\begin{array}{lll}
\mathrm{I} & \mathrm{I} & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & \mathrm{I} \\
\mathrm{I} & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
\mathrm{I} & \mathrm{I} & \mathrm{I} \\
0 & \mathrm{I} & \mathrm{I}
\end{array}\right)\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}
\end{gathered}
$$

Clearly B is a linearly biindependent bisubset of V but is not a bibasis of V . Thus in general every linearly biindependent bisubset of V need not be a bibasis of V .

DEFINITION 2.3.7: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$, and $W=W_{1} \cup W_{2}$ be another neutrosophic bivector space over the same bifield $F=$ $F_{1} \cup F_{2}$ that is V_{i} and W_{i} are vector spaces over the field $F_{i}, i=$ 1, 2. Let $T=T_{1} \cup T_{2}$ be a bimap from V to W; where $T_{i}: V_{i} \rightarrow$ W_{i} is a linear transformation from V_{i} to $W_{i}, i=1$, 2. We define T $=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow W=W_{1} \cup W_{2}$ to be a neutrosophic linear bitransformation of V to W of type II.

We will illustrate this by a simple example.
Example 2.3.14: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} \mathrm{I} ; 1 \leq \mathrm{i} \leq 8\right\}
$$

be a neutrosophic bivector space of type II over the bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{7} \cup \mathrm{Z}_{13}$. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I} \times \mathrm{Z}_{7} \mathrm{I}\right\}$

$$
\cup\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 10\right\}
$$

be a neutrosophic bivector space of type II over the bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{7} \cup \mathrm{Z}_{13}$.

Define $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ is defined by

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

and

$$
\mathrm{T}_{2}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{a}_{1} & a_{2} \\
\mathrm{a}_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
0 & 0
\end{array}\right) .
$$

It is easily verified T is a linear bitransformation of V to W .
Note: If we take in the definition 2.3.7; $\mathrm{W}=\mathrm{V}$ then we call T to be a linear bioperator on V of type II. We will denote by $\underset{F_{1} \cup F_{2}}{\mathrm{Hom}}(\mathrm{V}, \mathrm{W})$, the collection of all neutrosophic linear bitransformations of V to W. $\left.\underset{F_{1} \cup F_{2}}{\mathrm{Nom}} \underset{\mathrm{F}}{\mathrm{H}} \mathrm{V}\right)$ denotes the collection of all neutrosophic linear bioperators of V to V .

Example 2.3.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{QI}\right\} \cup \\
\left\{\left.\left(\begin{array}{lllll}
\mathrm{a}_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
\mathrm{a}_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{19} I ; 1 \leq i \leq 10\right\} ;
\end{gathered}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{19}$.
Define $T=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow V=V_{1} \cup V_{2}$ where T_{1} : $\mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ such that,

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right)
$$

and

$$
\mathrm{T}_{2}\left(\begin{array}{ccccc}
\mathrm{a}_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right)=\left(\begin{array}{ccccc}
a & a & a & a & a \\
b & b & b & b & b
\end{array}\right)
$$

where $\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{19} \mathrm{I}$.

It is easily verified T is a neutrosophic bilinear operator on V of type II.

DEFINITION 2.3.8: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two neutrosopic bivector spaces over the bifield $F=F_{1} \cup F_{2}$.

Let $T=T_{1} \cup T_{2}: V_{1} \cup V_{2}=V \rightarrow W_{1} \cup W_{2}=W$ be a linear bitransformation of V to W. The bikernel of T denoted by ker T $=\operatorname{ker} T_{1} \cup \operatorname{ker} T_{2}$ where ker $T_{i}=\left\{v^{i} \in V_{i} \mid T_{i}\left(v^{i}\right)=\overline{0}\right\} ; i=1,2$. Thus ker $T=\left\{\left(v^{1}, v^{2}\right) \in V_{1} \cup V_{2} / T\left(v^{1}, v^{2}\right)\right\}=\left\{T_{1}\left(v^{1}\right) \cup T_{2}\left(v^{2}\right)=\right.$ $0 \cup 0\}$.

It is easily verified that ker T is a proper neutrosophic bisubgroup of V . Futher ker T is a neutrosophic bisubspace of V.

The reader is expected to give some examples.

Theorem 2.3.2: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two neutrosophic bivector spaces over the bifield $F=F_{1} \cup F_{2}$ of type II and suppose V is finite bidimensional. Let $T=T_{1} \cup T_{2}$ be a neutrosophic bilinear transformation (linear bitransformation) of Vinto W. ($T_{i}: V_{i} \rightarrow W_{i} ; i=1,2$).

Then
birank $T+$ binullity $T=\left(n_{1}, n_{2}\right) \operatorname{dim} V$
$=$ bidimension V;
that is (birank $T=$) rank $T_{1} \cup \operatorname{rank} T_{2}+$ (binullity $T=$) nullity $T_{1} \cup$ nullity $T_{2}=($ bidimension $V=) \operatorname{dim} V_{1} \cup \operatorname{dim} V_{2}=\left(n_{1}, n_{2}\right)$. (Here $\operatorname{dim} V_{i}=n_{i} ; i=1,2$).

The proof is left as an exercise to the reader. Further the following theorem is also left as an exercise to the reader.

THEOREM 2.3.3: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two neutrosophic bivector spaces over the bifield $F=F_{1} \cup F_{2}$. Let T $=T_{1} \cup T_{2}$ and $S=S_{1} \cup S_{2}$ be neutrosophic bilinear transformations from V into W. The bifunction

$$
\begin{aligned}
(T+S) & =\left(T_{1} \cup T_{2}+S_{1} \cup S_{2}\right) \\
& =\left(T_{1}+S_{1}\right) \cup\left(T_{2}+S_{2}\right)
\end{aligned}
$$

is defined by

$$
\begin{aligned}
(T+S)(\alpha) & =\left(T_{1}+S_{1}\right) \cup\left(T_{2}+S_{2}\right)\left(\alpha_{1} \cup \alpha_{2}\right) \\
& =\left(T_{1}+S_{1}\right) \alpha_{1} \cup\left(T_{2}+S_{2}\right) \alpha_{2} \\
& =\left(T_{1} \alpha_{1}+S_{1} \alpha_{1}\right) \cup\left(T_{2} \alpha_{2}+S_{2} \alpha_{2}\right)
\end{aligned}
$$

is a neutrosophic linear bitransformation from $V=V_{1} \cup V_{2}$ to $W_{1} \cup W_{2} .\left(\alpha=\alpha_{1} \cup \alpha_{2} \in V_{1} \cup V_{2}\right)$. If $C=C_{1} \cup C_{2}$ is a biscalar from the bifield then the bifunction

$$
\begin{aligned}
(C T) \alpha & =\left(C_{1} \cup C_{2}\right)\left(T_{1} \cup T_{2}\right)\left(\alpha_{1} \cup \alpha_{2}\right) \\
& =C_{1} T_{1} \alpha_{1} \cup C_{2} T_{2} \alpha_{2}
\end{aligned}
$$

is a bilinear transformation (linear bitransformation) from V into W. Thus the set of all linear bitransfomations defined by biaddition and scalar bimultiplication is a neutrosophic
bivector space (vector bispace) over the same bifield $F=F_{1} \cup$ F_{2}.

Let $N L(V, W)=N L^{1}\left(V_{1}, W_{1}\right) \cup N L^{2}\left(V_{2}, W_{2}\right)$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$.

Further if $V=V_{1} \cup V_{2}$ is a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$ of finite bidimension $\left(n_{1}, n_{2}\right)$ and W $=W_{1} \cup W_{2}$ is a neutrosophic bivector space of finite dimension (m_{1}, m_{2}) over the same bifield $F=F_{1} \cup F_{2}$. Then $N L(V, W)$ is of finite bidimension and has $\left(m_{1} n_{1}, m_{2} n_{2}\right)$ bidimension over the same bifield $F=F_{1} \cup F_{2}$.

Further we have another interesting property about these neutrosophic bivector spaces.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and $\mathrm{Z}=\mathrm{Z}_{1} \cup \mathrm{Z}_{2}$ be three neutrosophic bivector spaces over the same bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$. Let T be a neutrosophic bilinear transformation from V into W and S be a neutrosophic linear bitransformation from W into Z . Then the bicomposed bifunction S o T = ST defined by ST $(\alpha)=$ $\mathrm{S}(\mathrm{T}(\alpha))$ is a neutrosophic bilinear transformation from V into Z . The reader is expected to prove the above claim.

Now we proceed on to define the notion of neutrosophic bilinear algebra or neutrosophic linear bialgebra of type II over the bifield $F=F_{1} \cup F_{2}$.

DEFINITION 2.3.9: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space of type II over the bifield $F=F_{1} \cup F_{2}$. If each V_{i} is a neutrosophic linear algebra over $F_{i}, i=1,2$, then we call V to be a neutrosophic bilinear algebra over the bifield $F=F_{1} \cup F_{2}$ of type II.

We will illustrate this by some simple examples.
Example 2.3.16: Let

$$
\mathrm{V}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e} \in \mathrm{Z}_{7} \mathrm{I}\right\}$ be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{7} . \mathrm{V}$ is clearly a neutrosophic bilinear algebra over F.

Example 2.3.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$

$$
=\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} ; 1 \leq i \leq 9\right\}
$$

$\left\{\mathrm{Z}_{13} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{13} \mathrm{I}\right\}$; V is a neutrosophic bilinear algebra over the bifield $\mathrm{F}=$ $\mathrm{Z}_{11} \cup \mathrm{Z}_{13}$.

Example 2.3.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\} \cup\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} ;
$$

V is only a neutrosophic bivector space over the bifield $\mathrm{Z}_{17} \cup$ Q. Clearly V is not a neutrosophic bilinear algebra over the bifield of type II as V_{1} is not a neutrosophic linear algebra over the field Z_{17}.

Thus we have the following interesting result, the proof of which is left as an exercise for the reader.

THEOREM 2.3.4: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over a bifield $F=F_{1} \cup F_{2}$ of type II. Clearly V is a neutrosophic bivector space over the bifield F. However a neutrosophic bivector space of type II need not in general be a neutrosophic bilinear algebra of type II.

Now we proceed on to define the new notion of neutrosophic linear bisubalgebra or neutrosophic bilinear sub algebra of type II

DEFINITION 2.3.10: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over a bifield $F=F_{1} \cup F_{2}$ of type II. Take $W=W_{1} \cup$ $W_{2} \subseteq V_{1} \cup V_{2} ; W$ is a neutrosophic sub bilinear algebra or neutrosophic bilinear subalgebra of V if W is itself a neutrosophic linear bialgebra of type II over the bifield $F=F_{1}$ $\cup F_{2}$.

We will illustrate this situation by some examples.
Example 2.3.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{\left(\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \mathrm{a}_{4} \mathrm{a}_{5} \mathrm{a}_{6}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\}$ be a neutrosophic bilinear algebra of type II over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{2}$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{QI}\right\} \cup\left\{(\mathrm{a} \text { a a a a } a) \mid \mathrm{a} \in \mathrm{Z}_{2} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}$ is a neutrosophic bilinear subalgebra of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{2}$ of type II.

Example 2.3.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{3} I ; 1 \leq i \leq 9\right\}
$$

$\cup\{\mathrm{QI}[\mathrm{x}]$; all polynomials in the variable x with coefficients from QI\} be a neutrosophic bilinear algebra of type II over the bifield $\mathrm{F}=\mathrm{Z}_{3} \cup \mathrm{Q}$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{3} I ; 1 \leq i \leq 6\right\}
$$

\cup \{All polynomials of even degree with coefficients from the field QI$\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a neutrosophic bilinear subalgebra of V of type II over the bifield $\mathrm{Z}_{3} \cup \mathrm{Q}$.

DEFINITION 2.3.11: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bilinear algebra over a bifield $F=F_{1} \cup F_{2}$ of type II. Let $W=W_{1} \cup W_{2}$ $\subseteq V_{1} \cup V_{2}$, suppose W is only a neutrosophic bivector space of type II over the bifield $F=F_{1} \cup F_{2}$ and is not a neutrosophic bilinear subalgebra of V of type II over the bifield F then we say W is a pseudo neutrosophic bivector subspace of V over the bifield $F=F_{1} \cup F_{2}$ of type II.

We will illustrate this by some examples.

Example 2.3.21: Let

$$
\mathrm{V}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{\mathrm{Z}_{7} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{7} \mathrm{I}\right\}$ be a neutrosophic bilinear algebra over the bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Q} \cup \mathrm{Z}_{7}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
0 & \mathrm{a} \\
\mathrm{~b} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{QI}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{20} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 20\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$. Clearly W is only a bivector space over the bifield F $=\mathrm{Q} \cup \mathrm{Z}_{7}$. For product of two elements is not defined in both W_{1} and W_{2}. Thus W is a pseudo neutrosophic bivector subspace of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{7}$.

Example 2.3.22: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, a, \mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{Z}_{11} \mathrm{I}\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{29} \mathrm{I}\right\}$ be a neutrosophic bilinear algebra over the bifield $\mathrm{F}=\mathrm{Z}_{11} \cup \mathrm{Z}_{29}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & 0 & b \\
0 & c & 0 \\
d & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{11} I\right\} \cup\left\{\left(\begin{array}{ll}
\text { a } & \left.a) \mid a \in Z_{29} I\right\}
\end{array}\right\}\right.
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a pseudo neutrosophic bivector subspace of V as W_{1} is only a neutrosophic vector space over Z_{11} which is not a neutrosophic linear algebra over Z_{11}, but W_{2} is neutrosophic linear algebra over Z_{29}. Thus W is only a pseudo neutrosophic bivector subspace of V .

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup$ F_{2}. A linear bitransformation $f=f_{1} \cup f_{2}$ from $V=V_{1} \cup V_{2}$ into the bifield $F=F_{1} \cup F_{2}$ of biscalars is called as a linear bifunctional or bilinear functional.

However when the bivector space which are neutrosophic bivector spaces are defined over a real bifield $F=F_{1} \cup F_{2}$ we see the notion of linear bifunctional is not possible. Hence to have the concept of linear bifunctional we need the bivector spaces to be defined over neutrosophic bifields.

However we can define neutrosophic hyper bispace of a neutrosophic bivector space.

DEFINITION 2.3.12: Let $V=V_{1} \cup V_{2}$ be a finite dimensional neutrosophic bivector space of type II over the bifield $F=F_{1} \cup$ F_{2} of dimension (n_{1}, n_{2}). Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be a neutrosophic bivector subspace of V of dimension ($\left(n_{1}-1\right)$, (n_{2} - 1)) over the bifield $F=F_{1} \cup F_{2}$. Then we call W to be a neutrosophic hyper bispace of V.

We will illustrate this situation by some examples.
Example 2.3.23: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{(\mathrm{abc}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{17} \mathrm{I}\right\}$ be a neutrosophic bivector space of finite bidimension over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{17}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup$ $\mathrm{W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, 0) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{17} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a neutrosophic hyper bisubspace of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{17}$.

Example 2.3.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\sum_{i=0}^{12} a_{i} x^{i} \mid a_{i} \in Z_{2} I\right\} \cup\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{3} I\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{2} \cup \mathrm{Z}_{3}$. Take W =

$$
\left\{\sum_{\mathrm{i}=0}^{11} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & 0 \\
a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{3} I ; i=1,2,3,5,6\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is neutrosophic hyper bispace of V over the bifield $\mathrm{Z}_{2} \cup \mathrm{Z}_{3}$. Clearly the bidimension of V is $(13,6)$ where the bidimension of W is $(12,5)$.

The notion of biannihilator of a biset S of a neutrosophic bivector space over a real bifield cannot be defined as the notion of linear functional is undefined for these bispaces.

We can define neutrosophic bipolynomial ring over the bifield F. Let $F[x]=F_{1}[x] \cup F_{2}[x]$ be such that $F_{i}[x]$ is a polynomial ring over F_{i} then we cannot call $F[x]=F_{1}[x] \cup F_{2}[x]$ to be a neutrosophic bipolynomial biring over $F_{1} \cup F_{2}$ as F_{1} and F_{2} are not neutrosophic fields they are only real fields.

Now we can define yet another new substructure.

DEFINITION 2.3.13: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be such that W is just a bivector space over the real bifield $F=$ $F_{1} \cup F_{2}$; i.e., W is not a neutrosophic bivector space over the bifield F; then we call W to be a pseudo bivector subspace of V over the bifield F.

We will illustrate this by the following examples.

Example 2.3.25: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{N}\left(\mathrm{Z}_{2}\right)\right\}$ be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{2}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$

$$
=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Q}\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{2}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$. Clearly W is only a bivector space over the bifield F . Thus W is a pseudo bivector subspace of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{2}$.

Example 2.3.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{17} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{17} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{13}\right)\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{17} \cup \mathrm{Z}_{13}$. We see there does not exist a $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ such that W is a bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{17} \cup \mathrm{Z}_{13}$.

Thus we see from this example that all neutrosophic bivector spaces need not in general contain pseudo bivector subspaces.

In view of this we have the following result which proves the existence of a class of neutrosophic bivector spaces which do not contain pseudo bivector subspaces.

THEOREM 2.3.5: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the real bifield $F=F_{1} \cup F_{2}$. Even if one of $V_{1}\left(\right.$ or $\left.V_{2}\right)$ has its entries from the neutrosophic field $F_{1} I$ (or $F_{2} I$) then we see V has no pseudo bivector subspaces.

Proof: We see in $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ the entries are in one of V_{1} or V_{2} or in both V_{1} and V_{2}, the entries are taken from $F_{1} I\left(F_{2} I\right)$ or from $F_{1} I$ and $F_{2} I$. Since $F_{i} \nsubseteq F_{i} I$; $i=1$, 2 we see V_{i} can never be a vector space over F_{i} but only a neutrosophic vector space over $\mathrm{F}_{\mathrm{i}}, \mathrm{i}=1,2$. Hence the claim.

We say a neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a pseudo simple neutrosophic bivector space if V has no proper pseudo bivector subspace.

Example 2.3.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{7} I\right\} \cup\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq i \leq 4\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Q}$. V is a pseudo simple neutrosophic bivector space.

Example 2.3.28: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{11} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the field $\left.Z_{11} I\right\} \cup\left\{\left(a_{1}, a_{2}\right.\right.$, $\left.\left.a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mid a_{i} \in N(Q) ; 1 \leq i \leq 7\right\}$ be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{11} \cup \mathrm{Q}$. V is a pseudo simple neutrosophic bivector space over the bifield F .

Now we proceed onto define the notion of quasi pseudo bivector subspace of a neutrosophic bivector space.

DEFINITION 2.3.14: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ where only one of W_{1} or W_{2} is a vector space over F_{1} or F_{2} and the other is a neutrosophic vector space over F_{1} or F_{2} then we call W to be a quasi pseudo bivector subspace of V over the bifield $F=F_{1} \cup F_{2}$.

We will illustrate this situation by some examples.
Example 2.3.29: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in$ $\left.\mathrm{Z}_{13} I\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}\left(\mathrm{Z}_{5}\right) ; 1 \leq \mathrm{i} \leq 9\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{13} \cup \mathrm{Z}_{5}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{(\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{a}) \mid \mathrm{a} \in \mathrm{Z}_{13} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{5} ; 1 \leq i \leq 9\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}_{1}$ is a neutrosophic vector subspace of V_{1} over Z_{13} and W_{2} is just vector space of V_{2} over Z_{5}. We see W_{2} is not a neutrosophic vector subspace of V_{2} over Z_{5}. Thus $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2} is a quasi pseudo bivector subspace of V over the bifield $\mathrm{F}=$ $\mathrm{Z}_{13} \cup \mathrm{Z}_{5}$.

Example 2.3.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{N}\left(\mathrm{Z}_{19}\right)\right.$ [x]; all polynomials in the variable x with coefficients from the field $\left.\mathrm{N}\left(\mathrm{Z}_{19}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{43} \mathrm{I}\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{19} \cup \mathrm{Z}_{43}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\mathrm{Z}_{19}[\mathrm{x}]\right.$; the set of all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{19}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{43} I\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a quasi pseudo bivector subspace of V over the bifield F $=\mathrm{Z}_{19} \cup \mathrm{Z}_{43}$.

Now it may so happen we can have for some neutrosophic bivector subspace both pseudo bivector subspace as well as quasi pseudo bivector subspaces.

We will illustrate this situation by an example.
Example 2.3.31: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\}
$$

$\cup\left\{\mathrm{N}\left(\mathrm{Z}_{47}\right)[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{N}\left(\mathrm{Z}_{47}\right)$ \}be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{47}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Q\right\}
$$

$\cup\left[\mathrm{Z}_{47}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the field $\left.\mathrm{Z}_{47}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; clearly W is a pseudo bivector subspace of V over the bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{47}$.

Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{QI}\right\}
$$

$\cup\left\{\mathrm{Z}_{47} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{47} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$. S is a quasi pseudo bivector subspace of V . Thus V can have both types of bivector subspaces.

Finally we define subneutrosophic bivector subspace.
DEFINITION 2.3.15: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bisubfield $K=K_{1} \cup$ $K_{2} \subseteq F_{1} \cup F_{2} ; K_{i} \subseteq F_{i} ; K_{i}$ is a proper subfield of $F_{i} ; i=1$, 2 . We
then call W to be a subneutrosophic bivector subspace of V over the subbifield K of the bifield F. If $V=V_{1} \cup V_{2}$ has no subneutrosophic bivector subspace then we call V to be a sub bisimple neutrosophic bivector space.

We will illustrate this situation by some examples.
Example 2.3.32: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{RI}\right\} \cup\{(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}) \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \in \mathrm{RI}\}
$$

be a neutrosophic bivector space over the bifield,

$$
\mathrm{F}=\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{7}, \sqrt{11}, \sqrt{17}) \cup \mathrm{Q}(\sqrt{19}, \sqrt{23}, \sqrt{43}, \sqrt{41}, \sqrt{7}) .
$$

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in \operatorname{RI}\right\} \cup\{(a, a, a, a, a) \mid a \in R I\} \subseteq V_{1} \cup V_{2},
$$

$\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is a neutrosophic bivector space over the subbifield

$$
\begin{aligned}
\mathrm{K} & =\mathrm{Q}(\sqrt{2}, \sqrt{11}, \sqrt{17}) \cup \mathrm{Q}(\sqrt{19}, \sqrt{41}) \\
& =\mathrm{K}_{1} \cup \mathrm{~K}_{2} \subseteq \mathrm{~F}_{1} \cup \mathrm{~F}_{2} .
\end{aligned}
$$

Thus W is a subneutrosophic bivector subspace of V over the subbifield $K=K_{1} \cup K_{2}$.

Example 2.3.33: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in R I\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in\left[\frac{Z_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}\right] I\right\}
$$

be a neutrosophic bivector space over the bifield $R \cup$ $\frac{\mathrm{Z}_{2}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
a & a \\
a & a & a & a
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI}\right\} \cup\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a \\
a & a
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{2} I\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a subneutrosophic bivector subspace of V over the subbifield $K=K_{1} \cup K_{2}=Q \cup Z_{2} \subseteq R \cup \frac{Z_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$.

Now we proceed onto define the notion of strong neutrosophic bivector space and discuss a few important properties about them.

DEFINITION 2.3.16: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$, then we call V to be a strong neutrosophic bivector space of type II.

We will illustrate this by some examples.
Examples 2.3.34: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\}
$$

$\cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g} \in \mathrm{Z}_{7} \mathrm{I}\right\}$ be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}=\mathrm{QI} \cup \mathrm{Z}_{7} \mathrm{I}$.

Example 2.3.35: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 8\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{11}\right) ; 1 \leq i \leq 9\right\}
\end{aligned}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$.

We see strong neutrosophic bivector spaces are defined over neutrosophic bifields but neutrosophic bivector spaces are defined over real bifields. We see only incase of strong neutrosophic bispaces we can define neutrosophic bifunctionals but incase of neutrosophic bivector spaces we cannot define neutrosophic bifunctionals.

Now we will proceed onto define substructures in strong neutrosophic bivector spaces.

DEFINITION 2.3.17: Let $V=V_{1} \cup V_{2}$ be strong a neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let W $=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$, if W is a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$, then we call W to be a strong neutrosophic bivector subspace of V over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

We will illustrate this by the following examples.
Example 2.3.36: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{~N}\left(\mathrm{Z}_{7}\right)\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{11}\right) ; 1 \leq i \leq 5\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup\left\{\left.\left(\begin{array}{l}
a \\
a \\
a \\
a \\
a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a strong neutrosophic bivector subspace of V over the neutrosophic bifield $\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$.

Example 2.3.37: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & a_{2} & a_{3} & a_{4} \\
0 & a_{5} & a_{6} & a_{7} \\
0 & 0 & a_{8} & a_{9} \\
0 & 0 & 0 & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{23} \mathrm{I} ; 1 \leq \mathrm{i} \leq 10\right\} \cup \\
\left\{\left.\left(\begin{array}{cccccc}
\mathrm{a}_{1} & 0 & a_{2} & 0 & a_{3} & 0 \\
0 & a_{4} \\
0 & a_{5} & 0 & a_{6} & 0 & a_{7}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 7\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{23} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I}$.

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
0 & a & a & a \\
0 & 0 & a & a \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{23} I\right\} \cup \\
\left\{\left.\left(\begin{array}{lllllll}
a & 0 & a & 0 & a & 0 & a \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a \in Z_{17} I\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a strong neutrosophic bivector subspace of V over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

DEFINITION 2.3.18: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let W $=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$; is defined to be a pseudo strong neutrosophic bivector subspace of V if W is a neutrosophic bivector space over the real bifield $K=K_{1} \cup K_{2} \subseteq F_{1} \cup F_{2}$.

We will illustrate this by some examples.
Example 2.3.38: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\} \cup
$$

$\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mid a_{i} \in N\left(Z_{11}\right) ; 1 \leq i \leq 7\right\}$ be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=$ $\mathrm{N}\left(\mathrm{Z}_{11}\right) \cup \mathrm{N}\left(\mathrm{Z}_{17}\right)=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$. Choose $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{c}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
$$

$\left\{\left(a_{1} 0 a_{3} 0 a_{5} 0 a_{7}\right) \mid a_{1}, a_{3}, a_{5}, a_{7} \in N\left(Z_{11}\right)\right\} \subseteq V_{1} \cup V_{2} . W$ is a pseudo strong neutrosophic bivector subspace of V over the real bifield $\mathrm{Z}_{11} \cup \mathrm{Z}_{17} \subseteq \mathrm{~F}_{1} \cup \mathrm{~F}_{2}$.

Example 2.3.39: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{N}\left(\mathrm{Z}_{19}\right)[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{19}\right)\right\} \cup\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right.\right.$, $\left.\left.x_{4}, x_{5}\right) \mid x_{i} \in N\left(Z_{23}\right) ; 1 \leq i \leq 5\right\}$ be strong neutrosophic space over the neutrosophic bifield $\mathrm{F}=\mathrm{N}\left(\mathrm{Z}_{19}\right) \cup \mathrm{Z}_{23} \mathrm{I}$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\left\{\mathrm{Z}_{19} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup\{(\mathrm{a}$ a a a b) $\mid \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Z}_{23} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo strong neutrosophic bivector subspace of V over the real bifield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=\mathrm{Z}_{19} \cup \mathrm{Z}_{23} \subseteq$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}\left(\mathrm{Z}_{19}\right) \cup \mathrm{Z}_{23} \mathrm{I}$.

Recall a bifield $F=F_{1} \cup F_{2}$ is said to be a quasi neutrosophic bifield if one of F_{1} or F_{2} is a neutrosophic field and the other is just a real field. $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{17}$ is a quasi neutrosophic bifield. $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{11} \mathrm{I}$ is a quasi neutrosophic bifield. $\mathrm{F}=\mathrm{N}\left(\mathrm{Z}_{2}\right)$ $\cup Z_{3}$ is a quasi neutrosophic bifield.

DEFINITION 2.3.19: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$. If $F=F_{1} \cup F_{2}$ is only a quasi neutrosophic bifield then we call V to be a quasi strong neutrosophic bivector space over the quasi neutrosophic bifield.

We will illustrate this situation by some simple examples.
Example 2.3.40: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup \\
\left\{\left.\left(\begin{array}{llll}
\mathrm{a} & 0 & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 & 0 \\
0 & \mathrm{~d} & 0 & 0 \\
0 & 0 & e & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{17} \mathrm{I}\right\}
\end{gathered}
$$

be a quasi strong neutrosophic bivector space over the quasi neutrosophic bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{17} \mathrm{I}$.

Example 2.3.41: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}\left(\mathrm{Z}_{23}\right) ; 1 \leq i \leq 12\right\} \cup
$$

$\left\{\mathrm{Z}_{11} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the field $Z_{11} \mathrm{I}$ \} be a quasi strong neutrosophic bivector space over the quasi neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{23} \cup \mathrm{Z}_{11} \mathrm{I}$.

DEFINITION 2.3.20: Let $V=V_{1} \cup V_{2}$ be a neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic subbifield $K=K_{1} \cup K_{2} \subseteq F_{1} \cup F_{2}$; then we call W to be a strong neutrosophic bivector subspace of V over the neutrosophic bisubfield $K=K_{1} \cup K_{2} \subseteq F_{1} \cup F_{2}$.

We will illustrate this situation by some examples.
Example 2.3.42: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
0 & a_{6} & 0 & a_{7} & 0 \\
a_{8} & 0 & 0 & 0 & a_{9} \\
0 & a_{10} & a_{11} & a_{12} & 0 \\
a_{13} & 0 & a_{14} & 0 & a_{15}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(Q) ; 1 \leq i \leq 15\right\} \cup \\
\\
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & a_{3} \\
a_{4} & 0 \\
0 & a_{5} \\
a_{6} & 0 \\
0 & a_{7} \\
a_{8} & a_{9}
\end{array}\right) \right\rvert\,\right.
\end{gathered}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccccc}
a & a & a & a & a \\
0 & a & 0 & a & 0 \\
a & 0 & 0 & 0 & a \\
0 & a & a & a & 0 \\
a & 0 & a & 0 & a
\end{array}\right) \right\rvert\, a \in \mathrm{~N}(\mathrm{Q})\right\} \cup\left\{\left.\left(\begin{array}{cc}
a & a \\
0 & a \\
a & 0 \\
0 & a \\
a & 0 \\
0 & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a strong subneutrosophic bivector subspace of V over the neutrosophic bisubfield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I} \subseteq$ $\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$.

Example 2.3.43: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{47}\right) ; 1 \leq i \leq 15\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
a_{8} & a_{9} & a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\
a_{15} & a_{16} & a_{17} & a_{18} & a_{19} & a_{20} & a_{21}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{3}\right) ; 1 \leq i \leq 21\right\}
\end{aligned}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}\left(\mathrm{Z}_{47}\right) \cup \mathrm{N}\left(\mathrm{Z}_{3}\right)$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left(\begin{array}{ccc}
a & a & a \\
a & a & a
\end{array}\right) \left\lvert\,\left\{a \in Z_{47} I\right\} \cup\left\{\left.\left(\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a & 0 & 0
\end{array}\right) \right\rvert\, a \in Z_{3} I\right\}\right.\right.
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a strong subneutrosophic bivector subspace of V over the neutrosophic bisubfield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=\mathrm{Z}_{47} \mathrm{I} \cup \mathrm{Z}_{3} \mathrm{I} \subseteq$ $N\left(Z_{47}\right) \cup N\left(Z_{3}\right)=F_{1} \cup F_{2}$.

Now we state a result which will prove the existence of strong subneutrosophic bivector subspaces.

THEOREM 2.3.6: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over a neutrosophic field $F=F_{1} \cup F_{2}$ where both F_{1} and F_{2} are of the form $F_{i}=N\left(K_{i}\right)$ where K_{i} is a real field; $i=1,2$ then V has a strong subneutrosophic bivector subspace provided V has neutrosophic bivector subspaces.

The proof of this theorem is left as an exercise for the reader.
DEFINITION 2.3.21: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. If V has no strong sub neutrosophic bivector subspaces then we call V to be a bisimple strong neutrosophic bivector space.

We will illustrate this by some simple examples.
Example 2.3.44: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccccc}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6} \\
\mathrm{x}_{7} & \mathrm{x}_{8} & \mathrm{x}_{9} & \mathrm{x}_{10} & \mathrm{x}_{11} & \mathrm{x}_{12}
\end{array}\right) \right\rvert\, \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{13} \mathrm{I} ; 1 \leq \mathrm{i} \leq 12\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & a \\
b & a & b \\
a & a & a \\
b & b & b \\
a & a & b \\
b & b & a \\
a & b & b \\
b & a & a
\end{array}\right) \right\rvert\, a, b \in Z_{5} I\right\}
$$

be a strong space over a neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{13} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$. We see there exists no strong neutrosophic bivector subspace for V . This is true as $F=F_{1} \cup F_{2}=Z_{13} I \cup Z_{5} I$ has no neutrosophic subbifield. Hence the claim that V is a bisimple strong subneutronsophic bivector space.

Example 2.3.45: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{N}\left(\mathrm{Z}_{19}\right)[\mathrm{x}]\right.$; all polynomial in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{19}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}\left(\mathrm{Z}_{23}\right) ; 1 \leq \mathrm{i} \leq 6\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{Z}_{19} \mathrm{I} \cup \mathrm{Z}_{23}$ I. Take any $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$; we see as F has no subbifield which is neutrosophic, V has no strong subneutrosophic bivector spaces; so V is a bisimple strong subneutrosophic bivector space.

Now we give a theorem which guarantees the existence of bisimple strong subneutrosophic bivector spaces.

THEOREM 2.3.7: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$, where F_{1} and F_{2} are of the form $K I$ where K is the prime real field of characteristic zero or a prime p. Then V is a bisimple strong subneutrosophic bivector space over the neutrosophic bifield F $=F_{1} \cup F_{2}$.

Proof: Given $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ and $\mathrm{F}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \mathrm{I}$ where K_{i} is a prime field, $i=1,2$. So F_{i} has no proper neutrosophic subfield for $\mathrm{i}=1,2$. Hence V cannot have a strong subneutrosophic bivector space over any subfield of the bifield F. Hence $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a bisimple strong subneutrosophic bivector space over F .

Thus we have proved the existence of bisimple strong subneutrosophic bivector spaces.

Now we proceed on to define the concept of linearly independent bisubset and the basis for the strong neutrosophic bivector spaces.

DEFINITION 2.3.22: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space defined over the neutrosophic bifield $F=F_{1} \cup$ F_{2}. A bisubset $S=S_{1} \cup S_{2} \subseteq V_{1} \cup V_{2}$ is said to be a linearly biindependent or bilinearly independent over F if each S_{i} is a linearly independent subset of V_{i} over $F_{i} ; i=1,2$. If $S=S_{1} \cup S_{2}$ be a linearly biindependent bisubset of V and if each S_{i} generates V_{i} over F_{i} for $i=1,2$ then we say S is a bibasis of $V=$ $V_{1} \cup V_{2}$ over $F=F_{1} \cup F_{2}$.

We will illustrate this situation by some examples.
Example 2.3.46: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\} \cup\left\{(\mathrm{a} \text { a } a) \mid \mathrm{a} \in \mathrm{~N}\left(\mathrm{Z}_{17}\right)\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{N}\left(\mathrm{Z}_{11}\right) \cup \mathrm{N}\left(\mathrm{Z}_{17}\right)$. Take $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=$

$$
\left.\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)\right\}\right\} \cup\left\{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} .
$$

S is a bibasis of V we say the bidimension of V is the (number of elements in S_{1}) \cup (number of elements in S_{2}) where $S=S_{1} \cup$ S_{2} is a bibasis of V over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and it is denoted by $\left(\left|\mathrm{S}_{1}\right|,\left|\mathrm{S}_{2}\right|\right)$ or $\left|\mathrm{S}_{1}\right| \cup\left|\mathrm{S}_{2}\right|$. We see the bidimension of $V=V_{1} \cup V_{2}$ in example 2.3.46 is (1, 1).

Example 2.3.47: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{17} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{Z}_{17} \mathrm{I}\right\} \cup\{(\mathrm{N}(\mathrm{Q}) \times \mathrm{N}(\mathrm{Q}) \times \mathrm{N}(\mathrm{Q}))\}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=Z_{17} I \cup N(Q)$.

Take $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\mathrm{I}, \mathrm{Ix}, \mathrm{Ix}^{2}, \ldots, \mathrm{Ix}{ }^{\mathrm{n}}, \ldots\right\} \cup\{(100)$, (010), $(001)\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{S}$ is a bibasis of V over the bifield $\mathrm{F}=\mathrm{Z}_{17} \mathrm{I} \cup$ $\mathrm{N}(\mathrm{Q})$ and bidimension of V over F is $(\infty, 3)$.

We say the bidimension is bifinite if both $\left|S_{1}\right|$ and $\left|S_{2}\right|$ are finite; even if one of $\left|S_{1}\right|$ or $\left|S_{2}\right|$ is not finite we say the bidimension of V is biinfinite over F . We see the bidimension of V given in example 2.3.47 is biinfinite.

Next we will prove that in general every linearly biindependent bisubset of a strong neutrosophic bisubset of a strong neutrosophic bivector space need not form a bibasis of V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ over $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

We will illustrate this by some examples.
Examples 2.3.48: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{19} I ; 1 \leq i \leq 8\right\} \cup
$$

$\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{11}\right) ; 1 \leq \mathrm{i} \leq 5\right\}$ be a strong neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{19} \mathrm{I}$ $\cup N\left(Z_{11}\right)$. Take $S=S_{1} \cup S_{2}=$

$$
\left\{\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
\mathrm{I} & 0 \\
0 & \mathrm{I} \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I} \\
0 & 0 \\
\mathrm{I} & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right)\right\} \cup
$$

$\{(\mathrm{I}, 0,0,0,0),(0, \mathrm{I}, \mathrm{I}, 0,0),(0,0, \mathrm{I}, 0, \mathrm{I})\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{S}$ is a linearly biindependent bisubset of V over the bifield $\mathrm{F}=\mathrm{Z}_{19} \mathrm{I} \cup$ $N\left(Z_{11}\right)$. Clearly S is not a bibasis of $V=V_{1} \cup V_{2}$ over $F=Z_{19} I$ $\cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$.

Example 2.3.49: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 8\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
b & a \\
a & a \\
b & b \\
c & c \\
c & a
\end{array}\right) \right\rvert\, a, b, c \in Z_{7} I\right\}
$$

be a strong neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}=\mathrm{QI} \cup \mathrm{Z}_{7} \mathrm{I}$. Take $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=$

$$
\left\{\left(\begin{array}{llll}
\mathrm{I} & \mathrm{I} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 3 \mathrm{I} & \mathrm{I} \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-3 \mathrm{I} & \mathrm{I} & 0 & 0
\end{array}\right)\right.
$$

$$
\begin{gathered}
\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 7 \mathrm{I}
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \mathrm{I}
\end{array}\right)\right\} \cup \\
\left\{\left[\begin{array}{cc}
\mathrm{I} & \mathrm{I} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\mathrm{I} & \mathrm{I}
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & \mathrm{I} \\
0 & \mathrm{I} \\
0 & 0 \\
\mathrm{I} & \mathrm{I} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\mathrm{I} & 0 \\
\mathrm{I} & 0 \\
0 & 0 \\
\mathrm{I} & 0
\end{array}\right]\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; S is a linearly biindependent bisubset of $\mathrm{V}=\mathrm{V}_{1} \cup$ V_{2} over $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{QI} \cup \mathrm{Z}_{7} \mathrm{I}$.

Now we will proceed on to define the notion of strong neutrosophic bilinear algebra or strong neutrosophic linear bialgebra.

DEFINITION 2.3.23: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. If each V_{i} is a neutrosophic linear algebra over the field $F_{i}, i=1$, 2 then we call $V=V_{1} \cup V_{2}$ to be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

We will illustrate this by some simple examples.
Example 2.3.50: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup
$$

$\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i} \in \mathrm{Z}_{11} \mathrm{I}\right\}$ be a strong neutrosophic bilinear algebra over the bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$.

Example 2.3.51: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{13}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{13} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{23} I\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{13} \mathrm{I} \cup \mathrm{Z}_{23} \mathrm{I}$.

We see in general all strong neutrosophic bivector spaces are not strong neutrosophic bilinear algebras. But all strong neutrosophic bilinear algebras are strong neutrosophic bivector spaces.

We will illustrate the former one by an example as the latter claim simply follows from the very definition of strong neutrosophic bilinear algebra.

Example 2.3.52: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right)\left|\mid a, b, c, d, e \in Z_{13} I\right\} \cup\right. \\
\left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{6} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} \\
a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I ; 1 \leq i \leq 10\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{13} \mathrm{I} \cup \mathrm{Z}_{7} \mathrm{I}$. We see $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is not a strong neutrosophic bilinear algebra over the bifield $F=F_{1} \cup F_{2}=Z_{13} I$ $\cup \mathrm{Z}_{7} \mathrm{I}$ as we see multiplication of elements within V_{i} are not defined for $\mathrm{i}=1,2$.

Now we define yet a new concept called quasi strong neutrosophic bilinear algebra.

DEFINITION 2.3.24: Let $V=V_{1} \cup V_{2}$ where V_{1} is a strong neutrosophic vector space over the neutrosophic field $F_{1}\left(V_{1}\right.$ is only a vector space and V_{2} is a strong neutrosophic linear algebra) over the neutrosophic field F_{2} then we call $V=V_{1} \cup$ V_{2} to be a quasi strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

We will illustrate this by the following examples.
Example 2.3.53: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & a_{3} & a_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & a_{7} & a_{8} \\
\mathrm{a}_{9} & \mathrm{a}_{10} & \mathrm{a}_{11} & a_{12}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{29} \mathrm{I} ; 1 \leq \mathrm{i} \leq 12\right\} \cup
$$

$\{\mathrm{QI}[\mathrm{x}]$; all polynomials in the variable x with coefficients from QI\} be a quasi strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{29} \mathrm{I} \cup \mathrm{QI}$.

Example 2.3.54: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccccccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\
\mathrm{a}_{8} & a_{9} & a_{10} & a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{5} \mathrm{I} ; 1 \leq i \leq 14\right\} \cup \\
\end{gathered}
$$

be a quasi strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{5} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I}$.

DEFINITION 2.3.25: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Suppose $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$ is such that W is a strong neutrosophic bilinear algebra over the neutrosophic field $F=$ $F_{1} \cup F_{2}$ then we call W to be a pseudo strong neutrosophic bilinear subalgebra of Vover $F=F_{1} \cup F_{2}$.

Example 2.3.55: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cc}
0 & x \\
y & 0
\end{array}\right) \right\rvert\, x, y \in Z_{7} I\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & a_{2} \\
0 & a_{3} & 0 \\
a_{4} & a_{5} & 0
\end{array}\right) \right\rvert\, a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \in Z_{5} I\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
0 & x \\
0 & 0
\end{array}\right) \right\rvert\, x \in Z_{7} I\right\} \cup\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & a_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a_{1}, a_{2} \in Z_{5} I\right\}
$$

to be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$, both W_{1} and W_{2} is closed under matrix multiplication. Thus $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ is a pseudo strong neutrosophic bilinear subalgebra of V over the neutrosophic bifield F.

Example 2.3.56: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{19} \mathrm{I}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
0 & 0 & \mathrm{~b} \\
\mathrm{c} & 0 & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{41} \mathrm{I}\right\}
\end{aligned}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{19} \mathrm{I} \cup \mathrm{Z}_{41} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
d & 0
\end{array}\right) \right\rvert\, d \in \mathrm{Z}_{19} \mathrm{I}\right\} \cup\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & d
\end{array}\right) \right\rvert\, a, d \in \mathrm{Z}_{41} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$. W is a pseudo strong neutrosophic bilinear sub algebra of V over the bifield $F=Z_{19} I \cup Z_{41} I$.

DEFINITION 2.3.26: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$, if W is a strong neutrosophic bivector space over F then we call W to be pseudo strong neutrosophic bivector subspace of V over F provided W is not a strong neutrosophic bilinear subalgebra of Vover F.

We will illustrate this situation by some Examples.
Example 2.3.57: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in N(Q)\right\} \cup \\
\\
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{7} I\right\}
\end{gathered}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{Z}_{7} \mathrm{I}$.
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
0 & 0 & a \\
0 & b & 0 \\
c & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathrm{QI}\right\} \cup\left\{\left.\left(\begin{array}{cc}
0 & a \\
b & 0
\end{array}\right) \right\rvert\, a, b \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo strong neutrosophic bivector subspace of V over F .

Example 2.3.58: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in\right. & \left.\mathrm{Z}_{2} \mathrm{I} ; \mathrm{x} \text { is a variable or indeterminate }\right\} \\
\cup & \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{3} \mathrm{I}\right\}
\end{aligned}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{2} \mathrm{I} \cup \mathrm{Z}_{3} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\sum_{i=0}^{9} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I} ; 0 \leq \mathrm{i} \leq 9\right\} \cup\left\{\left.\left(\begin{array}{ll}
0 & \mathrm{~b} \\
\mathrm{c} & 0
\end{array}\right) \right\rvert\, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{3} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a pseudo strong neutrosophic bivector subspace of V over the bifield F .

DEFINITION 2.3.27: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$, where one of W_{1} or W_{2} is alone a strong neutrosophic linear subalgebra and the other is just a strong neutrosophic vector subspace; then we call W to be a quasi strong neutrosophic bilinear subalgebra of V over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

We will illustrate this situation by some examples.
Example 2.3.59: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield F $=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{8} \mathrm{a}_{\mathrm{i}} \mathrm{i}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I} ; 0 \leq \mathrm{i} \leq 8\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$; W is a quasi strong neutrosophic bilinear subalgebra of V over $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I}$.

Example 2.3.60: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$\{\mathrm{N}(\mathrm{Q})[\mathrm{x}]$; all polynomials in the variable x with coefficients from $N(Q)\}$ be a strong neutrosophic bilinear algebra over the bifield $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup$ QI. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
0 & 0 & \mathrm{a} \\
0 & \mathrm{~b} & 0 \\
\mathrm{c} & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$\{\mathrm{QI}[\mathrm{x}]$; all polynomials in the variable x with coefficients from $\mathrm{QI}\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a quasi strong neutrosophic bilinear subalgebra of V over F.

Now we proceed onto define the notion of strong neutrosophic bilinear subalgebra.

DEFINITION 2.3.28: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subset V_{1} \cup V_{2}$ be a proper bisubset of V; if W is a strong neutrosophic bilinear algebra over the bifield $F=F_{1} \cup$
F_{2}; then we call $W=W_{1} \cup W_{2}$ to be a strong neutrosophic bilinear subalgebra of V over the bifield $F=F_{1} \cup F_{2}$.

We will illustrate this situation by some examples.
Example 2.3.61: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{41}\right)\right\} \cup
$$

$\left\{\mathrm{N}\left(\mathrm{Z}_{11}\right)[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{11}\right)\right\}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{41} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{41} \mathrm{I}\right\} \cup
$$

$\left\{\mathrm{Z}_{11} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{Z}_{11} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong neutrosophic bilinear subalgebra of V over the bifield $\mathrm{F}=\mathrm{Z}_{41} \mathrm{I}$ $\cup \mathrm{Z}_{11}$ I.

Example 2.3.62: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{Z}_{29} \mathrm{I}\right\} \cup
$$

$\left\{(\operatorname{abcdef}) \mid a, b, c, d, e, f \in Z_{53} I\right\}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{29} \mathrm{I} \cup \mathrm{Z}_{53} \mathrm{I}$. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{29} I\right\} \cup
$$

$\left\{(\mathrm{a} 0 \mathrm{~b} 0 \mathrm{~d} 0) \mid \mathrm{a}, \mathrm{b}, \mathrm{d} \in \mathrm{Z}_{53} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong neutrosophic bilinear subalgebra of V over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{29} \mathrm{I} \cup \mathrm{Z}_{53} \mathrm{I}$.

DEFINITION 2.3.29: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2} \subseteq V_{1} \cup V_{2}$; be such that W is a strong neutrosophic bilinear algebra over the proper neutrosophic bisubfield $K=K_{1} \cup K_{2} \subseteq F_{1} \cup F_{2} ; K_{i}$ is a proper neutrosophic subfield of $F_{i}, i=1$, 2. We call $W=W_{1} \cup W_{2}$ to be a strong subneutrosophic bilinear subalgebra of V over the neutrosophic subbifield $K=K_{1} \cup K_{2} \subseteq F_{1} \cup F_{2}$.

We will illustrate this by some examples.

Example 2.3.63: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, a, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$\left\{N\left(Z_{47}\right)[x]\right.$; all polynomials in the variable the x with coefficients from the neutrosophic field $\left.N\left(Z_{47}\right)\right\}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=$ $\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{47}\right)$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{QI}\right\} \cup
$$

$\left\{\mathrm{Z}_{47} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{Z}_{47} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong subneutrosophic bilinear subalgebra of V over the neutrosophic subbifield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=\mathrm{QI} \cup \mathrm{Z}_{47} \mathrm{I} \subseteq \mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{47}\right)$.

Example 2.3.64: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cccc}
a & b & c & d \\
0 & e & f & g \\
0 & 0 & h & i \\
0 & 0 & 0 & j
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j \in N\left(Z_{11}\right)\right\} \cup \\
\\
\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in N\left(Z_{17}\right)\right\}
\end{gathered}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}\left(\mathrm{Z}_{11}\right) \cup \mathrm{N}\left(\mathrm{Z}_{1} 7\right)$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
0 & a & a & a \\
0 & 0 & a & a \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{17} I\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} ; \mathrm{W}$ is a strong subneutrosophic bilinear subalgebra of V over the neutrosophic subbifield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I}$ $\subseteq \mathrm{N}\left(\mathrm{Z}_{11}\right) \cup \mathrm{N}\left(\mathrm{Z}_{17}\right)$.

A neutrosophic bifield $F=F_{1} \cup F_{2}$ is said to be neutrosophic biprime if both F_{1} and F_{2} have no proper neutrosophic subbifields contained in them. $\mathrm{F}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I}$ is neutrosophic biprime. $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{3} \mathrm{I}$ is neutrosophic biprime.

We see if F_{1} is a neutrosophic prime field then it is of the form QI or $\mathrm{Z}_{\mathrm{p}} \mathrm{I}$; p a prime.

Now we will define bisimple strong subneutrosophic linear bialgebra.

DEFINITION 2.3.30: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$. If V has no proper strong subneutrosophic bilinear subalgebra then we define V to be a bisimple strong subneutrosophic linear bialgebra.

We will illustrate this by some simple examples.
Example 2.3.65: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I}, 1 \leq \mathrm{i} \leq 6\right\}$ be a strong neutrosophic linear bialgebra over the neutrosophic bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{QI} \cup \mathrm{Z}_{7} \mathrm{I}$. Since F has no neutrosophic subbifield V is a bisimple strong subneutrosophic linear bialgebra over F .

Example 2.3.66: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \text { a,b,c,d,e,f,g,h,i, } \mathrm{Z}_{17} \mathrm{I}\right\} \cup
$$

$\left\{\mathrm{N}\left(\mathrm{Z}_{11}\right)[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{11}\right)\right\}$ be a strong neutrosophic linear bialgebra over the
neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$. Clearly V is a bisimple strong subneutrosophic bilinear algebra over F .

In view of this we have the following theorem.
THEOREM 2.3.8: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bilinear algebra over the bifield $F=F_{1} \cup F_{2}$ if each F_{i} is of the form $K_{i} I$ where K_{i} is a prime field $i=1,2$ then V is a bisimple strong subneutrosophic bilinear algebra over F.

Proof: Follows from the fact that $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$, the neutrosophic bifield has no proper neutrosophic subbifield.

Now as in case of strong neutrosophic bivector spaces we can define the bibasis of a strong neutrosophic bilinear algebra and linearly biindependent bisubset. This task is left as an exercise for the interested reader.

We define linear bitransformation of a strong neutrosophic bilinear algebra into a strong neutrosophic bilinear algebra which we choose to call as strong neutrosophic linear bitransformation or when the context of reference is clear we just call it as strong bilinear transformation or in short just bilinear transformation or linear bitransformation.

DEFINITION 2.3.31: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two strong neutrosophic bilinear algebras over the same neutrosophic bifield $F=F_{1} \cup F_{2}$. A bimap $T=T_{1} \cup T_{2}: V=V_{1}$ $\cup V_{2} \rightarrow W=W_{1} \cup W_{2}$ is defined to be a strong neutrosophic bilinear transformation or strong bilinear transformation or just bilinear transformation if each $T_{i}: V_{i} \rightarrow W_{i}$ is a linear transformation of V_{i} to W_{i} over F_{i} for $i=1,2$.

We will first illustrate this by some examples.
Example 2.3.67: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{11} I\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{(\mathrm{a}, \mathrm{b}$, $\left.c, d) \mid a, b, c, d \in Z_{17} I\right\} \cup\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right) \mid a_{i} \in\right.$ $\left.\mathrm{Z}_{11} \mathrm{I} ; 1 \leq \mathrm{i} \leq 9\right\}$ to be a strong neutrosophic bilinear algebra over the same neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$. The bimap $\mathrm{T}=\mathrm{T}_{1}$ $\cup \mathrm{T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2}=\mathrm{W}$ where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ defined by

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

and

$$
T_{2}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=(a, b, c, d, e, f, g, h, i)
$$

is a strong neutrosophic bilinear transformation of V to W .
Example 2.3.68: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{N}(\mathrm{Q})[\mathrm{x}]$, all polynomials in the variable x with coefficients from $N(Q)\} \cup$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{Z}_{2} \mathrm{I}\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{2} \mathrm{I}$. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; 0 \leq \mathrm{i} \leq \infty\right\} \cup
$$

$\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \mid a_{i} \in Z_{2} I ; 1 \leq i \leq 6\right\}$ be a strong neutrosophic bilinear space over the same neutrosophic bifield F $=\mathrm{QI} \cup \mathrm{Z}_{2} \mathrm{I}$. Define the bimap

$$
\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}
$$

where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{2}$ are defined by

$$
\mathrm{T}_{1}\left(\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\left(\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}}\right) \text { that is } \mathrm{x} \rightarrow \mathrm{x}^{2}
$$

and

$$
T_{2}\left(\begin{array}{lll}
a & b & c \\
g & d & e \\
h & i & f
\end{array}\right) \rightarrow(a, b, c, d, e, f)
$$

$\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is a strong neutrosophic bilinear transformation of V into W .

If in the definition of a bilinear transformation we put $\mathrm{W}=$ V i.e., $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ i.e., $\mathrm{V}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}$; $\mathrm{i}=1$, 2. That is the range bispace W is the same as the domain bispace then we call the strong neutrosophic bilinear transformation as the strong neutrosophic bilinear operator or strong neutrosophic linear bioperator on V.

We will illustrate this by some examples.

Example 2.3.69: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{5} \mathrm{I}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; 0 \leq \mathrm{i} \leq \infty\right\}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{5} \mathrm{I} \cup$ QI. Define $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ a bimap from $\mathrm{V}=\mathrm{V}_{1}$ $\cup V_{2}$ into $V=V_{1} \cup V_{2}$ where $T_{1}: V_{1} \rightarrow V_{1}$ and $T_{2}: V_{2} \rightarrow V_{2}$ is given by

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{d} & \mathrm{c} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right)
$$

and

$$
\mathrm{T}_{2}\left(\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\left(\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}}\right)
$$

i.e., $x \rightarrow x^{2}$. T is a strong neutrosophic linear bioperator on V.

Example 2.3.70: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(\mathrm{Q}) ; 1 \leq i \leq 6\right\} \cup
$$

$\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{i} \in Z_{11} I ; 1 \leq i \leq 5\right\}$ be a strong neutrosophic bilinear algebra over the bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{11}$ I. Define $\mathrm{T}=\mathrm{T}_{1} \cup$ $\mathrm{T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2}$ $\rightarrow \mathrm{V}_{2}$ given by

$$
\mathrm{T}_{1}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
0 & \mathrm{a}_{4} & \mathrm{a}_{5} \\
0 & 0 & \mathrm{a}_{6}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a}_{6} & \mathrm{a}_{5} & \mathrm{a}_{3} \\
0 & \mathrm{a}_{4} & \mathrm{a}_{2} \\
0 & 0 & \mathrm{a}_{1}
\end{array}\right)
$$

and

$$
T_{2}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{5}, a_{3}, a_{4}, a_{2}, a_{1}\right)
$$

$T=T_{1} \cup T_{2}$ is a strong neutrosophic bilinear operator on V.
It is interesting to study the collection of all strong neutrosophic linear transformation of strong neutrosophic bilinear algebra V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into a strong neutrosophic bilinear algebra $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}$ defined over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

We will denote this collection by

$$
\mathrm{SNH}_{\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}}(\mathrm{~V}, \mathrm{~W})=\mathrm{SNH}_{\mathrm{F}_{1}}\left(\mathrm{~V}_{1}, \mathrm{~W}_{1}\right) \cup \mathrm{SNH}_{\mathrm{F}_{2} \cdot}\left(\mathrm{~V}_{2}, \mathrm{~W}_{2}\right)
$$

$$
\begin{aligned}
= & \left\{\text { Collection of all bilinear transformation of } \mathrm{V}_{1} \cup \mathrm{~V}_{2}\right. \text { into } \\
& \left.\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right\} \\
= & \left\{\text { Collection of all linear transformation of } \mathrm{V}_{1} \text { into } \mathrm{W}_{1}\right\} \cup \\
& \left\{\text { Collection of all linear transformation of } \mathrm{V}_{2} \text { into } \mathrm{W}_{2}\right\} .
\end{aligned}
$$

Interested reader can study and analyse the algebraic structure of $\mathrm{SNH}_{\mathrm{F}_{1} \cup \mathrm{~F}_{2}}(\mathrm{~V}, \mathrm{~W})$. On similar lines the set of all strong neutrosophic bilinear operators (linear bioperators) of a strong neutrosophic linear bialgebra over the neutrosophic bifield $\mathrm{F}=$ $F_{1} \cup F_{2}$ is denoted by

$$
\begin{aligned}
\mathrm{SNH}_{\mathrm{F}_{1} \cup \mathrm{~F}_{2}}(\mathrm{~V}, \mathrm{~V}) & =\mathrm{SNH}_{\mathrm{F}_{\mathrm{F}}}\left(\mathrm{~V}_{1}, \mathrm{~V}_{1}\right) \cup \mathrm{SNH}_{\mathrm{F}_{2}}\left(\mathrm{~V}_{2}, \mathrm{~V}_{2}\right) \\
& =\operatorname{SNH}_{\mathrm{F}_{1} \cup \mathrm{~F}_{2}}\left(\mathrm{~V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~V}_{1} \cup \mathrm{~V}_{2}\right)
\end{aligned}
$$

$=\{$ Collection of all strong neutrosophic linear bioperators of $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into $\left.\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}\right\}$.
$=\left\{\right.$ Collection of all strong neutrosophic linear operators of V_{1} into $\left.\mathrm{V}_{1}\right\} \cup$ \{Collection of all strong neutrosophic linear operators on V_{2} into $\left.\mathrm{V}_{2}\right\}$.

Interested reader is requested to study the algebraic structure of $\mathrm{SNH}_{\mathrm{F}_{1} \cup \mathrm{~F}_{2}}(\mathrm{~V}, \mathrm{~V}) . \mathrm{We}$ will prove the following interesting property about strong neutrosophic linear bitransformation.

THEOREM 2.3.9: Let $V=V_{1} \cup V_{2}$ be a $\left(n_{1}, n_{2}\right)$ bidimensional finite strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $\left\{\alpha_{1}^{1} \ldots \alpha_{n_{i}}^{1}\right\} \cup\left\{\alpha_{1}^{2} \ldots \alpha_{n_{2}}^{2}\right\}$ be a bibasis of V over $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W_{2}$ be a strong neutrosophic bivector space over the same neutrosophic bifield $F=F_{1} \cup F_{2}$.

Let $\left\{\beta_{1}^{1} \ldots \beta_{n_{i}}^{1}\right\} \cup\left\{\beta_{1}^{2} \ldots \beta_{n_{2}}^{2}\right\}$ be any bivector in W. Then there is precisely a bilinear transformation $T=T_{1} \cup T_{2}$ from V $=V_{1} \cup V_{2}$ into $W=W_{1} \cup W_{2}$ such that $T_{i}\left(\alpha_{j}^{i}\right)=\left(\beta_{j}^{i}\right)$ for $j=$ $1,2, \ldots, n_{i}$ and $i=1,2$.

Proof: Given $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ are two strong neutrosophic bivector spaces defined over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$. Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}$.

Let $\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$ be a bibasis of V . Given $\left\{\beta_{1}^{1}, \beta_{2}^{1}, \ldots, \beta_{\mathrm{n}_{\mathrm{i}}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \beta_{2}^{2}, \ldots, \beta_{\mathrm{n}_{2}}^{2}\right\}$ is a bivector in $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}$. To prove there is a bilinear transformation $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ with $T_{i}\left(\alpha_{j}^{i}\right)=\left(\beta_{j}^{i}\right)$ for each $\mathrm{j}=1,2, \ldots, \mathrm{n}_{\mathrm{i}}$ and $\mathrm{i}=1$, 2. For every $\alpha=\alpha^{1} \cup \alpha^{2}$ in $V=V_{1} \cup V_{2}$ we have for every $\alpha^{i} \in V_{i}$ (i $=1,2$) a unique $x_{1}^{i}, x_{2}^{i}, \ldots, x_{n_{i}}^{i}$ such that

$$
\alpha^{i}=x_{1}^{i} \alpha_{1}^{i}+x_{2}^{i} \alpha_{2}^{i}+\ldots+x_{n_{i}}^{i} \alpha_{n_{i}}^{i} .
$$

This is true for every $i ; i=1$, 2 . For this vector α^{i} define

$$
\mathrm{T}_{\mathrm{i}}\left(\alpha^{i}\right)=\mathrm{x}_{1}^{\mathrm{i}} \beta_{1}^{i}+\mathrm{x}_{2}^{\mathrm{i}} \beta_{2}^{i}+\ldots+\mathrm{x}_{\mathrm{n}_{i}}^{\mathrm{i}} \beta_{\mathrm{n}_{1}}^{i}
$$

true for $\mathrm{i}=1,2$. Thus T_{i} is well defined for associating with each vector α^{i} in V_{i} a vector $T_{i} \alpha^{i}$ in $W_{i}(i=1,2)$. This rule for T $=T_{1} \cup T_{2}$ is a well defined rule for each $T_{i}: V_{i} \rightarrow W_{i} ; i=1,2$.

From the definition it is clear that $T_{i} \alpha_{j}^{i}=\beta_{j}^{i}$ for each j. To see T is bilinear. Let

$$
\beta^{i}=y_{1}^{i} \alpha_{1}^{i}+y_{2}^{i} \alpha_{2}^{i}+\ldots+y_{n_{i}}^{i} \alpha_{n_{i}}^{i}
$$

be in V and let C^{i} be any scalar from F_{i}. Now

$$
C^{i} \alpha^{i}+\beta^{i}=\left(C^{i} x_{1}^{i}+y_{1}^{i}\right) \beta_{1}^{i}+\ldots+\left(C^{i} x_{n_{i}}^{i}+y_{n_{i}}^{i}\right) \beta_{n_{i}}^{i} ;
$$

$\mathrm{i}=1,2$.
On the other hand

$$
T_{i}\left(C^{i} \alpha^{i}+\beta^{i}\right)=C^{i} \sum_{j=1}^{n_{1}} x_{j}^{i} \beta_{j}^{i}+\sum_{j=1}^{n_{2}} y_{j}^{i} \beta_{j}^{i}
$$

true for each $\mathrm{i}=1$, 2; i.e., true for every linear transformation T_{i} in T .

$$
\mathrm{T}_{\mathrm{i}}\left(\mathrm{C}^{\mathrm{i}} \alpha^{\mathrm{i}}+\beta^{\mathrm{i}}\right)=\mathrm{C}_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}\left(\alpha^{\mathrm{i}}\right)+\mathrm{T}_{\mathrm{i}}\left(\beta^{\mathrm{i}}\right)
$$

true for every i.
Thus

$$
T(C \alpha+\beta)=T_{1}\left(C_{1} \alpha_{1}+\beta_{1}\right)+T_{2}\left(C_{2} \alpha_{2}+\beta_{2}\right) .
$$

If $S=S_{1} \cup S_{2}$ is a bilinear transformation from $V=V_{1} \cup V_{2}$ into $W=W_{1} \cup W_{2}$ with $S_{i} \alpha_{j}^{i}=\beta_{j}^{i} ; j=1,2, \ldots, n_{i}, i=1,2$ then
for any bivector $\alpha=\alpha^{1} \cup \alpha^{2}$ we have for every α^{i} in $\alpha(i=1$, $2)$;

$$
\alpha^{i}=\sum_{j=1}^{n_{i}} x_{j}^{i} \alpha_{j}^{i}
$$

We have

$$
\begin{aligned}
S_{i} \alpha^{i} & =S_{i} \sum_{j=1}^{n_{i}} y_{j}^{i} \alpha_{j}^{i} \\
& =\sum_{j=1}^{n_{i}} x_{j}^{i} S_{i}\left(\alpha_{j}^{i}\right) \\
& =\sum_{j=1}^{n_{i}} x_{j}^{i} \beta_{j}^{i}
\end{aligned}
$$

so that S is exactly the rule T which we have defined. The prove $\mathrm{T}_{\alpha}=\beta$; i.e., if $\alpha=\alpha^{1} \cup \alpha^{2}$ and $\beta=\beta^{1} \cup \beta^{2}$ then $\mathrm{T}_{\mathrm{i}} \alpha_{\mathrm{j}}^{\mathrm{i}}=\beta_{\mathrm{j}}^{\mathrm{i}} ; 1 \leq$ $j \leq n_{i} ; i=1,2$.

The reader is requested to make the bimatrix analogue of the linear bitransformation from a strong neutrosophic bivector space V into a strong neutrosophic bivector space defined over the same neutrosophic bifield $F=F_{1} \cup F_{2}$.

Now we proceed onto define the notion of binull space or null bispace and birank of a bilinear transformation T .

DEFINITION 2.3.32: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two strong neutrosophic bivector spaces defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ of bidimensions $\left(n_{1}, n_{2}\right)$ and $\left(m_{1}, m_{2}\right)$ respectively. Let $T=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow W=W_{1}$ $\cup W_{2}$ be a bilinear transformation. The binull space or null bispace of $T=T_{1} \cup T_{2}$ is the set of all bivectors $a=\alpha_{1} \cup \alpha_{2}$ in V such that $T_{i} \alpha^{i}=0 ; i=1,2$.

If V is finite dimensional the birank of T is the dimension of the birange of $T=T_{1} \cup T_{2}$ and binullity of T is the dimension of the null bispace of T.

We have the following interesting relation between the birank of T and binullity of T .

THEOREM 2.3.10: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be strong neutrosophic bivector space defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and suppose V is finite say $\left(n_{1}, n_{2}\right)$ dimensional T is a linear bitransformation from V into W. Then birank $T+$ binullity $T=$ bidimension $V=\left(n_{1}, n_{2}\right)$. Thus (rank T_{1} $\left.\cup \operatorname{rank} T_{2}\right)+\left(\right.$ nullity $T_{1} \cup$ nullity $\left.T_{2}\right)=\left(n_{1}, n_{2}\right)$.

The proof is left as an exercise to the reader.
Now as in case of usual neutrosophic bivector spaces we have in case of strong neutrosophic bivector spaces the following result to be true.

Suppose $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be any two strong neutrosophic bivector spaces over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

Let T and S be strong neutrosophic linear bitransformations from V into W . The bifunction

$$
(\mathrm{T}+\mathrm{S})=\left(\mathrm{T}_{1} \cup \mathrm{~T}_{2}+\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)=\left(\mathrm{T}_{1}+\mathrm{S}_{1}\right) \cup\left(\mathrm{T}_{2}+\mathrm{S}\right)
$$

is defined by

$$
(\mathrm{T}+\mathrm{S}) \alpha=\mathrm{T} \alpha+\mathrm{S} \alpha ;
$$

i.e.,

$$
\begin{gathered}
\left(\mathrm{T}_{1} \cup \mathrm{~T}_{2}+\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)\left(\alpha_{1} \cup \alpha_{2}\right)=\left(\mathrm{T}_{1}+\mathrm{S}_{1}\right)\left(\alpha_{1}\right) \cup\left(\mathrm{T}_{2}+\mathrm{S}_{2}\right)\left(\alpha_{2}\right) \\
=\left(\mathrm{T}_{1} \alpha_{1}+\mathrm{S}_{1} \alpha_{1}\right) \cup \mathrm{T}_{2} \alpha_{2}+\mathrm{S}_{2} \alpha_{2} .
\end{gathered}
$$

For any $\mathrm{C} \in \mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{F}$ the bifunction CT is defined by $(\mathrm{CT}) \alpha=\mathrm{C}(\mathrm{T} \alpha)$ is a linear bitransformation from V into W . Further it can be proved that the set of all linear bitransformations from $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ together with addition and scalar multiplication defined above is a strong neutrosophic bivector space over the same neutrosophic bifield $F=F_{1} \cup F_{2}$. Further it can be proved that if $V=V_{1} \cup V_{2}$ be a finite bidimension ($\mathrm{n}_{1}, \mathrm{n}_{2}$) strong neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be a finite ($\mathrm{m}_{1}, \mathrm{~m}_{2}$) bidimension strong neutrosophic bivector space over the same neutrosophic bifield $F=F_{1} \cup F_{2}$, then the bispace $\mathrm{SNH}_{\mathrm{F}_{1} \cup \mathrm{~F}_{2}}(\mathrm{~V}, \mathrm{~W})=\mathrm{SNL}_{2}(\mathrm{~V}, \mathrm{~W})$ is a finite bidimensional bispace of bidimension $\left(\mathrm{m}_{1} \mathrm{n}_{1}, \mathrm{~m}_{2} \mathrm{n}_{2}\right)$ over the same neutrosophic bifield $F=F_{1} \cup F_{2}$. These results hold good when the strong
neutrosophic bivector spaces are strong neutrosophic bilinear algebras.

We now proceed onto define biinvertible bilinear transformation.

DEFINITION 2.3.33: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two strong neutrosophic bivector spaces defined over the same neutrosophic bifield $F=F_{1} \cup F_{2}$ of type II. A bilinear transformation $T=T_{1} \cup T_{2}$ from V into W is biinvertible if and only if
i. $\quad T=T_{1} \cup T_{2}$ is one to one that is each T_{i} is one to one from V_{i} into W_{i} such that $T_{i} \alpha_{i}=T_{i} \beta_{i}$ implies $\alpha_{i}=\beta_{i}$ true for each $i, i=1,2, \ldots, n$.
ii. $\quad T$ is onto, that is birange of T is all of $W=W_{1} \cup W_{2}$ i.e., each $T_{i}: V_{i} \rightarrow W_{i}$ is onto and range T_{i} is all of W_{i} true for every $i ; i=1,2$.

We will first illustrate this situation by some examples.
Example 2.3.71: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{i} \in Z_{11} I ; 1 \leq i \leq 5\right\}$ be a strong neutrosophic bilinear algebra defined over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup$ $\mathrm{Z}_{11} \mathrm{I}$. Define $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where

$$
\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1} \text { and } \mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}
$$

such that

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{b} & \mathrm{a} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right)
$$

and

$$
T_{2}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{5}, a_{4}, a_{3}, a_{2}, a_{1}\right) .
$$

Clearly $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is a strong neutrosophic linear bioperator of V into V .

Take $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ and define from $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ to $\mathrm{V}=\mathrm{V}_{1} \cup$ V_{2} by

$$
S_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{b} & \mathrm{a} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right)
$$

and

$$
S_{2}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{5}, a_{4}, a_{3}, a_{2}, a_{1}\right) .
$$

$S=S_{1} \cup S_{2}=T=T_{1} \cup T_{2}$ such that S is a strong neutrosophic linear bioperator of Vinto V .

We see $T_{1} \cdot T_{1}=T_{1} \cdot S_{1}=S_{1} \cdot T_{1}$ is identity linear bioperator on V. We have $\mathrm{S}_{1}=\mathrm{T}_{1}$.

For consider

$$
\begin{gathered}
\mathrm{T}_{1} \cdot \mathrm{~S}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\mathrm{S}_{1}\left[\mathrm{~T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\right] \\
=\mathrm{S}_{1}\left(\begin{array}{ll}
\mathrm{b} & \mathrm{a} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right) .
\end{gathered}
$$

Thus

$$
\mathrm{S}_{1} \mathrm{~T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right),
$$

hence

$$
\mathrm{S}_{1} \cdot \mathrm{~T}_{1}=\mathrm{T}_{1} \cdot \mathrm{~S}_{1}=\mathrm{T}_{1} \cdot \mathrm{~T}_{1}=\mathrm{S}_{1} \cdot \mathrm{~S}_{1}
$$

(as $S_{1}=T_{1}$) is such that $T_{1}=T_{1}^{-1}$.
Now consider $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ we see $\mathrm{T}_{2}=\mathrm{S}_{2}$

$$
\begin{gathered}
T_{2} \cdot S_{2}\left[\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)\right]=T_{2}\left(a_{5}, a_{4}, a_{3}, a_{2}, a_{1}\right) \\
=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \\
=\text { identity bioperator on } V_{2} .
\end{gathered}
$$

Thus $T_{2}=T_{2}^{-1}$. We see $T=T_{1} \cup T_{2}$ has the inverse bioperator $\mathrm{T}_{-1}=\mathrm{T}_{1}^{-1} \cup \mathrm{~T}_{2}^{-1}$ 。

Now we can also give an example of a linear bitransformation of strong neutrosophic bivector spaces (or bilinear algebras).

Example 2.3.72: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{Z}_{7} \mathrm{I}\right\} \\
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\}
\end{aligned}
$$

to be a strong neutrosophic bivector space over the same neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$. Define $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ where $\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow$ W_{2} such that

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & \mathrm{c} & \mathrm{~d}
\end{array}\right)
$$

and

$$
\mathrm{T}_{2}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & a_{6}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6}
\end{array}\right) .
$$

$T=T_{1} \cup T_{2}$ is a neutrosophic linear bitransformation of $V=V_{1}$ $\cup \mathrm{V}_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$.
Define a bimap $S=S_{1} \cup S_{2}$:

$$
\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}
$$

where $S_{1}: W_{1} \rightarrow V_{1}$ and $S_{2}: W_{2} \rightarrow V_{2}$ such that

$$
\mathrm{S}_{1}\left(\begin{array}{lll}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & \mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)
$$

and

$$
S_{2}\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) .
$$

$\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is clearly a linear transformation from $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2} to $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$.
Now we find T• S and S $\cdot T$.

$$
\mathrm{T} \cdot \mathrm{~S}=\mathrm{T}_{1} \cdot \mathrm{~S}_{1} \cup \mathrm{~T}_{2} \cdot \mathrm{~S}_{2}
$$

Now

$$
\begin{gathered}
\mathrm{T}_{1} \cdot \mathrm{~S}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\mathrm{S}_{1} \cdot \mathrm{~T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \\
=\mathrm{S}_{1}\left(\begin{array}{lll}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & \mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) .
\end{gathered}
$$

That is $\mathrm{T}_{1} \cdot \mathrm{~S}_{1}$ is the identity transformation of V_{1}. Now consider

$$
\begin{aligned}
& \mathrm{S}_{1} \cdot \mathrm{~T}_{1}\left(\begin{array}{ccc}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & \mathrm{c} & \mathrm{~d}
\end{array}\right)=\mathrm{T}_{1}\left(\mathrm{~S}_{1}\left(\begin{array}{ccc}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & \mathrm{c} & \mathrm{~d}
\end{array}\right)\right) \\
&=\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{a} & 0 & \mathrm{~b} \\
0 & \mathrm{c} & \mathrm{~d}
\end{array}\right) .
\end{aligned}
$$

Thus $\mathrm{S}_{1} \cdot \mathrm{~T}_{1}$ is the identity transformation of W_{1}.
Now consider

$$
\begin{aligned}
\mathrm{T}_{2} \cdot \mathrm{~S}_{2}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\mathrm{S}_{2}\left(\mathrm{~T}_{2}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & a_{6}
\end{array}\right)\right) \\
=\mathrm{S}_{2}\left(\begin{array}{ll}
\mathrm{a}_{1} & a_{2} \\
\mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & a_{3} \\
\mathrm{a}_{4} & a_{5} & a_{6}
\end{array}\right) .
\end{aligned}
$$

Thus $\mathrm{T}_{2} \cdot \mathrm{~S}_{2}$ is the identity linear transformation on V_{2}.
Consider

$$
\begin{gathered}
\mathrm{S}_{2} \cdot \mathrm{~T}_{2}\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\mathrm{T}_{2} \mathrm{~S}_{2}\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6}
\end{array}\right) \\
=\mathrm{T}_{2}\left(\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a}_{1} & a_{2} \\
\mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6}
\end{array}\right) .
\end{gathered}
$$

Thus $\mathrm{S}_{2} \cdot \mathrm{~T}_{2}$ is the identity linear transformation on W_{2}. Thus T . $\mathrm{S}=\mathrm{T}_{1} \cdot \mathrm{~S}_{1} \cup \mathrm{~T}_{2} \cdot \mathrm{~S}_{2}$ is the identity bilinear transformation on V_{1} $\cup \mathrm{V}_{2}$ and $\mathrm{S} \cdot \mathrm{T}=\mathrm{S}_{1} \cdot \mathrm{~T}_{1} \cup \mathrm{~S}_{2} \cdot \mathrm{~T}_{2}$ is the identity linear bitransformation on $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$.

In view of this example the reader is requested to prove the following result.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be two strong neutrosophic bivector spaces defined over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup$ F_{2} of type II. Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ be a strong linear bitransformation from $V=V_{1} \cup V_{2}$ into $W=W_{1} \cup W_{2}$. If T is biinvertible then the biinverse bifunction $\mathrm{T}^{-1}=\mathrm{T}_{1}^{-1} \cup \mathrm{~T}_{2}^{-1}$ is a bilinear transformation from W into V .

Suppose $T=T_{1} \cup T_{2}$ is a linear bitransformation from the strong neutrosophic bivector spaces $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2}$ then T is binon singular if and only if T carries each
bilinearly independent bisubset of $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into a bilinearly independent bisubset of $W=W_{1} \cup W_{2}$.

The following nice result is left as an exercise for the reader.
THEOREM 2.3.11: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be a strong neutrosophic bivector spaces defined over the same neutrosophic bifield $F=F_{1} \cup F_{2}$ of type II. If $T=T_{1} \cup T_{2}$ is a bilinear transformation of V into W then the following are equivalent.
i. $\quad T=T_{1} \cup T_{2}$ is biinvertible
ii. $\quad T=T_{1} \cup T_{2}$ is binon singular
iii. $\quad T=T_{1} \cup T_{2}$ is onto that is the birange of $T=T_{1} \cup T_{2}$ is $W=W_{1} \cup W_{2}$.

We prove an important result.
THEOREM 2.3.12: Every (n_{1}, n_{2}) bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ is biisomorphic to $F_{1}^{n_{1}} \cup F_{2}^{n_{2}}$.

Proof: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a ($\mathrm{n}_{1}, \mathrm{n}_{2}$) bidimensional strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}$ of type II. Let $\mathrm{B}=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$ be a bibasis of V . We define a bifunction $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ from $\mathrm{V}=\mathrm{V}_{1}$ $\cup \mathrm{V}_{2}$ into $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$ is follows.

If $\alpha=\alpha_{1} \cup \alpha_{2}$ is in $V=V_{1} \cup V_{2}$, let $T \alpha=T_{1}\left(\alpha_{1}\right) \cup T_{2}\left(\alpha_{2}\right)$ be the $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ pair, $\left(\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{1}, \ldots, \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup\left(\mathrm{x}_{2}^{1}, \mathrm{x}_{2}^{2}, \ldots, \mathrm{x}_{\mathrm{n}_{2}}^{2}\right)$ of the bicoordinate of $\alpha=\alpha_{1} \cup \alpha_{2}$ relative to the biordered bibasis B; i.e., the ($\mathrm{n}_{1}, \mathrm{n}_{2}$) pair such that

$$
\alpha=x_{1}^{1} \alpha_{1}^{1}+x_{2}^{1} \alpha_{2}^{1}+\ldots+x_{n_{1}}^{1} \alpha_{n_{1}}^{1} \cup x_{1}^{2} \alpha_{1}^{2}+x_{2}^{2} \alpha_{2}^{2}+\ldots+x_{n_{2}}^{2} \alpha_{n_{2}}^{2} .
$$

Clearly T is a linear bitransformation; T is a one to one map of $V=V_{1} \cup V_{2}$ onto $F_{1}^{\mathrm{n}_{1}} \cup F_{2}^{\mathrm{n}_{2}}$ or each T_{i} is linear and one to one and maps V_{i} to $\mathrm{F}_{\mathrm{i}}^{\mathrm{n}_{\mathrm{i}}} ; \mathrm{i}=1,2$ for every i . Thus as in case of vector space transformation by matrices give a representation of
bitransformation by bimatrices where the bimatrices are neutrosophic bimatrices.

Let $V=V_{1} \cup V_{2}$ be a bivector space of ($\mathrm{n}_{1}, \mathrm{n}_{2}$) bidimension over $F=F_{1} \cup F_{2}$. Let $W=W_{1} \cup W$ be a bivector space over the same bifield $F=F_{1} \cup F_{2}$ of $\left(m_{1}, m_{2}\right)$ dimension. Let

$$
B=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}
$$

be a bibasis of $V=V_{1} \cup V_{2}$ and

$$
C=\left\{\beta_{1}^{1}, \beta_{2}^{1}, \ldots, \beta_{m_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \beta_{2}^{2}, \ldots, \beta_{m_{2}}^{2}\right\}
$$

be a bibasis for W . If $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is any bilinear transformation of type II from $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ then T_{i} is determined by its action on $\alpha^{i}, i=1,2$. Each of the (n_{1}, n_{2}) pair vector; $T_{i} \alpha_{j}^{i} ; j=1,2, \ldots, n . i=1,2$ is uniquely expressible as a linear combination

$$
\mathrm{T}_{\mathrm{i}} \alpha_{\mathrm{j}}^{\mathrm{i}}=\sum_{\mathrm{k}_{\mathrm{i}}-1}^{m_{i}} A_{\mathrm{k}_{\mathrm{i}, \mathrm{j}}^{i}}^{i} \beta_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}} .
$$

This is true for every $\mathrm{i}, 1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{i}}$; $\mathrm{i}=1$, 2; of $\beta_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}$; the scalars being the coordinates of $A_{i j}^{i}, \ldots, A_{m_{j}}^{i} . T_{i} \alpha_{j}^{i}$ in the basis $\beta_{1}^{i}, \ldots, \beta_{m_{i}}^{i}$ of C. True for each $\mathrm{i} ; \mathrm{i}=1,2$.

Accordingly the bitransformation $T=T_{1} \cup T_{2}$ is determined by the $\left(m_{1} n_{1}, m_{2} n_{2}\right)$ scalars $A_{k_{i} \mathrm{j}}^{\mathrm{i}}$. The $\mathrm{m}_{\mathrm{i}} \times \mathrm{n}_{\mathrm{i}}$ neutrosophic matrix A^{i} defined by $A_{k_{i} j}^{i}$ is called the component neutrosophic matrix T_{i} of T relative to the component basis $\left\{\alpha_{1}^{i}, \alpha_{2}^{i}, \ldots, \alpha_{n_{i}}^{i}\right\}$ and $\left\{\beta_{1}^{i}, \beta_{2}^{i}, \ldots, \beta_{m_{i}}^{i}\right\}$ of B and C respectively. Since this is true for every i; $i=1,2$; We have $A=A_{k_{1} j}^{1} \cup A_{k_{2} j}^{2}=A^{1} \cup A^{2}$ the neutrosophic bimatrix associated with $T=T_{1} \cup T_{2}$. Each A^{i} determines the linear transformation T_{i}; for $\mathrm{i}=1$, 2. If $\alpha^{\mathrm{i}}=$ $x_{1}^{i} \alpha_{1}^{i}+x_{2}^{i} \alpha_{2}^{i}+\ldots+x_{n_{i}}^{i} \cdot \alpha_{n_{i}}^{i}$ is a neutrosophic vector in V_{i} then

$$
T_{i} \alpha^{i}=\left(T_{i} \sum_{j=1}^{n_{i}} x_{j}^{i} \alpha_{j}^{i}\right)=\left(\sum_{j=1}^{n_{i}} x_{j}^{i} T_{i} \alpha_{j}^{i}\right)
$$

$$
=\left(\sum_{j=1}^{n_{i}} x_{j}^{i} \sum_{k=1}^{m_{i}} A_{k_{i} j}^{i} \beta_{k_{i}}^{i}\right)=\left(\sum_{k=1}^{m_{i}} \sum_{j=1}^{n_{i}}\left(A_{k_{i} j}^{i} x_{j}^{i}\right) \beta_{k_{i}}^{i}\right) ; i=1,2 .
$$

If X^{i} is the coordinate neutrosophic matrix of α^{i} in the component bibasis of B then the above computation shows that $A^{i} X^{i}$ is the coordinate neutrosophic matrix of the vector $T^{i} \alpha^{i}$; that is the component of the bibasis C because the scalar

$$
\left(\sum_{j=1}^{n_{i}} A_{k_{i} j}^{i} x_{k_{i}}^{i}\right)
$$

is the $k^{\text {th }}$ row of the column neutrosophic matrix $A^{i} X^{i}$. This is true for every $i ; i=1$, 2 . Let us also observe that if A^{i} is any m_{i} $\times \mathrm{n}_{\mathrm{i}}$ neutrosophic matrix over the neutrosophic field F_{i}, then

$$
T_{i}\left(\sum_{j=1}^{n_{i}} x_{j}^{i} \alpha_{j}^{i}\right)=\left(\sum_{k=1}^{m_{i}}\left(\sum_{j=1}^{n_{i}} A_{k_{i j}}^{i} X_{k_{j}}^{i}\right) \beta_{k_{i}}^{i}\right)
$$

defines a linear transformation T_{i} from V_{i} into W_{i}, the neutrosophic matrix of which is A^{i} relative to $\left\{\alpha_{1}^{i}, \alpha_{2}^{i}, \ldots, \alpha_{n_{i}}^{i}\right\}$ and $\left\{\beta_{1}^{i}, \beta_{2}^{i}, \ldots, \beta_{m_{i}}^{i}\right\}$; this is true for every i and $i=1,2$. Hence $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ is a linear bitransformation from $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$, the neutrosophic bimatrix which is $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}$ relative to the bibasis $B=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$ and $C=\left\{\beta_{1}^{1}, \beta_{2}^{1}, \ldots, \beta_{m_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \beta_{2}^{2}, \ldots, \beta_{m_{2}}^{2}\right\}$.

Now as in case of bivector spaces of type II we can in case of strong neutrosophic bivector spaces prove that we can construct a biisomorphism between the strong neutrosophic bispace $\mathrm{NL}_{2}(\mathrm{~V}, \mathrm{~W})$ and the neutrosophic bispace of all neutrosophic bimatrices of biorder $\left(m_{1} \times n_{1}, m_{2} \times n_{2}\right)$ over the same neutrosophic bifield $F=F_{1} \cup F_{2}$ over which $V=V_{1} \cup V_{2}$
and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ are defined as strong neutrosophic bivector spaces of bidimensions ($\mathrm{n}_{1}, \mathrm{n}_{2}$) and ($\mathrm{m}_{1}, \mathrm{~m}_{2}$) respectively.

Now we will proceed onto define the notion of bilinear functionals or which we may call as linear bifunctionals. We know linear bifunctionals could not be defined for neutrosophic bivectors spaces of type I.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ of type II. A bilinear transformation or linear bitransformation $f=f_{1} \cup f_{2}$ from V into the bifield $F=F_{1} \cup F_{2}$ is defined as the linear bifunctional or bilinear functional on V, i.e., $f=f_{1} \cup f_{2}$ is a bifunction from $V=$ $V_{1} \cup V_{2}$ into $F=F_{1} \cup F_{2}$ such that
$f(c \alpha+\beta)=f_{1}\left(c_{1} \alpha_{1}+\beta_{1}\right)+f_{2}\left(c_{2} \alpha_{2}+\beta_{2}\right)$
$=\left\{\mathrm{c}_{1} \mathrm{f}_{1}\left(\alpha_{1}\right) \cup \mathrm{c}_{2} \mathrm{f}_{2}\left(\alpha_{2}\right)\right\}+\left\{\mathrm{f}_{1}\left(\beta_{1}\right) \cup \mathrm{f}_{2}\left(\beta_{2}\right)\right\}$
where $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2}$ and $\alpha=\alpha_{1} \cup \alpha_{2}$ and $\beta=\beta_{1} \cup \beta_{2}, \beta_{\mathrm{i}} \alpha_{\mathrm{i}} \in \mathrm{V}_{\mathrm{i}}$, i $=1$, 2. That is $f=f_{1} \cup f_{2}$ where each f_{i} is a linear functional on $V_{i} ; i=1,2$.

The following observations are both interesting and important. Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ be a neutrosophic bifield and let $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$ be a strong neutrosophic bivector space of type II over the bifield F_{1} $\cup \mathrm{F}_{2}$. A bilinear functional $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$ from $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$ to $\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ given by

$$
\begin{gathered}
\mathrm{f}_{1}\left(\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{1}, \ldots, \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup \mathrm{f}_{2}\left(\mathrm{x}_{2}^{1}, \mathrm{x}_{2}^{2}, \ldots, \mathrm{x}_{\mathrm{n}_{2}}^{2}\right) \\
=\mathrm{x}_{1}^{1} \alpha_{1}^{1}+\mathrm{x}_{2}^{1} \alpha_{2}^{1}+\ldots+\mathrm{x}_{\mathrm{n}_{1}}^{1} \cdot \alpha_{\mathrm{n}_{1}}^{1} \cup \mathrm{x}_{1}^{2} \alpha_{1}^{2}+\mathrm{x}_{2}^{2} \alpha_{2}^{2}+\ldots+\mathrm{x}_{\mathrm{n}_{2}}^{2} \cdot \alpha_{\mathrm{n}_{2}}^{2}
\end{gathered}
$$

where $\alpha_{j}^{i} \in F_{i} ; 1 \leq j \leq n_{i}$ and $i=1,2$; is a bilinear functional of $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$.

It is the bilinear functional which is represented by the neutrosophic bimatrix

$$
\left[\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right] \cup\left[\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right]
$$

relative to the standard bibasis for $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$ on the bibasis $\{1\}$ $\cup\{1\}$ or $\{\mathrm{I}\} \cup\{\mathrm{I}\}$ for $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ depending on $\mathrm{F}_{\mathrm{i}}=\mathrm{N}\left(\mathrm{K}_{\mathrm{i}}\right)$ or $\mathrm{F}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \mathrm{I}$ respectively; K_{i} - real field; $\mathrm{i}=1,2$.
$\alpha_{j}^{i}=f_{i}\left(E_{j}^{i}\right) ; j=1,2, \ldots, n_{i}$ for every $i=1,2$. Every bilinear functional on $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$ is of this form for some biscalar $\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$. This is immediate from the definition of bilinear functional of type II because we define α_{j}^{i} $=f_{i}\left(E_{j}^{i}\right)$. Hence

$$
\begin{aligned}
f_{1}\left(x_{1}^{1}, x_{2}^{1}\right. & \left., \ldots, x_{n_{1}}^{1}\right) \cup f_{2}\left(x_{2}^{1}, x_{2}^{2}, \ldots, x_{n_{2}}^{2}\right) \\
& =f_{1}\left(\sum_{j=1}^{n_{1}} x_{j}^{1} E_{j}^{1}\right) \cup f_{2}\left(\sum_{j=1}^{n_{2}} x_{j}^{2} E_{j}^{2}\right) \\
& =\sum_{j=1}^{n_{1}} x_{j}^{1} f_{1}\left(E_{j}^{1}\right) \cup \sum_{j=1}^{n_{2}} x_{j}^{2} f_{2}\left(E_{j}^{2}\right) \\
& =\sum_{j=1}^{n_{1}} x_{j}^{1} \alpha_{j}^{1} \cup \sum_{j=1}^{n_{2}} x_{j}^{2} \alpha_{j}^{2} .
\end{aligned}
$$

Now we proceed onto define the new notion of strong neutrosophic bidual space or equivalently strong dual bispace of the strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ defined over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ of type II.

Now as in case of $\operatorname{SNL}^{2}(\mathrm{~V}, \mathrm{~W})=\operatorname{SNL}\left(\mathrm{V}_{1}, \mathrm{~W}_{1}\right) \cup \operatorname{SNL}\left(\mathrm{V}_{2}\right.$, W_{2}) we in case of bilinear functional have $\mathrm{SNL}^{2}(\mathrm{~V}, \mathrm{~F})=$ $\operatorname{SNL}\left(\mathrm{V}_{1}, \mathrm{~F}_{1}\right) \cup \operatorname{SNL}\left(\mathrm{V}_{2}, \mathrm{~F}_{2}\right)$. We define $\mathrm{V}^{*}=\operatorname{SNL}^{2}(\mathrm{~V}, \mathrm{~F})=$ $\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*}=\operatorname{SNL}\left(\mathrm{V}_{1}, \mathrm{~F}_{1}\right) \cup \operatorname{SNL}\left(\mathrm{V}_{2}, \mathrm{~F}_{2}\right)$

That is each V_{i}^{*} is the strong neutrosophic dual space of V_{i}, V_{i} defined over $F_{i}, i=1,2$. We know if the strong neutrosophic vector space V_{i}, $\operatorname{dim} V_{i}=\operatorname{dim} V_{i}^{*}$ for every $i, 1 \leq i \leq 2$.
Thus

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim} V_{1} \cup \operatorname{dim} V_{2} \\
& =\operatorname{dim} V^{*} \\
& =\operatorname{dim} V_{1}^{*} \cup \operatorname{dim} V_{2}^{*} .
\end{aligned}
$$

If $B=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$ is a bibasis for $V=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$, then we know for a bilinear function of type II, $\mathrm{f}=\mathrm{f}_{1}$
$\cup f_{2}$ we have f_{k} on V_{k} is such that $f_{i}^{k}\left(\alpha_{j}^{k}\right)=\delta_{i j}^{k}$ true for $k=1$, 2. In this way we obtain from the biset $B=B_{1} \cup B_{2}$ a pair of n_{i} sets of distinct bifunctionals $(\mathrm{i}=1,2) ;\left\{\mathrm{f}_{1}^{1}, \mathrm{f}_{2}^{1}, \ldots, \mathrm{f}_{\mathrm{n}_{1}}^{1}\right\} \cup$ $\left\{\mathrm{f}_{1}^{2}, \mathrm{f}_{2}^{2}, \ldots, \mathrm{f}_{\mathrm{n}_{2}}^{2}\right\}$ on $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$. These bifunctionals are also bilinearly independent over the bifield $F=F_{1} \cup F_{2}$, i.e., $\left\{f_{1}^{i}, f_{2}^{i}, \ldots, f_{n_{i}}^{i}\right\}$ is linearly independent on V_{i} over the neutrosophic field F_{i}, for every $\mathrm{i}, 1 \leq \mathrm{i} \leq 2$. Thus

$$
f^{i}=\left(\sum_{j=1}^{n_{i}} c_{j}^{1} f_{j}^{1}\right), i=1,2 .
$$

That is

$$
\begin{aligned}
& \mathrm{f} \quad=\quad \sum_{j=1}^{\mathrm{n}_{1}} \mathrm{c}_{\mathrm{j}}^{1} \mathrm{f}_{\mathrm{j}}^{1} \cup \sum_{\mathrm{j}=1}^{\mathrm{n}_{2}} \mathrm{c}_{\mathrm{j}}^{2} \mathrm{f}_{\mathrm{j}}^{2} \text {. } \\
& f^{i}\left(\alpha_{j}^{i}\right)=\sum_{k=1}^{n_{i}} c_{k}^{i} f_{k}^{i}\left(\alpha_{j}^{k}\right) \\
& =\sum_{\mathrm{k}=1}^{\mathrm{n}_{\mathrm{i}}} \mathrm{c}_{\mathrm{i}}^{\mathrm{i}} \delta_{\mathrm{ki}} \\
& =c_{j}^{i} \text {. }
\end{aligned}
$$

This is true for $\mathrm{i}=1,2$ and $1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{i}}$.
In particular if each f_{i} is a zero functional $f^{i} \alpha_{j}^{1}=0$ for each j and hence the scalar c_{j}^{i} are all zero. Thus $\left\{f_{1}^{i}, f_{2}^{i}, \ldots, f_{n_{i}}^{i}\right\}$ are n_{i} linearly independent linear functionals of V_{i} defined on F_{i}, true for each $\mathrm{i} ; 1 \leq \mathrm{i} \leq 2$. Since V_{i}^{*} is of dimension n_{i}; it must be that $\left\{f_{1}^{i}, f_{2}^{i}, \ldots, f_{n_{i}}^{i}\right\}$ is a basis of V_{i}^{*} which is the dual basis of B. Thus $B^{*}=B_{1}^{*} \cup B_{2}^{*}=\left\{f_{1}^{1}, f_{2}^{1}, \ldots, f_{n_{1}}^{1}\right\} \cup\left\{f_{1}^{2}, f_{2}^{2}, \ldots, f_{n_{2}}^{2}\right\}$ is the bidual basis or dual bibasis of $B=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$. B^{*} forms the bibasis of $V^{*}=V_{1}^{*} \cup V_{2}^{*}$.

Interested reader is left with the task of proving the following theorem.

THEOREM 2.3.13: Let $V=V_{1} \cup V_{2}$ be a finite $\left(n_{1}, n_{2}\right)$ bidimension strong neutrosophic bivector space defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $B=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\}$ $\cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}=B_{1} \cup B_{2}$ be a bibasis for $V=V_{1} \cup V_{2}$. There is a unique bidual basis (dual bibasis) $B=B_{1}^{*} \cup B_{2}^{*}=$ $\left\{f_{1}^{1}, f_{2}^{1}, \ldots, f_{n_{1}}^{1}\right\} \cup\left\{f_{1}^{2}, f_{2}^{2}, \ldots, f_{n_{2}}^{2}\right\}$ for $V^{*}=V_{1}^{*} \cup V_{2}^{*}$ such that $f_{i}^{k}\left(\alpha_{j}\right)=\delta_{i j}^{k}$. For each bilinear functional $f=f^{1} \cup f^{2}$ we have

$$
f=\left(\sum_{k=1}^{n_{i}} f^{i}\left(\alpha_{k}^{i}\right) f_{k}^{i}\right)
$$

That is

$$
f=\left(\sum_{k=1}^{n_{1}} f^{1}\left(\alpha_{k}^{1}\right) f_{k}^{1}\right) \cup\left(\sum_{k=1}^{n_{2}} f^{2}\left(\alpha_{k}^{2}\right) f_{k}^{2}\right)
$$

and for each bivector $\alpha=\alpha^{1} \cup \alpha^{2}$ in $V=V_{1} \cup V_{2}$ we have

$$
\alpha=\left(\sum_{k=1}^{n_{i}} f_{k}^{1}\left(\alpha^{1}\right) \alpha_{k}^{1}\right) \cup\left(\sum_{k=1}^{n_{2}} f_{k}^{2}\left(\alpha^{2}\right) \alpha_{k}^{2}\right) .
$$

Now we proceed onto defined yet a new feature of the strong neutrosophic bivector space of type II.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a strong neutrosophic bivector space defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ of type II. Let $S=S_{1} \cup S_{2}$ be a bisubset of $V=V_{1} \cup V_{2}$ (that is $S_{i} \subseteq V_{i} ; i=1$, 2); the biannihilator of S is $S^{\circ}=S_{1}^{\circ} \cup S_{2}^{\circ}$ of bilinear functionals on $V=V_{1} \cup V_{2}$ such that $f(\alpha)=0 \cup 0$ i.e., if $f=f^{1} \cup f^{2}$ for every $\alpha=\alpha_{1} \cup \alpha_{2} \in S=S_{1} \cup S_{2}\left(\alpha_{1} \in S_{1}, \alpha_{2} \in S_{2}\right) ; \mathrm{f}^{\mathrm{i}}\left(\alpha_{\mathrm{i}}\right)=0$ for every $\alpha_{i} \in S_{i} ; i=1,2$.

It is interesting to note that $S^{\circ}=S_{1}^{\circ} \cup S_{2}^{\circ}$ is a strong neutrosophic bisubspace of $\mathrm{V}^{*}=\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*}$; whether $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a bisubspace of $V=V_{1} \cup V_{2}$ or only just a bisubset of $V=V_{1}$
$\cup V_{2}$. If $S=(0 \cup 0)$ then $S^{\circ}=V^{*}=V_{1}^{*} \cup V_{2}^{*}$. If $S=V$, i.e., V_{1} $\cup V_{2}=S_{1} \cup S_{2}$ then S° is just the zero bisubspace of $\mathrm{V}^{*}=$ $\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*}$.

We leave the following theorem for the reader to prove.
THEOREM 2.3.14: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space of $\left(n_{1}, n_{2}\right)$ bidimension over the neutrosophic bifield $F=F_{1} \cup F_{2}$ of type II. Let $W=W_{1} \cup W_{2}$ be a strong neutrosophic bisubspace of $V=V_{1} \cup V_{2}$. Then $\operatorname{dim} W+\operatorname{dim} W^{\circ}$ $=\operatorname{dim} V$ that is $\left(\operatorname{dim} W_{1} \cup \operatorname{dim} W_{2}\right)+\operatorname{dim} W_{1}^{\circ} \cup \operatorname{dim} W_{2}^{\circ}=\operatorname{dim}$ $V_{1} \cup \operatorname{dim} V_{2}=\left(n_{1}, n_{2}\right)$. (That is if $\operatorname{dim} W=\left(k_{1}, k_{2}\right)=\operatorname{dim} W_{1} \cup$ $\operatorname{dim} W_{2}$ that is $\left.\left(k_{1}, k_{2}\right)+\left(n_{1}-k_{1}, n_{2}-k_{2}\right)=\left(n_{1}, n_{2}\right)\right)$.

Now only in case of strong neutrosophic bivector spaces of finite ($\mathrm{n}_{1}, \mathrm{n}_{2}$) bidimension over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}$ we are in a position to define the strong neutrosophic bihyper subspaces of $V=V_{1} \cup V_{2}$.

Suppose $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ of $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ bidimension. $\mathrm{f}=\mathrm{f}^{1} \cup \mathrm{f}^{2}$ be a bilinear functional on V . The binull space of f or the null bisubspace of f denoted by $\mathrm{N}_{\mathrm{f}}=$ $\mathrm{N}_{\mathrm{f}^{1}}^{1} \cup \mathrm{~N}_{\mathrm{f}^{2}}^{2}$.

The bidimension of $N_{f}=\operatorname{dim} N_{f^{1}}^{1} \cup N_{f^{2}}^{2}$; but $\operatorname{dim} N_{f^{i}}^{i}=\operatorname{dim}$ $V_{i}^{-1}=n_{i}-1$ true for $i=1,2$. Thus bidimensin of $N_{f}=\operatorname{dim}\left(V_{1}-\right.$ 1) $\cup \operatorname{dim}\left(V_{2}-1\right)=\operatorname{dim} N_{f^{1}}^{1} \cup \operatorname{dim} N_{f^{2}}^{2}$.

We know in a vector space of dimension n a subspace of dimension $n-1$ is called a hypersubspace likewise in a strong neutrosophic bivector space of bidimenion ($\mathrm{n}_{1}, \mathrm{n}_{2}$) over the neutrosophic bifield $F=F_{1} \cup F_{2}$ the bisubspace of bidimension ($\mathrm{n}_{1}-1, \mathrm{n}_{2}-1$), we call that bisubspace to be a strong neutrosophic bihypersubspace of V . Thus $N_{f}=N_{f^{1}}^{1} \cup N_{f^{2}}^{2}$ is a strong neutrosophic bihyper subspace of the strong neutrosophic bivector space of $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$.

One can prove as in case of bivector space in case of strong neutrosophic bivector spaces of type II if $\mathrm{W}_{1}=\mathrm{W}_{1}^{1} \cup \mathrm{~W}_{1}^{2}$ and $\mathrm{W}_{2}=\mathrm{W}_{2}^{1} \cup \mathrm{~W}_{2}^{2}$ be strong neutrosophic bivector subspaces of a strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ of bidimension $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ then W_{1} $=\mathrm{W}_{2}$ if and only if $\mathrm{W}_{1}^{\circ}=\mathrm{W}_{2}^{\circ}$ that is if and only if $\left(W_{1}^{i}\right)^{\circ}=\left(W_{2}^{i}\right)^{\circ}$ for $\mathrm{i}=1,2$.

Further as in case of bivector spaces of type II we can define the concept of dual space of a dual space $V^{*}=V_{1}^{*} \cup V_{2}^{*}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (i.e., each V_{i} is a strong neutrosophic vector space over $\mathrm{F}_{\mathrm{i}}, \mathrm{i}=1,2$) Let $\mathrm{V}^{*}=$ $\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*}$ be the bivector space which is the bidual of V over the same bifield $F=F_{1} \cup F_{2}$. The bidual of the bidual space V^{*}, i.e., $\mathrm{V}^{* *}$ in terms of the bibasis and bidual basis is given in the following:

Let $\alpha=\alpha^{1} \cup \alpha^{2}$ be a strong neutrosophic bivector space V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ then α induces bilinear function $\mathrm{L}_{\alpha}=\mathrm{L}_{\alpha^{1}}^{1} \cup \mathrm{~L}_{\alpha^{2}}^{2}$ defined by

$$
\begin{aligned}
\mathrm{L}_{\alpha}(\mathrm{f}) & =\mathrm{L}_{\alpha^{1}}^{1}\left(\mathrm{f}^{1}\right) \cup \mathrm{L}_{\alpha^{2}}^{2}\left(\mathrm{f}^{2}\right) \\
& =\mathrm{f}(\alpha) \\
& =\mathrm{f}^{1}\left(\alpha^{1}\right) \cup \mathrm{f}^{2}\left(\alpha^{2}\right)
\end{aligned}
$$

$f \in V_{1}^{*} \cup V_{2}^{*}=V^{*} ; f^{i} \in V_{i}^{*} ; i=1$, 2. The fact each $L_{\alpha^{i}}^{i}$ is linear is just a reformation of the definition of the linear operators on V_{i}^{*} for each $\mathrm{i}=1$, 2. The fact that each $\mathrm{L}_{\alpha^{i}}^{\mathrm{i}}$ is linear is just a reformation of the definition of linear operators in $V_{i}^{*} ; i=1,2$.

$$
\begin{aligned}
\mathrm{L}_{\alpha}(\mathrm{cf}+\mathrm{g}) & =\mathrm{L}_{\alpha^{1}}^{1}\left(\mathrm{c}_{1} \mathrm{f}^{1}+\mathrm{g}_{1}\right)+\mathrm{L}_{\alpha^{2}}^{2}\left(\mathrm{c}_{2} \mathrm{f}^{2}+\mathrm{g}_{2}\right) \\
& =\left(\mathrm{c}_{1} \mathrm{f}^{1}+\mathrm{g}_{1}\right)\left(\alpha^{1}\right) \cup\left(\mathrm{c}_{2} \mathrm{f}^{2}+\mathrm{g}_{2}\right)\left(\alpha^{2}\right) \\
& =\mathrm{c}_{1} \mathrm{f}^{1}\left(\alpha^{1}\right)+\mathrm{g}_{1}\left(\alpha^{1}\right) \cup \mathrm{c}_{2} \mathrm{f}^{2}\left(\alpha^{2}\right)+\mathrm{g}_{2}\left(\alpha^{2}\right) \\
& =\mathrm{c}_{1} \mathrm{~L}_{\alpha}(\mathrm{f})+\mathrm{L}_{\alpha}(\mathrm{g})
\end{aligned}
$$

where $\mathrm{f}=\mathrm{f}^{1} \cup \mathrm{f}^{2}$ and $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$. If $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a strong neutrosophic finite ($\mathrm{n}_{1}, \mathrm{n}_{2}$) bidimensional and $\alpha \neq 0=\alpha^{1} \cup \alpha^{2}$ then $\mathrm{L}_{\alpha}=\mathrm{L}_{\alpha^{1}}^{2} \cup \mathrm{~L}_{\alpha^{2}}^{2} \neq 0 \cup 0$, in other words there exists a bilinear function $f=f^{1} \cup f^{2}$ such that $f(\alpha) \neq 0$; i.e., $f(\alpha)=f^{1}\left(\alpha^{1}\right)$ $\cup \mathrm{f}^{2}\left(\alpha^{2}\right)$ for each $\mathrm{f}^{\mathrm{i}}\left(\alpha^{\mathrm{i}}\right) \neq 0 ; \mathrm{i}=1$, 2. Further the bimapping $\alpha=$ $\alpha^{1} \cup \alpha^{2} \rightarrow L_{\alpha}=L_{\alpha^{1}}^{2} \cup L_{\alpha^{2}}^{2}$ is a biisomorphism of $V=V_{1} \cup V_{2}$ on to $V^{* *}=V_{1}^{* *} \cup V_{2}^{* *}$.

Several properties in this direction can be analysed by any interested reader.

It can be easily proved as in case of bivector spaces of type II;
"If $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is any biset of a $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ bifinite dimensional strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ then $\left(\mathrm{S}^{\circ}\right)^{\circ}=$ $\left(\left(S_{1}^{o}\right) \cup\left(S_{2}^{o}\right)\right)^{0}=\left(S_{1}^{o}\right)^{0} \cup\left(S_{2}^{o}\right)^{0}$ is the bisubspace spanned by S $=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$.

Thus if $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a strong neutrosophic bivector space of type II defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$. We define the bihypersubspace or hyperbispace of $V=V_{1} \cup V_{2}$. Assume $V=\left(V_{1} \cup V_{2}\right)$ is a $\left(n_{1}, n_{2}\right)$ dimension over $F=F_{1} \cup F_{2}$. If $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ is a bihyperspace of V that is $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ is of ($n_{1}-1, n_{2}-1$) bidimensional over $F=F_{1} \cup F_{2}$ then we can define $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ to be a hyper space of V if
(1) $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ is a proper strong neutrosophic bivector subspace of V .
(2) If W is a strong neutrosophic bisubspace of V which contains N then either $\mathrm{W}=\mathrm{N}$ or $\mathrm{W}=\mathrm{V}$.

Condition (1) and (2) together say that $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ is a proper strong neutrosophic bisubspace and there is no larger proper strong neutrosophic bisubspace; in short $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ is a maximal proper strong neutrosophic bisubspace of V . Thus if V $=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a strong neutrosophic bivctor space over the neutrosophic bifield $F=F_{1} \cup F_{2}$, a bihyper space in $V=V_{1} \cup$ V_{2} is a maximal proper strong neutrosophic bisubspace of $\mathrm{V}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

The following property about bihyperspace of V can be easily proved.

If $f=f^{1} \cup f^{2}$ is a nonzero bilinear functional on the strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ of (n_{1}, n_{2}) finite bidimension over F then the bihyperspace of V is the binull space of a non zero bilinear functional on V. It need not be unique.

We just give another interesting property about strong neutrosophic bivector spaces over a bifield of type II.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be two strong neutrosophic bivector spaces over the same neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$. For each bilinear transformation $T=T_{1} \cup T_{2}$ from $V=V_{1} \cup V_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ there is a unique bilinear transformation $\mathrm{T}^{\mathrm{t}}=$ $\mathrm{T}_{1}^{\mathrm{t}} \cup \mathrm{T}_{2}^{\mathrm{t}}$ from $\mathrm{W}^{*}=\mathrm{W}_{1}^{*} \cup \mathrm{~W}_{2}^{*}$ into $\mathrm{V}^{*}=\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*}$ such that

$$
\begin{aligned}
\left(\mathrm{T}_{\mathrm{g}}^{\mathrm{t}}\right) \alpha & =\left(\mathrm{T}_{\mathrm{g}_{1}}^{\mathrm{t}} \cup \mathrm{~T}_{2 \mathrm{~g}_{2}}^{\mathrm{t}}\right)\left(\alpha^{1} \cup \alpha^{2}\right) \\
& =\mathrm{g}_{1}\left(\mathrm{~T}_{1} \alpha^{1}\right) \cup \mathrm{g}_{2}\left(\mathrm{~T}_{2} \alpha^{2}\right) \\
& =\mathrm{g}(\mathrm{~T} \alpha)
\end{aligned}
$$

for every $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2} \in \mathrm{~W}^{*}=\mathrm{W}_{1}^{*} \cup \mathrm{~W}_{2}^{*}$ and $\alpha=\alpha^{1} \cup \alpha^{2}$ in $\mathrm{V}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$.

We call $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ as a bitranspose of $T=T_{1} \cup T_{2}$. This bitransformaiton T^{t} is also called as the biadjoint of T .

We now prove an important property about T^{t}.
THEOREM 2.3.15: Let $V=V^{1} \cup V^{2}$ and $W=W^{1} \cup W^{2}$ be any two strong neutrosophic bivector spaces over the neutrosophic bifield $F=F^{1} \cup F^{2}$ and let $T=T^{1} \cup T^{2}$ be a strong neutrosophic bilinear transformation from $V=V^{1} \cup V^{2}$ into W $=W^{1} \cup W^{2}$. The binull space of $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ is the biannihilator of the birange of $T=T^{1} \cup T^{2}$. If V and W are finite bidimensional then
i. $\quad \operatorname{birank}\left(T^{t}\right)=$ birank T.
ii. The birange of $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ is the annihilator of the binull space of $T=T_{1} \cup T_{2}$.

Proof: Let $\mathrm{g}=\mathrm{g}^{1} \cup \mathrm{~g}^{2}$ be in $\mathrm{W}^{*}=\mathrm{W}_{1}^{*} \cup \mathrm{~W}_{2}^{*}$ the dual space of the strong neutrosophic bivector space $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. By definition we have $\left(\mathrm{T}_{\mathrm{g}}^{\mathrm{t}}\right) \alpha=\mathrm{g}(\mathrm{T} \alpha)$ where for each $\alpha=\alpha^{1} \cup \alpha^{2}$ $\in V_{1} \cup V_{2} . T=T_{1} \cup T_{2}: V_{1} \cup V_{2} \rightarrow W_{1} \cup W_{2}$. The statement that $\mathrm{g}=\mathrm{g}^{1} \cup \mathrm{~g}^{2}$ is in the binull space of $\mathrm{T}^{\mathrm{t}}=\mathrm{T}_{1}^{\mathrm{t}} \cup \mathrm{T}_{2}^{\mathrm{t}}$ means that $g(T \alpha)=0$; i.e., $g^{1} T_{1} \alpha^{1} \cup g^{2} T_{2} \alpha^{2}=0 \cup 0$ for every $\alpha=\alpha^{1} \cup \alpha^{2}$ $\in \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$.

Thus the binull space $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ is precisely the biannihilator of the birange of $T=T_{1} \cup T_{2}$. Suppose $V=V_{1} \cup$ V_{2} and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ are finite bidimensional, we say bidimension $\mathrm{V}=\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ and bidimension $\mathrm{W}=\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$.

Proof of (i): Let $\mathrm{r}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$ be the birank of $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$, i.e., the bidimension of the birange of T is $\left(r_{1}, r_{2}\right)$.

By earlier results the biannihilator of the birange of $\mathrm{T}=\mathrm{T}_{1}$ $\cup T_{2}$ has bidimension ($m_{1}-r_{1}, m_{2}-r_{2}$). By the first statement of the theorem the binullity of $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ must be ($m_{1}-r_{1}, m_{2}-$ r_{2}). Since $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ is bilinear transformation on an $\left(m_{1}, m_{2}\right)$ bidimensional bispace the birank of $\mathrm{T}^{\mathrm{t}}=\mathrm{T}_{1}^{\mathrm{t}} \cup \mathrm{T}_{2}^{\mathrm{t}}$ is $\left(\mathrm{m}_{1^{-}}\left(\mathrm{m}_{1}-\right.\right.$ $\left.r_{1}\right), m_{2}-\left(m_{2}-r_{2}\right)$) and so T and T^{t} have the same birank.

Proof for (ii): Let $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ be the binull space of $\mathrm{T}=\mathrm{T}_{1} \cup$ T_{2}. Every bifunction in the birange of $\mathrm{T}^{\mathrm{t}}=\mathrm{T}_{1}^{\mathrm{t}} \cup \mathrm{T}_{2}^{\mathrm{t}}$ is in the biannihilator of $N=N_{1} \cup N_{2}$, for suppose $f=T^{t} g$; i.e., $f^{1} \cup f^{2}=$ $\mathrm{T}_{1}^{\mathrm{t}} \mathrm{g}^{1} \cup \mathrm{~T}_{2}^{\mathrm{t}} \mathrm{g}^{2}$ for some $\mathrm{g}=\mathrm{g}^{1} \cup \mathrm{~g}^{2}$ in $\mathrm{W}^{*}=\mathrm{W}_{1}^{*} \cup \mathrm{~W}_{2}^{*}$ then if $\alpha=$ $\alpha^{1} \cup \alpha^{2}$ is in $N=N_{1} \cup N_{2}$; $\mathrm{f}(\alpha)=\mathrm{f}^{1}\left(\alpha^{1}\right) \cup \mathrm{f}^{2}\left(\alpha^{2}\right)$
$=\left(\mathrm{T}_{\mathrm{g}}^{\mathrm{t}}\right) \alpha=\left(\mathrm{T}_{1}^{\mathrm{t}} \mathrm{g}^{1}\right) \alpha^{1} \cup\left(\mathrm{~T}_{2}^{\mathrm{t}} \mathrm{g}^{2}\right) \alpha^{2}$
$=\mathrm{g}(\mathrm{T} \alpha)$
$=g^{1}\left(T_{1} \alpha^{1}\right) \cup g_{2}\left(T_{2} \alpha^{2}\right)$
$=g^{1}(0) \cup g^{2}(0)$
$=0 \cup 0$.

Now the birange of $T^{t}=T_{1}^{t} \cup T_{2}^{t}$ is a bisubspace of the space $\mathrm{N}^{0}=\mathrm{N}_{1}^{\mathrm{o}} \cup \mathrm{N}_{2}^{0}$ and
$\operatorname{dim} \mathrm{N}^{0}=\left(\mathrm{n}_{1}-\operatorname{dim} \mathrm{N}_{1}\right) \cup\left(\mathrm{n}_{2}-\operatorname{dim} \mathrm{N}_{2}\right)$
$=$ birank T
$=$ birank T^{t}
so that birange of T^{t} must exactly be N^{o}.
THEOREM 2.3.16: Let $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ be two $\left(n_{1}, n_{2}\right)$ and (m_{1}, m_{2}) dimensional bivector spaces over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let B be a bibasis of V and B^{*} the bidual basis of V^{*}. Let C be a bibasis of W with dual bibasis C^{*}. Let $T=T_{1} \cup T_{2}$ be a bilinear transformation from V into W; let A be the neutrosophic bimatrix of $T=T_{1} \cup T_{2}$ relative to B and C and let B be a neutrosophic bimatrix of T^{t} relative to B^{*}, C^{*}. Then $B_{i j}^{k}=A_{i j}^{k}$ for $k=1,2$. That is

$$
A_{i j}^{1} \cup A_{i j}^{2}=B_{i j}^{1} \cup B_{i j}^{2} .
$$

Proof: Given $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ are strong neutrosophic bivector spaces over the neutrosophic bifield $\mathrm{F}=$ $F_{1} \cup F_{2}$. Given $V=V_{1} \cup V_{2}$ is $\left(n_{1}, n_{2}\right)$ bidimension and $W=W_{1}$ $\cup W_{2}$ is of $\left(m_{1}, m_{2}\right)$ bidimension over the bifield $F=F_{1} \cup F_{2}$. Let

$$
B=\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}
$$

be a bibasis of $V=V_{1} \cup V_{2}$ and the dual bibasis of B,

$$
\mathrm{B}^{*}=\mathrm{B}_{1}^{*} \cup \mathrm{~B}_{2}^{*}=\left\{\mathrm{f}_{1}^{1}, \mathrm{f}_{2}^{1}, \ldots, \mathrm{f}_{\mathrm{n}_{1}}^{1}\right\} \cup\left\{\mathrm{f}_{1}^{2}, \mathrm{f}_{2}^{2}, \ldots, \mathrm{f}_{\mathrm{n}_{2}}^{2}\right\} .
$$

Let

$$
C=C_{1} \cup C_{2}=\left\{\beta_{1}^{1}, \beta_{2}^{1}, \ldots, \beta_{m_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \beta_{2}^{2}, \ldots, \beta_{m_{2}}^{2}\right\}
$$

be a bibasis of $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$.
The dual bibasis of C ,

$$
\mathrm{C}^{*}=\mathrm{C}_{1}^{*} \cup \mathrm{C}_{2}^{*}=\left\{\mathrm{g}_{1}^{1}, \mathrm{~g}_{2}^{1}, \ldots, \mathrm{~g}_{\mathrm{m}_{1}}^{1}\right\} \cup\left\{\mathrm{g}_{1}^{2}, \mathrm{~g}_{2}^{2}, \ldots, \mathrm{~g}_{\mathrm{m}_{2}}^{2}\right\} .
$$

Now by definition for $\alpha=\alpha^{1} \cup \alpha^{2}$;

$$
\mathrm{T}_{\mathrm{k}} \alpha_{\mathrm{j}}^{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{m}_{\mathrm{k}}} A_{\mathrm{ij}}^{\mathrm{k}} \beta_{\mathrm{i}}^{\mathrm{k}} ; \mathrm{j}=1,2, \ldots, \mathrm{n}_{\mathrm{k}} ; \mathrm{k}=1,2 .
$$

$$
T_{k}^{t} g_{j}^{k}=\sum_{i=1}^{n_{k}} B_{i j}^{k} f_{i}^{k} ; j=1,2, \ldots, m_{k} \text { and } k=1,2
$$

Further

$$
\begin{aligned}
\left(T_{k}^{t} g_{j}^{k}\right)\left(\alpha_{i}^{k}\right) & =g_{j}^{k}\left(T_{k}^{t} \alpha_{i}^{k}\right) \\
& =g_{j}^{k}\left(\sum_{p=1}^{m_{k}} A_{p i}^{k} \beta_{p}^{k}\right) \\
& =\sum_{p=1}^{m_{k}} A_{p i}^{k} g_{j}^{k}\left(\beta_{p}^{k}\right) \\
& =\sum_{p=1}^{m_{k}} A_{p i} \delta_{j p} \\
& =A_{j i}^{k} .
\end{aligned}
$$

For any bilinear functional $f=f^{1} \cup f^{2}$ on V,

$$
f^{k}=\sum_{i=1}^{m_{k}} f^{k}\left(\alpha_{i}^{k}\right) f_{i}^{k} ; k=1,2 .
$$

If we apply this formula to the functional $f^{k}=T_{k}^{t} g_{j}^{k}$ and use the fact $\left(\mathrm{T}_{\mathrm{k}}^{\mathrm{t}} \mathrm{g}_{\mathrm{j}}^{\mathrm{k}}\right) \alpha_{\mathrm{i}}^{\mathrm{k}}=\mathrm{A}_{\mathrm{ji}}^{\mathrm{k}}$, we have

$$
\left(\mathrm{T}_{\mathrm{k}}^{\mathrm{t}} \mathrm{~g}_{\mathrm{j}}^{\mathrm{k}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{k}}} \mathrm{~A}_{\mathrm{ji}}^{\mathrm{k}} \mathrm{f}_{\mathrm{i}}^{\mathrm{k}}
$$

from which it follows $B_{i j}^{k}=A_{i j}^{k}$; true for $k=1,2$. That is

$$
B_{i j}^{1} \cup B_{i j}^{2}=A_{i j}^{1} \cup A_{i j}^{2} .
$$

If $A=A^{1} \cup A^{2}$ is a $\left(m_{1} \times n_{1}, m_{2} \times n_{2}\right)$ neutrosophic bimatrix over the neutrosophic bifield $F=F_{1} \cup F_{2}$ then the bitranspose of A is the ($\mathrm{n}_{1} \times \mathrm{m}_{1}, \mathrm{n}_{2} \times \mathrm{m}_{2}$) neutrosophic bimatrix A^{t} defined by $\left(A_{i j}^{1}\right)^{t} \cup\left(A_{i j}^{2}\right)^{t}=A_{i j}^{1} \cup A_{i j}^{2}$.

We leave it as an exercise for the reader to prove the birow rank of A is equal to the bicolumn rank of A, that is for each neutrosophic matrix A^{i} we have the column rank of A^{i} to be equal to the row rank of $A^{i} ; i=1,2$.

We see all these results holds good for strong neutrosophic bilinear algebras defined over the neutrosophic bifield $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=$ F with appropriate modification if necessary.

Now we proceed onto define the notion of neutrosophic bipolynomial over a neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

DEFINITION 2.3.34: Let $F[x]=F_{1}[x] \cup F_{2}[x]$ be such that each $F_{i}[x]$ is a polynomial over F_{i}, F_{i} a neutrosophic field; $i=1,2$ and $F_{1} \neq F_{2}$ i.e., $F=F_{1} \cup F_{2}$ is a neutrosophic bifield. We call $F[x]$ the neutrosophic bipolynomial over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Any element $p(x) \in F[x]$ will be the form $p(x)=p_{1}(x) \cup p_{2}(x)$ where $p_{i}(x)$ is a neutrosophic polynomial in $F_{i}[x]$; i.e., $p_{i}(x)$ is a neutrosophic polynomial in the variable x with coefficients from the neutrosophic field $F_{i}, i=1,2$. The bidegree of $p(x)$ is a pair given by $\left(n_{1}, n_{2}\right)$ where n_{i} is the degree of the polynomial $p_{i}(x) ; i=1,2$.

We will illustrate this situation by some simple examples.
Example 2.3.73: Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{3} \mathrm{I} \cup \mathrm{QI}$ be a neutrosophic bifield. $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]=\mathrm{Z}_{3}[\mathrm{x}] \cup \mathrm{QI}[\mathrm{x}]=$ all polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{Z}_{3} \mathrm{I}$ \} \cup \{all polynomials in the variable x with coefficients from the neutrosophic field QI\}is a bipolynomial strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{3} \mathrm{I} \cup \mathrm{QI}$.

Let $\mathrm{p}(\mathrm{x})=2 \mathrm{I}+\mathrm{Ix}+2 \mathrm{Ix}^{3}+\mathrm{Ix}^{7} \cup 3 \mathrm{I}+7 \mathrm{Ix}+270 \mathrm{I} \mathrm{x}^{7}-5762 \mathrm{I}$ $x^{9}+3006 I x^{29} ; p(x) \in F[x]$.

Example 2.3.74: Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$ be a neutrosophic bifield. $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]=\mathrm{N}(\mathrm{Q})[\mathrm{x}] \cup$ $\mathrm{N}\left(\mathrm{Z}_{11}\right)[\mathrm{x}]=$ \{all polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{N}(\mathrm{Q})\} \cup$ \{all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{N}\left(\mathrm{Z}_{11}\right)\right\}$ is a bipolynomial strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$.

Take $p(x)=p_{1}(x) \cup p_{2}(x)=3+17 x^{2}-245 x^{5}+346 x^{7}-$ $93 / 2 x^{8}+47 I x^{9}-5009 x^{11} \cup 3 I+8+4 I x+5 x^{2}+10 I x^{7}+2 x^{11}$ $+9 x^{20} \in F[x]$ is a bipolynomials with coefficients from the bifield $\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$

DEFINITION 2.3.35: Let $F[x]=F_{1}[x] \cup F_{2}[x]$ be a bipolynomial over the neutrosophic bifield $F=F_{1} \cup F_{2} . F[x]$ is a strong neutrosophic bilinear algebra over the bifield F. Infact $F[x]$ is a bicommutative neutrosophic linear bialgebra over the bifield $F . F[x]$ the strong neutrosophic bilinear algebra may or may not have the biidentity $I_{2}=1 \cup I$ or $I \cup I$ or $I \cup 1$ or $1 \cup 1$ depending on the neutrosophic bifield $F=F_{1} \cup F_{2}$. We call a neutrosophic bipolynomial $p(x)=p_{1}(x) \cup p_{2}(x)$ to be bimonic polynomial if each $p_{i}(x)$ is a monic neutrosophic polynomial in x for $i=1,2$. We will call a neutrosophic bipolynomial to be a neutrosophic monic bipolynomial if for each $p_{i}(x) \in F_{i}[x]$ the coefficient associated with the highest degree is I for $i=1,2$.

We will first illustrate these situations before we proceed on to prove further results.

Example 2.3.75: Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{13} \mathrm{I}$ be a neutrosophic bifield. $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]=\mathrm{Z}_{7} \mathrm{I}[\mathrm{x}] \cup \mathrm{Z}_{13}[\mathrm{x}]=$ all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$ \{all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{Z}_{13} \mathrm{I}\right\}$ is a bipolynomial strong neutrosophic bilinear algebra over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{13} \mathrm{I}$.

It is easily verified that $\mathrm{F}[\mathrm{x}]$ has no monic bipolynomial however $\mathrm{F}[\mathrm{x}]$ has neutrosophic monic bipolynomials. For take

$$
\mathrm{p}(\mathrm{x})=\mathrm{Ix}^{29}+2 \mathrm{I} \mathrm{x}^{8}+4 \mathrm{I} \mathrm{x}^{3}+5 \mathrm{I} \cup \mathrm{Ix}^{47}+12 \mathrm{Ix}^{25}+10 I \mathrm{x}^{12}+7 \mathrm{I}
$$ $x^{4}+5 I x+3 I \in F_{1}[x] \cup F_{2}[x]$. Clearly $p(x)$ is a neutrosophic monic bipolynomial in $\mathrm{F}(\mathrm{x})$.

Example 2.3.76: Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}\left(\mathrm{Z}_{23}\right) \cup \mathrm{N}\left(\mathrm{Z}_{47}\right)$ be a neutrosophic bifield. $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]=\mathrm{N}\left(\mathrm{Z}_{23}\right)[\mathrm{x}] \cup$ $\mathrm{N}\left(\mathrm{Z}_{47}\right)[\mathrm{x}]=$ all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{N}\left(\mathrm{Z}_{23}\right)\right\} \cup$ all polynomials in the
variable x with coefficients from the neutrosophic field $\left.N\left(Z_{47}\right)\right\}$. $\mathrm{F}[\mathrm{x}]$ is a bipolynomial strong neutrosophic bilinear algebra over the neutrosophic bifield $F=N\left(Z_{23}\right) \cup N\left(Z_{47}\right)$. Take $p(x)=p_{1}(x)$ $\cup \mathrm{p}_{2}(\mathrm{x}) \in \mathrm{N}\left(\mathrm{Z}_{23}\right)[\mathrm{x}] \cup \mathrm{N}\left(\mathrm{Z}_{47}\right)[\mathrm{x}] ; \mathrm{p}(\mathrm{x})=\left\{\mathrm{x}^{48}+3 \mathrm{I} \mathrm{x}^{20}+15 \mathrm{x}^{12}+\right.$ $\left.4 \mathrm{Ix}^{26}+13 \mathrm{I} \mathrm{x}^{7}+5 \mathrm{x}^{3}+20 \mathrm{I}+4\right\} \cup\left\{\mathrm{x}^{104}+46 \mathrm{I} \mathrm{x}^{100}+45 \mathrm{Ix}^{79}+\right.$ $\left.27 \mathrm{x}^{68}+40 \mathrm{x}^{27}+37 \mathrm{x}^{5}+\mathrm{Ix}^{2}+7 \mathrm{I}+4\right\}$ is a monic bipolynomial in $\mathrm{F}[\mathrm{x}]$.

It is interesting to note that in case of these bipolynomial strong neutrosophic bilinear algebra the conditions under which the bilinear algebra will have monic bipolynomials and when it will never have monic bipolynomials.

THEOREM 2.3.17: Let $F=F_{1} \cup F_{2}$ be a neutrosophic bifield $F[x]=F_{1}[x] \cup F_{2}[x]$ be a bipolynomial strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

If both F_{1} and F_{2} are of the form $K_{1} I$ and $K_{2} I$ where K_{1} and K_{2} are real fields then the bipolynomials strong neutrosophic bilinear algebra $F[x]$ will not contain monic bipolynomial.

Proof: Given $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ is a neutrosophic bifield where $\mathrm{F}_{1}=$ $\mathrm{K}_{1} \mathrm{I}$ and $\mathrm{F}_{2}=\mathrm{K}_{2} \mathrm{I}$ with K_{1} and K_{2} real fields.
$\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]=\mathrm{K}_{1}\left[[\mathrm{x}] \cup \mathrm{K}_{2}[\mathrm{I} \mathrm{x}]\right.$ is the bipolynomial strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$. We see clearly $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{K}_{1} \mathrm{I} \cup \mathrm{K}_{2} \mathrm{I}$ does not contain any real element; every bipair in $K_{1} \mathrm{I} \cup \mathrm{K}_{2} \mathrm{I}$ is neutrosophic. Hence $1 \notin \mathrm{~K}_{\mathrm{i}} \mathrm{I}$ for $\mathrm{i}=1$, 2. Thus no bipolynomials in the variable x has real coefficients i.e., no polynomial $p(x)$ in the variable x in $\mathrm{K}_{\mathrm{i}}[\mathrm{x}]$ has real coefficients; for $\mathrm{i}=1$, 2 .

Thus $\mathrm{F}[\mathrm{x}]=\mathrm{K}_{1} \mathrm{I}[\mathrm{x}] \cup \mathrm{K}_{2} \mathrm{I}[\mathrm{x}]$ has no monic bipolynomial. Hence the claim.

THEOREM 2.3.18: Let $F=F_{1} \cup F_{2}$ be a neutrosophic bifield. $F[x]=F_{1}[x] \cup F_{2}[x]$ be a bipolynomials strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}$. If each F_{i} is of the form $N\left(K_{i}\right)$ where K_{i} is a real field for $i=1$, 2 then the bipolynomial strong neutrosophic linear bialgebra has monic bipolynomials.

Proof: Given $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}\left(\mathrm{K}_{1}\right) \cup \mathrm{N}\left(\mathrm{K}_{2}\right)$ (where K_{1} and K_{2} are real fields) is a neutrosophic bifield. $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]=$ $N\left(K_{1}\right)[x] \cup N\left(K_{2}\right)[x]$ is a bipolynomial strong neutrosophic bilinear algebra over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

Now clearly $K_{i} \subseteq N\left(K_{i}\right)$ for $i=1$, 2; that is the neutrosophic field $N\left(K_{i}\right)$ contains the real field K_{i} as a proper subfield, true for $\mathrm{i}=1$, 2 . Thus $1 \in \mathrm{~N}\left(\mathrm{~K}_{\mathrm{i}}\right)$ for $\mathrm{i}=1$, 2 . Now we can take $\mathrm{p}(\mathrm{x})$ $=p_{1}(x) \cup p_{2}(x)$ where both $p_{1}(x)$ is a monic polynomial of the form say $x^{219}+7 I x^{200}+14 I x^{14}+27 x^{10}+205$ in $F_{1}[x]$ and $p_{2}(x)$ to be a monic polynomial of the form $x^{3}+7 x+21 I$ in $F_{2}[x]$ we see $\mathrm{p}(\mathrm{x})$ is a monic bipolynomial in $\mathrm{F}[\mathrm{x}]$.

Hence the claim
Thus we see when both the neutrosophic fields $\mathrm{F}_{\mathrm{i}} ; \mathrm{i}=1,2$, are not pure neutrosophic fields then certainly the bipolynomial strong neutrosophic bilinear algebra has monic bipolynomials.

Further even if one of the neutrosophic field F_{i} is a pure neutrosophic field that is $F_{i}=K_{i} I$ where K_{i} is a real field $i=1$, 2; then $F[x]=F_{1}[x] \cup F_{2}[x]$ has no bipolynomial which is a monic bipolynomial.

The reader is expected to prove the following results.
THEOREM 2.3.19: Let $F[x]=F_{1}[x] \cup F_{2}[x]$ be a strong neutrosophic bilinear algebra of bipolynomials over the neutrosophic bifield $F=F_{1} \cup F_{2}$ then
i. If $f(x)=f_{1}(x) \cup f_{2}(x)$ and $g(x)=g_{1}(x) \cup g_{2}(x)$ are two non zero bipolynomials in $F[x]$, the bipolynomial $f(x) g(x)=$ $f_{1}(x) g_{1}(x) \cup f_{2}(x) g_{2}(x)$ is a non zero bipolynomial in $F[x]$.
ii. The bidegree of $(f(x) g(x))=$ bidegree of $f(x)+$ bidegree of $g(x)$ where bidegree of $f=\left(n_{1}, n_{2}\right)$ and bidegree of $g=$ (m_{1}, m_{2}).
iii. $f(x) g(x)$ is monic bipolynomial if both $f(x)$ and $g(x)$ are monic polynomials and $F=F_{1} \cup F_{2}$ is neutrosophic bifield of the form $F=N\left(K_{1}\right) \cup N\left(K_{2}\right)$ where K_{1} and K_{2} are real fields.
iv. $f(x) g(x)$ is a monic neutrosophic bipolynomial if both $f(x)$ and $g(x)$ are monic neutrosophic bipolynomials. ($F=K_{1} I$ $\left.\cup K_{2} I\right)$.
v. Iff $+g=f_{1} \cup f_{2}+g_{1} \cup g_{2}$

$$
=\left(f_{1}+g_{1}\right) \cup\left(f_{2}+g_{2}\right)
$$

$$
\neq 0 \cup 0
$$

$$
=\quad \max (\text { bideg } f, \text { bideg } g) .
$$

vi. If f, g, h are bipolynomials over the neutrosophic bifield F $=F_{1} \cup F_{2} \cdot f(x)=f_{1}(x) \cup f_{2}(x), g(x)=g_{1}(x) \cup g_{2}(x)$ and $h(x)=h_{1}(x) \cup h_{2}(x) ; g(x) \neq 0 \cup 0, f(x) \neq 0 \cup 0$ and $h(x) \neq$ $0 \cup 0$ and if $f g=f h$ then $g=h$.

As in case of polynomials we can derive most of the results in case of neutrosophic bipolynomial.

Let $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}$ be a strong neutrosophic bilinear algebra with biidentity $1=1 \cup 1$ over the neutrosophic bifield $F=F_{1} \cup$ F_{2} where we make the convention for any real $\alpha=\alpha_{1} \cup \alpha_{2}\left(\alpha_{1}\right.$ and α_{2} are both real).

$$
\alpha^{0}=\alpha_{1}^{0} \cup \alpha_{2}^{0}=l \cup l=l_{2} .
$$

We cannot derive the properties enjoyed by usual bipolynomials.

Thus to get the analogue of the Lagrange biinterpolation formula in case of bipolynomial strong neutrosophic spaces we have to make more assumptions. We can derive several results analogous to bipolynomial bilinear algebra.

Suppose $f=f_{1} \cup f_{2}$ and $d=d_{1} \cup d_{2}$ be any two non zero neutrosophic bipolynomials over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}$ such that bideg $\mathrm{d} \leq$ bideg f (i.e., bideg $\mathrm{d}=\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ and bideg $\mathrm{f}=\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ and $\mathrm{n}_{\mathrm{i}} \leq \mathrm{m}_{\mathrm{i}}$ for $\mathrm{i}=1,2$ (then we say bideg $\mathrm{d} \leq$ bideg f) then there exists a bipolynomial $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ in $\mathrm{F}[\mathrm{x}]=$ $F_{1}[x] \cup F_{2}[x]$ such that either $f-d g=0$ that is $\left(f_{1}-d_{1} g_{1}\right) \cup\left(f_{2}-\right.$ $\left.\mathrm{d}_{2} \mathrm{~g}_{2}\right)=0 \cup 0$ or bideg $(\mathrm{f}-\mathrm{dg})<$ bideg f .

We have also the following interesting result in case of neutrosophic bipolynomials.

THEOREM 2.3.20: Let $f=f_{1} \cup f_{2}$ and $d=d_{1} \cup d_{2}$ be bipolynomials over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and d $=d_{1} \cup d_{2}$ is different from $0 \cup 0$ then there exists bipolynomials $q=q_{1} \cup q_{2}$ and $r=r_{1} \cup r_{2}$ in $F[x]=F_{1}[x] \cup F_{2}[x]$ such that f $=d q+r ;$ i.e., $f=f_{1} \cup f_{2}=\left(d_{1} q_{1}+r_{1}\right) \cup\left(d_{2} q_{2}+r_{2}\right)$.
(2) Either $r=r_{1} \cup r_{2}=(0 \cup 0)$ or bideg $r<$ bideg d. The bipolynomials $q=q_{1} \cup q_{2}$ and $r=r_{1} \cup r_{2}$ satisfying the conditions (1) and (2) are unique.

The proof is direct hence left as an exercise for the reader.
DEFINITION 2.3.36: Let $d=d_{1} \cup d_{2}$ be a non zero bipolynomial over the neutrosophic bifield $F=F_{1} \cup F_{2}$. If $f=f_{1} \cup f_{2}$ is in $F[x]=F_{1}[x] \cup F_{2}[x]$, the proceeding theorem show there exists atmost one bipolynomial $q=q_{1} \cup q_{2}$ in $F[x]$ such that $f=d q$ i.e., $f=f_{1} \cup f_{2}=d_{1} q_{1} \cup d_{2} q_{2}$. If such a $q=q_{1} \cup q_{2}$ exists we say that $d=d_{1} \cup d_{2}$ bidivides $f=f_{1} \cup f_{2}$ and f is bidivisible by $d=$ $d_{1} \cup d_{2}$ and $f=f_{1} \cup f_{2}$ is a bimultiple of $d=d_{1} \cup d_{2}$ and we call $q=q_{1} \cup q_{2}$ to be the biquotient of f and $d=d_{1} \cup d_{2}$ and write q $=f / d$ that is $q=q_{1} \cup q_{2}=f_{1} / d_{1} \cup f_{2} / d_{2}$.

The following result is direct. If $f=f_{1} \cup f_{2}$ is a bipolynomial over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and $c=c_{1} \cup c_{2}$ be an element of F . f is bidivisible by $\mathrm{x}-\mathrm{c}=\left(\mathrm{x}-\mathrm{c}_{1}\right) \cup\left(\mathrm{x}-\mathrm{c}_{2}\right)$ if and only if $f(c)=f_{1}\left(\mathrm{c}_{1}\right) \cup \mathrm{f}_{2}\left(\mathrm{c}_{2}\right)=0 \cup 0$.

We can prove the fundamental theorem of algebra namely that every polynomial of degree n has atmost n roots can be proved in case of neutrosophic bipolynomials. A bipolynomial $f=f_{1} \cup$ f_{2} of degree (n_{1}, n_{2}) over a neutrosophic bifield $F=F_{1} \cup F_{2}$ has atmost (n_{1}, n_{2}) biroots in $F=F_{1} \cup F_{2}$. Now we will prove Taylors formula for bipolynomials over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

THEOREM 2.3.21: Let $F=F_{1} \cup F_{2}$ be a neutrosophic bifield of bicharacteristic (0,0). $c=c_{1} \cup c_{2}$ be an element in $F=F_{1} \cup F_{2}$ and $\left(n_{1}, n_{2}\right)$ be a pair of positive integers. If $f=f_{1} \cup f_{2}$ is a neutrosophic bipolynomial over the bifield $F=F_{1} \cup F_{2}$ with bideg $f \leq\left(n_{1}, n_{2}\right)$ then

$$
f=\sum_{k_{1}=0}^{n_{1}} \frac{D^{k_{1}} f_{1} c_{1}\left(x-c_{1}\right)^{k_{1}}}{\boxed{k_{1}}} \cup \sum_{k_{2}=0}^{n_{2}} \frac{D^{k_{2}} f_{2} c_{2}\left(x-c_{2}\right)^{k_{2}}}{\underline{k_{2}}} .
$$

Proof: We know Taylors theorem is a consequence of the binomial theorem and the linearity of the operators $\mathrm{D}^{1}, \mathrm{D}^{2}, \ldots$, D^{n}. We know the binomial theorem

$$
(a+b)^{m}=\sum_{k=0}^{m}\left[\begin{array}{l}
m \\
k
\end{array}\right] a^{m-k} b^{k}
$$

where $\binom{m}{k}=\frac{m!}{k!(m-k)!}=\frac{m(m-1) \ldots(m-k+1)}{1.2 \ldots k=\underline{k}}$ is the familiar binomial coefficient giving the number of combinations of m objects taken k at a time.

Now we apply the binomial theorem to the pair of neutrosophic polynomials

$$
\begin{aligned}
x^{m_{1}} & \cup x^{m_{2}}=\left(c_{1}+\left(x-c_{1}\right)\right)^{m_{1}} \cup\left(c_{2}+\left(x-c_{2}\right)\right)^{m_{2}} \\
= & \sum_{0}^{m_{1}}\binom{m_{1}}{c_{1}} c_{1}^{m_{1}-k_{1}}\left(x-c_{1}\right)^{k_{1}} \cup \sum_{0}^{m_{2}}\binom{m_{2}}{c_{2}} c_{2}^{m_{2}-k_{2}}\left(x-c_{2}\right)^{k_{2}} \\
= & \left\{c_{1}^{m_{1}}+m_{1} c_{1}{ }^{m_{1}-1}\left(x-c_{1}\right)+\ldots+\left(x-c_{1}\right)^{m_{1}}\right\} \cup \\
& \left\{c_{2}{ }^{m_{2}}+m_{2} c_{2}{ }^{m_{2}-1}\left(x-c_{2}\right)+\ldots+\left(x-c_{2}\right)^{m_{2}}\right\}
\end{aligned}
$$

and this is the statement of Taylor's biformula for the case

$$
\mathrm{f}=\mathrm{x}^{\mathrm{m}_{1}} \cup \mathrm{x}^{\mathrm{m}_{2}} .
$$

If

$$
\begin{gathered}
f=\sum_{m_{1}=0}^{n_{1}} a_{m_{1}}^{1} x^{m_{1}} \cup \sum_{m_{2}=0}^{n_{2}} a_{m_{2}}^{2} x^{m_{2}}, \\
D_{f}^{k}(c)=\sum_{m_{1}=0}^{n_{1}=0} a_{m_{1}}^{1} D^{k_{1}} x^{m_{1}}\left(c_{1}\right) \cup \sum_{m_{2}=0}^{n_{2}} a_{m_{2}}^{2} D^{k_{2}} x^{m_{2}}\left(c_{2}\right)
\end{gathered}
$$

and

$$
\sum_{k_{1}=0}^{m_{1}} \frac{D^{k_{1}} f_{1}\left(c_{1}\right)\left(x-c_{1}\right)^{k_{1}}}{\underline{k_{1}}} \cup \sum_{k_{2}=0}^{m_{2}} \frac{D^{k_{2}} f_{2}\left(c_{2}\right)\left(x-c_{2}\right)^{k_{2}}}{\underline{k_{2}}}
$$

$$
\begin{aligned}
= & \sum_{\mathrm{k}_{1}} \sum_{\mathrm{m}_{1}} \mathrm{a}_{\mathrm{m}_{1}}^{1} \frac{\mathrm{D}^{\mathrm{k}_{1}} \mathrm{x}^{\mathrm{m}_{1}}\left(\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{k}_{1}}}{\mid \mathrm{k}_{1}} \cup \\
& \sum_{\mathrm{k}_{2}} \sum_{\mathrm{m}_{2}} \mathrm{a}_{\mathrm{m}_{2}}^{2} \frac{\mathrm{D}^{\mathrm{k}_{2}} \mathrm{x}^{\mathrm{m}_{2}}\left(\mathrm{c}_{2}\right)\left(\mathrm{x}-\mathrm{c}_{2}\right)^{\mathrm{k}_{2}}}{\boxed{\mathrm{k}_{2}}} \\
= & \sum_{\mathrm{m}_{1}} \mathrm{a}_{\mathrm{m}_{1}}^{1} \sum_{\mathrm{k}_{1}} \frac{\mathrm{D}^{\mathrm{k}_{1}} \mathrm{X}^{\mathrm{m}_{1}}\left(\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{k}_{1}}}{\mid \mathrm{k}_{1}} \cup \\
& \sum_{\mathrm{m}_{2}} \mathrm{a}_{\mathrm{m}_{2}}^{2} \sum_{\mathrm{k}_{2}} \frac{\mathrm{D}^{\mathrm{k}_{2}} \mathrm{x}^{\mathrm{m}_{2}}\left(\mathrm{c}_{2}\right)\left(\mathrm{x}-\mathrm{c}_{2}\right)^{\mathrm{k}_{2}}}{\mid \mathrm{k}_{2}}
\end{aligned}
$$

If $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2}$ is a biroot of the neutrosophic bipolynomial f $=f_{1} \cup f_{2}$ with bimultiplicity $c=c_{1} \cup c_{2}$ as a biroot of $f=f_{1} \cup f_{2}$ is the largest bipositive integer $\left(r_{1}, r_{2}\right)$ such that $\left(x-c_{1}\right)^{r_{1}} \cup(x-$ $\left.\mathrm{C}_{2}\right)^{\mathrm{r}_{2}}$ bidivides $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$.

Now we have still an interesting result on these neutrosophic bipolynomials and their bimultiplicity.

THEOREM 2.3.22: If $F=F_{1} \cup F_{2}$ is a neutrosophic bifield of (0, 0) bicharacteristic (i.e., each F_{i} is of characteristic zero for $i=$ 1,2) and $f=f_{1} \cup f_{2}$ be a neutrosophic bipolynomial over the bifield $F=F_{1} \cup F_{2}$ with bideg $f \leq\left(n_{1}, n_{2}\right)$. Then the biscalar $c=$ $c_{1} \cup c_{2}$ is a biroot of $f=f_{1} \cup f_{2}$ of multiplicity $\left(r_{1}, r_{2}\right)$ if and only if $\left(D^{k_{1}} f_{1}\right)\left(c_{1}\right) \cup\left(D^{k_{2}} f_{2}\right)\left(c_{2}\right)=0 \cup 0 ; 0 \leq k_{i} \leq r_{i}-1 ; i=1,2$. $D^{r_{i}} f_{i}\left(c_{i}\right) \neq 0$ for every $i=1,2$.

Proof: Suppose that $\left(r_{1}, r_{2}\right)$ is the bimultiplicity of $c=c_{1} \cup c_{2}$ as a biroot of $f=f_{1} \cup f_{2}$.

Then there exists a neutrosophic bipolynomial $g=g_{1} \cup g_{2}$ such that $\mathrm{f}=\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{r}_{1}} \mathrm{~g}_{1} \cup\left(\mathrm{x}-\mathrm{c}_{2}\right)^{\mathrm{r}_{2}} \mathrm{~g}_{2}$ and $\mathrm{g}(\mathrm{c})=\mathrm{g}_{1}\left(\mathrm{c}_{1}\right) \cup$ $g_{2}\left(C_{2}\right) \neq 0 \cup 0$.

For otherwise $f=f_{1} \cup f_{2}$ would be bidivisible by $\left(x-c_{1}\right)^{r_{1}+1}$ $\cup\left(\mathrm{x}-\mathrm{c}_{2}\right)^{\mathrm{r}_{2}+1}$. By Taylors biformula applied to $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$,

$$
\begin{aligned}
& \mathrm{f}=\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{r}_{1}} \sum_{\mathrm{m}_{1}=0}^{\mathrm{m}_{1}-\mathrm{r}_{1}} \frac{\left(\mathrm{D}^{\mathrm{m}_{1}} \mathrm{~g}_{1}\right)\left(\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{m}_{1}}}{\mid \mathrm{m}_{1}} v \\
& \left(x-c_{1}\right)^{r_{2}} \sum_{m_{2}=0}^{n_{2}-r_{2}} \frac{\left(D^{m_{2}} g_{2}\right)\left(c_{2}\right)\left(x-c_{2}\right)^{m_{2}}}{\mid m_{2}} \\
& =\sum_{m_{1}=0}^{n_{1}-r_{1}} \frac{D^{m_{1}} g_{1}\left(x-c_{1}\right)^{r_{1}+m_{1}}}{\mid m_{1}} \cup \sum_{m_{2}=0}^{n_{2}-r_{2}} \frac{\left(D^{m_{2}} g_{2}\right)\left(x-c_{2}\right)^{r_{2}+m_{2}}}{\Delta m_{2}} .
\end{aligned}
$$

Since there is only one way to write $f=f_{1} \cup f_{2}$ (i.e., only one way to write each component f_{i} of $f ; i=1,2$) as a bilinear combination of bipowers of $\left(x-c_{1}\right)^{k_{1}} \cup\left(x-c_{2}\right)^{k_{2}} ; 0 \leq k_{i} \leq n_{i}$, i $=1,2$ it follows that

$$
\frac{\left(D^{k_{i}} f_{i}\right)\left(c_{i}\right)}{\| k_{i}}=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq k_{i} \leq r_{i}-1 \\
\frac{D^{k_{i}-r_{i}} g_{i}\left(c_{i}\right)}{\left(k_{i}-r_{i}\right)!} & \text { if } & r_{i} \leq k_{i} \leq n_{i} .
\end{array}\right.
$$

This is true for every $i, i=1,2$. Therefore $D^{k_{i}} f_{i}\left(c_{i}\right)=0$ for $0 \leq k_{i}$ $\leq r_{i}-1 ; i=1,2$ and $D^{r_{i}} f_{i}\left(c_{i}\right) \neq g_{i}\left(c_{i}\right) \neq 0$ for every $i, i=1,2$.

Conversely if these conditions are satisfied, it follows at once from Taylor's biformula that there is a neutrosophic bipolynomial $g=g_{1} \cup g_{2}$ such that $f=f_{1} \cup f_{2}=\left(x-c_{1}\right)^{r_{1}} g_{1} \cup$ $\left(\mathrm{x}-\mathrm{c}_{2}\right)^{\mathrm{r}_{2}} \mathrm{~g}_{2}$ and $\mathrm{g}_{1}\left(\mathrm{c}_{1}\right) \cup \mathrm{g}_{2}\left(\mathrm{c}_{2}\right)=\mathrm{g}(\mathrm{c}) \neq 0 \cup 0$.

Now suppose that $\left(r_{1}, r_{2}\right)$ is not the largest positive biinteger pair such that $\left(x-c_{1}\right)^{r_{1}} \cup\left(x-c_{2}\right)^{r_{2}}$ bidivides $f_{1} \cup f_{2}$; i.e., each $\left(x-c_{i}\right)^{r_{i}}$ divides $f_{i} ; i=1$, 2. then there is a bipolynomial $h=h_{1}$ $\cup h_{2}$ such that $f=\left(x-c_{1}\right)^{r_{1}+1} h_{1} \cup\left(x-c_{2}\right)^{r_{2}+1} h_{2}$. But this implies $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}=\left(\mathrm{x}-\mathrm{c}_{1}\right) \mathrm{h}_{1} \cup\left(\mathrm{x}-\mathrm{c}_{2}\right) \mathrm{h}_{2}$; hence $\mathrm{g}(\mathrm{c})=\mathrm{g}_{1}\left(\mathrm{c}_{1}\right) \cup \mathrm{g}_{2}\left(\mathrm{c}_{2}\right)$ $=0 \cup 0$ a contradiction; hence the claim.

Now we proceed onto define principal biideal generated by the neutrosophic bipolynomial $\mathrm{d}=\mathrm{d}_{1} \cup \mathrm{~d}_{2}$.

DEFINITION 2.3.37: Let $F=F_{1} \cup F_{2}$ be a neutrosophic bifield. A biideal in $F[x]=F_{1}[x] \cup F_{2}[x]$ is a strong neutrosophic bisubspace $m=m_{1} \cup m_{2}$ of $F[x]=F_{1}[x] \cup F_{2}[x]$ such that when $f=f_{1} \cup f_{2}$ and $g=g_{1} \cup g_{2}$ then $f g=f_{1} g_{1} \cup f_{2} g_{2}$ belongs to $m=m_{1} \cup m_{2}$; i.e., each $f_{i} g_{i} \in m_{i}$ whenever f is in $F[x]$ and g $\in m(i=1,2)$.

If in particular the biideal $\mathrm{m}=\mathrm{dF} \mathrm{F}]$ for some bipolynomial $\mathrm{d}=$ $\mathrm{d}_{1} \cup \mathrm{~d}_{2}$ in $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]$, i.e., the biset of all bimultiple df $=d_{1} f_{1} \cup d_{2} f_{2}$ of $d=d_{1} \cup d_{2}$ by arbitrary $f=f_{1} \cup f_{2}$ in $F[x]=$ $F_{1}[x] \cup F_{2}[x]$ is a biideal; for m is non empty; m infact contains d. If $f, g \in F[x]=F_{1}[x] \cup F_{2}[x]$ and $c=c_{1} \cup c_{2}$ is a biscalar then $c(d f)-d g=\left(c_{1} d_{1} f_{1}-d_{1} g_{1}\right) \cup\left(c_{2} d_{2} f_{2}-d_{2} g_{2}\right)=d_{1}\left(c_{1} f_{1}-g_{1}\right) \cup$ $\mathrm{d}_{2}\left(\mathrm{c}_{2} \mathrm{f}_{2}-\mathrm{g}_{2}\right)$ belongs to $\mathrm{m}=\mathrm{m}_{1} \cup \mathrm{~m}_{2}$, that is $\mathrm{d}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}-\mathrm{g}_{\mathrm{i}}\right) \in \mathrm{m}_{\mathrm{i}} ; \mathrm{i}=$ 1,2 ; so that m is strong neutrosophic bivector subspace. Finally m contains
$(\mathrm{df}) \mathrm{g}=\mathrm{d}(\mathrm{fg})$

$$
=\left(d_{1} f_{1}\right) g_{1} \cup\left(d_{2} f_{2}\right) g_{2}
$$

$$
=d_{1}\left(f_{1} g_{1}\right) \cup d_{2}\left(f_{2} g_{2}\right)
$$

as well $m=m_{1} \cup m_{2}$ is called the principal biideal generated by $\mathrm{d}=\mathrm{d}_{1} \cup \mathrm{~d}_{2}$.

We will prove the following biprincipal ideal or principal biideal of $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]$.

THEOREM 2.3.23: Let $F=F_{1} \cup F_{2}$ be a bifield which is a neutrosophic bifield and $m=m_{1} \cup m_{2}$ a non zero biideal in $F[x]=F_{1}[x] \cup F_{2}[x]$. Then there is a unique monic bipolynomial $d=d_{1} \cup d_{2}$ in $F[x]$ where each d_{i} is a monic polynomial in $F_{i}[x] ; i=1,2$ such that m is the principal biideal generated by d.

Proof: Given $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ is a neutrosophic bifield and $\mathrm{F}[\mathrm{x}]=$ $\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]$ be the bipolynomial strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. Let $m=m_{1} \cup$ m_{2} be a non zero biideal of $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]$, we call a bipolynomial $p(x)$ to be bimonic, i.e. if in $p(x)=p_{1}(x) \cup p_{2}(x)$ every $p_{i}(x)$ is a monic polynomial for $i=1,2$. Similarly we call
a bipolynomial to be biminimal if in $p(x)=p_{1}(x) \cup p_{2}(x)$ each polynomial $\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ is of minimal degree. Now $\mathrm{m}=\mathrm{m}_{1} \cup \mathrm{~m}_{2}$ contains a non zero bipolynomial $\mathrm{p}(\mathrm{x})=\mathrm{p}_{1}(\mathrm{x}) \cup \mathrm{p}_{2}(\mathrm{x})$ where each $p_{i}(x) \neq 0$ for $i=1,2$. Among all the non zero bipolynomials in m there is a bipolynomial $d=d_{1} \cup d_{2}$ of minimal bidegree. Without loss in generality we may assume that minimal bipolynomial is monic, i.e., d is monic. Suppose f $=f_{1} \cup f_{2}$ is any bipolynomial in m then we know $f=d q+r=f_{1}$ $\cup f_{2}=d_{1} q_{1}+r_{1} \cup d_{2} q_{2}+r_{2}$ where $r=\left(r_{1}, r_{2}\right)=(0,0)$ or bidegree $r<$ bidegree d; i.e., $f=f_{1} \cup f_{2}=\left(d_{1} q_{1}+r_{1}\right) \cup\left(d_{2} q_{2}+r_{2}\right)$. Since d is in $m, d q=d_{1} q_{1} \cup d_{2} q_{2} \in m$ and $f \in m$ so $f-d g=r=r_{1} \cup r_{2} \in$ m . But since d is a bipolynomial in m of minmal bidegree we cannot have bidegree $\mathrm{r}<$ bidegree d so $\mathrm{r}=0 \cup 0$.

Thus $\mathrm{m}=\mathrm{dF}[\mathrm{x}]=\mathrm{d}_{1} \mathrm{~F}_{1}[\mathrm{x}] \cup \mathrm{d}_{2} \mathrm{~F}_{2}[\mathrm{x}]$. If g is any other bimonic polynomial such that $\mathrm{gF}[\mathrm{x}]=\mathrm{m}=\mathrm{g}_{1} \mathrm{~F}_{1}[\mathrm{x}] \cup \mathrm{g}_{2} \mathrm{~F}_{2}[\mathrm{x}]$ then there exists non zero bipolynomial $\mathrm{p}=\mathrm{p}_{1} \cup \mathrm{p}_{2}$ and $\mathrm{q}=\mathrm{q}_{1}$ $\cup \mathrm{q}_{2}$ such that $\mathrm{d}=\mathrm{gp}$ and $\mathrm{g}=$ dq. i.e., $\mathrm{d}=\mathrm{d}_{1} \cup \mathrm{~d}_{2}=\mathrm{g}_{1} \mathrm{p}_{1} \cup \mathrm{~g}_{2} \mathrm{p}_{2}$ and $\mathrm{g}_{1} \cup \mathrm{~g}_{2}=\mathrm{d}_{1} \mathrm{q}_{1} \cup \mathrm{~d}_{2} \mathrm{q}_{2}$. Thus
$\mathrm{d}=\mathrm{dpq}$
$=\mathrm{d}_{1} \mathrm{p}_{1} \mathrm{q}_{1} \cup \mathrm{~d}_{2} \mathrm{p}_{2} \mathrm{q}_{2}$
$=\left(\mathrm{d}_{1} \cup \mathrm{~d}_{2}\right) \mathrm{pq}$
and bidegree $\mathrm{d}=$ bidegree $\mathrm{d}+$ bidegree $\mathrm{d}+$ bidegree $\mathrm{p}+$ bideg q. Hence bidegree $p=$ bidegree $q=(0,0)$ and as d and g are bimonic $\mathrm{p}=\mathrm{q}=1$. Thus $\mathrm{d}=\mathrm{g}$.

Hence the claim.
If in the biideal m we have $\mathrm{f}=\mathrm{pq}+\mathrm{r}$ where $\mathrm{p}, \mathrm{f} \in \mathrm{m}$; i.e., p $=p_{1} \cup p_{2} \in m$ and $f=f_{1} \cup f_{2} \in m ; f=f_{1} \cup f_{2}=\left(p_{1} q_{1}+r_{1}\right) \cup\left(p_{2}\right.$ $\mathrm{q}_{2}+\mathrm{r}_{2}$) where the biremainder $\mathrm{r}=\mathrm{r}_{1} \cup \mathrm{r}_{2} \in \mathrm{~m}$ and is different from $0 \cup 0$ and has smaller bidegree than p.

The interested reader is requested to prove the following results.
COROLLARY 2.3.1: If p^{1}, p^{2} are bipolynomials over a neutrosophic bifield $F=F_{1} \cup F_{2}$ not all of which are zero; i.e., $0 \cup 0$, then there is a unique bimonic polynomial $d=d_{1} \cup d_{2}$ in $F[x]=F_{1}[x] \cup F_{2}[x]$ such that
i. $\quad d=d_{1} \cup d_{2}$ is the biideal generated by p^{1}, p^{2} where $p^{1}=$ $p_{1}^{1} \cup p_{2}^{1}$ and $p^{2}=p_{1}^{2} \cup p_{2}^{2}$.
ii. $d=d_{1} \cup d_{2}$ bidivides each of the bipolynomials $p^{i}=$ $p_{1}^{i} \cup p_{2}^{i}$ that is $d_{j} / p_{j}^{i}, j=1,2$ and $i=1,2$.
iii. d is bidivisible by every bipolynomial which bidivides each of the bipolynimial p^{1} and p^{2}.

Any bipolynomial satisfying (i) and (ii) necessarily satisfies (iii).
Next we proceed on to define greatest common bidivisor or bigreatest common divisor.

DEFINITION 2.3.38: If p^{1}, p^{2} (where $p^{1}=p_{1}^{1} \cup p_{2}^{1}$ and $p_{2}=$ $\left.p_{1}^{2} \cup p_{2}^{2}\right)$ are neutrosophic bipoynomials over the neutrosophic bifield $F=F_{1} \cup F_{2}$ such that both the bipolynomials are not 0 $\cup 0$. Then the monic generator $d=d_{1} \cup d_{2}$ of the biideal $\left.\left.\left\{p_{1}^{1} F_{1}[x]\right\}+p_{1}^{2} F_{1}[x]\right\} \cup\left\{p_{2}^{1} F_{2}[x]\right\}+p_{2}^{2} F_{2}[x]\right\}$ is called the greatest common bidivisor or bigreatest common divisor of p^{1} and p^{2}. This terminology is justified by the proceeding statement. We say the neutrosophic bipolynomials $p^{1}=p_{1}^{1} \cup p_{2}^{1}$ and $p_{2}=p_{1}^{2} \cup p_{2}^{2}$ are birelatively prime if their bigreatest common divisor is $(1,1)$ or (I, I) or equivalently if the biideal they generate is all of $F[x]=F_{1}[x] \cup F_{2}[x]$.

This result and definition 2.3 .38 can be extended to any arbitrary number of bipolynomials $\mathrm{p}^{1}, \mathrm{p}^{2}, \ldots, \mathrm{p}^{\mathrm{n}}, \mathrm{n}>2$. We will now proceed onto define bifactorization, biprime, biirreducible of neutrosophic bipolynomials over the neutrosophic bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

DEFINITION 2.3.39: Let $F=F_{1} \cup F_{2}$ be a neutrosophic bifield. A bipolynomial $f=f_{1} \cup f_{2}$ in $F[x]=F_{1}[x] \cup F_{2}[x]$ is said to be bireducible over the bifield $F=F_{1} \cup F_{2}$ if there exists bipolynomials g, $h \in F[x], g=g_{1} \cup g_{2}$ and $h=h_{1} \cup h_{2}$ in $F[x]$ $=F_{1}[x] \cup F_{2}[x]$ of bidegree $\geq(1,1)$ or (I, I) such that $f=g h=$ $g_{1} h_{1} \cup g_{2} h_{2}=f_{1} \cup f_{2}$ and if such g and h does not exist $f=f_{1} \cup$
f_{2} is said to be biirreducible over the bifield $F=F_{1} \cup F_{2}$. A non biscalar, bi-irreducible neutrosophic bipolynomial over the neutrosophic bifield $F=F_{1} \cup F_{2}$ is called the biprime polynomial over the bifield $F=F_{1} \cup F_{2}$ and some times we say it is biprime in $F[x]=F_{1}[x] \cup F_{2}[x]$.

The following results can be proved by any interested reader.
THEOREM 2.3.24: Let $p=p^{1} \cup p^{2}, f=f^{1} \cup f^{2}$ and $g=g^{1} \cup g^{2}$ be neutrosophic bipolynomials over the neutrosophic bifield F $=F_{1} \cup F_{2}$. Suppose that p is a biprime bipolynomial and that p bidivides the product $f g=f_{1} g_{1} \cup f_{2} g_{2}$ then either p bidivides f or p bidivides g.

THEOREM 2.3.25: If $p=p^{1} \cup p^{2}$ is a biprime bipolynomial that bidivides a biproduct f_{1} and f_{2} that is $f_{1} f_{2}$ then p bidivides one of the bipolynomial f_{1} or f_{2}.

THEOREM 2.3.26: If $F=F_{1} \cup F_{2}$ be a neutrosophic bifield a non zero biscalar monic neutrosophic bipolynomial in $F[x]=$ $F_{1}[x] \cup F_{2}[x]$ can be bifactored as a biproduct of bimonic primes in $F[x]=F_{1}[x] \cup F_{2}[x]$ in one and only one way except for the order.

THEOREM 2.3.27: Let $f=f_{1} \cup f_{2}$ be a non scalar neutrosophic monic bipolynomial over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and let $f=p_{1}^{n_{1}^{1}} \ldots p_{k_{1}}^{n_{1}^{1}} \cup p_{2}^{n_{1}^{2}} \ldots p_{k_{2}}^{n_{k_{2}^{2}}^{2}}$ be the prime bifactorization off. For each $j_{t} ; 1 \leq j_{t} \leq k_{t} ; t=1$, 2, let $f_{j}^{t}=f^{t} / p_{j}^{n_{j}^{t}}=\prod_{i \neq j} p_{i}^{n_{t_{i}}}$, then $f_{1}^{t}, \ldots, f_{k_{t}}^{t}$ are relatively prime for $t=1,2$.

THEOREM 2.3.28: If $f=f_{1} \cup f_{2}$ is a neutrosophic bipolynomial over the bifield $F=F_{1} \cup F_{2}$ with derivative $f^{\prime}=f_{1}^{\prime} \cup f_{2}^{\prime}$. Then f is a biproduct of distinct irreducible bipolynomials over the bifield $F=F_{1} \cup F_{2}$ if and only if f and f 'are relatively biprime, that is each f_{i} and f_{i}^{\prime} are relatively prime for $i=1,2$.

Now we proceed onto define bicharacteristics values of a strong neutrosophic bilinear operator on a strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over a neutrosophic bifield $F=F_{1} \cup F_{2}$.

DEFINITION 2.3.40: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and let $T=T_{1} \cup T_{2}$ be a bilinear operator on V; i.e., $T=T_{1} \cup T_{2} ; V=$ $V_{1} \cup V_{2} \rightarrow V=V_{1} \cup V_{2}$ and $T_{i}: V_{i} \rightarrow V_{i}, i=1,2$. This is the only way bilinear operator can be defined on V. A bicharacteristic value of T is a biscalar $c=c_{1} \cup c_{2}\left(c_{i} \in F_{i}, i=\right.$ 1,2) in $F=F_{1} \cup F_{2}$ such that there is a non zero bivector $\alpha=$ $\alpha_{1} \cup \alpha_{2}$ in $V=V_{1} \cup V_{2}$ with $T \alpha=c \alpha$; i.e., $T \alpha=T_{1} \alpha_{1} \cup T_{2} \alpha_{2}=$ $c_{1} \alpha_{1} \cup c_{2} \alpha_{2}$; i.e., $T_{i} \alpha_{i}=c_{i} \alpha_{i} i=1$, 2. If $c=c_{1} \cup c_{2}$ is a bicharacteristic value of $T=T_{1} \cup T_{2}$ then
i. any $\alpha=\alpha_{1} \cup \alpha_{2}$ such that $T \alpha=c \alpha$ is called the bicharacteristic bivector of $T=T_{1} \cup T_{2}$ associated with the bicharacteristic value $c=c_{1} \cup c_{2}$.
ii. The collection of all $\alpha=\alpha_{1} \cup \alpha_{2}$ such that $T \alpha=c \alpha$ is called the bicharacteristic space associated with c.

If $T=T_{1} \cup T_{2}$ is any bilinear operator on the bivector space V $=V_{1} \cup V_{2}$. We call the bicharacteristic values associated with T to be bicharacteristic roots, bilatent roots bieigen values, biproper values or bispectral values.

These can be neutrosophic or real; will always be neutrosophic if $F=F_{1} \cup F_{2}=K_{1} I \cup K_{2} I$ where K_{1} and K_{2} are real fields.

These can be real or neutrosophic if $F=F_{1} \cup F_{2}=N\left(K_{1}\right)$ $\cup N\left(K_{2}\right), K_{1}$ and K_{2} are real fields.

If T is any bilinear operator and $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2}$ in any biscalar the set of bivector $\alpha=\alpha_{1} \cup \alpha_{2}$ such that $\mathrm{T} \alpha=\mathrm{c} \alpha$ is a strong neutrosophic bivector subspace of V . It is infact the binull space of the bilinear transformation $\left(T-\mathrm{Cl}_{\mathrm{d}}\right)=\left(\mathrm{T}_{1}-\mathrm{c}_{1} \mathrm{I}_{\mathrm{d}_{1}}\right) \cup\left(\mathrm{T}_{2}-\right.$ $c_{2} I_{d_{2}}$) where $I_{d_{j}}$ denotes the unit neutrosophic matrix for $j=1$,
2. We call $c=c_{1} \cup c_{2}$ the bicharacteristic value of $T=T_{1} \cup T_{2}$ if this bispace is different from the bizero space $0=0 \cup 0$; that is $\left(T-c I_{d}\right)=\left(T_{1}-c_{1} I_{d_{1}}\right) \cup\left(T_{2}-c_{2} I_{d_{2}}\right)$ fails to be one to one bilinear transformation that is when the bideterminant of $T-\mathrm{cI}_{\mathrm{d}}$ $=\operatorname{det}\left(\mathrm{T}_{1}-\mathrm{c}_{1} \mathrm{I}_{\mathrm{d}_{1}}\right) \cup \operatorname{det}\left(\mathrm{T}_{2}-\mathrm{c}_{2} \mathrm{I}_{\mathrm{d}_{2}}\right)=0 \cup 0$.

We have the following theorem.

THEOREM 2.3.29: Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a finite $\left(n_{1}, n_{2}\right)$ bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and let $c=c_{1} \cup c_{2}$ be a biscalar in F. The following are equivalent.
i. $\quad c=c_{1} \cup c_{2}$ is a bicharacteristic value of $T=T_{1} \cup T_{2}$.
ii. The bioperator $\left(T_{1}-c_{1} I_{d_{1}}\right) \cup\left(T_{2}-c_{2} I_{d_{2}}\right)=\left(T-c I_{d}\right)$ is bisingular or (nor biinvertible.
iii. $\operatorname{Det}\left(T-c I_{d}\right)=0 \cup 0$; i.e., $\operatorname{det}\left(T_{1}-c_{1} I_{d_{1}}\right) \cup \operatorname{det}\left(T_{2}-c_{2} I_{d_{2}}\right)$ $=0 \cup 0$.

This theorem is direct and the interested reader is expected to prove it.

Now we define the bicharacteristic value of a neutrosophic bimatrix $A=A_{1} \cup A_{2}$ where each A_{i} is a $n_{i} \times n_{i}$ neutrosophic matrix with entries from the neutrosophic field $F_{i}, i=1$, 2 , so that A is a neutrosophic bimatrix defined over the bifield $F=F_{1}$ $\cup F_{2}$. A bicharacteristic value of A in the bifield $F=F_{1} \cup F_{2}$ is a biscalar $c=c_{1} \cup c_{2}$ in $F=F_{1} \cup F_{2}$ such that the bimatrix $A-C_{d}$ $=\left(A_{1}-c_{1} I_{d_{1}}\right) \cup\left(A_{2}-c_{2} I_{d_{2}}\right)$ is bisingular or not biinvertible.
$c=c_{1} \cup c_{2}$ is a bicharacteristic value of $A=A_{1} \cup A_{2}$ a $\left(n_{1} \times\right.$ $\mathrm{n}_{1}, \mathrm{n}_{2} \times \mathrm{n}_{2}$) neutrosophic bimatrix over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ if and only if bidet $\left(\mathrm{A}-\mathrm{cI}_{\mathrm{d}}\right)=0 \cup 0$; i.e., $\operatorname{det}\left(\mathrm{A}_{1}-\right.$ $\left.c_{1} I_{d_{1}}\right) \cup \operatorname{det}\left(A_{2}-c_{2} I_{d_{2}}\right)=0 \cup 0$; we form the bimatrix $\left(\mathrm{xI}_{\mathrm{d}}-A\right)$ $=\left(\mathrm{xI}_{\mathrm{d}_{1}}-\mathrm{A}_{1}\right) \cup\left(\mathrm{xI}_{\mathrm{d}_{2}}-\mathrm{A}_{2}\right)$. Clearly the bicharacteristic values of A in $F=F_{1} \cup F_{2}$ are just biscalars $c=c_{1} \cup c_{2}$ in $F_{1} \cup F_{2}$ such that $f(c)=f_{1}\left(c_{1}\right) \cup f_{2}\left(c_{2}\right)=0 \cup 0$. For this reason $f=f_{1} \cup f_{2}$ is
called the bicharacteristic polynomial of A. Clearly f is a neutrosophic bipolynomial of differ degrees in x over different neutrosophic fields. It is important to note that $f=f_{1} \cup f_{2}$ is a bimonic bipolynomial which has bidegree exactly ($\mathrm{n}_{1}, \mathrm{n}_{2}$). The bimonic neutrosophic bipolynomial is also a neutrosophic bipolynomial over $F=F_{1} \cup F_{2}$.

We will illustrate this situation by some examples.

Example 2.3.77: Let

$$
A=A_{1} \cup A_{2}=\left[\begin{array}{lll}
\mathrm{I} & 0 & 1 \\
0 & 1 & 0 \\
\mathrm{I} & 0 & 0
\end{array}\right] \cup\left[\begin{array}{cccc}
2 & \mathrm{I} & 0 & \mathrm{I} \\
\mathrm{I} & \mathrm{I} & 0 & 0 \\
0 & 2 & 2 \mathrm{I} & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

be a neutrosophic bimatrix of order $(3 \times 3,4 \times 4)$ over the neutrosophic bifield $F=F_{1} \cup F_{2}=N\left(Z_{2}\right) \cup N\left(Z_{3}\right)$. The bicharacteristic neutrosophic bipolynomial associated with the neutrosophic bimatrix A is given by

$$
\begin{gathered}
\left(\mathrm{XI}_{\mathrm{d}}-\mathrm{A}\right)=\left(\mathrm{xI}_{3 \times 3}-\mathrm{A}_{1}\right) \cup\left(\mathrm{xI}_{4 \times 4}-\mathrm{A}_{2}\right) \\
=\left[\begin{array}{ccc}
\mathrm{x}+\mathrm{I} & 0 & 1 \\
0 & \mathrm{x}+1 & 0 \\
\mathrm{I} & 0 & \mathrm{x}
\end{array}\right] \cup\left[\begin{array}{cccc}
\mathrm{x}+1 & 2 \mathrm{I} & 0 & 2 \mathrm{I} \\
2 \mathrm{I} & \mathrm{x}+2 \mathrm{I} & 0 & 0 \\
0 & 1 & \mathrm{x}+\mathrm{I} & 2 \\
0 & 0 & 0 & \mathrm{x}+2
\end{array}\right]
\end{gathered}
$$

is a neutrosophic bimatrix with neutrosophic polynomial entries.

$$
\begin{aligned}
\mathrm{f}= & \mathrm{f}_{1} \cup \mathrm{f}_{2} \\
= & \operatorname{det}\left(\mathrm{xI}_{\mathrm{d}}-\mathrm{A}\right) \\
= & \operatorname{det}\left(\mathrm{xI}_{3 \times 3}-\mathrm{A}_{1}\right) \cup \operatorname{det}\left(\mathrm{x} \mathrm{I}_{4 \times 4}-\mathrm{A}_{2}\right) \\
= & \{(\mathrm{x}+\mathrm{I})(\mathrm{x}+1) \mathrm{x}+\mathrm{I}(\mathrm{x}+1)\} \cup(\mathrm{x}+1)(\mathrm{x}+2 \mathrm{I})(\mathrm{x}+\mathrm{I}) \\
= & (\mathrm{x}+2)+2 \mathrm{I}(\mathrm{x}+\mathrm{I})(\mathrm{x}+2)\} \\
= & \left\{\mathrm{x}^{3}+\mathrm{Ix}^{2}+\mathrm{Ix}+\mathrm{x}^{2}+\mathrm{Ix}+\mathrm{I}\right\} \cup\left\{\left(\mathrm{x}^{2}+2 \mathrm{Ix}+\mathrm{x}+2 \mathrm{I}\right)\right. \\
& \left(\mathrm{x}^{2}+2 \mathrm{I}+\mathrm{Ix}+2 \mathrm{I}\right)+2 \mathrm{Ix}^{2}+\mathrm{I} \\
= & \left\{\mathrm{x}^{3}+(\mathrm{I}+1) \mathrm{x}^{2}+\mathrm{I}\right\} \cup\left\{\mathrm{x}^{4}+2 \mathrm{I}+\mathrm{Ix}^{2}+2 \mathrm{x}^{2}\right\} .
\end{aligned}
$$

Thus the bipolynomial is a monic neutrosophic polynomial of degree $(3,4)$ over the bifield $\mathrm{F}=\mathrm{N}\left(\mathrm{Z}_{2}\right) \cup \mathrm{N}\left(\mathrm{Z}_{3}\right)$.

Example 2.3.78: Let

$$
\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
2 & 2
\end{array}\right] \cup\left[\begin{array}{lll}
\mathrm{I} & 0 & 1 \\
0 & 1 & \mathrm{I} \\
0 & 0 & 1
\end{array}\right]
$$

be a neutrosophic bimatrix with entries from the neutrosophic bifield $F=F_{1} \cup F_{2}=N\left(Z_{3}\right) \cup N\left(Z_{2}\right)$. The bicharacteristic neutrosophic bipolynomial associated with the neutrosophic bimatrix A is given by

$$
\begin{gathered}
\left(\mathrm{xI}_{\mathrm{d}}-\mathrm{A}\right)=\left(\mathrm{xI}_{2 \times 2}-\mathrm{A}_{1}\right) \cup\left(\mathrm{x}_{3 \times 3}-\mathrm{A}_{2}\right) \\
=\left\{\left[\begin{array}{cc}
\mathrm{x} & 0 \\
0 & \mathrm{x}
\end{array}\right]-\left[\begin{array}{ll}
\mathrm{I} & 0 \\
2 & 2
\end{array}\right]\right\} \cup\left\{\left[\begin{array}{ccc}
\mathrm{x} & 0 & 0 \\
0 & \mathrm{x} & 0 \\
0 & 0 & \mathrm{x}
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{I} & 0 & 1 \\
0 & 1 & \mathrm{I} \\
0 & 0 & \mathrm{I}
\end{array}\right]\right\} \\
=\left[\begin{array}{cc}
\mathrm{x}+2 \mathrm{I} & 0 \\
1 & \mathrm{x}+1
\end{array}\right] \cup\left[\begin{array}{ccc}
\mathrm{x}+\mathrm{I} & 0 & 1 \\
0 & \mathrm{x}+1 & \mathrm{I} \\
0 & 0 & \mathrm{x}+\mathrm{I}
\end{array}\right] .
\end{gathered}
$$

Let $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}=\operatorname{det}\left(\mathrm{xI}_{\mathrm{d}}-\mathrm{A}\right)=\operatorname{det}\left(\mathrm{xI}_{2 \times 2}-\mathrm{A}_{1}\right) \cup \operatorname{det}\left(\mathrm{xI}_{3 \times 3}-\mathrm{A}_{2}\right)$

$$
\begin{aligned}
& \quad=\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{I} & 0 \\
1 & \mathrm{x}+1
\end{array}\right| \cup\left|\begin{array}{ccc}
\mathrm{x}+\mathrm{I} & 0 & 1 \\
0 & \mathrm{x}+1 & \mathrm{I} \\
0 & 0 & \mathrm{x}+\mathrm{I}
\end{array}\right| \\
& =\{(\mathrm{x}+2 \mathrm{I})(\mathrm{x}+1)\} \cup\left\{(\mathrm{x}+\mathrm{I})^{2}(\mathrm{x}+1)\right\} \\
& =\left\{\mathrm{x}^{2}+2 \mathrm{Ix}+\mathrm{x}+2 \mathrm{I}\right\} \cup\left\{\left(\mathrm{x}^{2}+2 \mathrm{I}+\mathrm{I}\right)(\mathrm{x}+1)\right. \\
& \left.=\left(\mathrm{x}^{2}+2 \mathrm{Ix}+\mathrm{x}+2 \mathrm{I}\right) \cup\left(\mathrm{x}^{2}+\mathrm{I}\right)(\mathrm{x}+1)\right\} \\
& =\left\{\mathrm{x}^{2}+(2 \mathrm{I}+1) \mathrm{x}+2 \mathrm{I}\right\} \cup\left\{\mathrm{x}^{3}+\mathrm{Ix}+\mathrm{x}^{2}+\mathrm{I}\right\} .
\end{aligned}
$$

We see $\operatorname{det}\left(\mathrm{XI}_{\mathrm{d}}-\mathrm{A}\right)$ is a neutrosophic bipolynomial which is monic neutrosophic bipolynomial of bidegree $(2,3)$ over the bifield $\mathrm{F}=\mathrm{N}\left(\mathrm{Z}_{3}\right) \cup \mathrm{N}\left(\mathrm{Z}_{2}\right)$.

We now proceed onto define similar neutrosophic bimatries when the entries of these neutrosophic bimatrices are from the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

DEFINITION 2.3.41: Let $A=A_{1} \cup A_{2}$ be a $\left(n_{1} \times n_{1}, n_{2} \times n_{2}\right)$ neutrosophic bimatrix over the neutrosophic bifield $F=F_{1} \cup$ F_{2}, that is each A_{i} takes its entries from the neutrosophic field $F_{i}, i=1$, 2. We say two neutrosophic bimatrices A and B of same order are similar if there exists a neutrosophic non invertible bimatrix $P=P_{1} \cup P_{2}$ of ($n_{1} \times n_{1}, n_{2} \times n_{2}$) order such that $B=P^{-1} A P$ where $P^{-1}=P_{1}^{-1} \cup P_{2}^{-1}, B=B_{1} \cup B_{2}$ and

$$
B=P_{1}^{-1} A_{1} P_{1} \cup P_{2}^{-1} A_{2} P_{2} .
$$

Clearly
$\operatorname{det}\left(x I_{d}-B\right)=\operatorname{det}\left(x I_{d}-P^{-1} A P\right)$
$=\operatorname{det}\left(P^{-1}\left(x I_{d}-A\right) P\right)$
$=\operatorname{det} P^{-1} \cdot \operatorname{det}\left(x I_{d}-A\right) \operatorname{det} P$
$=\operatorname{det}\left(x I_{d}-A\right)$
$=\operatorname{det}\left(x I_{d_{1}}-A_{1}\right) \cup \operatorname{det}\left(x I_{d_{2}}-A_{2}\right)$.
Thus

$$
\operatorname{det}\left(x I_{d_{1}}-B_{1}\right) \cup \operatorname{det}\left(x I_{d_{2}}-B_{2}\right)=\operatorname{det}\left(x I_{d_{1}}-A_{1}\right) \cup \operatorname{det}\left(x I_{d_{2}}-A_{2}\right) .
$$

DEFINITION 2.3.42: Let $T=T_{1} \cup T_{2}$ be a linear bioperator on a strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$. We say $T=T_{1} \cup T_{2}$ is bidiagonalizable if there is a bibasis for $V=V_{1} \cup V_{2}$ and for each bivector of which is a bicharacteristic bivecor of $T=T_{1} \cup$ T_{2}. Suppose $T=T_{1} \cup T_{2}$ is a bidiagonalizable bilinear operator. Let

$$
\left\{C_{1}^{1}, \ldots, C_{k_{1}}^{1}\right\} \cup\left\{C_{1}^{2}, \ldots, C_{k_{2}}^{2}\right\}
$$

be the bidistinct bicharacteristic values of $T=T_{1} \cup T_{2}$. Then there is a bibasis $B=B_{1} \cup B_{2}$ in which T is represented by a bidiagonal matrix which has for its bidiagonal entries the
scalars C_{i}^{t} each repeated a certain number of times $t=1$, 2. If C_{i}^{t} is repeated d_{i}^{t} times then the neutrosophic bimatrix has the biblock form

$$
\begin{gathered}
{[T]_{B}=\left[T_{1}\right]_{B_{1}} \cup\left[T_{2}\right]_{B_{2}}} \\
=\left[\begin{array}{cccc}
C_{1}^{1} I_{1}^{1} & 0 & \cdots & 0 \\
0 & C_{2}^{1} I_{2}^{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & C_{k_{1}}^{1} I_{k_{1}}^{1}
\end{array}\right] \cup\left[\begin{array}{cccc}
C_{1}^{2} I_{1}^{2} & 0 & \cdots & 0 \\
0 & C_{2}^{2} I_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & C_{k_{2}}^{2} I_{k_{2}}^{2}
\end{array}\right] .
\end{gathered}
$$

I_{j}^{t} is the $d_{j}^{t} \times d_{j}^{t}$ identity matrix $t=1,2$.
From this neutrosophic bimatrix we make the following observations.

First the bicharacteristic neutrosophic bipolynomial for $\mathrm{T}=$ $T_{1} \cup T_{2}$ is the biproduct of bilinear factors $f=f_{1} \cup f_{2}=(x-$ $\left.C_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-C_{k_{1}}^{1}\right)^{d_{k_{1}}^{1}} \cup\left(x-C_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(x-C_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}}$.

If the biscalar neutrosophic bifield $F=F_{1} \cup F_{2}$ is bialgebraically closed, if each F_{i} is algebraically closed for $\mathrm{i}=1$, 2; then every bipolynomial over $F=F_{1} \cup F_{2}$ can be bifactored; however if $F=F_{1} \cup F_{2}$ is not algebraically biclosed (bialgebraically closed) we are citing a special property of $\mathrm{T}=$ $T_{1} \cup T_{2}$, when we say that its bicharacteristic polynomial does not have such a factorization.

The second thing to be noted is that d_{i}^{t} is the number of times C_{i}^{t} is repeated as a root of f_{t} which is equal to the dimension of the space in V_{t} of characteristic vectors associated with the characteristic value $C_{i}^{t} ; i=1,2, \ldots, k_{t} ; t=1,2$. This is because the binullity of a bidiagonal bimatrix is equal to the number of bizeros which has on its main bidiagonal and the neutrosophic bimatrix

$$
\left[\mathrm{T}-\mathrm{CI}_{\mathrm{d}}\right]_{\mathrm{B}}=\left[\mathrm{T}_{1}-\mathrm{C}_{\mathrm{l}_{1}}^{1} \mathrm{I}_{\mathrm{d}_{1}}\right]_{\mathrm{B}_{1}} \cup\left[\mathrm{~T}_{2}-\mathrm{C}_{\mathrm{l}_{2}}^{2} \mathrm{I}_{\mathrm{d}_{2}}\right]_{\mathrm{B}_{2}}
$$

has $\left(\mathrm{d}_{1_{1}}^{1}, \mathrm{~d}_{1_{2}}^{2}\right)$ bizeros on its main bidiagonal.

We give some results, the proof of which is direct and the interested reader can analyse them.

THEOREM 2.3.30: Suppose that $T \alpha=C \alpha$ that is $\left(T_{1} \cup T_{2}\right)\left(\alpha_{1} \cup\right.$ $\left.\alpha_{2}\right)=C_{1} \alpha_{1} \cup C_{2} \alpha_{2}$ i.e., $T_{1} \alpha_{1} \cup T_{2} \alpha_{2}=C_{1} \alpha_{1} \cup C_{2} \alpha_{2} ; T=T_{1} \cup$ T_{2} be a bilinear operator when the biscalar $C=C_{1} \cup C_{2} \in F=$ $F_{1} \cup F_{2}\left(F=F_{1} \cup F_{2}\right.$ a neutrosophic bifield) and $\alpha=\alpha_{1} \cup \alpha_{2}$ is a bivector from a strong neutrosophic bivector spaceV $=V_{1}$ $\cup V_{2}$ over $F=F_{1} \cup F_{2}$. If $f=f_{1} \cup f_{2}$ is any bipolynomial then $f(T) \alpha=f(C) \alpha$; i.e.,

$$
f_{1}\left(T_{1}\right) \alpha_{1} \cup f_{2}\left(T_{2}\right) \alpha_{2}=f_{1}\left(C_{1}\right) \alpha_{1} \cup f_{2}\left(C_{2}\right) \alpha_{2} .
$$

THEOREM 2.3.31: Let $T=T_{1} \cup T_{2}$ be a linear bioperator on the finite (n_{1}, n_{2}) bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the bifield $F=F_{1} \cup F_{2}$. If $\left\{C_{1}^{1}, C_{2}^{1}, \ldots, C_{k_{1}}^{1}\right\} \cup$ $\left\{C_{1}^{2}, C_{2}^{2}, \ldots, C_{k_{2}}^{2}\right\}$ be distinct bicharacteristic values of $T=T_{1} \cup$ T_{2}. Let $W_{i}=W_{i_{1}}^{1} \cup W_{i_{2}}^{2}$ be the strong neutrosophic bisubspace of bicharacteristic bivectors associated with the bicharacteristic values $C_{i}=C_{i_{1}}^{1} \cup C_{i_{2}}^{2}$. If $W=\left\{W_{1}^{1}+\ldots+W_{k_{1}}^{1}\right\}$ $\left\{W_{1}^{2}+\ldots+W_{k_{2}}^{2}\right\}$ the bidimension

$$
\begin{gathered}
W=\left\{\left(\operatorname{dim} W_{1}^{1}+\ldots+\operatorname{dim} W_{k_{1}}^{1}\right)\right\} \cup\left\{\left(\operatorname{dim} W_{1}^{2}+\ldots+\operatorname{dim} W_{k_{2}}^{2}\right)\right\} \\
=\operatorname{dim} W^{1} \cup \operatorname{dim} W^{2} .
\end{gathered}
$$

Infact if $B_{i_{t}}^{t}$ is the basis of $W_{i_{t}}^{t} ; 1 \leq i_{t} \leq k_{t}, t=1,2$, then $B=$ $\left\{B_{1}^{1}, \ldots, B_{k_{1}}^{1}\right\} \cup\left\{B_{1}^{2}, \ldots, B_{k_{2}}^{2}\right\}$ is a bibasis of W.

THEOREM 2.3.32: Let $T=T_{1} \cup T_{2}$ be a bilinear operator (linear bioperator) of a finite (n_{1}, n_{2}) bidimension strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the bifield $F=F_{1}$ $\cup F_{2}$.

Let $\left\{C_{1}^{1}, \ldots, C_{k_{1}}^{1}\right\} \cup\left\{C_{1}^{2}, \ldots, C_{k_{2}}^{2}\right\}$ be the distinct bicharacteristic values of $T=T_{1} \cup T_{2}$ and let $W_{i}=W_{i_{1}}^{1} \cup W_{i_{2}}^{2}$ be
the binull space of $T-C_{i} I_{d}=\left[T_{1}-C_{l_{1}}^{1} I_{d_{1}}\right] \cup\left[T_{2}-C_{l_{2}}^{2} I_{d_{2}}\right]$. The following are equivalent
i. T is bidiagonalizable
ii. The bicharacteristic bipolynomial for $T=T_{1} \cup T_{2}$ is

$$
\begin{aligned}
& f=f_{1} \cup f_{2} \\
& =\left(x-C_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-C_{k_{1}}^{1}\right)^{d_{k_{1}}^{1}} \cup\left(x-C_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(x-C_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}} .
\end{aligned}
$$

We will discuss more elaborately by giving proofs when V is a strong neutrosophic n-vector space over a neutrosophic n-field; $\mathrm{n}>2$. We define the notion of bipolynomial for the bioperator T $: \mathrm{V} \rightarrow \mathrm{V}$.

DEFINITION 2.3.43: Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a finite (n_{1}, n_{2}) bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$. The biminimal neutrosophic bipolynomial for T is the unique monic bigenerator of the biideal of bipolynomials over the bifield $F=$ $F_{1} \cup F_{2}$ which biannihilate $T=T_{1} \cup T_{2}$.

The biminimal neutrosophic bipolyomial starts from the fact that the bigenerator of a neutrosophic bipolynomial biideal is characterized by being the bimonic bipolynomial of biminimum bidegree in the biideal that implies that the biminimal bipolynomial $p=p_{1} \cup p_{2}$ for the bilinear operator $T=T_{1} \cup T_{2}$ is uniquely determined by the following properties.
i. p is a bimonic neutrosophic bipolynomial over the biscalar neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.
ii. $\quad \mathrm{p}(\mathrm{T})=\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right) \cup \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right)=0 \cup 0$.
iii. No neutrosophic bipolynomial over the bifield $F=F_{1} \cup F_{2}$ which biannihilates $T=T_{1} \cup T_{2}$ has smaller bidegree than p $=p_{1} \cup p_{2}$ has. ($n_{1} \times n_{1}, n_{2} \times n_{2}$) to be the order of the neutrosophic bimatrix $A=A_{1} \cup A_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ where each A_{i} has a $n_{i} \times n_{i}$ neutrosophic matrix with entries from the neutrosophic field F_{i}, which associated matrix of $\mathrm{T}_{\mathrm{i}} ; \mathrm{i}=1,2$.

The biminimal neutrosophic bipolynomial for $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}$ is defined in an analogous way as the unique bimonic generator of the biideal of all neutrosophic bipolynomial over the bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ which biannihilate A .

If the neutrosophic linear bioperator $T=T_{1} \cup T_{2}$ is represented by some bibasis by the neutrosophic bimatrix $\mathrm{A}=$ $\mathrm{A}_{1} \cup \mathrm{~A}_{2}$ then T and A have the same neutrosophic biminimal bipolynomial because $f(T)=f_{1}\left(T_{1}\right) \cup f_{2}\left(T_{2}\right)$ is represented in the bibasis by the neutrosophic bimatrix $f(A)=f_{1}\left(A_{1}\right) \cup f_{2}\left(A_{2}\right)$, so $f(T)=0 \cup 0$ if and only if $f(A)=f_{1}\left(A_{1}\right) \cup f_{2}\left(A_{2}\right)=0 \cup 0$, that is if and only if $f(T)=f_{1}\left(T_{1}\right) \cup f_{2}\left(T_{2}\right)=0 \cup 0$.

So

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{P}^{-1} \mathrm{AP}\right) & =\mathrm{f}_{1}\left(\mathrm{P}_{1}^{-1} \mathrm{~A}_{1} \mathrm{P}_{1}\right) \cup \mathrm{f}_{2}\left(\mathrm{P}_{2}^{-1} \mathrm{~A}_{2} \mathrm{P}_{2}\right) \\
& =\mathrm{P}_{1}^{-1} \mathrm{f}_{1}\left(\mathrm{~A}_{1}\right) \mathrm{P}_{1} \cup \mathrm{P}_{2}^{-1} \mathrm{f}_{2}\left(\mathrm{~A}_{2}\right) \mathrm{P}_{2} \\
& =\mathrm{P}^{-1} \mathrm{f}(\mathrm{~A}) \mathrm{P}
\end{aligned}
$$

for every neutrosophic bipolynomial $f=f_{1} \cup f_{2}$.
Another important feature about the neutrosophic biminimal polynomials of neutrosophic bimatrices is that suppose $\mathrm{A}=\mathrm{A}_{1}$ $\cup A_{2}$ is a ($n_{1} \times n_{1}, n_{2} \times n_{2}$) neutrosophic bimatrix with entries from the bifield $F=F_{1} \cup F_{2}$. Suppose $K=K_{1} \cup K_{2}$ is a neutrosophic bifield which contains the neutrosophic bifield $\mathrm{F}=$ $F_{1} \cup F_{2}$; that is $K \supseteq F$ and $K_{i} \supseteq F_{i}$ for every $i, i=1,2 . A=A_{1} \cup$ A_{2} is a ($n_{1} \times n_{1}, n_{2} \times n_{2}$) neutrosophic bimatrix over $F=F_{1} \cup F_{2}$ or over $K=K_{1} \cup K_{2}$ but we do not obtain two neutrosophic biminimal polynomial but only one neutrosophic minimal bipolynomial.

We now proceed on to prove one interesting theorem about the neutrosophic biminimal polynomials for T (or A).

THEOREM 2.3.33: Let $T=T_{1} \cup T_{2}$ be a neutrosophic linear bioperator on a (n_{1}, n_{2}) bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}\left(\right.$ or let A be a $\left(n_{1} \times n_{1}, n_{2} \times n_{2}\right)$ neutrosophic bimatrix that is $A=A_{1} \cup A_{2}$ where each A_{i} is a n_{i} $\times n_{i}$ neutrosophic matrix with its entries from the neutrosophic field F_{i} of $F=F_{1} \cup F_{2}$ true for $i=1,2$). The bicharacteristic
and biminimal neutrosophic bipolynomial for $T=T_{1} \cup T_{2}$ (for A $=A_{1} \cup A_{2}$) have the same biroots except for bimultiplicities.

Proof: Let $\mathrm{p}=\mathrm{p}_{1} \cup \mathrm{p}_{2}$ be a neutrosophic biminimal bipolynomial for $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$. Let $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2}$ be a biscalar from the neutrosophic bifield $F=F_{1} \cup F_{2}$. To prove $p(c)=p_{1}\left(c_{1}\right) \cup$ $\mathrm{p}_{2}\left(\mathrm{c}_{2}\right)=0 \cup 0$ if and only if $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2}$ is the bicharacteristic value of T .

Suppose $\mathrm{p}(\mathrm{c})=\mathrm{p}_{1}\left(\mathrm{c}_{1}\right) \cup \mathrm{p}_{2}\left(\mathrm{c}_{2}\right)=0 \cup 0$ then $\mathrm{p}=\left(\mathrm{x}-\mathrm{c}_{1}\right) \mathrm{q}_{1} \cup$ $\left(\mathrm{x}-\mathrm{c}_{2}\right) \mathrm{q}_{2}$ where $\mathrm{q}=\mathrm{q}_{1} \cup \mathrm{q}_{2}$ is the neutrosophic bipolynomial since bideg $\mathrm{q}<$ bideg p , the neutrosophic biminimal bipolynomial $\mathrm{p}=\mathrm{p}_{1} \cup \mathrm{p}_{2}$ tells us $\mathrm{q}(\mathrm{T})=\mathrm{q}_{1}\left(\mathrm{~T}_{1}\right) \cup \mathrm{q}_{2}\left(\mathrm{~T}_{2}\right) \neq 0 \cup$ 0 . Choose the bivector $\beta=\beta_{1} \cup \beta_{2}$ such that $q(T) \beta=q_{1}\left(T_{1}\right) \beta_{1}$ $\cup \mathrm{q}_{2}\left(\mathrm{~T}_{2}\right) \beta_{2} \neq 0 \cup 0$. Let $\alpha=\mathrm{q}(\mathrm{T}) \mathrm{p}$ that is $\alpha=\alpha_{1} \cup \alpha_{2}=\mathrm{q}_{1}\left(\mathrm{~T}_{1}\right)$ $\beta_{1} \cup \mathrm{q}_{2}\left(\mathrm{~T}_{2}\right) \beta_{2}$.

Then

$$
\begin{aligned}
0 \cup 0 & =p(T) \beta \\
& =p_{1}\left(T_{1}\right) \beta_{1} \cup p_{2}\left(T_{2}\right) \beta_{2} \\
& =(T-c I) q(T) \beta \\
& =\left(T_{1}-c_{1} I_{1}\right) q_{1}\left(T_{1}\right) \beta_{1} \cup\left(T_{2}-c_{2} I_{2}\right) q_{2}\left(T_{2}\right) \beta_{2} \\
& =\left(T_{1}-c_{1} I_{1}\right) \alpha_{1} \cup\left(T_{2}-c_{2} I_{2}\right) \alpha_{2}
\end{aligned}
$$

and thus $\mathrm{c}=\mathrm{c}_{1} \cup \mathrm{c}_{2}$ is a bicharacteristic value of $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$.
Suppose $c=c_{1} \cup c_{2}$ is the bicharacteristic value of the bilinear operator $T=T_{1} \cup T_{2}$ say $T \alpha=c \alpha$; i.e., $T_{1} \alpha_{1} \cup T_{2} \alpha_{2}=$ $c_{1} \alpha_{1} \cup c_{2} \alpha_{2}$ with $\alpha \neq 0 \cup 0$.
From the earlier results we have $\mathrm{p}(\mathrm{T}) \alpha=\mathrm{p}(\mathrm{c}) \alpha$ that is

$$
\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}=\mathrm{p}_{1}\left(\mathrm{c}_{1}\right) \alpha_{1} \cup \mathrm{p}_{2}\left(\mathrm{c}_{2}\right) \alpha_{2} .
$$

Since $p(T)=p_{1}\left(T_{1}\right) \cup p_{2}\left(T_{2}\right)=0 \cup 0$ and $\alpha=\alpha_{1} \cup \alpha_{2} \neq 0 \cup 0$ we have $\mathrm{p}_{1}\left(\mathrm{c}_{1}\right) \cup \mathrm{p}_{2}\left(\mathrm{c}_{2}\right)=\mathrm{p}(\mathrm{c}) \neq 0 \cup 0$.

Let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ be a bidiagonalizable bilinear operator and let $\left\{c_{1}^{1}, \ldots, c_{k_{1}}^{1}\right\} \cup\left\{c_{1}^{2}, \ldots, c_{k_{2}}^{2}\right\}$ be the bidistinct bicharacteristic values of T . Then the biminimal neutrosophic bipolynomial for $T=T_{1} \cup T_{2}$ is the neutrosophic bipolynomial $p=p_{1} \cup p_{2}=(x-$ $\left.c_{1}^{1}\right) \ldots\left(x-c_{k_{1}}^{1}\right) \cup\left(x-c_{1}^{2}\right) \ldots\left(x-c_{k_{2}}^{2}\right)$.

If $\alpha=\alpha_{1} \cup \alpha_{2}$ is a bicharacteristic bivector then one of the bioperators $\left\{\left(\mathrm{T}_{1}-\mathrm{c}_{1}^{1} \mathrm{I}_{1}\right), \ldots,\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{k}_{1}}^{1} \mathrm{I}_{1}\right)\right\} \cup\left\{\left(\mathrm{T}_{2}-\mathrm{c}_{1}^{2} \mathrm{I}_{2}\right), \ldots\right.$,
($\left.\left.\mathrm{T}_{2}-\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{I}_{2}\right)\right\}$ send $\alpha=\alpha_{1} \cup \alpha_{2}$ into $0 \cup 0$, thus resulting in $\left\{\left(\mathrm{T}_{1}\right.\right.$ $\left.\left.-\mathrm{c}_{1}^{1} \mathrm{I}_{1}\right), \ldots,\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{k}_{1}}^{1} \mathrm{I}_{1}\right)\right\} \cup\left\{\left(\mathrm{T}_{2}-\mathrm{c}_{1}^{2} \mathrm{I}_{2}\right), \ldots,\left(\mathrm{T}_{2}-\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{I}_{2}\right)\right\}=0 \cup$
0 for every bicharacteristic bivector $\alpha=\alpha_{1} \cup \alpha_{2}$.
Hence there exists a bibasis for the underlying bispace which consists of bicharacteristic vectors of $T=T_{1} \cup T_{2}$. Hence $\mathrm{p}(\mathrm{T})=\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right) \cup \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right)=\left\{\left(\mathrm{T}_{1}-\mathrm{c}_{1}^{1} \mathrm{I}_{1}\right), \ldots,\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{k}_{1}}^{1} \mathrm{I}_{1}\right)\right\} \cup\left\{\left(\mathrm{T}_{2}-\right.\right.$ $\left.\left.\mathrm{c}_{1}^{2} \mathrm{I}_{2}\right), \ldots,\left(\mathrm{T}_{2}-\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{I}_{2}\right)\right\}=0 \cup 0$.

Thus we conclude if T is bidiagonlizable bilinear operator then the neutrosophic biminimal bipolynomial for $T=T_{1} \cup T_{2}$ is a product of bidistinct bilinear factors.

Now we proceed onto prove the Cayley Hamilton theorem for strong neutrosophic bivector spaces of finite bidimension defined over the neutrosophic bifield of Type II.

THEOREM 2.3.34: (Cayley Hamilton): Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a finite (n_{1}, n_{2}) bidimensional strong neutrosophic bivector space defined over a neutrosophic bifield $F=F_{1} \cup F_{2}$. If $f=f_{1} \cup f_{2}$ is the bicharacteristic neutrosophic bipolynomial for T then $f(T)=f_{1}\left(T_{1}\right) \cup f_{2}\left(T_{2}\right)=0 \cup 0$, in other words the biminimal neutrosophic bipolynomial bidivides the bicharacteristic neutrosophic bipolynomial for T.

Proof: Let $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}$ be a bicommuting neutrosophic ring with biidentity $I_{2}=(1,1)$ consisting of all bipolynomial in $T=$ $T_{1} \cup T_{2} . K=K_{1} \cup K_{2}$ is actually a bicommuting bialgebra with biidentity over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ (that is both F_{1} and F_{2} are not pure).

Let $\left\{\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}$ be a bibasis for $V=V_{1} \cup$ V_{2} and let $A=A^{1} \cup A^{2}$ be a bimatrix which represents $T=T_{1} \cup$ T_{2} in the given bibasis.

Then

$$
\begin{aligned}
T \alpha_{\mathrm{i}} & =\mathrm{T}_{1} \alpha_{\mathrm{i}_{1}}^{1} \cup \mathrm{~T}_{2} \alpha_{\mathrm{i}_{2}}^{2} \\
& =\sum_{\mathrm{j}_{1}=1}^{\mathrm{n}_{1}} \mathrm{~A}_{\mathrm{i}_{1} 1_{1}}^{1} \alpha_{\mathrm{i}_{1}}^{1} \cup \sum_{\mathrm{j}_{2}=1}^{\mathrm{n}_{2}} \mathrm{~A}_{\mathrm{j}_{2} \mathrm{i}_{2}}^{2} \alpha_{\mathrm{j}_{2}}^{2} ;
\end{aligned}
$$

$1 \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{n}_{\mathrm{j}_{\mathrm{i}}} ; \mathrm{i}=1$, 2 . These biequations may be equivalently written in the form

$$
\sum_{\mathrm{j}_{1}=1}^{\mathrm{n}_{1}}\left(\delta_{\mathrm{j}_{\mathrm{i}_{1}}} \mathrm{~T}_{1}-\mathrm{A}_{\mathrm{j}, 1^{1} 1}^{1} \mathrm{I}_{\mathrm{i}_{1}}\right) \alpha_{\mathrm{j}_{1}}^{1} \cup \sum_{\mathrm{j}_{2}=1}^{\mathrm{n}_{2}}\left(\delta_{\mathrm{j}_{2} \mathrm{i}_{2}} \mathrm{~T}_{2}-\mathrm{A}_{\mathrm{j}_{2} \mathrm{i}_{2}}^{2} \mathrm{I}_{\mathrm{i}_{2}}\right) \alpha_{\mathrm{j}_{2}}^{2}=0 \cup 0
$$

Let $B=B^{1} \cup B^{2}$ denote the element of $K_{1}^{n_{1} \times n_{1}} \cup K_{2}^{n_{2} \times n_{2}}$; i.e., B^{i} is an element of $K_{i}^{n_{i} \times n_{i}}$ with entries $B_{i, j_{t}}^{t}=\delta_{i_{i, ~},} T_{t}-A_{i_{i, ~}, ~} I_{t} ; t=$ 1, 2. When $n_{t}=2,1 \leq j_{t}, i_{t} \leq n_{t}$;

$$
\mathrm{B}^{\mathrm{t}}=\left[\begin{array}{cc}
\mathrm{T}_{\mathrm{t}}-\mathrm{A}_{11}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} & \mathrm{~A}_{21}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} \\
-\mathrm{A}_{12}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} & \mathrm{~T}_{\mathrm{t}}-\mathrm{A}_{22}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}}
\end{array}\right]
$$

and det $B^{t}=\left(T_{t}-A_{11}^{t} I_{t}\right)\left(T_{t}-A_{22}^{t} I_{t}\right)-\left(A_{12}^{t} A_{21}^{t}\right) I_{t}=f_{t}\left(I_{t}\right)$ where f_{t} is the neutrosophic characteristic polynomial associated with $T_{t}, t=1,2 . f_{t}=x^{2}-\operatorname{trace} A_{x}^{t}+$ det A^{t}. For case $n_{t}>2$ it is clear that det $B^{t}=f_{t}\left(T_{t}\right)$ since f_{t} is the determinant of the neutrosophic matrix $\mathrm{xI}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}}$ whose entries are neutrosophic polynomial;

We will shown $f_{t}\left(T_{t}\right)=0$. In order that $f_{t}\left(T_{t}\right)$ is a zero operator it is necessary and sufficient that

$$
\left(\operatorname{det} \mathrm{B}^{\mathrm{t}}\right)_{\alpha_{\mathrm{k}_{\mathrm{k}}^{\prime}}^{\prime}}=0 \text { for } \mathrm{k}_{\mathrm{t}}=0,1, \ldots, \mathrm{n}_{\mathrm{t}} .
$$

By definition of B^{t} the vectors $\alpha_{1}^{t} \cup \ldots \cup \alpha_{n_{\mathrm{t}}}^{t}$ satisfy the equations;

$$
\sum_{\mathrm{j}_{\mathrm{t}}=1}^{\mathrm{n}_{\mathrm{i}}} \mathrm{~B}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}} \alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}}=0 ; 1 \leq \mathrm{i}_{\mathrm{t}} \leq \mathrm{n}_{\mathrm{t}} .
$$

When $\mathrm{n}_{\mathrm{t}}=2$ we can write the above equation in the form

$$
\left[\begin{array}{cc}
\mathrm{T}_{\mathrm{t}}-\mathrm{A}_{11}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} & -\mathrm{A}_{21}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} \\
-\mathrm{A}_{12}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} & \mathrm{~T}_{\mathrm{t}}-\mathrm{A}_{22}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{\mathrm{t}} \\
\alpha_{2}^{\mathrm{t}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

In this case the usual adjoint B^{t} is the neutrosophic matrix

$$
\tilde{\mathrm{B}}^{\mathrm{t}}=\left[\begin{array}{cc}
\mathrm{T}_{\mathrm{t}}-\mathrm{A}_{22}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} & \mathrm{~A}_{21}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}} \\
\mathrm{~A}_{12}^{\mathrm{t}} \mathrm{I} & \mathrm{~T}_{\mathrm{t}}-\mathrm{A}_{22}^{\mathrm{t}} \mathrm{I}_{\mathrm{t}}
\end{array}\right]
$$

and

$$
\tilde{\mathrm{B}}^{\mathrm{t}} \mathrm{~B}^{\mathrm{t}}=\left[\begin{array}{cc}
\operatorname{det} \mathrm{B}^{\mathrm{t}} & 0 \\
0 & \operatorname{det} \mathrm{~B}^{\mathrm{t}}
\end{array}\right] .
$$

Hence

$$
\begin{aligned}
& \operatorname{det} \mathrm{B}^{\mathrm{t}}\left[\begin{array}{l}
\alpha_{1}^{\mathrm{t}} \\
\alpha_{2}^{\mathrm{t}}
\end{array}\right]=\tilde{\mathrm{B}}^{\mathrm{t}} \mathrm{~B}^{\mathrm{t}}\left[\begin{array}{c}
\alpha_{1}^{\mathrm{t}} \\
\alpha_{2}^{\mathrm{t}}
\end{array}\right]= \\
& \tilde{\mathrm{B}}^{\mathrm{t}} \mathrm{~B}^{\mathrm{t}}\left[\begin{array}{l}
\alpha_{1}^{\mathrm{t}} \\
\alpha_{2}^{\mathrm{t}}
\end{array}\right]=\tilde{\mathrm{B}}^{\mathrm{t}} \mathrm{~B}^{\mathrm{t}}\left[\begin{array}{l}
\alpha_{1}^{\mathrm{t}} \\
\alpha_{2}^{\mathrm{t}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \\
& \text { In the general case } \tilde{\mathrm{B}}^{\mathrm{t}}=\operatorname{adj} \mathrm{B}^{\mathrm{t}} \text {. Then } \sum_{\mathrm{j}_{\mathrm{i}}=1}^{\mathrm{n}_{\mathrm{k}}} \tilde{\mathrm{~B}}_{\mathrm{k}_{\mathrm{i}} \mathrm{i}_{\mathrm{t}}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}_{\mathrm{i}, \mathrm{j}_{\mathrm{t}}}^{\mathrm{t}} \alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}}=0}=0
\end{aligned}
$$ for each pair k_{t}, i_{t} and summing on i_{t} we have

$$
\begin{aligned}
& 0=\sum_{\mathrm{i}_{\mathrm{t}}=1}^{\mathrm{n}_{t}} \sum_{\mathrm{j}_{\mathrm{t}}=1}^{\mathrm{n}_{t}} \tilde{\mathrm{~B}}_{\mathrm{k}_{\mathrm{t}_{1}}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}_{\mathrm{i}, t}}^{\mathrm{t}} \alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}} \\
& =\sum_{\mathrm{i}_{\mathrm{t}}=1}^{\mathrm{n}_{t}}\left(\sum_{\mathrm{i}_{\mathrm{i}}=1}^{\mathrm{n}_{t}} \tilde{\mathrm{~B}}_{\mathrm{k}_{\mathrm{t}} \mathrm{i}_{\mathrm{t}}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}_{\mathrm{i}, \mathrm{l}}}^{\mathrm{t}} \mathrm{a}_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}}\right) .
\end{aligned}
$$

Now $\tilde{B}^{t} \mathrm{~B}^{t}=\left(\operatorname{det} \mathrm{B}_{\mathrm{t}}\right) \mathrm{I}_{\mathrm{t}}$ so that

$$
\sum_{\mathrm{i}_{\mathrm{i}}=1}^{\mathrm{n}_{\mathrm{t}}} \tilde{\mathrm{~B}}_{\mathrm{k}, \mathrm{i}^{t}}^{t} \mathrm{~B}_{\mathrm{i}_{\mathrm{i}, \mathrm{j}}}^{\mathrm{t}}=\delta_{\mathrm{k}_{\mathrm{t}, \mathrm{j}}} \operatorname{det} \mathrm{~B}^{\mathrm{t}}
$$

Therefore

$$
0=\sum_{\mathrm{j}_{\mathrm{t}}=1}^{\mathrm{n}_{\mathrm{t}}} \delta_{\mathrm{k}_{\mathrm{i}_{\mathrm{t}}}}\left(\operatorname{det} \mathrm{~B}^{\mathrm{t}}\right) \alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}}=\left(\operatorname{det} \mathrm{B}^{\mathrm{t}}\right) \alpha_{\mathrm{k}_{\mathrm{t}}}^{\mathrm{t}} ; 1 \leq \mathrm{k}_{\mathrm{t}} \leq \mathrm{n}_{\mathrm{t}} .
$$

Since this is true for each $t ; t=1$, 2 ; we have $0 \cup 0=\left(\right.$ det $\left.B^{1}\right)$ $\alpha_{k_{1}}^{1} \cup\left(\operatorname{det} B^{2}\right) \alpha_{k_{2}}^{2} ; 1 \leq k_{i} \leq n_{i} ; i=1,2$.

The Cayley-Hamilton theorem is very important for it is useful in narrowing down the search for the biminimal neutrosophic bipolynomials of various bioperators.

If we know the neutrosophic bimatrix $A=A^{1} \cup A^{2}$ which represents $T=T_{1} \cup T_{2}$ in some ordered bibasis then we can compute the bicharacteristic neutrosophic bipolynomial $f=f_{1} \cup$ f_{2}. We know the biminimal neutrosophic polynomial $p=p_{1} \cup p_{2}$ bidivides f that is each $\mathrm{p}_{\mathrm{i}} / \mathrm{f}_{\mathrm{i}}$; for $\mathrm{i}=1,2$ (which we call as bidivides f) and that the two neutrosophic bipolynomials have the same biroots.

However we do not have a method of computing the roots even in case of polynomials so it is more difficult in case of finding the biroots of the neutrosophic bipolynomials. However if $f=f_{1} \cup f_{2}$ factors as $f=\left(x-c_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-c_{k_{1}}^{1}\right)^{d_{k_{1}}^{1}} \cup\left(x-c_{1}^{2}\right)^{d_{1}^{2}}$ $\ldots\left(x-c_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}}$ the distinct bisets $d_{i_{1}}^{t} \geq t ; t=1,2, \ldots, k_{t}$ then $p=$ $p_{1} \cup p_{2}=\left(x-c_{1}^{1}\right)^{r_{1}} \ldots\left(x-c_{k_{1}}^{1}\right)^{r_{k_{1}}^{r_{1}}} \cup\left(x-c_{1}^{2}\right)^{r_{1}^{2}} \ldots\left(x-c_{k_{2}}^{2}\right)^{r_{k_{2}}^{2}} ; 1$ $\leq \mathrm{r}_{\mathrm{j}}^{\mathrm{t}} \leq \mathrm{d}_{\mathrm{j}}^{\mathrm{t}}$.

We will illustrate this by a simple example.
Example 2.3.79: Let

$$
\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=\left[\begin{array}{ccc}
3 & 1 & \mathrm{I} \\
2 & 2 \mathrm{I} & 1 \\
2 \mathrm{I} & 2 & 0
\end{array}\right] \cup\left[\begin{array}{ll}
0 & \mathrm{I} \\
\mathrm{I} & 1
\end{array}\right]
$$

be a neutrosophic bimatrix with entries from the neutrosophic bifield $F=F_{1} \cup F_{2}=N\left(Z_{5}\right) \cup N\left(Z_{2}\right)$. Clearly the bicharacteristic neutrosophic bipolynomial associated with the neutrosophic bimatrix A is given by

$$
\begin{aligned}
f & =f_{1} \cup f_{2} . \\
& =\left|\begin{array}{ccc}
x+2 & 4 & 4 I \\
3 & x+3 I & 4 \\
3 I & 3 & x
\end{array}\right| \cup\left|\begin{array}{cc}
x & I \\
I & x+1
\end{array}\right| \\
& =\left(x^{3}+(3 I+1) x^{2}+(4 I+1) x+3 I+1\right) \cup(x(x+1)+I)
\end{aligned}
$$

is the biminimal neutrosophic bipolynomial of the neutrosophic bimatrix A.

Now we proceed onto define the notion of biinvariant subspaces or equivalently we may call them as invariant bisubspaces.

DEFINITION 2.3.44: Let $V=V_{1} \cup V_{2}$ be the strong neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}$ of type II. Let $T=T_{1}$ $\cup T_{2}$ be a bilinear operator on V. If $W=W_{1} \cup W_{2}$ is a strong neutrosophic bivector subspace of V we say W is biinvariant under T if each of the bivectors in W, i.e., for the bivector $\alpha=$ $\alpha_{1} \cup \alpha_{2}$ in W the bivector $T \alpha=T_{1} \alpha_{1} \cup T_{2} \alpha_{2}$ is in W; i.e., each $T_{i} \alpha_{i} \in W_{i}$ for every $\alpha_{i} \in W_{i}$ under the operator T_{i} for $i=1,2$, i.e., if $T(W)$ is contained in W; that is $T_{i}\left(W_{i}\right) \subseteq W_{i}$ for $i=1,2$. i.e., $T(W)=T_{1}\left(W_{1}\right) \cup T_{2}\left(W_{2}\right) \subseteq W_{1} \cup W_{2}$.

The simple examples are we can say $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$, the strong neutrosophic bivector space is invariant under a bilinear operator T on V . Similarly the zero subspace of a strong neutrosophic bivector space is invariant under T .

Now we proceed onto give the biblock neutrosophic matrix associated with a bioperator T of V .

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be a strong neutrosophic bivector subspace of the strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup$ V_{2}. Let $\mathrm{T}=\mathrm{T}^{1} \cup \mathrm{~T}^{2}$ be a bioperator on V such that $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2} is biinvariant under the bioperator T then $\mathrm{T}=\mathrm{T}^{1} \cup \mathrm{~T}^{2}$ induces a bilinear operator; $\mathrm{T}_{\mathrm{w}}=\mathrm{T}_{\mathrm{W}_{1}}^{1} \cup \mathrm{~T}_{\mathrm{W}_{2}}^{2}$ on the bisubspace W. This bilinear operator T_{w} defined by $\mathrm{T}_{\mathrm{w}}(\alpha)=\mathrm{T}(\alpha)$ for all α $\in W$; i.e., if $\alpha=\alpha_{1} \cup \alpha_{2}$ then

$$
\begin{aligned}
\mathrm{T}_{\mathrm{w}}(\alpha) & =\mathrm{T}_{\mathrm{w}}\left(\alpha_{1} \cup \alpha_{2}\right) \\
& =\mathrm{T}_{\mathrm{W}_{1}}^{1}\left(\alpha_{1}\right) \cup \mathrm{T}_{\mathrm{w}_{2}}^{2}\left(\alpha_{2}\right)
\end{aligned}
$$

Clearly T_{w} is different from T as bidomain is W and not V . When $V=V_{1} \cup V_{2}$ is a $\left(n_{1}, n_{2}\right)$ finite bidimensional the biinvariance of $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ under $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ has a simple neutrosophic bimatrix interpretation.

Let $B=B_{1} \cup B_{2}=\left\{\alpha_{1}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{r_{2}}^{2}\right\}$ be a bibasis for W . The bidimension of W is $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$.

Let $A=[T]_{B}$, that is if $A=A_{1} \cup A_{2}$ is the neutrosophic bimatrix such that $A=A_{1} \cup A_{2}=\left[\mathrm{T}^{1}\right]_{\mathrm{B}_{1}} \cup\left[\mathrm{~T}^{2}\right]_{\mathrm{B}_{2}}$ so that

$$
\mathrm{T}_{\alpha_{\alpha_{1}}^{t}}^{\mathrm{t}} \sum_{\mathrm{i}_{\mathrm{t}}=1}^{\mathrm{n}_{i}} \mathrm{~A}_{\mathrm{i}_{\mathrm{i}, \mathrm{j}}}^{\mathrm{t}} \alpha_{\mathrm{i}_{\mathrm{i}}}^{\mathrm{t}}
$$

for $\mathrm{i}=1,2$. Thus

$$
\begin{gathered}
T \alpha_{j}=T^{1} \alpha_{j_{1}}^{1} \cup T^{2} \alpha_{j_{2}}^{2} \\
=\sum_{i_{i_{1}}=1}^{n_{1}} A_{i_{1} j_{1}}^{1} \alpha_{i_{1}}^{1} \cup \sum_{i_{2}=1}^{n_{2}} A_{i_{2} j_{2}}^{2} \alpha_{i_{2}}^{2} .
\end{gathered}
$$

Since $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is biinvariant under T the bivector $\mathrm{T} \alpha_{\mathrm{j}}$ belong to W for $\mathrm{j}_{1}<\mathrm{r}_{1}$ and $\mathrm{j}_{2}<\mathrm{r}_{2}$.

$$
T \alpha_{\mathrm{j}}=\sum_{\mathrm{i}_{1}=1}^{\mathrm{r}_{1}} \mathrm{~A}_{\mathrm{i}_{1}, \mathrm{j}_{1}}^{1} \alpha_{\mathrm{i}_{1}}^{1} \cup \sum_{\mathrm{i}_{2}=1}^{\mathrm{r}_{2}} \mathrm{~A}_{\mathrm{i}_{2} \mathrm{j}_{2}}^{2} \alpha_{\mathrm{i}_{2}}^{2}
$$

that is $A_{i_{k} j_{k}}^{k}=0$ if $j_{k}<r_{k}$ and $i_{k}>r_{k}$ for every $k=1$, 2 . Schematically A has the biblock

$$
A=\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]=\left[\begin{array}{cc}
B^{1} & C^{1} \\
0 & D^{1}
\end{array}\right] \cup\left[\begin{array}{cc}
B^{2} & C^{2} \\
0 & D^{2}
\end{array}\right]
$$

where B^{t} is a $r_{t} \times r_{t}$ neutrosophic matrix, C^{t} is a $r_{t} \times\left(n_{t}-r_{t}\right)$ neutrosophic matrix and D^{t} is a $\left(n_{t}-r_{t}\right) \times\left(n_{t}-r_{t}\right)$ neutrosophic matrix for $t=1,2 . B=B_{1} \cup B_{2}$ is the neutrosophic bimatrix induced by the bioperator T_{w} on the bibasis $\mathrm{B}^{\prime}=\mathrm{B}_{1}^{\prime} \cup \mathrm{B}_{2}^{\prime}$. In view of the above properties we have the following Lemma.

Lemma 2.3.1: Let $W=W_{1} \cup W_{2}$ be a biinvariant strong neutrosophic bisubspace of the bioperator $T=T_{1} \cup T_{2}$ on the strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ which is not pure. The bicharacteristic neutrosophic bipolynomial for the birestriction
operator $T_{w}=T_{1 w_{1}} \cup T_{2 W_{2}}$ bidivides the neutrosophic bicharacteristic polynomial for T. The biminimal neutrosophic bipolynomial for T_{w} bidivides the biminimal neutrosophic polynomial for T.

Proof: We know from the above results

$$
A=\left[\begin{array}{ll}
B & C \\
0 & D
\end{array}\right]=\left[\begin{array}{cc}
B^{1} & C^{1} \\
0 & D^{1}
\end{array}\right] \cup\left[\begin{array}{cc}
\mathrm{B}^{2} & \mathrm{C}^{2} \\
0 & D^{2}
\end{array}\right]
$$

where

$$
\mathrm{A}=[\mathrm{T}]_{\mathrm{B}}=\mathrm{T}_{1 \mathrm{~B}_{1}} \cup \mathrm{~T}_{2 \mathrm{~B}_{2}}
$$

and

$$
\mathrm{B}=\left[\mathrm{T}_{\mathrm{w}}\right]_{\mathrm{B}^{\prime}}=\mathrm{B}^{1} \cup \mathrm{~B}^{2}=\left[\mathrm{T}_{1 \mathrm{w}_{1}}\right]_{\mathrm{B}_{1}^{\prime}} \cup\left[\mathrm{T}_{2 \mathrm{w}_{2}}\right]_{\mathrm{B}_{2}^{\prime}} .
$$

Because of the biblock form of the neutrosophic bimatrix

$$
\begin{aligned}
& \operatorname{det}(\mathrm{xI}-\mathrm{A}) \\
&= \operatorname{det}\left(\mathrm{xI}_{1}-\mathrm{A}_{1}\right) \cup \operatorname{det}\left(\mathrm{xI}_{2}-\mathrm{A}_{2}\right)\left(\text { where } \mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}\right) \\
&= \operatorname{det}(\mathrm{xI}-\mathrm{B}) \operatorname{det}\left(\mathrm{xI}^{2}-\mathrm{D}\right) \\
&=\left\{\operatorname{det}\left(\mathrm{xI}_{1}-\mathrm{B}^{1}\right) \operatorname{det}\left(\mathrm{xI}_{1}-\mathrm{D}^{1}\right) \cup\right. \\
&\left.\operatorname{det}\left(\mathrm{xI}_{2}-\mathrm{B}^{2}\right) \operatorname{det}\left(\mathrm{xI}_{2}-\mathrm{D}^{2}\right)\right\} .
\end{aligned}
$$

That proves the statement about bicharacteristic neutrosophic polynomials. Notice that we used $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}$ to represent the biidentity matrix of the bituple of different sizes. The $\mathrm{k}^{\text {th }}$ power of the neutrosophic bimatrix has the biblock form,

$$
\begin{gathered}
A^{k}=\left(A^{1}\right)^{k} \cup\left(A^{2}\right)^{k} \\
A^{k}=\left[\begin{array}{cc}
\left(B^{1}\right)^{k} & \left(C^{1}\right)^{k} \\
0 & \left(D^{1}\right)^{k}
\end{array}\right] \cup\left[\begin{array}{cc}
\left(B^{2}\right)^{k} & \left(C^{2}\right)^{k} \\
0 & \left(D^{2}\right)^{k}
\end{array}\right]
\end{gathered}
$$

where $C^{k}=\left(C^{1}\right)^{k} \cup\left(C^{2}\right)^{k}$ is $\left\{\left(r_{1} \times n_{1}-r_{1}\right),\left(r_{2} \times n_{2}-r_{2}\right)\right\}$ bimatrix. Therefore any neutrosophic bipolynomial which biannihilates A also biannihilates B (and D too). So the biminimal neutrosophic bipolynomial for B bidivides the biminimal polynomial for A.

Let $T=T_{1} \cup T_{2}$ be any linear bioperator on a ($\mathrm{n}_{1}, \mathrm{n}_{2}$) finite dimensional space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ over the neutrosophic bifield F $=F_{1} \cup F_{2}$ (where both F_{1} and F_{2} are not pure neutrosophic fields). Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be a strong neutrosophic bivector subspace of V spanned by all bicharacteristic bivectors of $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2}$. Let $\left\{\mathrm{C}_{1}^{1}, \ldots, \mathrm{C}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{C}_{1}^{2}, \ldots, \mathrm{C}_{\mathrm{k}_{2}}^{2}\right\}$ be the bidistinct characteristic values of T. For each i let $W_{i}=W_{i_{1}}^{1} \cup W_{i_{2}}^{2}$ be the strong neutrosophic bivector space associated with the bicharacteristic value $C_{i}=C_{i_{1}}^{1} \cup C_{i_{2}}^{2}$ and let $B_{i}=\left\{B_{i}^{1} \cup B_{i}^{2}\right\}$ be the ordered basis of W_{i}, i.e., B_{i}^{t} is a basis of W_{i}^{t}.

$$
\mathrm{B}^{\prime}=\left\{\mathrm{B}_{1}^{1}, \ldots, \mathrm{~B}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{B}_{1}^{2}, \ldots, \mathrm{~B}_{\mathrm{k}_{2}}^{2}\right\}
$$

is a biordered bibasis for

$$
\mathrm{W}=\left\{\mathrm{W}_{1}^{1}+\ldots+\mathrm{W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2}+\ldots+\mathrm{W}_{\mathrm{k}_{2}}^{2}\right\}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} .
$$

In particular bidimension

$$
=\left\{\operatorname{dim} \mathrm{W}_{1}^{1}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\operatorname{dim} \mathrm{W}_{1}^{2}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{k}_{2}}^{2}\right\} .
$$

We prove the result for one particular $W_{i}=\left\{W_{1}^{i}+\ldots+W_{k_{i}}^{i}\right\}$ and since W_{i} is arbitrarily chosen the result is true for every $\mathrm{i}, \mathrm{i}=1$, 2. $B_{i}^{\prime}=\left\{\alpha_{1}^{i}, \ldots, \alpha_{r_{i}}^{i}\right\}$ so that the first few α^{i},s form a basis B_{i}^{\prime}, the next B_{2}^{\prime}. Then $T_{i} \alpha_{j}^{t}=t_{j}^{i} \alpha_{j}^{t} ; j=1,2, \ldots, r_{i}$ where $\left\{t_{1}^{i}, \ldots, t_{r_{i}}^{i}\right\}=$ $\left\{C_{1}^{i}, \ldots, C_{k_{i}}^{i}\right\}$ where C_{j}^{i} is repeated dim W_{j}^{i} times $j=1, \ldots, r_{i}$. Now W_{i} is invariant under T_{i} since for each α^{i} in W_{i}, we have

$$
\begin{gathered}
\alpha^{i}=x_{1}^{i} \alpha_{1}^{i}+\ldots+x_{r_{i}}^{i} \alpha_{r_{i}}^{i} \\
T_{i} \alpha^{i}=t_{1}^{i} x_{1}^{i} \alpha_{1}^{i}+\ldots+t_{r_{i}}^{i} x_{r_{i}}^{i} \alpha_{r_{i}}^{i} .
\end{gathered}
$$

Choose any other vector $\alpha_{r_{i}+1}^{i}, \ldots, \alpha_{n_{i}}^{i}$ in V_{i} such that $B_{i}=$ $\left\{\alpha_{1}^{i}, \ldots, \alpha_{n_{i}}^{i}\right\}$ is a basis for V_{i}. The matrix of T_{i} relative to B_{i} has the block form mentioned earlier and the neutrosophic matrix of the restriction operator relative to the basis $\mathrm{B}_{\mathrm{i}}^{\prime}$ is

$$
\mathrm{B}^{\mathrm{i}}=\left[\begin{array}{cccc}
\mathrm{t}_{1}^{\mathrm{i}} & 0 & \cdots & 0 \\
0 & \mathrm{t}_{2}^{\mathrm{i}} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \mathrm{t}_{\mathrm{r}_{1}}^{\mathrm{i}}
\end{array}\right]
$$

The characteristic neutrosophic polynomial of B^{i}; i.e., of $T_{i w_{i}}$ is $g_{i}=g_{i}\left(x-C_{1}^{i}\right)^{e_{1}^{i}} \ldots\left(x-C_{k_{i}}^{i}\right)^{e_{k_{i}}^{i}}$ where $e_{j}^{i}=\operatorname{dim} W_{j}^{i} ; j=1,2, \ldots$, k_{i}. Further more g_{i} divides f_{i}, the characteristic neutrosophic polynomial for T_{i}. Therefore the multiplicity of C_{j}^{i} as a root of f_{i} is atleast $\operatorname{dim} W_{j}^{i}$. Thus T_{i} is diagonalizable if and only if $r_{i}=$ n_{i}, i.e., if and only $\left\{e_{1}^{i}+\ldots+e_{k_{i}}^{i}\right\}=n_{i}$. Since what we proved for T_{i} is true for $T=T_{1} \cup T_{2}$. Hence true for every $B^{1} \cup B^{2}$.

We now proceed onto define T biconductor of α into $\mathrm{W}=\mathrm{W}_{1} \cup$ $\mathrm{W}_{2} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$.

DEFINITION 2.3.45: Let $W=W_{1} \cup W_{2}$ be a biinvariant strong neutrosophic bivector subspace for $T=T_{1} \cup T_{2}$ and let $\alpha=\alpha_{1}$ $\cup \alpha_{2}$ be a bivector in the strong neutrosophic bivector space V $=V_{1} \cup V_{2}$. The T-biconductor of $\alpha=\alpha_{1} \cup \alpha_{2}$ into $W=W_{1} \cup$ W_{2} is the biset $S_{\tau}(\alpha ; W)=S_{\tau_{1}}\left(\alpha_{1} ; W_{1}\right) \cup S_{\tau_{2}}\left(\alpha_{2} ; W_{2}\right)$ which consists of all neutrosophic bipolynomials $g=g_{1} \cup g_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ such that $g(T) \alpha$ is in W; that is $g_{1}\left(T_{1}\right) \alpha_{1} \cup g_{2}\left(T_{2}\right) \alpha_{2} \in W_{1} \cup W_{2}$.

Since the bioperator T will be fixed throughout the discussions we shall usually drop the subscript T and write $S(\alpha ; W)=S\left(\alpha_{1}\right.$; $\left.\mathrm{W}_{1}\right) \cup \mathrm{S}\left(\alpha_{2} ; \mathrm{W}_{2}\right)$. The authors usually call the collection of neutrosophic bipolynomials the bistuffer. We as in case of vector spaces prefer to call as biconductor that is the bioperator $g(T)=g_{1}\left(T_{1}\right) \cup g_{2}\left(T_{2}\right)$; slowly leads to the bivector $\alpha_{1} \cup \alpha_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. In the special case when $\mathrm{W}=\{0\} \cup\{0\}$ the biconductor is called the T annihilator of $\alpha_{1} \cup \alpha_{2}$.

We prove the following interesting lemma.
Lemma 2.3.2: If $W=W_{1} \cup W_{2}$ is a strong neutrosophic biinvariant subspace for $T=T_{1} \cup T_{2}$ then W is biinvariant under every neutrosophic bipolynomial in $T=T_{1} \cup T_{2}$. Thus for each $\alpha=\alpha_{1} \cup \alpha_{2}$ in $V=V_{1} \cup V_{2}$ the biconductor $S(\alpha ; W)=$ $S\left(\alpha_{1} ; W_{1}\right) \cup S\left(\alpha_{2} ; W_{2}\right)$ is a biideal in the neutrosophic bipolynomial algebra $F[x]=F_{1}[x] \cup F_{2}[x]$ where F_{1} and F_{2} are neutrosophic fields and F_{1} and F_{2} are not pure neutrosophic fields.

Proof: Given $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \subseteq \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is a strong neutrosophic bivector subspace over the neutrosophic bifield F $=F_{1} \cup F_{2}$ (Both F_{1} and F_{2} are not pure neutrosophic), of the strong neutrosophic bivector space $V=V_{1} \cup V_{2}$. If $\beta=\beta_{1} \cup \beta_{2}$ is in $W=W_{1} \cup W_{2}$, then $T \beta=T_{1} \beta_{1} \cup T_{2} \beta_{2}$ is in $W=W_{1} \cup$ W_{2}. Thus $T(T \beta)=T^{2} \beta=T_{1}^{2} \beta_{1} \cup T_{2}^{2} \beta_{2}$ is in $W=W_{1} \cup W_{2}$. By induction $T_{\beta}^{k}=T_{1}^{k_{1}} \beta_{1} \cup T_{2}^{k_{2}} \beta_{2}$ is in $W=W_{1} \cup W_{2}$ for every neutrosophic bipolynomial $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$.

The definition $S(\alpha ; W)=S\left(\alpha_{1} ; W_{1}\right) \cup S\left(\alpha_{2} ; W_{2}\right)$ is meaningful if $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is any bisubset of W . If W is a strong neutrosophic bivector subspace then $S(\alpha ; W)$ is a strong neutrosophic bisubspace of $\mathrm{F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]$ because (cf + $\mathrm{g}) \mathrm{T}=\operatorname{cf}(\mathrm{T})+\mathrm{g}(\mathrm{T})$; i.e., $\left(\mathrm{c}_{1} \mathrm{f}_{1}+\mathrm{g}_{1}\right) \mathrm{T}_{1} \cup\left(\mathrm{c}_{2} \mathrm{f}_{2}+\mathrm{g}_{2}\right) \mathrm{T}_{2}=\mathrm{c}_{1} \mathrm{f}_{1}\left(\mathrm{~T}_{1}\right)+$ $g_{1}\left(T_{1}\right) \cup c_{2} f_{2}\left(T_{2}\right)+g_{2}\left(T_{2}\right)$. If $W=W_{1} \cup W_{2}$ is also biinvariant under $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ and let $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ be a neutrosophic bipolynomial in $S(\alpha ; W)=S\left(\alpha_{1} ; W_{1}\right) \cup S\left(\alpha_{2} ; W_{2}\right)$; i.e., let $\mathrm{g}(\mathrm{T}) \alpha=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}$ be in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is any neutrosophic bipolynomial then $\mathrm{f}(\mathrm{T}) \mathrm{g}(\mathrm{T}) \alpha$ is in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ that is $f(T)[g(T) \alpha]=f_{1}\left(T_{1}\right)\left[g_{1}\left(T_{1}\right) \alpha_{1}\right] \cup f_{2}\left(T_{2}\right)\left[g_{2}\left(T_{2}\right) \alpha_{2}\right]$ will be in $W=W_{1} \cup W_{2}$. Since $(f g) T=f(T) g(T)$ we have $\left(\mathrm{f}_{1} \mathrm{~g}_{1}\right) \mathrm{T}_{1} \cup\left(\mathrm{f}_{2} \mathrm{~g}_{2}\right) \mathrm{T}_{2}=\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \cup \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \mathrm{g}_{2}\left(\mathrm{~T}_{2}\right) ;$
$(f g) \in S(\alpha ; W)$; that is $\left(f_{i} g_{i}\right) \in S\left(\alpha_{i} ; W_{i}\right) ; i=1,2$. Hence the claim.

The unique bimonic generator of the neutrosophic biideal $S(\alpha ; W)$ is also called the T biconductor of $\alpha=\alpha_{1} \cup \alpha_{2}$ in W
(the T biannihilator in case $\mathrm{W}=\{0\} \cup\{0\}$). The T biconductor of α into W is the bimonic neutrosophic bipolynomial g of least bidegree such that $\mathrm{g}(\mathrm{T}) \alpha=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}$ is in $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2}.

A neutrosophic bipolynomial $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$ is in $\mathrm{S}(\alpha ; \mathrm{W})=$ $S\left(\alpha_{1} ; W_{1}\right) \cup S\left(\alpha_{2} ; W_{2}\right)$ if and only if g bidivides f.

Note the biconductor $S(\alpha$; W) always contains the bipolynomial for T , hence every T biconductor bidivides the biminimal polynomial for $T=T_{1} \cup T_{2}$.

We prove the following lemma.
LEMMA 2.3.3: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic $\left(n_{1}, n_{2}\right)$ bidimensional bivector space over the neutrosophic bifield $F=$ $F_{1} \cup F_{2}$ (both F_{1} and F_{2} are not pure neutrosophic fields). Let T $=T_{1} \cup T_{2}$ be a bilinear operator on V such that the neutrosophic biminimal polynomial for T is a product of bilinear factors $p=p_{1} \cup p_{2}=\left(x-c_{1}^{1}\right)^{r_{1}^{l}} \ldots\left(x-c_{k_{1}}^{1}\right)^{r_{1+1}^{1}} \cup(x-$ $\left.c_{1}^{2}\right)^{r_{i}^{2}} \ldots\left(x-c_{k_{2}}^{2}\right)^{r_{12}^{2}} ; c_{t_{i}}^{i} \in F_{i} ; 1 \leq t_{i} \leq k_{i} . i=1,2$.

Let $W=W_{1} \cup W_{2}$ be a strong neutrosophic proper bivector subspace of $V(V \neq W)$ which is biinvariant under T. There exists a bivector $\alpha=\alpha_{1} \cup \alpha_{2}$ in $V=V_{1} \cup V_{2}$ such that
i. α is not in $W=W_{1} \cup W_{2}$
ii. $\quad(T-c I) \alpha=\left(T_{1}-c_{1} I_{1}\right) \alpha_{1} \cup\left(T_{2}-c_{2} I_{2}\right) \alpha_{2}$
is in $W=W_{1} \cup W_{2}$ for some bicharacteristic value of the bioperator T.

Proof: (1) and (2) express that T biconductor of $\alpha=\alpha_{1} \cup \alpha_{2}$ into $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is a neutrosophic bilinear bipolynomial. Suppose $\beta=\beta_{1} \cup \beta_{2}$ is any bivector in $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ which is not in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. Let $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ be the T biconductor of β in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. Then g bidivides $\mathrm{p}=\mathrm{p}_{1} \cup \mathrm{p}_{2}$ the neutrosophic biminimal bipolynomial for $T=T_{1} \cup T_{2}$. Since $\beta=\beta_{1} \cup \beta_{2}$ is not in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$, the neutrosophic bipolynomial g is not constant. Therefore $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}=\left(\mathrm{x}-\mathrm{c}_{1}^{1}\right)^{e_{1}^{e_{1}}} \ldots\left(\mathrm{x}-\mathrm{c}_{\mathrm{k}_{1}}^{1}\right)^{e_{k_{1}}^{1_{1}}} \cup(\mathrm{x}$
$\left.-c_{1}^{2}\right)^{e_{1}^{2}} \ldots\left(x-c_{k_{2}}^{2}\right)^{e_{k_{2}}^{2}}$; where atleast one of the bipair of integers $e_{i}^{1} \cup e_{i}^{2}$ is positive. Choose j_{t} so that $e_{j_{t}}^{t}>0, t=1,2$, then $\left(x-c_{j}\right)=\left(x-c_{j_{1}}^{1}\right) \cup\left(x-c_{j_{2}}^{2}\right)$ bidivides $g . g=\left(x-c_{j}\right) h$; i.e., $g=g_{1} \cup g_{2}=\left(x-c_{j_{1}}^{1}\right) h_{1} \cup\left(x-c_{j_{2}}^{2}\right) h_{2}$. By the definition of g the bivector $\alpha=\alpha_{1} \cup \alpha_{2}=h_{1}\left(T_{1}\right) \beta_{1} \cup h_{2}\left(T_{2}\right) \beta_{2}=h(T) \beta$ cannot be in W. But $\left(\mathrm{T}-\mathrm{c}_{\mathrm{j}} \mathrm{I}\right) \alpha=\left(\mathrm{T}-\mathrm{c}_{\mathrm{j}} \mathrm{I}\right) \mathrm{h}(\mathrm{T}) \beta=\mathrm{g}(\mathrm{T}) \beta$ is in W

$$
\begin{aligned}
& \left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{j}_{1}}^{1} \mathrm{I}_{1}\right) \alpha_{1} \cup\left(\mathrm{~T}_{2}-\mathrm{c}_{\mathrm{j}_{2}}^{2} \mathrm{I}_{2}\right) \\
& \quad=\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{j}_{1}}^{1}\right) \mathrm{h}_{1}\left(\mathrm{~T}_{1}\right) \beta_{1} \cup\left(\mathrm{~T}_{2}-\mathrm{c}_{\mathrm{j}_{2}}^{2}\right) \mathrm{h}_{2}\left(\mathrm{~T}_{2}\right) \beta_{2} \\
& \quad=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \beta_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \beta_{2}
\end{aligned}
$$

with $\mathrm{g}_{\mathrm{i}}\left(\mathrm{T}_{\mathrm{i}}\right) \beta_{\mathrm{i}} \in \mathrm{W}_{\mathrm{i}}$ for $\mathrm{i}=1,2$.
Next we obtain the condition for T to be bitriangulable.
THEOREM 2.3.35: Let $V=V_{1} \cup V_{2}$ be a $\left(n_{1}, n_{2}\right)$ finite bidimensional strong neutrosophic bivector space over the bifield $F=F_{1} \cup F_{2}\left(F_{1}\right.$ and F_{2} are neutrosophic fields and they are not pure neutrosophic fields) and let $T=T_{1} \cup T_{2}$ be a bilinear operator on $V=V_{1} \cup V_{2}$. Then T is bitriangulable if and only if the biminimal neutrosophic bipolynomial for T is a biproduct of bilinear neutrosophic bipolynomials over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

Proof: Suppose the biminimal neutrosophic bipolynomial $p=p_{1}$ $\cup p_{2}$, bifactors as $\mathrm{p}=\left(\mathrm{x}-\mathrm{c}_{1}^{1}\right)^{r_{1}^{1}} \ldots\left(\mathrm{x}-\mathrm{c}_{\mathrm{k}_{1}}^{1}\right)^{r_{k_{1}^{1}}^{1}} \cup\left(\mathrm{x}-\mathrm{c}_{1}^{2}\right)^{r_{1}^{2}} \ldots(\mathrm{x}$ $\left.-c_{\mathrm{K}_{2}}^{2}\right)^{r_{k_{2}}^{2}}$. By the repeated application of the lemma 2.3 .3 we arrive at a bibasis $B=\left\{\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\}=B_{1} \cup B_{2}$ in which the neutrosophic bimatrix representing $T=T_{1} \cup T_{2}$ is upper bitriangular

$$
[\mathrm{T}]_{\mathrm{B}}=\left[\mathrm{T}_{1}\right]_{\mathrm{B}_{1}} \cup\left[\mathrm{~T}_{2}\right]_{\mathrm{B}_{2}}
$$

$$
=\left[\begin{array}{cccc}
a_{11}^{1} & a_{12}^{1} & \cdots & a_{1 n_{1}}^{1} \\
0 & a_{22}^{1} & \cdots & a_{2 n_{1}}^{1} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{1 n_{1} n_{1}}^{1}
\end{array}\right] \cup\left[\begin{array}{cccc}
a_{11}^{2} & a_{12}^{2} & \cdots & a_{1 n_{2}}^{2} \\
0 & a_{22}^{2} & \cdots & a_{2 n_{2}}^{2} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{1 n_{2} n_{2}}^{2}
\end{array}\right] .
$$

Merely $[T]_{\mathrm{B}}=$ neutrosophic bitriangular bimatrix of $\left(\mathrm{n}_{1} \times \mathrm{n}_{1}, \mathrm{n}_{2}\right.$ $\times \mathrm{n}_{2}$) order shows

$$
\begin{align*}
T \alpha_{\mathrm{j}} & =\mathrm{T}_{1} \alpha_{\mathrm{j}_{1}}^{1} \cup \mathrm{~T}_{2} \alpha_{\mathrm{j}_{2}}^{2} \\
& =\mathrm{a}_{1_{j_{1}}}^{1} \alpha_{1}^{1}+\ldots+\mathrm{a}_{\mathrm{j}, \mathrm{i} 1^{2}}^{1} \alpha_{j_{1}}^{1} \cup \mathrm{a}_{1_{k_{2}}}^{2} \alpha_{1}^{2}+\ldots+\mathrm{a}_{\mathrm{b}_{2} \mathrm{~b}_{2}}^{2} \alpha_{b_{2}}^{2} \ldots . \tag{a}
\end{align*}
$$

$1 \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{n}_{\mathrm{i}}$, $\mathrm{i}=1$, 2 that is $\mathrm{T} \alpha_{\mathrm{j}}$ is in the strong neutrosophic bisubspace spanned by $\left\{\alpha_{1}^{1}, \ldots, \alpha_{j_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{j_{2}}^{2}\right\}$. To find $\left\{\alpha_{1}^{1}, \ldots, \alpha_{j_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{j_{2}}^{2}\right\}$ we start by applying the lemma to the bisubspace $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{0\} \cup\{0\}$ to obtain the bivector $\alpha_{1}^{1} \cup \alpha_{1}^{2}$. Then apply lemma to $\mathrm{W}_{1}^{1} \cup \mathrm{~W}_{1}^{2}$ the bistrong neutrosophic bispace spanned by $\alpha^{1}=\alpha_{1}^{1} \cup \alpha_{1}^{2}$ and obtain $\alpha^{2}=$ $\alpha_{2}^{1} \cup \alpha_{2}^{2}$. Next apply lemma to $W_{2}=W_{2}^{1} \cup W_{2}^{2}$. We have now obtained using the relation (a) the strong neutrosophic bivector space spanned by α^{1} and α^{2} and is biinvariant under T .

If T is bitriangulable then it is evident that the bicharacteristic neutrosophic bipolynomial for T has the form

$$
\begin{aligned}
f & =f_{1} \cup f_{2} \\
& =\left(x-c_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-c_{k_{1}}^{1}\right)^{d_{k_{1}}^{1}} \cup\left(x-c_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(x-c_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}} .
\end{aligned}
$$

The bidiagonal entries $\left(a_{11}^{1}, \ldots, a_{1 n_{1}}^{1}\right) \cup\left(a_{11}^{2}, \ldots, a_{1 n_{2}}^{2}\right)$ are the bicharacteristic values with c_{j}^{t} repeated $d_{j t}^{t}$ times. But if f can be bifactored so also is the biminimal bipolynomial p because p bidivides f.

The reader is expected prove the following corollary.

COROLLARY 2.3.2: If $F=F_{1} \cup F_{2}$ is a bialgebraically closed bifield. Every $\left(n_{1} \times n_{1}, n_{2} \times n_{2}\right)$ neutrosophic bimatrix over F is similar over the bifield F to a neutrosophic bitriangular bimatrix.

THEOREM 2.3.36: Let $V=V_{1} \cup V_{2}$ be a $\left(n_{1}, n_{2}\right)$ bidimensional strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (F_{1} and F_{2} are not pure neutrosophic fields) and let $T=T_{1} \cup T_{2}$ be a bilinear operator on $V=V_{1} \cup V_{2}$. Then T is bidiagonalizable if and only if the neutrosophic biminimal bipolynomial for T has the form

$$
\begin{gathered}
p=p_{1} \cup p_{2} \\
=\left(x-c_{1}^{1}\right) \ldots\left(x-c_{k_{1}}^{1}\right) \cup\left(x-c_{1}^{2}\right) \ldots\left(x-c_{k_{2}}^{2}\right) .
\end{gathered}
$$

where $\left\{c_{1}^{1}, \ldots, c_{k_{1}}^{1}\right\} \cup\left\{c_{1}^{2}, \ldots, c_{k_{2}}^{2}\right\}$ are bidistinct element of $F=$ $F_{1} \cup F_{2}$.

Proof: We know if $T=T_{1} \cup \mathrm{~T}_{2}$ is bidiagonalizable its biminimal neutrosophic bipolynomial is a byproduct of bidistinct linear factors. Hence one way of the proof is clear.

To prove the converse let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be a strong neutrosophic bisubspace spanned by all the bicharacteritic bivectors of T and suppose $W \neq V$. Then we know by the properties of bilinear operator that there exists a bivector $\alpha=\alpha_{1}$ $\cup \alpha_{2}$ in $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and not in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and the bicharacteristic value $c_{j}=c_{j_{1}}^{1} \cup c_{j_{2}}^{2}$ of $T=T_{1} \cup T_{2}$ such that the bivector

$$
\begin{aligned}
\beta & =\left(\mathrm{T}-\mathrm{c}_{\mathrm{j}} \mathrm{I}\right) \alpha \\
& =\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{j}_{1}}^{1} \mathrm{I}_{1}\right) \alpha_{1} \cup\left(\mathrm{~T}_{2}-\mathrm{c}_{\mathrm{j}_{2}}^{2} \mathrm{I}_{2}\right) \alpha_{2} \\
& =\beta_{1} \cup \beta_{2}
\end{aligned}
$$

lies in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ where each $\beta_{\mathrm{i}} \in \mathrm{W}_{\mathrm{i}}, \mathrm{i}=1$, 2. Since $\beta=\beta_{1}$ $\cup \beta_{2}$ is in W; $\beta_{i}=\beta_{i}^{1}+\ldots+\beta_{i}^{k_{i}} ; i=1$, 2 with $T_{i} \beta_{i}^{t}=c_{i}^{t} \beta_{i}^{t}, t=1$, $2, \ldots, k_{i}$ and this is true for every $\mathrm{i}=1,2$ and hence the bivector $\mathrm{h}(\mathrm{T}) \beta=\left\{\mathrm{h}^{1}\left(\mathrm{c}_{1}^{1}\right) \beta_{1}^{1}+\ldots+\mathrm{h}^{1}\left(\mathrm{c}_{\mathrm{k}_{1}}^{1}\right) \beta_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{h}^{2}\left(\mathrm{c}_{1}^{2}\right) \beta_{1}^{2}+\ldots+\right.$ $\left.h^{2}\left(c_{k_{2}}^{2}\right) \beta_{\mathrm{k}_{2}}^{2}\right\}$ for every neutrosophic bipolyomial h. Now

$$
\begin{aligned}
\mathrm{p} & =\left(\mathrm{x}-\mathrm{c}_{\mathrm{j}}\right) \mathrm{q} \\
& =\mathrm{p}_{1} \cup \mathrm{p}_{2} \\
& =\left(\mathrm{x}-\mathrm{c}_{\mathrm{j}_{1}}^{1}\right) q_{1} \cup\left(\mathrm{x}-\mathrm{c}_{\mathrm{j}_{2}}^{2}\right) q_{2}
\end{aligned}
$$

for some neutrosophic bipolynomial $\mathrm{q}=\mathrm{q}_{1} \cup \mathrm{q}_{2}$, Also $\mathrm{q}-\mathrm{q}\left(\mathrm{c}_{\mathrm{j}}\right)$ $=\left(x-c_{j}\right) h$ that is

$$
\mathrm{q}_{1}-\mathrm{q}_{1}\left(\mathrm{c}_{\mathrm{j}_{1}}^{1}\right) \cup \mathrm{q}_{2}-\mathrm{q}_{2}\left(\mathrm{c}_{\mathrm{j}_{2}}^{2}\right)=\left(\mathrm{x}-\mathrm{c}_{\mathrm{j}_{1}}^{1}\right) \mathrm{h}_{\mathrm{j}_{1}}^{1} \cup\left(\mathrm{x}-\mathrm{c}_{\mathrm{j}_{2}}^{2}\right) \mathrm{h}_{\mathrm{j}_{2}}^{2} .
$$

We have
$\mathrm{q}(\mathrm{t}) \alpha-\mathrm{q}\left(\mathrm{c}_{\mathrm{j}}\right) \alpha=\mathrm{h}(\mathrm{T})\left(\mathrm{T}-\mathrm{c}_{\mathrm{j}} \mathrm{I}\right) \alpha$

$$
=h(\mathrm{~T}) \beta .
$$

But $\mathrm{h}(\mathrm{T}) \beta$ is in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and since

$$
\begin{aligned}
0 & =\mathrm{p}(\mathrm{~T}) \alpha \\
& =\left(\mathrm{T}-\mathrm{c}_{\mathrm{j}} \mathrm{I}\right) \mathrm{q}(\mathrm{~T}) \alpha \\
& =\mathrm{p}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2} \\
& =\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{j}_{1}}^{1} \mathrm{I}_{1}\right) \mathrm{q}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup\left(\mathrm{~T}_{2}-\mathrm{c}_{\mathrm{j}_{2}}^{2} \mathrm{I}_{2}\right) \mathrm{q}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}
\end{aligned}
$$

and the bivector $\mathrm{q}(\mathrm{T}) \alpha$ is in W , that is $\mathrm{q}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{q}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}$ is in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. Therefore $\mathrm{q}\left(\mathrm{c}_{\mathrm{j}}\right) \alpha=\mathrm{q}_{1}\left(\mathrm{c}_{\mathrm{j}_{1}}^{1}\right) \alpha_{1} \cup \mathrm{q}_{2}\left(\mathrm{c}_{\mathrm{j}_{2}}^{2}\right) \alpha_{2}$ is in W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$.

Since $\alpha=\alpha_{1} \cup \alpha_{2}$ is not in $W=W_{1} \cup W_{2}$, we have $q\left(\mathrm{c}_{\mathrm{j}}\right)=$ $\mathrm{q}_{1}\left(\mathrm{c}_{\mathrm{j}_{1}}^{1}\right) \cup \mathrm{q}_{2}\left(\mathrm{c}_{\mathrm{j}_{2}}^{2}\right)=0 \cup 0$. This contradicts the fact that p has distinct roots.

Hence the claim.
We can now describe this more in terms of how the values are determined and its relation to Cayley Hamilton Theorem for strong neutrosophic bivector spaces of type II.

Suppose $T=T_{1} \cup T_{2}$ is a bilinear operator of a strong neutrosophic bivector space of type II which is represented by the neutrosophic bimatrix $A=A_{1} \cup A_{2}$ in some bibasis for which we wish to find out whether $T=T_{1} \cup T_{2}$ is bidiagonalizable. We compute the bicharacteristic neutrosophic bipolynomial $f=f_{1} \cup f_{2}$. If we can bifactor $f=f_{1} \cup f_{2}$ as $(x-$ $\left.c_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-c_{k_{1}}^{1}\right)^{d_{k_{1}}} \cup\left(x-c_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(x-c_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}}$, we have two different methods for finding whether or not T is
bidiagonlaizable. One method is to see whether for each $\mathrm{i}(\mathrm{t})(\mathrm{i}(\mathrm{t})$ means i is independent on t) we can find a $d_{i}^{t}(t=1,2) ; 1 \leq i \leq$ k_{t} independent characteristic vectors associated with the characteristic value c_{i}^{t}. The other method is to check whether or not

$$
\begin{gathered}
\left(T-c_{1} I\right) \cup\left(T-c_{2} I\right)= \\
\left(T_{1}-c_{1}^{1} I_{1}\right) \ldots\left(T_{1}-c_{k_{1}}^{1} I_{1}\right) \cup\left(x-c_{1}^{2} I_{2}\right) \ldots\left(x-c_{k_{2}}^{2} I_{2}\right)
\end{gathered}
$$

is the bizero operator.
LEMMA 2.3.4: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space of $\left(n_{1}, n_{2}\right)$ bidimensional over the neutrosophic bifield $F=F_{1} \cup F_{2}\left(F_{1}\right.$ and F_{2} are not neutrosophic pure) of type II.

Let $\left\{W_{1}^{1}, \ldots, W_{k_{1}}^{1}\right\} \cup\left\{W_{1}^{2}, \ldots, W_{k_{2}}^{2}\right\}$ be strong neutrosophic bivector subspace of V and let $W=W_{1} \cup W_{2}=\left\{W_{1}^{1}+\ldots+W_{k_{1}}^{1}\right\}$ $\cup\left\{W_{1}^{2}+\ldots+W_{k_{2}}^{2}\right\}$. Then the following are equivalent.
i. $\left\{W_{1}^{1}, \ldots, W_{k_{1}}^{1}\right\} \cup\left\{W_{1}^{2}, \ldots, W_{k_{2}}^{2}\right\}$ are biindependent, that is $\left\{W_{1}^{t}, \ldots, W_{k_{t}}^{t}\right\}$ are independent for $t=1,2$.
ii. For each $j_{t}, 2 \leq j_{t} \leq k_{t} ; t=1,2$, we have $W_{j_{t}}^{t}\left\{W_{1}^{t}+\ldots+W_{j_{1}-1}^{t}\right\}=\{0\}$ for $t=1,2$.
iii. If B_{i}^{t} is a bibasis for $W_{i}^{t}, 1 \leq i \leq k_{t}, t=1,2$; then the bisequences $\left\{B_{1}^{1}, \ldots, B_{k_{1}}^{1}\right\} \cup\left\{B_{1}^{2}, \ldots, B_{k_{2}}^{2}\right\}$ is a bibasis for the strong neutrosophic bisubspace $W=W_{1} \cup W_{2}=$ $\left\{W_{1}^{1}+\ldots+W_{k_{1}}^{1}\right\} \cup\left\{W_{1}^{2}+\ldots+W_{k_{k}}^{2}\right\}$.

Proof: Assume (i) let $\alpha^{\mathrm{t}} \in \mathrm{W}_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}} \cap\left\{\mathrm{W}_{1}^{\mathrm{t}}+\ldots+\mathrm{W}_{\mathrm{j}_{-1}-1}^{\mathrm{t}}\right\}$ then there are vectors $\left(\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{j}_{-1}}^{1}\right)$ with $\alpha_{\mathrm{i}}^{\mathrm{t}} \in \mathrm{W}_{\mathrm{i}}^{\mathrm{t}}$ such that $\left(\alpha_{1}^{\mathrm{t}}+\ldots+\alpha_{\mathrm{j}_{\mathrm{t}}-1}^{\mathrm{t}}\right.$ $\left.+\alpha^{t}\right)+\alpha^{\mathrm{t}}=0+\ldots+0=0$ and since $\left\{\mathrm{W}_{1}^{\mathrm{t}}, \ldots, \mathrm{W}_{\mathrm{k}_{\mathrm{t}}}^{\mathrm{t}}\right\}$ are independent it must be that $\alpha_{1}^{\mathrm{t}}=\alpha_{2}^{\mathrm{t}}=\ldots=\alpha_{\mathrm{j}_{-1}}^{\mathrm{t}}=0$. This is true
for each $\mathrm{t} ; \mathrm{t}=1$, 2. Now let us observe that (ii) implies (i). Suppose $0=\left(\alpha_{1}^{\mathrm{t}}+\ldots+\alpha_{k_{\mathrm{t}}}^{\mathrm{t}}\right) ; \alpha_{\mathrm{i}}^{\mathrm{t}} \in \mathrm{W}_{\mathrm{i}}^{\mathrm{t}}$, $\mathrm{i}=1,2, \ldots$, k_{t} (we denote both the zero vector and zero scalar by 0). Let j_{t} be the largest integer i_{t} such that $\alpha_{\mathrm{i}}^{\mathrm{t}} \neq 0$. Then $0=\alpha_{\mathrm{i}}^{\mathrm{t}}+\ldots+\alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}} ; \alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}} \neq$ 0 thus $\alpha_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}}=-\alpha_{\mathrm{i}}^{\mathrm{t}}-\ldots-\alpha_{\mathrm{j}_{-1}}^{\mathrm{t}}$ is a non zero vector in $\mathrm{W}_{\mathrm{j}_{\mathrm{t}}}^{\mathrm{t}} \cap$ $\left\{\mathrm{W}_{1}^{\mathrm{t}}+\ldots+\mathrm{W}_{\mathrm{j}_{-1}}^{\mathrm{t}}\right\}$.

Now that we know (i) and (ii) are the same let us see why (i) is equivalent to (iii). Assume (i). Let B_{i}^{t} be a basis for $W_{i}^{t} ; 1$ $\leq i \leq k_{t}$ and let $B^{t}=\left\{B_{1}^{t}, \ldots, B_{k_{t}}^{t}\right\}$ true for each $t, t=1,2$.

Any linear relation between the vector in B^{t} will have the form $\left(\beta_{1}^{\mathrm{t}}+\ldots+\beta_{\mathrm{k}_{\mathrm{t}}}^{\mathrm{t}}\right)=0$ where $\beta_{\mathrm{i}}^{\mathrm{t}}$ is some linear combination of vectors in B_{i}^{t}. Since $\left\{W_{1}^{t}, W_{2}^{t}, \ldots, W_{k_{t}}^{t}\right\}$ are independent each of β_{i}^{t} is 0 . Since each B_{i}^{t} is an independent relation.

The relation between vectors in B^{t} is trivial. This is true for every t; $t=1,2$; so in $B=B^{1} \cup B^{2}=\left\{B_{1}^{1}, \ldots, B_{k_{1}}^{1}\right\} \cup$ $\left\{B_{1}^{2}, \ldots, B_{k_{2}}^{2}\right\}$ every birelation in bivector in B is a trivial birelation. It is left for the reader to prove(c) implies (a).

If any of the conditions of the above lemma hold we say the bisum $\mathrm{W}=\left\{\mathrm{W}_{1}^{1}+\ldots+\mathrm{W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2}+\ldots+\mathrm{W}_{\mathrm{k}_{2}}^{2}\right\}$; bidirect or that W is the bidirect sum of $\left\{W_{1}^{1}, \ldots, W_{k_{1}}^{1}\right\} \cup\left\{W_{1}^{2} \ldots W_{k_{2}}^{2}\right\}$ and we write $\mathrm{W}=\left\{\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}$. This bidirect sum will also be known as the biindependent sum or the biinterior direct sum of $\left\{\mathrm{W}_{1}^{1}, \ldots, \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2}, \ldots, \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}$. Let $\mathrm{V}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$. A biprojection of V is a bilinear operator $E=E_{1} \cup E_{2}$ on V such that $E^{2}=E_{1}^{2} \cup E_{2}^{2}=E_{1}$ $\cup \mathrm{E}_{2}=\mathrm{E}$.

Since E is a biprojetion. Let $\mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2}$ be the birange of E and let $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ be the null bispace $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2}$.

1. The bivector $\beta=\beta_{1} \cup \beta_{2}$ is the birange R if and only if $\mathrm{E} \beta$ $=\beta$ that is $E_{1} \beta_{1} \cup E_{2} \beta_{2}=\beta_{1} \cup \beta_{2}$. If $\beta=E_{\alpha}$ then $E_{\beta}=E^{2} \alpha$ $=E_{\alpha}=\beta$. Conversely if $\beta=E \beta$ then of course β is in the birange of $E=E_{1} \cup E_{2}$.
2. $\mathrm{V}=\mathrm{R} \oplus \mathrm{N}$; that is $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{R}_{1} \oplus \mathrm{~N}_{1} \cup \mathrm{R}_{2} \oplus \mathrm{~N}_{2}$; that is each $V_{i}=R_{i} \oplus N_{i} ; i=1,2$.
3. The unique expression for α as a sum of bivector in R and N is $\alpha=\mathrm{E} \alpha+(\alpha-\mathrm{E} \alpha)$ that is $\alpha=\alpha_{1} \cup \alpha_{2}=\mathrm{E}_{1} \alpha_{1}+\left(\alpha_{1}-\right.$ $\left.\mathrm{E}_{1} \alpha_{1}\right) \cup \mathrm{E}_{2} \alpha_{2}+\left(\alpha_{2}-\mathrm{E}_{2} \alpha_{2}\right)$.

From (1), (2) and (3) it is easy to verify, if $R=R_{1} \cup R_{2}$ and $N=$ $\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ are strong neutrosophic bivector subspace of V such that $\mathrm{V}=\mathrm{R} \oplus \mathrm{N}=\mathrm{R}_{1} \oplus \mathrm{~N}_{1} \cup \mathrm{R}_{2} \oplus \mathrm{~N}_{2}$, there is one and only one biprojection operator $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2}$ which has birange R and binull space N . That operator is called the biprojection on R along N .

Any biprojeciton $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2}$ is trivially bidiagonalizable. If $\left\{\alpha_{1}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{r_{2}}^{2}\right\}$ a bibasis of R and $\left\{\alpha_{r_{1}+1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup$ $\left\{\alpha_{\mathrm{r}_{2}+1}^{2}, \ldots, \alpha_{\mathrm{n}_{2}}^{2}\right\}$ a bibasis for N then the bibasis $\mathrm{B}=\left\{\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{n}_{1}}^{1}\right\}$ $\cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{\mathrm{n}_{2}}^{2}\right\}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}$, bidiagonalizes $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2}$.

$$
[\mathrm{E}]_{\mathrm{B}}=\left[\mathrm{E}_{1}\right]_{\mathrm{B}_{1}} \cup\left[\mathrm{E}_{2}\right]_{\mathrm{B}_{2}}=\left[\begin{array}{cc}
\mathrm{I}_{1} & 0 \\
0 & 0
\end{array}\right] \cup\left[\begin{array}{cc}
\mathrm{I}_{2} & 0 \\
0 & 0
\end{array}\right]
$$

where I_{1} is a $r_{1} \times r_{1}$ identity matrix and I_{2} is a $r_{2} \times r_{2}$ identity matrix.

Projections can be used to describe the bidirect sum decomposition of the strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1}$ $\cup \mathrm{V}_{2}$. For suppose $\mathrm{V}=\left\{\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}$ for each $\mathrm{j}(\mathrm{t})$ we define $\mathrm{E}_{\mathrm{j}}^{\mathrm{t}}$ on V_{t}. $(\mathrm{t}=1,2)$. Let $\alpha=\alpha_{1} \cup \alpha_{2}$ be in $V=V_{1} \cup V_{2}$ say $\alpha=\left\{\alpha_{1}^{1}+\ldots+\alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}+\ldots+\alpha_{k_{2}}^{2}\right\}$ with α_{i}^{t} in $W_{i}^{t}, 1 \leq i \leq k_{t}$ for $t=1,2$. Define $E_{j}^{i} \alpha^{t}=\alpha_{j}^{t}$ then E_{j}^{t} is a well defined rule. It is easy to see that $\mathrm{E}_{\mathrm{i}}^{\mathrm{t}}$ is linear and that range of E_{j}^{t} is W_{j}^{t} and $\left(E_{j}^{t}\right)^{2}=E_{j}^{t}$. The null space of E_{j}^{t} is the
strong neutrosophic subspace $\mathrm{W}_{1}^{\mathrm{t}}+\ldots+\mathrm{W}_{\mathrm{j}-1}^{\mathrm{t}}+\mathrm{W}_{\mathrm{j}+1}^{\mathrm{t}}+\ldots+\mathrm{W}_{\mathrm{k}_{\mathrm{t}}}^{\mathrm{t}}$ for the statement $E_{j}^{t} \alpha^{t}=0$ simply means $\alpha_{j}^{t}=0$ that is α is actually a sum of vectors from the spaces $\mathrm{W}_{\mathrm{i}}^{\mathrm{t}}$ with $\mathrm{i} \neq \mathrm{j}$. Interms of the projections E_{j}^{t} we have $\alpha^{t}=E_{1}^{t} \alpha^{t}+\ldots+E_{k}^{t} \alpha^{t}$ for each α in V. The above equation implies $I_{t}=\left\{E_{1}^{t}+\ldots+E_{k_{t}}^{t}\right\}$. Note also that if $i \neq j$ then $E_{i}^{t} E_{j}^{t}=0$ because the range of E_{j}^{t} is the strong neutrosophic subspace $\mathrm{W}_{\mathrm{j}}^{\mathrm{t}}$ which is contained in the null space of E_{i}^{t}. This is true for each $t, t=1,2$. Hence true on the strong neutrosophic bivector space

$$
\mathrm{V}=\left\{\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}
$$

Now we prove an interesting result.
THEOREM 2.3.37: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (both F_{1} and F_{2} are not pure neutrosophic) of type II and suppose $V=$ $\left\{W_{1}^{1} \oplus \ldots \oplus W_{k_{1}}^{1}\right\} \cup\left\{W_{1}^{2} \oplus \ldots \oplus W_{k_{2}}^{2}\right\}$ then there exists $\left(k_{1}, k_{2}\right)$ bilinear operators $\left\{E_{1}^{1}, \ldots, E_{k_{1}}^{1}\right\} \cup\left\{E_{1}^{2}, \ldots, E_{k_{2}}^{2}\right\}$ on V such that
i. Each E_{i}^{t} is a projection, that is $\left(E_{i}^{t}\right)^{2}=E_{i}^{t}$ for $t=1,2 ; 1$ $\leq i \leq k_{t}$.
ii. $\quad E_{i}^{t} E_{j}^{t}=0$ if $i \neq j ; 1 \leq i, j \leq k_{t}$. and $t=1,2$.
iii. $I=I_{1} \cup I_{2}=\left\{E_{1}^{1}+\ldots+E_{k_{1}}^{1}\right\} \cup\left\{E_{1}^{2}+\ldots+E_{k_{2}}^{2}\right\}$.
$i v$. The range of E_{i}^{t} is W_{i}^{t}, for $i=1,2, \ldots, k_{t}$ and $t=1,2$.
Proof: We are primarily interested in the bidirect sum bidecomposition $\mathrm{V}=\left\{\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ where each of the strong neutrosophic bivector bisubspaces W_{t} is invariant under some given bilinear operator $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$.

Given such a decomposition of V, T induces bilinear operators $T=T_{1} \cup T_{2}$.

Given such a bidecomposition of $V=V_{1} \cup V_{2}, T=T_{1} \cup T_{2}$ induces bilinear operators $\left(T_{i}^{1} \cup T_{i}^{2}\right)$ on $\left(W_{i}^{1} \cup W_{i}^{2}\right)$ by restriction, the action of T is α, is a bivector in V we have unique bivectors $\left\{\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\}$ with α_{i}^{t} in W_{i}^{t} such that $\alpha=\left\{\alpha_{1}^{1}+\ldots+\alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}+\ldots+\alpha_{k_{2}}^{2}\right\}$ and then

$$
\mathrm{T} \alpha=\left\{\mathrm{T}_{1}^{1} \alpha_{1}^{1}+\ldots+\mathrm{T}_{\mathrm{k}_{1}}^{1} \alpha_{k_{1}}^{1}\right\} \cup\left\{\mathrm{T}_{1}^{2} \alpha_{1}^{2}+\ldots+\mathrm{T}_{\mathrm{k}_{2}}^{2} \alpha_{\mathrm{k}_{2}}^{2}\right\} .
$$

We shall describe this situation by saying that $T=T_{1} \cup T_{2}$ is the bidirect sum of the operators $\left\{\mathrm{T}_{1}^{1}, \ldots, \mathrm{~T}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{T}_{1}^{2}, \ldots, \mathrm{~T}_{\mathrm{k}_{2}}^{2}\right\}$.

It must be remembered in using this terminology that the $\mathrm{T}_{\mathrm{i}}^{\mathrm{t}}$ are not bilinear operators on the strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ but on the various strong neutrosophic bivector subspaces

$$
\begin{gathered}
\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} . \\
=\left\{\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}
\end{gathered}
$$

which enables us to associate with each $\alpha=\alpha_{1} \cup \alpha_{2}$ in V a unique pair of k-tuple $\left\{\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\}$ of vectors α_{i}^{t} $\in W_{i}^{t}, i=1,2, \ldots, k_{t} . t=1,2$.
$\alpha=\left\{\alpha_{1}^{1}+\ldots+\alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}+\ldots+\alpha_{k_{2}}^{2}\right\}$ is in such a way that we can carry out the bilinear operators on V by working in the individual strong neutrosophic bivector subspaces $\mathrm{W}_{\mathrm{i}}=$ $\mathrm{W}_{\mathrm{i}}^{1}+\mathrm{W}_{\mathrm{i}}^{2}$. The fact that each W_{i} is biinvariant under T enable us to view the action of T as the independent action of the operators $\mathrm{T}_{\mathrm{i}}^{\mathrm{t}}$ on the bisubspaces $\mathrm{W}_{\mathrm{i}}^{\mathrm{t}} ; \mathrm{i}=1,2, \ldots, \mathrm{k}_{\mathrm{t}}, \mathrm{t}=1,2$. Our purpose is to study T by finding biinvariant bidirect sum decompositions in which the $\mathrm{T}_{\mathrm{i}}^{\mathrm{t}}$ operators of an elementary nature.

The following theorem is left as an exercise for the reader to prove.

THEOREM 2.3.38: Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ of type II over the neutronsophic bifield $F=F_{1} \cup F_{2}\left(F_{1}\right.$ and F_{2} are not pure neutrosophic fields). Let $\left(W_{1}^{1}, \ldots, W_{k_{1}}^{1}\right) \cup\left(W_{1}^{2}, \ldots, W_{k_{2}}^{2}\right)$ and $\left(E_{1}^{1}, \ldots, E_{k_{1}}^{1}\right) \cup\left(E_{1}^{2}, \ldots, E_{k_{2}}^{2}\right)$ be as before. Then a necessary and sufficient condition that each strong neutrosophic bivector subspace W_{i}^{t} to be biinvariant under T_{i} for $1 \leq i \leq k_{t} ; t=1,2$ is that $E_{i}^{t} T_{t}=T_{t} E_{i}^{t}$ or $E T=T E$ for every $1 \leq i \leq k_{t}$ and $t=1,2$.

Now we proceed on to define the notion of biprimary decomposition of strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup$ V_{2} of $\left(n_{1}, n_{2}\right)$ dimension over the neutrosophic bifield $F=F_{1} \cup$ F_{2} where F_{1} and F_{2} are not pure neutrosophic fields.

THEOREM 2.3.39: (Primary bidecomposition theorem): Let $T=$ $T_{1} \cup T_{2}$ be a bilinear operator on a finite $\left(n_{1}, n_{2}\right)$ dimension strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the neutroscophic bifield $F=F_{1} \cup F_{2}\left(F_{1}\right.$ and F_{2} are not pure neutrosophic fields). Let $p=p_{1} \cup p_{2}$ be the biminimal neutrosophic polynomial for $T=T_{1} \cup T_{2}$.

$$
p=p_{11}^{r_{1}^{1}} \ldots p_{1 k_{1}}^{r_{k_{1}}^{1}} \cup p=p_{21}^{r_{1}^{1}} \ldots p_{2 k_{1}}^{r_{k_{1}}^{1}} \text { where } p_{t i}^{t} \text { are distinct }
$$ irreducible monic neutrosophic polynomials over $F_{t} ; i=1,2$, $\ldots, k_{t} ; t=1,2$ and r_{i}^{t} are positive integers. Let $W_{i}=W_{i}^{1} \cup W_{i}^{2}$ be the null bispace of $p(T)=p_{1 i}\left(T_{i}^{1}\right)^{r_{i}^{1}} \cup p_{2 i}\left(T_{i}^{2}\right)^{r_{i}^{2}} ; i=1,2$; then,

i. $W=W_{1} \cup W_{2}=\left(W_{1}^{1} \oplus \ldots \oplus W_{k_{1}}^{1}\right) \cup\left(W_{1}^{2} \oplus \ldots \oplus W_{k_{2}}^{2}\right)$
ii. each $W_{i}=W_{i}^{1}+W_{i}^{2}$ is biinvariant under $T_{i} ; i=1,2$.
iii. If T_{i}^{r} is the operator induced on W_{i}^{r} by T_{i} then the minimal neutrosophic polynomial for T_{i}^{r} is $p_{i}^{r} ; r=1,2$, $\ldots, k_{i}, i=1,2$.

We prove the corollary to this theorem.

Corollary 2.3.3: If $\left\{E_{1}^{1}, \ldots, E_{k_{1}}^{1}\right\} \cup\left\{E_{1}^{2}, \ldots, E_{k_{2}}^{2}\right\}$ are biprojections associated with the biprimary decomposition of T $=T_{1} \cup T_{2}$ then each E_{i}^{t} is a neutrosophic polynomial in $T ; 1 \leq i$ $\leq k_{t} ; t=1,2$ and accordingly if a linear operator S commutes with T then S commutes with each of the E_{i}; that is each strong neutrosophic subspace W_{i} is invariant under S.

Proof: For any bilinear operator defined on a strong neutrosophic bivector space defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (F_{1} and F_{2} pure neutrosophic fields) of type II, we can associate the notion of bidiagonal part of T and binilpotent part of T.

Consider the neutrosophic biminimal polynomial for $\mathrm{T}=\mathrm{T}_{1}$ $\cup T_{2}$ which is decomposed into first degree polynomials that is the case in which each p_{i} is of the form $p_{i}^{t}=x-c_{1}^{t}$. Now the range of E_{i}^{t} is the null space of W_{i}^{t} of $\left(T_{t}-c_{i}^{t} I_{t}\right)^{r_{i}^{t}}$; we know by earlier results D is a bidiagonalizable part of T .

Let us look at the bioperator

$$
\begin{gathered}
\mathrm{N}=\mathrm{T}-\mathrm{D} \\
\mathrm{~N}_{1} \cup \mathrm{~N}_{2}=\left(\mathrm{T}_{1}-\mathrm{D}_{1}\right) \cup\left(\mathrm{T}_{2}-\mathrm{D}_{2}\right) \\
\mathrm{T}=\left(\mathrm{T}_{1} \mathrm{E}_{1}^{1}+\ldots+\mathrm{T}_{1} \mathrm{E}_{\mathrm{k}_{1}}^{1}\right) \cup\left(\mathrm{T}_{2} \mathrm{E}_{1}^{2}+\ldots+\mathrm{T}_{2} \mathrm{E}_{\mathrm{k}_{2}}^{2}\right)
\end{gathered}
$$

and

$$
\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2}=\left(\mathrm{c}_{1} \mathrm{E}_{1}^{1}+\ldots+\mathrm{c}_{\mathrm{k}_{1}}^{1} \mathrm{E}_{\mathrm{k}_{1}}^{1}\right) \cup\left(\mathrm{c}_{2} \mathrm{E}_{1}^{2}+\ldots+\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{E}_{\mathrm{k}_{2}}^{2}\right)
$$

so

$$
\begin{gathered}
\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2} \\
=\left\{\left(\mathrm{T}_{1}-\mathrm{c}_{1}^{1} \mathrm{I}_{1}\right) \mathrm{E}_{1}^{1}+\ldots+\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{k}_{1}}^{1} \mathrm{I}_{1}\right) \mathrm{E}_{\mathrm{k}_{1}}^{1}\right\} \cup \\
\left\{\left(\mathrm{T}_{2}-\mathrm{c}_{1}^{2} \mathrm{I}_{2}\right) \mathrm{E}_{1}^{2}+\ldots+\left(\mathrm{T}_{2}-\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{I}_{2}\right) \mathrm{E}_{\mathrm{k}_{2}}^{2}\right\} .
\end{gathered}
$$

Now

$$
\begin{gathered}
\mathrm{N}^{2}=\mathrm{N}_{1}^{2} \cup \mathrm{~N}_{2}^{2} \\
=\left(\mathrm{T}_{1}-\mathrm{c}_{1}^{1} \mathrm{I}_{1}\right)^{2} \mathrm{E}_{1}^{1}+\ldots+\left(\mathrm{T}_{1}-\mathrm{c}_{\mathrm{k}_{1}}^{1} \mathrm{I}_{1}\right)^{2} \mathrm{E}_{\mathrm{k}_{1}}^{1} \cup \\
\left(\mathrm{~T}_{2}-\mathrm{c}_{1}^{2} \mathrm{I}_{2}\right)^{2} \mathrm{E}_{1}^{2}+\ldots+\left(\mathrm{T}_{2}-\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{I}_{2}\right)^{2} \mathrm{E}_{\mathrm{k}_{2}}^{2} .
\end{gathered}
$$

and in general

$$
N^{r}=\left\{\left(T_{1}-c_{1}^{1} I_{1}\right)_{1}^{r_{1}} E_{1}^{1}+\ldots+\left(T_{1}-c_{k_{1}}^{1} I_{1}\right)^{\mathrm{r}_{1}} E_{k_{1}}^{1}\right\} \cup
$$

$$
\left\{\left(T_{2}-c_{1}^{2} I_{2}\right)^{r_{2}} E_{1}^{2}+\ldots+\left(T_{2}-c_{k_{2}}^{2} I_{2}\right)^{r_{12}{ }^{k_{2}}} E_{k_{2}}^{2}\right\} .
$$

When $r \geq r_{i}$ for each i we have $N^{r}=0$ i.e., $N_{1}^{r} \cup N_{2}^{r}=0 \cup 0$; that is each of the bioperator $\left(T_{t}-c_{1}^{t} I_{t}\right)^{r_{i}}=0$ on the range $E_{i}^{t} ; 1$ $\leq \mathrm{t} \leq \mathrm{k}_{\mathrm{i}}$ and $\mathrm{i}=1$, 2. Thus $(\mathrm{T}-\mathrm{cI})^{\mathrm{r}}=0$ for a suitable r .

Let $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ be a bilinear operator on a bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$. We say N is binilpotent if there is some pair of integers (r_{1}, r_{2}) such that $N_{i} \mathrm{r}_{\mathrm{i}}=0$ for $\mathrm{i}=1$, 2 . We choose $\mathrm{r}>\mathrm{r}_{\mathrm{i}}$; i $=1,2$ then $\mathrm{N}^{\mathrm{r}}=0$, where $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$.

In view of this we have the following theorem for strong neutrosophic bivector spaces of type II defined over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (F_{1} and F_{2} not pure neutrosophic).

THEOREM 2.3.40: Let $T=T_{1} \cup T_{2}$ be a bilinear operator on the $\left(n_{1}, n_{2}\right)$ finite bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (both F_{1} and F_{2} are not pure). Suppose that the biminimal neutrosophic polynomial for $T=T_{1} \cup T_{2}$ decomposes over $F=F_{1} \cup F_{2}$ into a biproduct of bilinear neutrosophic polynomials. Then there is a bi diagonalizable operator $N=N_{1} \cup N_{2}$ on $V=V_{1} \cup V_{2}$ such that, i. $T=D+N$; i.e.;

$$
T_{1} \cup T_{2}=D_{1} \cup D_{2}+N_{1} \cup N_{2}
$$

$$
=D_{1}+N_{1} \cup D_{2}+N_{2} .
$$

ii. $\quad D N=N D$ that is

$$
\begin{aligned}
\left(D_{1} \cup D_{2}\right)\left(N_{1} \cup N_{2}\right) & =D_{1} N_{1} \cup D_{2} N_{2} \\
& =N_{1} D_{1} \cup N_{2} D_{2} .
\end{aligned}
$$

The bidiagonalizable operator $D=D_{1} \cup D_{2}$ and the binilpotent operator $N=N_{1} \cup N_{2}$ are uniquely determined by (i) and (ii) and each of them is a bipolynomial in T_{1} and T_{2}.

Consequent of the above theorem the following corollary is direct.

Corollary 2.3.4: Let V be a finite bidimension strong neutrosophic bivector space over the special algebraically closed neutrosophic bifield $F=F_{1} \cup F_{2}$. Then every bilinear operator $T=T_{1} \cup T_{2}$ on $V=V_{1} \cup V_{2}$ can be written as the sum of a bidiagonalizable operator $D=D_{1} \cup D_{2}$ and a binilpotent operator $N=N_{1} \cup N_{2}$ which commute. These bioperators D and N are unique and each is a bipolynomial in (T_{1}, T_{2}).

Let $V=V_{1} \cup V_{2}$ be a finite bidimensional strong neutrosophic bivector space over the neutrosophic bifield $F=$ $F_{1} \cup F_{2}$ and $T=T_{1} \cup T_{2}$ be an aribitary and fixed bilinear operator on $V=V_{1} \cup V_{2}$. If $\alpha=\alpha_{1} \cup \alpha_{2}$ is a bivector in V then there is a smallest bisubspace of $V=V_{1} \cup V_{2}$ which is biinvarient under $T=T_{1} \cup T_{2}$ and contains α. This strong neutrosophic bispace can be defined as the biintersection of all T-invariant strong neutrosophic bisubspaces which contain α.

If $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be any strong neutrosophic bivector supspace of $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ of a strong neutrosophic bivector space $\mathrm{V}=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ which is biinvariant under $\alpha=\alpha_{1} \cup \alpha_{2}$; that is each T_{i} in T is such that the strong neutrosophic subspace W_{i} on V_{i} is invariant under T_{i} and contains α_{i}; true for $\mathrm{i}=1,2$.

Then $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ must also contain $\mathrm{T} \alpha$; that is $\mathrm{T}_{\mathrm{i}} \alpha_{\mathrm{i}}$ is in W_{i} for each $i=1,2$; hence $T(T \alpha)$ is in W; that is $T_{i}\left(T_{i} \alpha_{i}\right)=$ $\mathrm{T}_{\mathrm{i}}^{2} \alpha_{\mathrm{i}}$ is in W and so on; that is $\mathrm{T}_{\mathrm{i}}^{\mathrm{m}_{\mathrm{i}}}\left(\alpha_{\mathrm{i}}\right)$ is in W_{i}, for each i so that $\mathrm{T}^{\mathrm{m}}(\alpha) \in \mathrm{W}$; $\mathrm{i}=1,2 . \mathrm{W}$ must contain $\mathrm{g}(\mathrm{T}) \alpha$ for every neutrosophic bipolynomial $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$. The set of all bivectors of the form $g(T) \alpha=$ $\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}$ with $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2} \in \mathrm{~F}[\mathrm{x}]=\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}]$, is clearly biinvariant and is thus the smallest bi T -invariant (T biinvariant) strong neutrosophic bisubspace which contains $\alpha=$ $\alpha_{1} \cup \alpha_{2}$.

In view of this we have the following definition.
DEFINITION 2.3.46: Let $\alpha=\alpha_{1} \cup \alpha_{2}$ be any bivector in a strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (F_{1} and F_{2} are not pure neutrosophic). The
T-bicyclic strong neutrosophic bisubspace generated by $\alpha=\alpha_{1}$ $\cup \alpha_{2}$ is a strong neutrosophic bisubspace $\mathrm{Z}(\alpha ; T)=Z\left(\alpha_{1} ; T_{1}\right) \cup$ $Z\left(\alpha_{2} ; T_{2}\right)$ of all bivectors $g(T) \alpha=g_{1}\left(T_{1}\right) \alpha_{1} \cup g_{2}\left(T_{2}\right) \alpha_{2} ; g=g_{1} \cup$ g_{2} in $F[x]=F_{1}[x] \cup F_{2}[x]$ is a neutrosophic bipolynomial. If $Z(\alpha ; T)=V$ then α is a bicyclic vector for T.

Another way of describing this strong neutrosophic bisubspace $Z(\alpha ; T)$ is that $Z(\alpha ; T)$ is the strong neutrosophic bisubspace spanned by the bivectors $\mathrm{T}_{\alpha}^{\mathrm{k}} ; \mathrm{k} \geq 0$ and α is a bicyclic bivector for $T=T_{1} \cup T_{2}$ if and only if these bivectors span V; that is each $T_{i \alpha_{i}}^{k_{i}}$ span $V_{i}, k_{i} \geq 0$ and thus α_{i} is a cyclic vector for T_{i} if and only if these vectors span V_{i}, true for $\mathrm{i}=1,2$.

We just caution the reader that the general bioperator $T=T_{1}$ $\cup T_{2}$ has no bicyclic bivector.

For any T the T bicyclic strong neutrosophic bisubspace generated by the bizero vector is the bizero strong neutrosophic bisubspace of V . The bispace $\mathrm{Z}(\alpha ; \mathrm{T})=\mathrm{Z}\left(\alpha_{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{2} ; \mathrm{T}_{2}\right)$ is $(1,1)$ dimensional if and only if α is a bicharacteristic vector for T. For the biidentity operator, every nonzero bivector generates a $(1,1)$ dimensional bicyclic strong neutrosophic bisubspace thus if bidimV $>(1,1)$ the biidentity operator has non cyclic vector.

For any T and α we shall be interested in the bilinear relation $\mathrm{c}_{0} \alpha+\mathrm{c}_{1} \mathrm{~T} \alpha+\ldots+\mathrm{c}_{\mathrm{k}} \mathrm{T} \alpha^{\mathrm{k}}=0$ where $\alpha=\alpha_{1} \cup \alpha_{2}$ so that

$$
c_{0}^{1} \alpha_{1}+c_{1}^{1} T_{1} \alpha_{1}+\ldots+c_{k_{1}}^{1} T_{1} \alpha_{1}^{k_{1}}=0
$$

and

$$
\mathrm{c}_{0}^{2} \alpha_{2}+\mathrm{c}_{1}^{2} \mathrm{~T}_{2} \alpha_{2}+\ldots+\mathrm{c}_{\mathrm{k}_{2}}^{2} \mathrm{~T}_{2} \alpha_{2}^{\mathrm{k}_{2}}=0
$$

between the bivectors $\mathrm{T} \alpha^{j}$, we shall be interested in the neutrosophic bipolynomial $g=g_{1} \cup g_{2}$ where

$$
g_{i}=c_{0}^{i}+c_{1}^{i} x+\ldots+c_{k_{i}}^{i} x^{k_{i}}
$$

true for $\mathrm{i}=1,2$, which has the property that $\mathrm{g}(\mathrm{T}) \alpha=0$.
The set of all g in $F[x]=F_{1}[x] \cup F_{2}[x]$ such that $g(T) \alpha=0$ is clearly a neutrosophic biideal in $\mathrm{F}[\mathrm{x}]$. It is also a non zero neutrosophic biideal in $\mathrm{F}[\mathrm{x}$] because it contains biminimal bipolynomial $p=p_{1} \cup p_{2}$ of the bioperator T. $p(T) \alpha=p_{1}\left(T_{1}\right) \alpha_{1}$
$\cup \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}=0 \cup 0$; that is $\mathrm{p}\left(\mathrm{T}_{1}\right) \alpha_{1} \cup \mathrm{p}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}=0 \cup 0$ for every $\alpha=\alpha_{1} \cup \alpha_{2}$ in $V=V_{1} \cup V_{2}$.

DEFINITION 2.3.47: If $\alpha=\alpha_{1} \cup \alpha_{2}$ is any bivector in strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ of type II defined over the neutrosophic bifield $F=F_{1} \cup F_{2}\left(F_{1}\right.$ and F_{2} are not pure neutrosophic). The T-annihilator ($T=T_{1} \cup T_{2}$) of $\alpha=\alpha_{1} \cup \alpha_{2}$ is the neutrosophic biideal $M(\alpha ; T)=M\left(\alpha_{1} ; T_{1}\right) \cup M\left(\alpha_{2} ; T_{2}\right)$ in $F[x]=F_{1}[x] \cup F_{2}[x]$ consisting of all neutrosophic bipolynomials $g=g_{1} \cup g_{2}$ over $F=F_{1} \cup F_{2}$ such that $g(T)=g_{1}\left(T_{1}\right) \cup g_{2}\left(T_{2}\right)=$ $0 \cup 0$.

The unique neutrosophic monic bipolynomial $p \alpha=p_{1} \alpha_{1} \cup$ $p_{2} \alpha_{2}$ which bigenerates this biideal will also be called the bi T annihilator of α or T bi annihilator of α. The bi T-annihilator $p \alpha$ bidivides the neutrosophic biminimal bipolynomial of the bioperator $T=T_{1} \cup T_{2}$. Clearly bidegree $(p \alpha)>(0,0)$ unless α $=\alpha_{1} \cup \alpha_{2}$ is the zero bivector.

THEOREM 2.3.41: Let $\alpha=\alpha_{1} \cup \alpha_{2}$ be any non zero bivector in $V=V_{1} \cup V_{2}$; V a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (both F_{2} and F_{2} are not pure neutrosophic).

Let $p_{\alpha}=p_{1 \alpha_{1}} \cup p_{2 \alpha_{2}}$ be the bi T annihilator of $\alpha=\alpha_{1} \cup \alpha_{2}$.
i. The bidegree of p_{α} is equal to the bidimension of the bicyclic strong neutrosophic bisubspace $Z(\alpha ; T)=$ $Z\left(\alpha_{1} ; T_{1}\right) \cup Z\left(\alpha_{2} ; T_{2}\right)$.
ii. If the bidegree of $p_{\alpha}=p_{1 \alpha_{1}} \cup p_{2 \alpha_{2}}$ is (k_{1}, k_{2}) then the bivectors $\alpha=\alpha_{1} \cup \alpha_{2}, T \alpha=T_{1} \alpha_{1} \cup T_{2} \alpha_{2}, \ldots, T_{\alpha_{1}}^{k_{1}-1}=$ $T_{1}^{k_{1}-1} \alpha_{1} \cup T_{2}^{k_{2}-1} \alpha_{2}$ form a bibasis for $Z(\alpha ; T)$. That is $\left\{\alpha_{1}, T_{1} \alpha_{1}, T_{1}^{2} \alpha_{1}, \ldots, T_{1}^{k_{1}-1} \alpha_{1}\right\} \cup\left\{\alpha_{2}, T_{2} \alpha_{2}, T_{2}^{2} \alpha_{2}, \ldots, T_{2}^{k_{2}-1} \alpha_{2}\right\}$ form a bibasis for $Z(\alpha ; T)=Z\left(\alpha_{1} ; T_{1}\right) \cup Z\left(\alpha_{2} ; T_{2}\right)$; that is $Z\left(\alpha_{i}, T_{i}\right)$ has $\left\{\alpha_{i}, T_{i} \alpha_{i}, \ldots, T_{i}^{k_{i}-1} \alpha_{i}\right\}$ as its basis; true for every $i=1,2$.
iii. If $S=S_{1} \cup S_{2}$ is a bilinear operator on $Z(\alpha ; T)$ induced by T, then by the biminimal neutrosophic polynomial for S is p_{α}.

Proof: Let $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ be a neutrosophic bipolynomial over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$, write $\mathrm{g}=\mathrm{p}_{\alpha} \mathrm{q}+\mathrm{r}$, that is $\mathrm{g}_{1} \cup$ $\mathrm{g}_{2}=\mathrm{p}_{1 \alpha_{1}} \mathrm{q}_{1}+\mathrm{r}_{1} \cup \mathrm{p}_{2 \alpha_{2}} \mathrm{q}_{2}+\mathrm{r}_{2}$; where $\mathrm{p}_{\alpha}=\mathrm{p}_{1 \alpha_{1}} \cup \mathrm{p}_{2 \alpha_{2}}$ for $\alpha=$ $\alpha_{1} \cup \alpha_{2}, q=q_{1} \cup q_{2}$ and $r=r_{1} \cup r_{2}$ so $g_{i}=p_{i \alpha_{i}} q_{i}+r_{i}$ true for $\mathrm{i}=$ 1, 2. Here either $r=0 \cup 0$ or bidegree $r<$ bidegree $p_{\alpha}=\left(k_{1}, k_{2}\right)$. The neutrosophic bipolynomial $p_{\alpha} q=p_{1 \alpha_{1}} q_{1} \cup p_{2 \alpha_{2}} \mathrm{q}_{2}$ is in the T biannihilator of $\alpha=\alpha_{1} \cup \alpha_{2}$ and so $\mathrm{g}(\mathrm{T}) \alpha=\mathrm{r}(\mathrm{T}) \alpha$, that is $\mathrm{g}\left(\mathrm{T}_{1}\right) \alpha_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}=\mathrm{r}_{1}\left(\mathrm{t}_{1}\right) \alpha_{1} \cup \mathrm{r}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}$.

Since $r=r_{1} \cup r_{2}=0 \cup 0$ or bidegree $r<\left(k_{1}, k_{2}\right)$ the bivector $r(T) \alpha=r_{1} T_{1}\left(\alpha_{1}\right) \cup r_{2} T_{2}\left(\alpha_{2}\right)$ is a bilinear combination of the bivectors $\alpha, \mathrm{T} \alpha, \ldots, \mathrm{T}^{k-1} \alpha$; that is a bilinear combination of bivectors $\alpha=\alpha_{1} \cup \alpha_{2}$

$$
\begin{gathered}
\mathrm{T} \alpha=\mathrm{T}_{1} \alpha_{1} \cup \mathrm{~T}_{2} \alpha_{2}, \\
\mathrm{~T}^{2} \alpha=\mathrm{T}_{1}^{2} \alpha_{1} \cup \mathrm{~T}_{2}^{2} \alpha_{2}, \\
\mathrm{~T}^{3} \alpha=\mathrm{T}_{1}^{3} \alpha_{1} \cup \mathrm{~T}_{2}^{3} \alpha_{2}, \ldots, \\
\mathrm{~T}^{\mathrm{k}-1} \alpha=\mathrm{T}_{1}^{\mathrm{k}_{1}-1} \alpha_{1} \cup \mathrm{~T}_{2}^{\mathrm{k}_{2}-1} \alpha_{2}
\end{gathered}
$$

and since $g(T) \alpha=g_{1}\left(T_{1}\right) \alpha_{1} \cup g_{2}\left(T_{2}\right) \alpha_{2}$ is a typical bivector in $Z(\alpha ; T)$; i.e., each $g_{i}\left(T_{i}\right) \alpha_{i}$ is a typical vector in $Z\left(\alpha_{i} ; T_{i}\right)$ for each $\mathrm{g}_{\mathrm{i}}\left(\mathrm{T}_{\mathrm{i}}\right) \alpha_{\mathrm{i}}$ is a typical vector in $\mathrm{Z}\left(\alpha_{\mathrm{l}} ; \mathrm{T}_{\mathrm{i}}\right) ; \mathrm{i}=1,2$. This shows that these $\left(k_{1}, k_{2}\right)$ bivectors span $Z(\alpha ; T)$.

These bivectors are certainly bilinearly independent because any non trivial bilinear relation between them would give us a non zero neutrosophic bipolynomial $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ such that $\mathrm{g}(\mathrm{T})(\alpha)=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right)\left(\alpha_{1}\right) \cup \mathrm{g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2}=0 \cup 0$ and bidegree $\mathrm{g}<$ bidegree p_{α}, which is absurd.

This proves (i) and (ii).
Let $S=S_{1} \cup S_{2}$ be a bilinear operator on $\left(Z_{\alpha} ; T\right)$ obtained by restricting T to that strong neutrosophic bivector subspace. If $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ is any neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ then $\mathrm{p}_{\alpha}(\mathrm{S}) \mathrm{g}(\mathrm{T}) \alpha=\mathrm{p}_{\alpha}(\mathrm{T}) \mathrm{g}(\mathrm{T}) \alpha$
that is

$$
\begin{gathered}
\mathrm{p}_{1 \alpha_{1}}\left(\mathrm{~S}_{1}\right) \mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{p}_{2 \alpha_{2}}\left(\mathrm{~S}_{2}\right) \mathrm{g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2} \\
=\mathrm{p}_{1 \alpha_{1}}\left(\mathrm{~T}_{1}\right) \mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{p}_{2 \alpha_{2}}\left(\mathrm{~T}_{2}\right) \mathrm{g}_{2}\left(\mathrm{~T}_{2}\right) \alpha_{2} \\
=\mathrm{g}(\mathrm{~T}) \mathrm{p}_{\alpha}(\mathrm{T}) \alpha \\
=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \mathrm{p}_{1 \alpha_{1}}\left(\mathrm{~T}_{1}\right) \alpha_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \mathrm{p}_{2 \alpha_{2}}\left(\mathrm{~T}_{2}\right) \alpha_{2} \\
=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right)(0) \cup \mathrm{g}_{2}\left(\mathrm{~T}_{2}\right)(0) \\
=0 \cup 0 . \\
=0 .
\end{gathered}
$$

Thus the bioperator $\mathrm{p}_{\alpha} \mathrm{S}=\mathrm{p}_{1} \alpha_{1}\left(\mathrm{~S}_{1}\right) \cup \mathrm{p}_{2} \alpha_{2}\left(\mathrm{~S}_{2}\right)$ sends every bivector in $\mathrm{Z}(\alpha ; \mathrm{T})=\mathrm{Z}\left(\alpha_{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{2} ; \mathrm{T}_{2}\right)$ into $0 \cup 0$ and is the bizero operator on $Z(\alpha ; T)$. Further more if $h=h_{1} \cup h_{2}$ is a neutrosophic of bidegree less than ($\mathrm{k}_{1}, \mathrm{k}_{2}$) we cannot have $\mathrm{h}(\mathrm{S})$ $=h_{1}\left(\mathrm{~S}_{1}\right) \cup \mathrm{h}_{2}\left(\mathrm{~S}_{2}\right)=0 \cup 0$ for then $\mathrm{h}(\mathrm{S}) \alpha=\mathrm{h}_{1}\left(\mathrm{~S}_{1}\right) \alpha_{1} \cup \mathrm{~h}_{2}\left(\mathrm{~S}_{2}\right) \alpha_{2}$ $=0 \cup 0$; contradicting the definition of p_{α}. This shows that p_{α} is the neutrosophic biminimal polynomial for S .

A particular consequences of this interesting theorem is that if $\alpha=\alpha_{1} \cup \alpha_{2}$ happens to be a bicyclic vector for $T=T_{1} \cup T_{2}$ then the neutrosophic biminimal bipolynomial for T have bidegree equal to the bidimension of the strong neutrosophic bivector space $V=V_{1} \cup V_{2}$, hence by Cayley Hamilton theorem for the bivector spaces we have the neutrosophic biminimal polynomial for T is the bicharacteristic neutrosophic polynomial for T. We shall prove later that for any T there is a bivector $\alpha=$ $\alpha_{1} \cup \alpha_{2}$ in $V=V_{1} \cup V_{2}$ which has the neutrosophic biminimal polynomial for $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ for its biannihilator.

It will then follow that $T=T_{1} \cup T_{2}$ has a bicyclic vector if and only if the biminimal and the bicharacteristic neutrosophic polynomial for T are identical. We now study the general bioperator $T=T_{1} \cup T_{2}$ by using the bioperator vector. Let us consider a bilinear operator $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ on the strong neutrosophic bivector space $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ of bidimension (k_{1}, k_{2}) which is a cyclic bivector $\alpha=\alpha_{1} \cup \alpha_{2}$.

By the above theorem just proved the bivectors $\alpha, S \alpha, S^{2} \alpha$, $\ldots, S^{k-1} \alpha$; that is

$$
\left\{\alpha_{1}, \mathrm{~S}_{1} \alpha_{1}, \mathrm{~S}_{1}^{2} \alpha_{1}, \ldots, \mathrm{~S}_{1}^{k_{1}-1} \alpha_{1}\right\},\left\{\alpha_{2}, \mathrm{~S}_{2} \alpha_{2}, \mathrm{~S}_{2}^{2} \alpha_{2}, \ldots, \mathrm{~S}_{2}^{\mathrm{k}_{2}-1} \alpha_{2}\right\}
$$

form a bibasis for the bispace $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and the annihilator $\mathrm{p}_{\alpha}=\mathrm{p}_{1 \alpha_{1}} \cup \mathrm{p}_{2 \alpha_{2}}$ of $\alpha=\alpha_{1} \cup \alpha_{2}$ is the biminimal neutrosophic bipolynomial for $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ (hence also the bicharacterstic neutrosophic bipolynomial for S).

If we let $\alpha^{i}=S^{i-1} \alpha$; that is $\alpha^{i}=\alpha_{1}^{i} \cup \alpha_{2}^{i}$ and $\alpha^{i}=S^{i-1} \alpha$ implies $\alpha_{1}^{\mathrm{i}}=\mathrm{S}_{1}^{\mathrm{i}_{1}-1} \alpha_{1}, \alpha_{2}^{\mathrm{i}}=\mathrm{S}_{2}^{\mathrm{i}_{2}-1} \alpha_{2} ; 1 \leq \mathrm{i} \leq \mathrm{k}_{\mathrm{i}}-1$ then the action of S on the bibasis $\left\{\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\}$ is $S \alpha^{i}=\alpha^{i+1}$ for $\mathrm{i}=1,2, \ldots, k-1$ that is $\mathrm{S}_{\mathrm{t}} \alpha_{\mathrm{t}}^{\mathrm{i}}=\alpha_{\mathrm{t}}^{\mathrm{i}+1}$ for $\mathrm{i}=1,2, \ldots, k_{i}-1$ and t $=1,2 . S \alpha^{k}=-c_{0} \alpha^{1}-\ldots-c_{k-1} \alpha^{k}$ that is $S_{t} \alpha_{t}^{k}=-c_{0}^{t} \alpha_{t}^{1}-\ldots-c_{k_{t}-1}^{t} \alpha_{t}^{k}$ for $\mathrm{t}=1$, 2; where

$$
\begin{gathered}
p \alpha=\left\{c_{0}^{1}+c_{1}^{1} \mathrm{x}+\ldots+\mathrm{c}_{\mathrm{k}_{1}-1}^{1} \mathrm{x}^{k_{1}-1}+\mathrm{x}^{\mathrm{k}_{1}}\right\} \cup \\
\left\{\mathrm{c}_{0}^{2}+\mathrm{c}_{2}^{2} \mathrm{x}+\ldots+\mathrm{c}_{\mathrm{k}_{2}-1} \mathrm{x}^{\mathrm{k}_{2}-1}+\mathrm{x}^{\mathrm{k}_{2}}\right\} .
\end{gathered}
$$

The biexpression for $S \alpha_{k}$ follows from the fact $p_{\alpha}(S) \alpha=0$ $\cup 0$; that is $S^{k} \alpha+c_{k-1} S^{k-1} \alpha+\ldots+c_{1} S \alpha+c_{0} \alpha=0 \cup 0$ that is

$$
\begin{gathered}
\left\{S_{1}^{\mathrm{k}_{1}} \alpha_{1}+\mathrm{c}_{\mathrm{k}_{1}-1}^{1} \mathrm{~S}^{\mathrm{k}_{1}-1} \alpha_{1}+\ldots+\mathrm{c}_{1}^{1} \mathrm{~S}_{1} \alpha_{1}+\mathrm{c}_{0}^{1} \alpha_{1}\right\} \cup \\
\left\{\mathrm{S}_{2}^{\mathrm{k}_{2}} \alpha_{2}+\mathrm{c}_{\mathrm{k}_{2}-1}^{2} \mathrm{~S}^{\mathrm{k}_{2}-1} \alpha_{2}+\ldots+\mathrm{c}_{1}^{2} \mathrm{~S}_{2} \alpha_{2}+\mathrm{c}_{0}^{2} \alpha_{2}\right\}=0 \cup 0 .
\end{gathered}
$$

This is given by the neutrosophic bimatrix $S=S_{1} \cup S_{2}$ in the bibasis

$$
\begin{gathered}
B=B_{1} \cup B_{2} \\
=\left\{\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{\mathrm{k}_{2}}^{2}\right\} \\
=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & -\mathrm{c}_{0}^{1} \\
1 & 0 & 0 & \ldots & 0 & -\mathrm{c}_{1}^{1} \\
0 & 1 & 0 & \ldots & 0 & -\mathrm{c}_{2}^{1} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & -\mathrm{c}_{\mathrm{k}_{1}-1}^{1}
\end{array}\right] \cup\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & -\mathrm{C}_{0}^{2} \\
1 & 0 & 0 & \ldots & 0 & -\mathrm{c}_{1}^{2} \\
0 & 1 & 0 & \ldots & 0 & -\mathrm{C}_{2}^{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -\mathrm{c}_{\mathrm{k}_{2}-1}^{2}
\end{array}\right] .
\end{gathered}
$$

The neutrosophic bimatrix is defined as the bicompanion bimatrix of the monic neutrosophic polynomial $\mathrm{p}_{\alpha}=\mathrm{p}_{1 \alpha_{1}} \cup \mathrm{p}_{2 \alpha_{2}}$
or can also be represented with some flaw in notation as $\mathrm{p}_{\alpha_{1}}^{1} \cup \mathrm{p}_{\alpha_{2}}^{2}$ where $\mathrm{p}=\mathrm{p}^{1} \cup \mathrm{p}^{2}$.

Now we prove yet another interesting theorem.
THEOREM 2.3.42: If $S=S_{1} \cup S_{2}$ is a bilinear operator on a finite (n_{1}, n_{2}) dimensional strong neutrosophic bivector space W $=W_{1} \cup W_{2}$ then S has a bicyclic bivector if and only if there is some bibasis for W in which S is represented by the bicompanion neutrosophic bimatrix of the neutrosophic biminimal polynomial for S.

Proof: We just have noted that if $S=S_{1} \cup S_{2}$ has a bycyclic bivector then there is such an ordered bibasis for $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$. Conversely if there is some bibasis $\left\{\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\}$ for W in which S is represented by the bicompanion neutrosophic biminimal polynomial, it is obvious that $\alpha_{1}^{1} \cup \alpha_{1}^{2}$ is a bycyclic vector for S .

We give yet another interesting corollary.
COROLLARY 2.3.5: If $A=A_{1} \cup A_{2}$ be a bicompanion neutrosophic bimatrix of a bimonic neutrosophic bipolynomial $p=p_{1} \cup p_{2}$ (each p_{i} is monic) then p is both the biminimal neutrosophic polynomial and the bicharacteristic neutrosophic bipolynomial of A.

Proof: One way to see this is to let $S=S_{1} \cup S_{2}$ a linear bioperator on $F_{1}^{k_{1}} \cup F_{2}^{k_{2}}$, which is represented by $A=A_{1} \cup A_{2}$ in the bibasis. By applying the earlier theorem and the Cayley Hamilton theorem for bivector spaces. We give another method which is by direct calculation.

Now we proceed on to define the notion of bicyclic decomoposition or we can call it as cyclic bidecomposition and its birational form or equivalently rational biform.

Our aim is to show that any bilinear operator $T=T_{1} \cup T_{2}$ of finite ($\mathrm{n}_{1}, \mathrm{n}_{2}$) dimensional strong neutrosophic bivector space V $=V_{1} \cup V_{2}$, there exists a biset of bivectors $\left\{\alpha_{1}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\},\left\{\alpha_{1}^{2}, \ldots, \alpha_{\mathrm{r}_{2}}^{2}\right\}$ in V such that

$$
\begin{gathered}
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}= \\
\mathrm{Z}\left(\alpha_{1}^{1} ; \mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{1}} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{2}}^{2} ; \mathrm{T}_{2}\right) .
\end{gathered}
$$

In other words, we want to prove that V is a bidirect sum of bi T cyclic strong neutrosophic bivector subspaces. This will show that T is a bidirect sum of a bifinite number of bilinear operators each of which has a bicyclic bivector. The effect of this will be to reduce many problems about the general bilinear operator to similar problems about a linear bioperator which has a bicyclic bivector.

The bicyclic bidecomposition theorem is closely related to the problem in which T biinvariant bisubspaces $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ have the property that there exists a T biinvariant bisubspaces W^{1} such that $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{1}$; that is

$$
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{W}_{1} \oplus \mathrm{~W}_{1}^{1} \cup \mathrm{~W}_{2} \oplus \mathrm{~W}_{2}^{1} .
$$

If $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is any strong neutrosophic bisubspace of finite $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ dimensional strong neutrosophic bivector space then there exists a strong neutrosophic bisubspace $\mathrm{W}^{1}=\mathrm{W}_{1}^{1}+\mathrm{W}_{2}^{1}$ such that $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{1}$ that is,

$$
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{W}_{1} \oplus \mathrm{~W}_{1}^{1} \cup \mathrm{~W}_{2} \oplus \mathrm{~W}_{2}^{1}
$$

for each V_{i} is a direct sum of W_{i} and W_{i}^{1}, for $i=1,2$; that is $\mathrm{V}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}} \oplus \mathrm{W}_{\mathrm{i}}^{1}$. Usually, there are many such strong neutrosophic bivector spaces W^{1} and each of this is called the bicomplementary to W .

We study the problem when a T biinvariant strong neutrosophic bisubspace has a complementary strong neutrosophic bisubspace which is also biinvariant under the same T .

Let us suppose that $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{1}$ that is $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ $=\mathrm{W}_{1} \oplus \mathrm{~W}_{1}^{1} \cup \mathrm{~W}_{2} \oplus \mathrm{~W}_{2}^{1}$ where both W and W^{1} are strong neutrosophic biinvariant under T , then we study what special property is enjoyed by the strong neutrosophic bisubspace W . Each bivector $\beta=\beta_{1} \cup \beta_{2}$ in $V=V_{1} \cup V_{2}$ is of the form $\beta=\gamma+$
γ^{1} where γ is in W and γ^{1} is in W^{1} where $\gamma=\gamma_{1} \cup \gamma_{2}$ and $\gamma^{1}=\gamma_{1}^{1} \cup \gamma_{2}^{1}$.

If $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$ any neutrosophic bipolynomial over the scalar neutroscophic bipolynomial over the scalar neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ then

$$
\begin{gathered}
\mathrm{f}(\mathrm{~T}) \beta=\mathrm{f}(\mathrm{~T}) \gamma+\mathrm{f}(\mathrm{~T}) \gamma^{1} \\
=\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \beta_{1} \cup \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \beta_{2}=\mathrm{f}(\mathrm{~T}) \gamma+\mathrm{f}(\mathrm{~T}) \gamma^{1} \\
=\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \gamma_{1}+\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \gamma_{1}^{1} \cup \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \gamma_{2}+\mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \gamma_{2}^{1} .
\end{gathered}
$$

Since W and W^{1} are biinvariant under $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ the bivector $\mathrm{f}(\mathrm{T}) \gamma=\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \gamma_{1} \cup \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \gamma_{2}$ is in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and $\mathrm{f}(\mathrm{T}) \gamma^{1}=\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \gamma_{1}^{1} \cup \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \gamma_{2}^{1}$ is in $\mathrm{W}^{1}=\mathrm{W}_{1}^{1} \cup \mathrm{~W}_{2}^{1}$. Therefore $f(T) \beta=f_{1}\left(T_{1}\right) \beta_{1} \cup f_{2}\left(T_{2}\right) \beta_{2}$ is in W if and only if $f(T) \gamma^{1}=0 \cup 0$; that is $\mathrm{f}_{1}\left(\mathrm{~T}_{1}\right) \gamma_{1}^{1} \cup \mathrm{f}_{2}\left(\mathrm{~T}_{2}\right) \gamma_{2}^{1}=0 \cup 0$. So if $\mathrm{f}(\mathrm{T}) \beta$ is in W then $\mathrm{f}(\mathrm{T}) \beta=\mathrm{f}(\mathrm{T}) \gamma$.

Now we define yet another new notion for bilinear operators on strong neutrosophic bivector spaces.

DEFINITION 2.3.48: Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ and $W=W_{1} \cup$ W_{2} be a strong neutrosophic bivector subspace of V. We say W is bi T-admissable, if
i. W is biinvariant under T,
ii. $f(T) \beta$ is in W
for each $\beta \in V$ i.e., $f_{1}\left(T_{1}\right) \beta_{1} \cup f_{2}\left(T_{2}\right) \beta_{2}$ is in $W=W_{1} \cup W_{2}$ for every $\beta=\beta_{1} \cup \beta_{2}$ in $V=V_{1} \cup V_{2}$, there exists a bivector $\gamma=\gamma_{1}$ $\cup \gamma_{2}$ in $W_{1} \cup W_{2}=W$ such that $f(T) \beta=f(T) \gamma$ that is if W is biinvariant and has a bicomplementary biinvarient bisubspace then W is biadmissible.

The biadmissibility characterizes those biinvariant bisubspaces which have bicomplementary biinvariant bisubspaces.

We see the biadmissibility property is involved in the bidecomposition of the bivector space $\mathrm{V}=\mathrm{Z}\left(\alpha_{1} ; \mathrm{T}\right) \oplus \ldots \oplus$ $\mathrm{Z}\left(\alpha_{\mathrm{r}}, \mathrm{T}\right)=\mathrm{Z}\left(\alpha_{1}^{1} ; \mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{2}}^{2} ; \mathrm{T}_{2}\right)$

We arrive by some method or another we have selected bivectors $\quad\left\{\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{\mathrm{r}_{2}}^{2}\right\} \quad$ and \quad strong neutrosophic bisubspaces which is proper say

$$
\begin{gathered}
\mathrm{W}_{\mathrm{j}}=\mathrm{W}_{\mathrm{j}}^{1} \cup \mathrm{~W}_{\mathrm{j}}^{2} \\
\left.=\left\{\mathrm{Z}\left(\alpha_{1}^{1} ; \mathrm{T}_{1}\right)+\ldots+\mathrm{Z}\left(\alpha_{\mathrm{j}_{1}}^{1} ; \mathrm{T}_{1}\right)\right\} \cup \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right)+\ldots+\mathrm{Z}\left(\alpha_{\mathrm{j}_{2}}^{2} ; \mathrm{T}_{2}\right)\right\} .
\end{gathered}
$$

We find the nonzero bivector ($\alpha_{\mathrm{j}_{1}+1}^{1} \cup \alpha_{\mathrm{j}_{2}+1}^{2}$) such that $\mathrm{W}_{\mathrm{j}} \cap$ $\left(\mathrm{Z}_{\mathrm{j}+1} ; \mathrm{T}\right)=0 \cup 0$ that is $\mathrm{W}_{\mathrm{j}}^{1} \cap \mathrm{Z}\left(\alpha_{\mathrm{j}_{1}+1}^{1} ; \mathrm{T}_{1}\right) \cup\left(\mathrm{W}_{\mathrm{j}}^{2}\right) \cap \mathrm{Z}\left(\alpha_{\mathrm{j}_{2}+1}^{2} ; \mathrm{T}_{2}\right)$ $=0 \cup 0$ because the strong neutrosophic bivector subspace $\mathrm{W}_{\mathrm{j}+1}$ $=\mathrm{W}_{\mathrm{j}} \oplus \mathrm{Z}\left(\alpha_{\mathrm{j}+1}, \mathrm{~T}\right)$ that is

$$
\mathrm{W}_{\mathrm{j}^{2}+1}=\mathrm{W}_{\mathrm{j}_{1}+1}^{1} \cup \mathrm{~W}_{\mathrm{j}_{2}+1}^{2}=\mathrm{W}_{\mathrm{j}_{1}}^{1} \oplus \mathrm{Z}\left(\alpha_{\mathrm{j}_{1}+1} ; \mathrm{T}_{1}\right) \cup \mathrm{W}_{\mathrm{j}_{2}}^{2} \oplus \mathrm{Z}\left(\alpha_{\mathrm{j}_{2}+1} ; \mathrm{T}_{2}\right)
$$

would be atleast one bidimensional nearer to exhausting V. But are we guaranteed of the existence of such $\alpha_{j+1}=\alpha_{j_{1}+1}^{1} \cup \alpha_{j_{2}+1}^{2}$.

If $\left\{\left(\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{j}_{1}}^{1}\right) \cup\left(\alpha_{2}^{2}, \ldots, \alpha_{\mathrm{j}_{2}}^{2}\right)\right\}$ have been choosen so that W_{j} is T biadmissible strong neutrosophic bisubspace then it is rather easy to find a suitable $\alpha_{\mathrm{j}_{1}+1}^{1} \cup \alpha_{\mathrm{j}_{2}+1}^{2}$.

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be a proper T biinvariant strong neutrosophic bisubspace. Let us find a non zero bivector $\alpha=\alpha_{1}$ $\cup \alpha_{2}$ such that $\mathrm{W} \cap \mathrm{Z}(\alpha ; \mathrm{T})=\{0\} \cup\{0\}$; that is $\mathrm{W}_{1} \cap \mathrm{Z}\left(\alpha_{1} ; \mathrm{T}_{1}\right)$ $\cup \mathrm{W}_{2} \cap \mathrm{Z}\left(\alpha_{2} ; \mathrm{T}_{2}\right)=\{0\} \cup\{0\}$. We can choose some bivector β $=\beta_{1} \cup \beta_{2}$ which is not in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$; that is each β_{i} is not in $\mathrm{W}_{\mathrm{i}}, \mathrm{i}=1,2$. Consider the T biconductor $\mathrm{S}(\beta ; \mathrm{W})=\mathrm{S}\left(\beta_{1} ; \mathrm{W}_{1}\right) \cup$ $\mathrm{S}\left(\beta_{2} ; \mathrm{W}_{2}\right)$ which consists of all neutrosophic bipolynomials $\mathrm{g}=$ $\mathrm{g}_{1} \cup \mathrm{~g}_{2}$ such that $\mathrm{g}(\mathrm{T}) \beta=\mathrm{g}_{1}\left(\mathrm{~T}_{1}\right) \beta_{1} \cup \mathrm{~g}_{2}\left(\mathrm{~T}_{2}\right) \beta_{2}$ is in $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2}.

Recall that the neutrosophic bimonic polynomial $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$ $=S(\beta ; W)$; i.e., $f=f_{1} \cup f_{2}=S\left(\beta_{1} ; W_{1}\right) \cup S\left(\beta_{2} ; W_{2}\right)$ which bigenerate the neutrosophic biideals $\mathrm{S}(\beta ; \mathrm{W})=\mathrm{S}\left(\beta_{1} ; \mathrm{W}_{1}\right) \cup$ $S\left(\beta_{2} ; W_{2}\right)$; that is each $f_{i}=S\left(\beta_{i} ; W_{i}\right)$ generate the ideal $S\left(\beta_{i} ; W_{i}\right)$ for $\mathrm{i}=1,2$; that is $S(\beta ; W)$ is also the T biconductor of β into W. The bivector $f(T) \beta=f_{1}\left(T_{1}\right) \beta_{1} \cup f_{2}\left(T_{2}\right) \beta_{2}$ is in $W=W_{1} \cup W_{2}$. Now if W is T biadmissible there is a $\gamma=\gamma_{1} \cup \gamma_{2}$ in W with $\mathrm{f}(\mathrm{T}) \beta=\mathrm{f}(\mathrm{T}) \gamma$. Let $\alpha=\beta-\gamma$ and let g be any neutrosophic
bipolynomial since $\beta-\gamma$ is in $\mathrm{W}, \mathrm{g}(\mathrm{T}) \beta$ will be in W if and only if $\mathrm{g}(\mathrm{T}) \alpha$ is in W ; in other words $\mathrm{S}(\alpha ; \mathrm{W})=\mathrm{S}(\beta ; \mathrm{W})$. Thus the neutrosophic bipolynomial f is also the T biconductor of α into W.

But $f(T) \alpha=0 \cup 0$. That tells us $f_{1}\left(T_{1}\right) \alpha_{1} \cup f_{2}\left(T_{2}\right) \alpha_{2}=0 \cup 0$; that is $g(T) \alpha$ is in W if and only if $g(T) \alpha=g_{1}\left(T_{1}\right) \alpha_{1} \cup g_{2}\left(T_{2}\right) \alpha_{2}$ $=0 \cup 0$. The strong neutrosophic bisubspaces $Z(\alpha ; T)=Z\left(\alpha_{1}\right.$; $\left.T_{1}\right) \cup Z\left(\alpha_{2} ; T_{2}\right)$ and $W=W_{1} \cup W_{2}$ are biindependent and f is the T biannihilator of α.

Now we prove the cyclic decomposition theorem for f_{i} linear operators on strong neutrosophic bivector spaces defined over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}\left(\mathrm{~F}_{1}, \mathrm{~F}_{2}\right.$ are not pure neutrosophic fields) of type II.

THEOREM 2.3.42: (Bicyclic decomposition theorem): Let $T=T_{1}$ $\cup T_{2}$ be a bilinear operator on a finite bidimensional (n_{1}, n_{2}) strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ and let $W_{0}=W_{0}^{1} \cup W_{0}^{2}$ be a proper T biadmissible strong neutrosophic bivector subspace of V. There exists non zero bivectors $\left\{\alpha_{1}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{r_{2}}^{2}\right\}$ in V with respective T biannihilators $\left\{p_{1}^{1}, \ldots, p_{r_{1}}^{1}\right\} \cup\left\{p_{1}^{2}, \ldots, p_{r_{2}}^{2}\right\}$ such that,

$$
\text { i. } \begin{aligned}
& V=W_{0} \oplus Z\left(\alpha_{1} ; T\right) \oplus \ldots \oplus Z\left(\alpha_{r} ; T\right) \\
& =W_{0}^{1} \oplus Z\left(\alpha_{1}^{1} ; T_{1}\right) \oplus \ldots \oplus Z\left(\alpha_{r_{1}^{1}} ; T_{1}\right) \cup \\
& W_{0}^{2} \oplus Z\left(\alpha_{1}^{2} ; T_{2}\right) \oplus \ldots \oplus Z\left(\alpha_{r_{2}}^{2} ; T_{2}\right)
\end{aligned}
$$

ii. $p_{k_{r}}^{t}$ divides $p_{k_{r}-1}^{t} ; k=1,2, \ldots, r$ and $t=1,2$.

Further more the integer r and the biannihilators $\left\{p_{1}^{1}, \ldots, p_{r_{1}}^{1}\right\} \cup\left\{p_{1}^{2}, \ldots, p_{r_{2}}^{2}\right\}$ are uniquely determined by (i) and (ii) and infact that no $\alpha_{k_{r}}^{t}$ is zero for $t=1,2$.

Proof: The proof is given under four steps.
Take $\mathrm{W}_{0}=\{0\} \cup\{0\}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}$; that is each $\mathrm{W}_{0}^{\mathrm{i}}=0$ for $\mathrm{i}=1,2$, although W does not produce any substantial
simplification. Throughout the proof we shall abbreviate $f(T) \beta$ to $f \beta$ that is $f_{1}\left(T_{1}\right) \beta_{1} \cup f_{2}\left(T_{2}\right) \beta_{2}$ to $f_{1} \beta_{1} \cup f_{2} \beta_{2}$.

Step 1: There exists nonzero bivectors $\left\{\beta_{1}^{1}, \ldots, \beta_{r_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \ldots, \beta_{r_{2}}^{2}\right\}$ in the strong neutrosophic bivector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ such that
(i) $\mathrm{V}=\mathrm{W}_{0}+\mathrm{Z}\left(\beta_{1} ; \mathrm{T}\right)+\ldots+\mathrm{Z}\left(\beta_{\mathrm{r}} ; \mathrm{T}\right)$

$$
\begin{aligned}
& =\mathrm{W}_{0}^{1}+\mathrm{Z}\left(\beta_{1}^{1} ; \mathrm{T}_{1}\right)+\ldots+\mathrm{Z}\left(\beta_{\mathrm{r}^{1}}^{1} ; \mathrm{T}_{1}\right) \cup \\
& \mathrm{W}_{0}^{2}+\mathrm{Z}\left(\beta_{1}^{2} ; \mathrm{T}_{2}\right)+\ldots+\mathrm{Z}\left(\beta_{\mathrm{r}_{2}^{2}} ; \mathrm{T}_{2}\right) .
\end{aligned}
$$

(ii) If $1 \leq \mathrm{k}_{\mathrm{i}} \leq \mathrm{r}_{\mathrm{i}}$; $\mathrm{i}=1,2$ and $\mathrm{W}_{\mathrm{k}}=\mathrm{W}_{\mathrm{k}_{1}}^{1}+\mathrm{W}_{\mathrm{k}_{2}}^{2}$

$$
\begin{aligned}
& =\left\{\mathrm{W}_{0}^{1}+\mathrm{Z}\left(\beta_{1}^{1} ; \mathrm{T}_{1}\right)+\ldots+\mathrm{Z}\left(\beta_{\mathrm{k}_{1}}^{1} ; \mathrm{T}_{1}\right)\right\} \\
& \cup\left\{\mathrm{W}_{0}^{2}+\mathrm{Z}\left(\beta_{1}^{2} ; \mathrm{T}_{2}\right)+\ldots+\mathrm{Z}\left(\beta_{\mathrm{k}_{2}}^{2} ; \mathrm{T}_{2}\right)\right\}
\end{aligned}
$$

then the biconductor

$$
\mathrm{p}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}_{1}}^{1} \cup \mathrm{p}_{\mathrm{k}_{2}}^{2}=\mathrm{S}\left(\beta_{\mathrm{k}_{1}}^{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right) \cup \mathrm{S}\left(\beta_{\mathrm{k}_{2}}^{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right)
$$

has the maximum bidegree among all T biconductors into the strong neutrosophic bivector subspace

$$
\mathrm{W}_{\mathrm{k}-1}=\left(\mathrm{W}_{\mathrm{k}_{1}-1}^{1} \cup \mathrm{~W}_{\mathrm{k}_{2}-1}^{2}\right)
$$

that is for every $\left(k_{1}, k_{2}\right)$;
bidegree $\mathrm{P}_{\mathrm{k}}=\max _{\alpha^{1} \text { in } \mathrm{V}_{1}} \operatorname{deg}\left\{\mathrm{~S}\left(\alpha^{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right)\right\} \cup \max _{\alpha^{2} \text { in } V_{2}} \operatorname{deg}\left\{\mathrm{~S}\left(\alpha^{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right)\right\}$.

This step depends upon only the fact that $\mathrm{W}_{0}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}$ is a biinvariant strong neutrosophic bivector subspace. If $\mathrm{W}=\mathrm{W}_{1} \cup$ W_{2} is a proper neutrosophic bi T-invariant bivector subspace

$$
0<\max _{\alpha} \text { bidegree }(\mathrm{S}(\alpha ; \mathrm{W})) \leq \operatorname{bidim} \mathrm{V}
$$

that is

$$
\begin{gathered}
0 \cup 0 \cup<\max _{\alpha_{1}} \text { bidegree }\left(\mathrm{S}\left(\alpha_{1} ; \mathrm{W}_{1}\right)\right) \cup \\
\max _{\alpha_{2}} \text { bidegree }\left(\mathrm{S}\left(\alpha_{2} ; \mathrm{W}_{2}\right)\right) \leq\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)
\end{gathered}
$$

and we can choose a bivector $\beta=\beta_{1} \cup \beta_{2}$ so that bidegree $\mathrm{S}(\beta$; $W)=\operatorname{deg}\left(S\left(\beta_{1} ; W_{1}\right)\right) \cup \operatorname{deg}\left(S\left(\beta_{2} ; W_{2}\right)\right)$ attains the maximum. The strong neutrosophic bivector subspace $\mathrm{W}+\mathrm{Z}(\beta ; \mathrm{T})=\left(\mathrm{W}_{1}+\right.$ $\left.\mathrm{Z}\left(\beta_{1} ; \mathrm{T}_{1}\right)\right) \cup\left(\mathrm{W}_{2}+\mathrm{Z}\left(\beta_{2} ; \mathrm{T}_{2}\right)\right)$ is then T biinvariant and has bidimension larger than bidimension W .

Apply this process to $\mathrm{W}=\mathrm{W}_{0}$ to obtain $\beta_{1}=\beta_{1}^{1} \cup \beta_{2}^{1}$. If W_{1} $=\mathrm{W}_{0}+\mathrm{Z}\left(\beta_{1} ; \mathrm{T}\right)$ that is

$$
\mathrm{W}_{1}^{1} \cup \mathrm{~W}_{2}^{1}=\mathrm{W}_{0}^{1}+\mathrm{Z}\left(\beta_{1}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{W}_{0}^{2}+\mathrm{Z}\left(\beta_{2}^{1} ; \mathrm{T}_{2}\right)
$$

is still proper then apply the process to W_{1} to obtain $\beta_{2}=\beta_{1}^{2} \cup \beta_{2}^{2}$.

Continue in that manner. Since bidim $\mathrm{W}_{\mathrm{k}}>\operatorname{bidim} \mathrm{W}_{\mathrm{k}}-1$ that is

$$
\operatorname{bidim} W_{k_{1}}^{1} \cup \operatorname{bidim} W_{k_{2}}^{2}>\operatorname{bidim} W_{k_{1}-1}^{1} \cup \operatorname{bidim} W_{k_{2}-1}^{2}
$$

we must reach $\mathrm{W}_{\mathrm{r}}=\mathrm{V}$ that is $\mathrm{W}_{\mathrm{r}_{1}}^{1} \cup \mathrm{~W}_{\mathrm{r}_{2}}^{2}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ in not more than bidim V steps.

Step 2: Let $\left\{\beta_{1}^{1}, \ldots, \beta_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \ldots, \beta_{\mathrm{r}_{2}}^{2}\right\}$ be a biset of nonzero bivectors which satisfy the conditions (i) and (ii) of step $1 . \mathrm{F}_{\mathrm{i}} \mathrm{X}$ $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) ; 1 \leq \mathrm{k}_{\mathrm{i}} \leq \mathrm{r}_{\mathrm{i}} ; \mathrm{i}=1,2$.

Let $\beta=\beta_{1} \cup \beta_{2}$ be any bivector in the strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ and let $f=S\left(\beta ; W_{k-1}\right)$ that is $f_{1} \cup f_{2}$ $=S\left(\beta_{1} ; W_{k_{1}-1}^{1}\right) \cup S\left(\beta_{2} ; W_{k_{2}-1}^{2}\right)$.If

$$
\mathrm{f} \beta=\beta_{0}+\sum_{1 \leq i \leq k} \mathrm{~g}_{\mathrm{i}} \beta_{\mathrm{i}}
$$

that is

$$
\mathrm{f}_{1} \beta_{1} \cup \mathrm{f}_{2} \beta_{2}=\left(\beta_{0}^{1}+\sum_{1 \leq i_{1} \leq \mathrm{k}_{1}} \mathrm{~g}_{\mathrm{i}_{1}}^{1} \beta_{\mathrm{i}_{1}}^{1}\right) \cup\left(\beta_{0}^{2}+\sum_{1 \leq i_{2} \leq \mathrm{k}_{2}} \mathrm{~g}_{\mathrm{i}_{2}}^{2} \beta_{\mathrm{i}_{2}}^{2}\right)
$$

$\beta_{\mathrm{i}_{t}} \in \mathrm{~W}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}} ; \mathrm{t}=1$, 2, then $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$ bidivides each neutrosophic bipolynomial $g_{i}=g_{i}^{1} \cup g_{i}^{2}$ and $\beta_{0}=f \gamma_{0}$ that is $\beta_{0}^{1} \cup \beta_{0}^{2}=\mathrm{f}_{1} \gamma_{0}^{1} \cup \mathrm{f}_{2} \gamma_{0}^{2}$ where $\gamma_{0}=\gamma_{0}^{1} \cup \gamma_{0}^{2} \in \mathrm{~W}_{0}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}$. If each $k_{i}=1$ for $i=1,2$; this is just the statement that W_{0} is T biadmissible. In order to prove this assertion for $\left(k_{1}, k_{2}\right)>(1,1)$ apply the bidivision algorithms for the neutrosophic bipolynomials that is $g_{i}=f_{i}+r_{i} ; r_{i}=0$ if bideg $r_{i}<$ bideg f that is $g_{i_{1}}^{1} \cup g_{i_{2}}^{2}=\left(f_{1} h_{i_{1}}^{1}+r_{i_{1}}^{1}\right) \cup\left(f_{2} h_{i_{2}}^{2}+r_{i_{2}}^{2}\right)$. If bideg $r_{i}<$ bideg f. We wish to show that $r_{i}=0 \cup 0$ for each $i=\left(i_{1}, i_{2}\right)$.

Let,

$$
\gamma=\beta-\sum_{i=1}^{k-1} h_{i} \beta_{\mathrm{i}}
$$

that is

$$
\gamma_{1} \cup \gamma_{2}=\left(\beta_{1}-\sum_{i_{1}=1}^{k_{k_{1}}-1} h_{i_{1}}^{1} \beta_{\mathrm{i}_{1}}^{1}\right) \cup\left(\beta_{2}-\sum_{\mathrm{i}_{2}=1}^{\mathrm{k}_{2}-1} \mathrm{~h}_{\mathrm{i}_{2}}^{2} \beta_{\mathrm{i}_{2}}^{2}\right) .
$$

Since $\gamma-\beta$ is in W_{k-1} that is $\left(\gamma_{1}-\beta_{1}\right) \cup\left(\gamma_{2}-\beta_{2}\right)$ is in
$W_{k_{k_{1}-1}}^{1} \cup W_{k_{2}-1}^{2} . S\left(\gamma_{i} ; W_{k_{1}-1}^{i}\right)=S\left(\beta_{i} ; W_{k_{i}-1}^{i}\right)=f_{i} ; 1 \leq i \leq 2$ that is

$$
\begin{gathered}
\mathrm{S}\left(\gamma_{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right) \cup \mathrm{S}\left(\gamma_{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right)=\mathrm{S}\left(\beta_{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right) \cup \mathrm{S}\left(\beta_{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right) \\
=\mathrm{f}_{1} \cup \mathrm{f}_{2} . \\
\mathrm{S}\left(\gamma ; \mathrm{W}_{\mathrm{k}-1}\right)=\mathrm{S}\left(\beta ; \mathrm{W}_{\mathrm{k}-1}\right)=\mathrm{f} .
\end{gathered}
$$

Also

$$
\mathrm{f} \gamma=\beta_{0}+\sum_{\mathrm{i}-1}^{\mathrm{k}-1} \mathrm{r}_{\mathrm{i}} \beta_{\mathrm{i}}
$$

that is

$$
\mathrm{f}_{1} \gamma_{1} \cup \mathrm{f}_{2} \gamma_{2}=\left(\beta_{0}^{1}+\sum_{\mathrm{i}_{1}=1}^{\mathrm{k}_{1}-1} \mathrm{r}_{\mathrm{i}_{1}^{1}} \beta_{\mathrm{i}_{1}}^{1}\right) \cup\left(\beta_{0}^{2}+\sum_{\mathrm{i}_{2}=1}^{\mathrm{k}_{2}-1} \mathrm{r}_{\mathrm{i}_{2}}^{2} \beta_{\mathrm{i}_{2}}^{2}\right) .
$$

If $r_{j}=\left(r_{\mathrm{h}_{1}}^{1}, \mathrm{r}_{\mathrm{j}_{2}}^{2}\right) \neq(0,0)$ we arrive at a contradiction. Let $\mathrm{j}=\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)$ be the largest index $\mathrm{i}=\left(\mathrm{i}_{1}, \mathrm{i}_{2}\right)$ for which $\mathrm{r}_{\mathrm{i}}=\left(\mathrm{r}_{\mathrm{i}}^{1}, \mathrm{r}_{\mathrm{i}}^{2}\right) \neq(0,0)$ then $\mathrm{f} \gamma=\beta_{0}+\sum_{1}^{\mathrm{j}} \mathrm{r}_{\mathrm{i}} \beta_{\mathrm{i}} ; \mathrm{r}_{\mathrm{j}} \neq(0,0)$ and bideg $\mathrm{r}_{\mathrm{j}}<$ bideg f. Let $\mathrm{p}=\mathrm{S}(\gamma$; $\mathrm{W}_{\mathrm{j}-1}$);

$$
\mathrm{p}_{1} \cup \mathrm{p}_{2}=\mathrm{S}\left(\gamma_{1} ; \mathrm{W}_{\mathrm{h}_{1}-1}^{1}\right) \cup \mathrm{S}\left(\gamma_{2} ; \mathrm{W}_{\mathrm{j}_{2}-1}^{2}\right) .
$$

Since $\quad W_{k-1}=W_{k_{1}-1}^{1} \cup W_{k_{2}-1}^{2}$ contains $W_{j-1}=W_{\mathrm{j}_{1}-1}^{1} \cup \mathrm{~W}_{\mathrm{j}_{2}-1}^{2}$ the biconductor $\mathrm{S}\left(\gamma ; \mathrm{W}_{\mathrm{k}-1}\right)$ that is

$$
\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}=\mathrm{S}\left(\gamma_{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right) \cup \mathrm{S}\left(\gamma_{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right)
$$

must bidivide $p . p=f g$ that is $p_{1} \cup p_{2}=f_{1} g_{1} \cup f_{2} g_{2}$. Apply $g(T)$ $=g_{1}\left(T_{1}\right) \cup g_{2}\left(T_{2}\right)$ to both sides; that is

$$
\mathrm{p} \gamma=\mathrm{gf} \gamma=\mathrm{gr}_{\mathrm{j}} \beta_{\mathrm{j}}+\mathrm{g} \beta_{0}+\sum_{1 \leq i \leq j} \mathrm{gr}_{\mathrm{i}} \beta_{\mathrm{i}}
$$

that is,

$$
\mathrm{p}_{1} \gamma_{1} \cup \mathrm{p}_{2} \gamma_{2}=\left(\mathrm{g}_{1} \mathrm{f}_{1} \gamma_{1} \cup \mathrm{~g}_{2} \mathrm{f}_{2} \gamma_{2}\right)
$$

$$
=g_{1} \mathrm{j}_{\mathrm{j}_{1}}^{1} \beta_{\mathrm{j}_{1}}^{1}+\mathrm{g}_{1} \beta_{0}^{1}+\sum_{1 \leq \mathrm{i}_{1} \leq \mathrm{j}_{1}} \mathrm{~g}_{1} \mathrm{r}_{\mathrm{i}_{1}}^{1} \beta_{\mathrm{i}_{1}}^{1} \cup \mathrm{~g}_{2} \mathrm{r}_{\mathrm{j}_{2}}^{2} \beta_{\mathrm{j}_{2}}^{2}+\mathrm{g}_{2} \beta_{0}^{2}+\sum_{1 \leq \mathrm{i}_{2} \leq \mathrm{j}_{2}} \mathrm{~g}_{2} \mathrm{r}_{\mathrm{i}_{2}}^{2} \beta_{\mathrm{i}_{2}}^{2}
$$

By definition, $\mathrm{p} \gamma$ is in $\mathrm{W}_{\mathrm{j}-1}$ and the last two terms on the right side of the above equation are in $\mathrm{W}_{\mathrm{h}_{1}-1}=\mathrm{W}_{\mathrm{j}_{1}-1}^{1} \cup \mathrm{~W}_{\mathrm{j}_{2}-1}^{2}$.

Therefore

$$
\operatorname{gr}_{j} \beta_{\mathrm{j}}=\mathrm{g}_{1} \mathrm{r}_{\mathrm{j}_{1}}^{1} \beta_{\mathrm{j}_{1}}^{1} \cup \mathrm{~g}_{2} \mathrm{r}_{\mathrm{j}_{2}}^{2} \beta_{\mathrm{j}_{2}}^{2}
$$

is in $\mathrm{W}_{\mathrm{h}^{2}-1}=\mathrm{W}_{\mathrm{h}^{2}-1}^{1} \cup \mathrm{~W}_{\mathrm{j}_{2}-1}^{2}$. Now using condition (ii) of step 1 bideg $\left(\mathrm{gr}_{\mathrm{j}}\right) \geq \operatorname{bideg}\left(\mathrm{S}\left(\beta_{\mathrm{j}} ; \mathrm{W}_{\mathrm{j}-1}\right)\right)$; that is

$$
\begin{aligned}
& \operatorname{deg}\left(g_{1}, r_{\mathrm{j}_{1}}\right) \cup \operatorname{deg}\left(g_{2}, r_{\mathrm{j}_{2}}\right) \\
& \geq \quad \operatorname{deg} S\left(\beta_{\mathrm{j}_{1}} ; W_{\mathrm{h}_{1}-1}^{1}\right) \cup \operatorname{deg} S\left(\beta_{\mathrm{j}_{2}} ; \mathrm{W}_{\mathrm{j}_{2}-1}^{2}\right) \\
& =\text { bidegp }_{\mathrm{j}} \\
& =\operatorname{deg} \mathrm{p}_{\mathrm{j}_{1}}^{1} \cup \operatorname{degp} \mathrm{p}_{\mathrm{j}_{2}}^{2} \geq \text { bidegree }\left(\mathrm{S}\left(\gamma ; \mathrm{W}_{\mathrm{j}-1}\right)\right. \\
& =\operatorname{deg} \mathrm{S}\left(\gamma_{1} ; \mathrm{W}_{\mathrm{j}_{1}-1}\right) \cup \operatorname{deg} \mathrm{S}\left(\gamma_{2} ; \mathrm{W}_{\mathrm{j}_{2}-1}\right) \\
& =\text { bidegree } \mathrm{p} \\
& =\operatorname{degp}_{1} \cup \operatorname{degp}_{2} \\
& =\text { bideg fg } \\
& =\operatorname{degf}_{1} g_{1} \cup \operatorname{degf}_{2} g_{2} \text {. }
\end{aligned}
$$

Thus bideg $r_{j}>$ bideg f; i.e., $\operatorname{deg} r_{\mathrm{j}_{1}} \cup \operatorname{deg} r_{\mathrm{j}_{2}}>\operatorname{degf}_{1} \cup \operatorname{degf}_{2}$ and that contradicts the choice of $\mathrm{j}=\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)$. We now know that $f=f_{1} \cup f_{2}$ bidivides each $g_{i}=g_{i_{1}}^{1} \cup g_{i_{2}}^{2}$ that is $f_{i_{t}}$ divides $g_{i_{t}}^{t} ; t$ $=1,2$ and hence $\beta_{0}=\mathrm{f} \gamma$ that is $\beta_{0}^{1} \cup \beta_{0}^{2}=\mathrm{f}_{1} \gamma_{1} \cup \mathrm{f}_{2} \gamma_{2}$. Since $\mathrm{W}_{0}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}$ is T biadmissible (i.e., each $\mathrm{W}_{0}^{\mathrm{k}}$ is T_{k} admissible for $\mathrm{k}=1$, 2); we have $\beta_{0}=\mathrm{f} \gamma_{0}$ where

$$
\gamma_{0}=\gamma_{0}^{1} \cup \gamma_{0}^{2} \in \mathrm{~W}_{0}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}
$$

that is $\beta_{0}^{1} \cup \beta_{0}^{2}=\mathrm{f}_{1} \gamma_{0}^{1} \cup \mathrm{f}_{2} \gamma_{0}^{2}$ where $\gamma_{0}=\mathrm{W}_{0}$. We make a mention that step 2 is a stronger form of the assertion that each of the strong neutrosophic vector bisubspaces $\mathrm{W}_{1}=\mathrm{W}_{1}^{1} \cup \mathrm{~W}_{1}^{2}$, $\mathrm{W}_{2}=\mathrm{W}_{2}^{1} \cup \mathrm{~W}_{2}^{2}, \ldots, \mathrm{~W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{r}}^{1} \cup \mathrm{~W}_{\mathrm{r}}^{2}$ is T biadmissible.

Step 3: There exists non zero bivectors

$$
\left(\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{r}_{1}}^{1}\right) \cup\left(\alpha_{1}^{2}, \ldots, \alpha_{\mathrm{r}_{2}}^{2}\right)
$$

in $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ which satisfy condition (i) and (ii) of the theorem. Start with bivectors

$$
\left\{\beta_{1}^{1}, \beta_{2}^{1}, \ldots, \beta_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \beta_{2}^{2}, \ldots, \beta_{\mathrm{r}_{2}}^{2}\right\}
$$

as in step 1 . Fix $\mathrm{k}=\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ as $1 \leq \mathrm{k}_{\mathrm{i}} \leq \mathrm{r}_{\mathrm{i}}$; $\mathrm{i}=1$, 2. We apply step 2 to the bivector $\beta=\beta_{1} \cup \beta_{2}=\beta_{\mathrm{k}_{1}}^{1} \cup \beta_{\mathrm{k}_{2}}^{2}=\beta_{\mathrm{k}}$ and T biconductor $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}=\mathrm{p}_{\mathrm{k}_{1}}^{1} \cup \mathrm{p}_{\mathrm{k}_{2}}^{2}=\mathrm{p}_{\mathrm{k}}$. We obtain

$$
\mathrm{p}_{\mathrm{k}} \beta_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}} \gamma_{0}+\sum_{1 \leq i \leq \mathrm{k}} \mathrm{p}_{\mathrm{k}} \mathrm{~h}_{\mathrm{i}} \beta_{\mathrm{i}} ;
$$

that is,

$$
\begin{gathered}
\mathrm{p}_{\mathrm{k}_{1}}^{1} \beta_{\mathrm{k}_{1}}^{1} \cup \mathrm{p}_{\mathrm{k}_{2}}^{2} \beta_{\mathrm{k}_{2}}^{2} \\
=\left(\mathrm{p}_{\mathrm{k}_{1}}^{1} \gamma_{0}^{1}+\sum_{1 \leq \mathrm{i}_{1} \leq \mathrm{k}_{1}} \mathrm{p}_{\mathrm{k}_{1}}^{1} \mathrm{~h}_{\mathrm{i}_{1}}^{1} \mathrm{i}_{\mathrm{i}_{1}}^{1}\right) \cup\left(\mathrm{p}_{\mathrm{k}_{2}}^{2} \gamma_{0}^{2}+\sum_{1 \leq i_{2} \leq \mathrm{k}_{2}} \mathrm{p}_{\mathrm{k}_{2}}^{2} \mathrm{~h}_{\mathrm{i}_{2}}^{2} \beta_{\mathrm{i}_{2}}^{2}\right) .
\end{gathered}
$$

where $\gamma_{0}=\gamma_{0}^{1} \cup \gamma_{0}^{2}$ is in $\mathrm{W}_{0}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}$ and $\left\{\mathrm{h}_{1}^{1}, \ldots, \mathrm{~h}_{\mathrm{k}_{1}-1}^{1}\right\} \cup$ $\left\{\mathrm{h}_{1}^{2}, \ldots, \mathrm{~h}_{\mathrm{k}_{-1}}^{2}\right\}$ are neutrosophic bipolynomials. Let

$$
\alpha_{\mathrm{k}}=\beta_{\mathrm{k}}-\gamma_{0}-\sum_{1 \leq \mathrm{i} \leq \mathrm{k}} \mathrm{~h}_{\mathrm{i}} \beta_{\mathrm{i}} ;
$$

i.e.,

$$
\left\{\alpha_{k_{1}}^{1} \cup \alpha_{k_{2}}^{2}\right\}=\left(\beta_{k_{1}}^{1}-\gamma_{0}^{1}-\sum_{1<i_{1}<k_{1}} h_{i_{1}}^{1} \beta_{i_{1}}^{1}\right) \cup\left(\beta_{k_{2}}^{2}-\gamma_{0}^{2}-\sum_{1 \leq i_{2}<k_{2}} h_{i_{2}}^{2} \beta_{\mathrm{i}_{2}}^{2}\right) .
$$

Since

$$
\beta_{k}-\alpha_{k}=\left(\beta_{k_{1}}^{1}-\alpha_{k_{1}}^{1}\right) \cup\left(\beta_{k_{2}}^{2}-\alpha_{k_{2}}^{2}\right)
$$

is in

$$
\mathrm{W}_{\mathrm{k}-1}=\mathrm{W}_{\mathrm{k}_{1}-1}^{1} \cup \mathrm{~W}_{\mathrm{k}_{2}-1}^{2} ;
$$

is in

$$
\begin{gathered}
\mathrm{S}\left(\alpha_{k} ; \mathrm{W}_{\mathrm{k}-1}\right)=\mathrm{S}\left(\beta_{\mathrm{k}} ; \mathrm{W}_{\mathrm{k}-1}\right)=\mathrm{p}_{\mathrm{k}} \\
=\mathrm{S}\left(\alpha_{k_{1}}^{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right) \cup\left(\alpha_{k_{2}}^{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right) \\
=\mathrm{p}_{k_{1}}^{1} \cup \mathrm{p}_{\mathrm{k}_{2}}^{2}
\end{gathered}
$$

and since $p_{k} \alpha_{k}=0 \cup 0$ that is $p_{k_{1}}^{1} \alpha_{k_{1}}^{1} \cup p_{k_{2}}^{2} \alpha_{k_{2}}^{2}=0 \cup 0$ we have,

$$
\mathrm{W}_{\mathrm{k}_{1}-1}^{1} \cap \mathrm{Z}\left(\alpha_{\mathrm{k}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{W}_{\mathrm{k}_{2}-1}^{2} \cap \mathrm{Z}\left(\alpha_{\mathrm{k}_{2}}^{2} ; \mathrm{T}_{2}\right)=\{0\} \cup\{0\} .
$$

Because each $\alpha_{k}=\alpha_{k_{1}}^{1} \cup \alpha_{k_{2}}^{2}$ satisfies the above two equations just mentioned, it follows that,

$$
\mathrm{W}_{\mathrm{k}}=\mathrm{W}_{0} \oplus \mathrm{Z}\left(\alpha_{1} ; \mathrm{T}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{k}} ; \mathrm{T}\right)
$$

that is

$$
\begin{gathered}
\left.\mathrm{W}_{\mathrm{k}_{1}}^{1} \cup \mathrm{~W}_{\mathrm{k}_{2}}^{2}=\mathrm{W}_{0}^{1} \oplus \mathrm{Z}\left(\alpha_{1}^{1} ; \mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{k}_{1}}^{1} ; \mathrm{T}_{1}\right)\right\} \cup \\
\left\{\mathrm{W}_{0}^{2} \oplus \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{k}_{2}}^{2} ; \mathrm{T}_{2}\right)\right\}
\end{gathered}
$$

and that $p_{k}=p_{k_{1}}^{1} \cup p_{k_{2}}^{2}$ is the T biannihilator of $\alpha_{k}=\alpha_{k_{1}}^{1} \cup \alpha_{k_{2}}^{2}$ other words, bivectors $\left\{\alpha_{1}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{r_{2}}^{2}\right\}$ define the same bisequence of strong neutrosophic bisubspaces $W_{1}=W_{1}^{1} \cup W_{1}^{2}$, $\mathrm{W}_{2}=\mathrm{W}_{2}^{1} \cup \mathrm{~W}_{2}^{2}, \ldots$, as do the bivector $\left\{\beta_{1}^{1} \cup \ldots \cup \beta_{\mathrm{r}_{1}}^{1}\right\}$, $\left\{\beta_{1}^{2} \cup \ldots \cup \beta_{\mathrm{r}_{2}}^{2}\right\}$ and the T biconductors $\mathrm{p}_{\mathrm{k}}=\mathrm{S}\left(\alpha_{\mathrm{k}} ; \mathrm{W}_{\mathrm{k}_{1}-1}\right)$ that is $\left(\mathrm{p}_{\mathrm{k}_{1}}^{1} \cup \mathrm{p}_{\mathrm{k}_{2}}^{2}\right)=\mathrm{S}\left(\alpha_{\mathrm{k}_{1}}^{1} ; \mathrm{W}_{\mathrm{k}_{1}-1}^{1}\right) \cup \mathrm{S}\left(\alpha_{\mathrm{k}_{2}}^{2} ; \mathrm{W}_{\mathrm{k}_{2}-1}^{2}\right)$ have the same maximality properties. The bivectors $\left\{\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{\mathrm{r}_{2}}^{2}\right\}$ have the additional property that the strong neutrosophic bivector spaces $\mathrm{W}_{0}=\left\{\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}\right\}$,

$$
\begin{aligned}
& \mathrm{Z}\left(\alpha_{1} ; \mathrm{T}\right)=\mathrm{Z}\left(\alpha_{1}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right) \\
& \mathrm{Z}\left(\alpha_{2} ; T\right)=\mathrm{Z}\left(\alpha_{2}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{2}^{2} ; \mathrm{T}_{2}\right)
\end{aligned}
$$

are biindependent. It is therefore easy to verify condition (ii) of the theorem. Since $\left(\mathrm{p}_{\mathrm{i}_{1}}^{1} \alpha_{\mathrm{i}_{1}}^{1}\right) \cup\left(\mathrm{p}_{\mathrm{i}_{2}}^{2} \alpha_{\mathrm{i}_{2}}^{2}\right)=0 \cup 0$, we have the trivial relation

$$
\begin{gathered}
\mathrm{p}_{\mathrm{k}} \alpha_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}_{1}}^{1} \alpha_{k_{1}}^{1} \cup \mathrm{p}_{\mathrm{k}_{2}}^{2} \alpha_{k_{2}}^{2} \\
=\left(0+\mathrm{p}_{1}^{1} \alpha_{1}^{1}+\ldots+\mathrm{p}_{\mathrm{k}_{1}-1}^{1} \alpha_{k_{1}-1}^{1}\right) \cup\left(0+\mathrm{p}_{1}^{2} \alpha_{1}^{2}+\ldots+\mathrm{p}_{\mathrm{k}_{2}-1}^{2} \alpha_{k_{2}-1}^{2}\right) .
\end{gathered}
$$

Apply step 2 with $\left\{\beta_{1}^{1}, \ldots, \beta_{k_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \ldots, \beta_{\mathrm{k}_{2}}^{2}\right\}$ replaced by $\left\{\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}\right\}$ and with $\beta=\beta_{1} \cup \beta_{2}=\alpha_{k_{1}}^{1} \cup \alpha_{k_{2}}^{1}, p_{k}$ bidivides each $p_{i} ; i<k$ that is $\left(i_{1}, i_{2}\right)<\left(k_{1}, k_{2}\right)$; i.e., $p_{k_{1}}^{1} \cup p_{k_{2}}^{2}$ bidivides each $p_{i_{1}}^{1} \cup p_{i_{2}}^{2}$, i.e., each $p_{k_{1}}^{t}$ divides $p_{i_{t}}^{t}$ for $t=1$, 2 .

Step 4: The number $\mathrm{r}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$ and the neutrosophic bipolynomials ($p_{1}, \ldots, p_{r_{1}}$), ($p_{2}, \ldots, p_{r_{2}}$) are uniquely determined by the condition of the theorem. Suppose that in addition to the bivectors $\left\{\alpha_{1}^{1}, \ldots, \alpha_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{\mathrm{r}_{2}}^{2}\right\}$ we have non zero bivectors

$$
\left\{\gamma_{1}^{1}, \ldots, \gamma_{\mathrm{s}_{1}}^{1}\right\} \cup\left\{\gamma_{1}^{2}, \ldots, \gamma_{\mathrm{s}_{2}}^{2}\right\}
$$

with respective T biannihilators

$$
\left\{\mathrm{g}_{1}^{1}, \ldots, \mathrm{~g}_{\mathrm{s}_{1}}^{1}\right\} \cup\left\{\mathrm{g}_{1}^{2}, \ldots, \mathrm{~g}_{\mathrm{s}_{2}}^{2}\right\}
$$

such that

$$
\mathrm{V}=\mathrm{W}_{0} \oplus \mathrm{Z}\left(\gamma_{1} ; \mathrm{T}\right) \oplus \ldots \oplus \mathrm{Z}\left(\gamma_{s} ; \mathrm{T}\right)
$$

that is

$$
\begin{gathered}
\left.\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{W}_{0}^{1} \oplus \mathrm{Z}\left(\gamma_{1}^{1} ; \mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\gamma_{\mathrm{s}_{1}}^{1} ; \mathrm{T}_{1}\right)\right\} \cup \\
\left\{\mathrm{W}_{0}^{2} \oplus \mathrm{Z}\left(\gamma_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\gamma_{\mathrm{s}_{2}}^{2} ; \mathrm{T}_{2}\right)\right\}
\end{gathered}
$$

$g_{k_{t}}^{t}$ divides $g_{k_{t}-1}^{t}$ for $t=1,2$ and $k_{t}=1,2, \ldots, s_{t}$. We shall show that $\mathrm{r}=\mathrm{s}$ that is $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$ and $\mathrm{p}_{\mathrm{i}}^{\mathrm{t}}=\mathrm{g}_{\mathrm{i}}^{\mathrm{t}} ; 1 \leq \mathrm{t} \leq 2$; that is $p_{i}^{1} \cup p_{i}^{2}=g_{i}^{1} \cup g_{i}^{2}$ for each i. We see that $p_{1}=g_{1}=$ $\mathrm{p}_{1}^{1} \cup \mathrm{p}_{1}^{2}=\mathrm{g}_{1}^{1} \cup \mathrm{~g}_{1}^{2}$. The neutrosophic bipolynomial $\mathrm{g}_{1}=\mathrm{g}_{1}^{1} \cup \mathrm{~g}_{1}^{2}$ is determined by the above equation as the T biconductor of V into W_{0}; that is $V=V_{1} \cup V_{2}$ into $W_{0}^{1} \cup W_{0}^{2}$. Let $\mathrm{S}\left(\mathrm{V} ; \mathrm{W}_{0}\right)=$ $\mathrm{S}\left(\mathrm{V}_{1} ; \mathrm{W}_{0}^{1}\right) \cup \mathrm{S}\left(\mathrm{V}_{2} ; \mathrm{W}_{0}^{2}\right)$ be the collection of all neutrosophic bipolynomials $f=f_{1} \cup f_{2}$ such that $f \beta=f_{1} \beta_{1} \cup f_{2} \beta_{2}$ is in W_{0} for every $\beta=\beta_{1} \cup \beta_{2}$ in V that is neutrosophic polynomials f such that the birange of $f(T)=$ range of $f_{1}\left(T_{1}\right) \cup$ range of $f_{2}\left(T_{2}\right)$ is contained in $W_{1}=W_{0}^{1} \cup W_{0}^{2}$; i.e., range of $f_{i}\left(T_{i}\right)$ is in W_{0}^{i} for $\mathrm{i}=1,2$. Thus $\mathrm{S}\left(\mathrm{V}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}\right)$ is a non zero neutrosophic zero ideal in the neutrosophic polynomial algebra so that we see $\mathrm{S}\left(\mathrm{V} ; \mathrm{W}_{0}\right)=$ $\mathrm{S}\left(\mathrm{V}_{1} ; \mathrm{W}_{0}^{1}\right) \cup \mathrm{S}\left(\mathrm{V}_{2} ; \mathrm{W}_{0}^{2}\right)$ is a non zero neutrosophic biideal in the neutrosophic bipolynomial algebra.

The neutrosophic polynomial g_{1}^{t} is the monic generator of that neutrosophic ideal i.e., the bimonic neutrosophic polynomial $g_{1}=g_{1}^{1} \cup g_{1}^{2}$ is the neutrosophic monic bigenerator of that biideal. Each $\beta=\beta_{1} \cup \beta_{2}$ in $V=V_{1} \cup V_{2}$ has the form

$$
\beta=\left(\beta_{0}^{1}+\mathrm{f}_{1}^{1} \gamma_{1}^{1}+\ldots+\mathrm{f}_{\mathrm{s}_{1}}^{1} \gamma_{\mathrm{s}_{1}}^{1}\right) \cup\left(\beta_{0}^{2}+\mathrm{f}_{1}^{2} \gamma_{1}^{2}+\ldots+\mathrm{f}_{\mathrm{s}_{2}}^{2} \gamma_{\mathrm{s}_{2}}^{2}\right)
$$

and so

$$
g_{1} \beta=g_{1} \beta_{0}+\sum_{1}^{s} g_{1} f_{i} \gamma_{i}
$$

that is

$$
\mathrm{g}_{1}^{1} \beta_{1} \cup \mathrm{~g}_{1}^{2} \beta_{2}=\left[\mathrm{g}_{1}^{1} \beta_{0}^{1}+\sum_{1}^{\mathrm{s}} \mathrm{~g}_{1}^{1} \mathrm{f}_{\mathrm{i}_{1}}^{1} \gamma_{\mathrm{i}_{1}}^{1}\right] \cup\left[\mathrm{g}_{1}^{2} \beta_{0}^{2}+\sum_{1}^{\mathrm{s}} \mathrm{~g}_{1}^{2} \mathrm{f}_{\mathrm{i}_{2}}^{2} \gamma_{\mathrm{i}_{2}}^{2}\right] .
$$

Since each g_{i}^{t} divides g_{1}^{t} for $t=1$, 2 we have $g_{1} \gamma_{i}=0 \cup 0$ that is $g_{1}^{1} \gamma_{i_{1}}^{1} \cup g_{1}^{2} \gamma_{i_{2}}^{2}=0 \cup 0$ for all $\mathrm{i}=\left(i_{1}, i_{2}\right)$ and $g_{0} \beta=g_{1} \beta_{0}$ is in $W_{0}=W_{0}^{1} \cup W_{0}^{2}$. Thus g_{i}^{t} is in $S\left(V_{t} ; W_{0}^{t}\right)$ for $t=1,2$; so $\mathrm{g}_{1}=\mathrm{g}_{1}^{1} \cup \mathrm{~g}_{1}^{2}$ is in $\mathrm{S}\left(\mathrm{V} ; \mathrm{W}_{0}\right)=\mathrm{S}\left(\mathrm{V}_{1} ; \mathrm{W}_{0}^{1}\right) \cup \mathrm{S}\left(\mathrm{V}_{2} ; \mathrm{W}_{0}^{2}\right)$.

Since each g_{i}^{t} is monic, g_{1} is a monic neutrosophic bipolynomial of least bidegree which sends γ_{1}^{t} into $\mathrm{W}_{0}^{\mathrm{t}}$ so that $\gamma_{1}=\gamma_{1}^{1} \cup \gamma_{1}^{2}$ into $\mathrm{W}_{0}=\mathrm{W}_{0}^{1} \cup \mathrm{~W}_{0}^{2}$; we see that $\mathrm{g}_{1}=\mathrm{g}_{1}^{1} \cup \mathrm{~g}_{1}^{2}$ is the neutrosophic monic bipolynomial of least bidegree in the neutrosophic biideal $\mathrm{S}\left(\mathrm{V} ; \mathrm{W}_{0}\right)$. By the same argument p_{i} is the bigenerator of the neutrosophic ideal so $p_{1}=g_{1}$; that is $\mathrm{p}_{1}^{1} \cup \mathrm{p}_{1}^{2}=\mathrm{g}_{1}^{1} \cup \mathrm{~g}_{1}^{2}$.

If $f=f_{1} \cup f_{2}$ is a neutrosophic bipolynomial and $W=W_{1} \cup$ W_{2} is a strong neutrosophic bisubspace of $V=V_{1} \cup V_{2}$ we shall employ the short hand fW for the set of all bivectors $f \alpha=f_{1} \alpha_{1} \cup$ $\mathrm{f}_{2} \alpha_{2}$ with $\alpha=\alpha_{1} \cup \alpha_{2}$ in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$.

The three facts can be proved by the reader.
(1) $\mathrm{fZ}(\alpha ; \mathrm{T})=\mathrm{Z}\left(\mathrm{f}_{\alpha} ; \mathrm{T}\right)$ that is

$$
\mathrm{f}_{1}\left(\mathrm{Z}\left(\alpha_{1} ; \mathrm{T}_{1}\right)\right) \cup \mathrm{f}_{2}\left(\mathrm{Z}\left(\alpha_{2} ; \mathrm{T}_{2}\right)\right)=\mathrm{Z}\left(\mathrm{f}_{1} \alpha_{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\mathrm{f}_{2} \alpha_{2} ; \mathrm{T}_{2}\right) .
$$

(2) $\mathrm{V}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}}=\mathrm{V}_{1}^{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}_{1}}^{1} \cup \mathrm{~V}_{1}^{2} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}_{2}}^{2}$ where each V_{t} is a biinvariant under $\mathrm{T}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{t}$; $\mathrm{t}=1,2$, then $\mathrm{fV}=$ $\mathrm{fV}_{1} \oplus \mathrm{fV}_{2}$ that is

$$
\mathrm{f}_{1} \mathrm{~V}_{1} \cup \mathrm{f}_{2} \mathrm{~V}_{2}=\mathrm{f}_{1} \mathrm{~V}_{1}^{1} \oplus \ldots \oplus \mathrm{f}_{1} \mathrm{~V}_{\mathrm{k}_{1}}^{1} \cup \mathrm{f}_{2} \mathrm{~V}_{1}^{2} \oplus \ldots \oplus \mathrm{f}_{2} \mathrm{~V}_{\mathrm{k}_{2}}^{2} .
$$

(3) If $\alpha=\alpha_{1} \cup \alpha_{2}$ and $\gamma=\gamma_{1} \cup \gamma_{2}$ have the same T biannihilator then $\mathrm{f} \alpha$ and $\mathrm{f} \gamma$ have the same T biannihilator and hence $\operatorname{bidim} \mathrm{Z}(\mathrm{f} \alpha ; \mathrm{T})=\operatorname{bidim} \mathrm{Z}(\mathrm{f} \gamma ; \mathrm{T})$ that is $\mathrm{f} \alpha=\mathrm{f}_{1} \alpha_{1} \cup \mathrm{f}_{2} \alpha_{2}$ and
$\mathrm{f} \gamma=\mathrm{f}_{1} \gamma_{1} \cup \mathrm{f}_{2} \gamma_{2}$ with $\operatorname{dim} \mathrm{Z}\left(\mathrm{f}_{1} \alpha_{1} ; \mathrm{T}_{1}\right) \cup \operatorname{dim} \mathrm{Z}\left(\mathrm{f}_{2} \alpha_{2} ; \mathrm{T}_{2}\right)=$ $\operatorname{dim} \mathrm{Z}\left(\mathrm{f}_{1} \gamma_{1} ; \mathrm{T}_{1}\right) \cup \operatorname{dim} \mathrm{Z}\left(\mathrm{f}_{2} \gamma_{2} ; \mathrm{T}_{2}\right)$.

Since we know $p_{1}=g_{1}$ we know that $Z\left(\alpha_{1} T\right)$ and $Z\left(\gamma_{1} ; T\right)$ have the same bidimension. Therefore bidim $\mathrm{W}_{0}+\operatorname{bidim} \mathrm{Z}\left(\mathrm{Y}_{1}, \mathrm{~T}\right)<$ bidim V as before

$$
\begin{aligned}
\operatorname{dim} \mathrm{W}_{0}^{1}+\operatorname{dim} & \mathrm{Z}\left(\gamma_{1}^{1} ; \mathrm{T}_{1}\right) \cup \operatorname{dim} \mathrm{W}_{0}^{2}+\operatorname{dim} \mathrm{Z}\left(\gamma_{1}^{2} ; \mathrm{T}_{2}\right) \\
\leq & \operatorname{dim} \mathrm{V}_{1} \cup \operatorname{dim} \mathrm{~V}_{2} .
\end{aligned}
$$

Now to check whether or not $p_{2}=g_{2} ; p_{2}^{1} \cup p_{2}^{2}=g_{2}^{1} \cup g_{2}^{2}$. From the decomposition of $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ we obtain the two decomposition of the strong neutrosophic bivector subspace $\mathrm{p}_{2} \mathrm{~V}=\mathrm{p}_{2}^{1} \mathrm{~V}_{1} \cup \mathrm{p}_{2}^{2} \mathrm{~V}_{2}$.

$$
\mathrm{p}_{2} \mathrm{~V}=\mathrm{p}_{2}^{1} \mathrm{~W}_{0} \oplus \mathrm{Z}\left(\mathrm{p}_{2} \alpha_{1} ; \mathrm{T}\right)
$$

that is

$$
\begin{gathered}
\mathrm{p}_{2}^{1} \mathrm{~V}_{1} \cup \mathrm{p}_{2}^{2} \mathrm{~V}_{2}=\mathrm{p}_{2}^{1} \mathrm{~W}_{0}^{1} \oplus \mathrm{Z}\left(\mathrm{p}_{2}^{1} \alpha_{1}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{p}_{2}^{2} \mathrm{~W}_{0}^{2} \oplus \mathrm{Z}\left(\mathrm{p}_{2}^{2} \alpha_{1}^{2} ; \mathrm{T}_{2}\right) . \\
\mathrm{p}_{2} \mathrm{~V}=\mathrm{p}_{2} \mathrm{~W}_{0} \oplus \mathrm{Z}\left(\mathrm{p}_{2} \gamma_{1} ; \mathrm{T}\right) \oplus \ldots \oplus \mathrm{Z}\left(\mathrm{p}_{2} \gamma_{5} ; \mathrm{T}\right)
\end{gathered}
$$

that is

$$
\begin{gathered}
\mathrm{p}_{2}^{1} \mathrm{~V}_{1} \cup \mathrm{p}_{2}^{2} \mathrm{~V}_{2}=\mathrm{p}_{2}^{1} \mathrm{~W}_{0}^{1} \oplus \mathrm{Z}\left(\mathrm{p}_{2}^{1} \gamma_{1}^{1} ; \mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\mathrm{p}_{2}^{1} \gamma_{\mathrm{s}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \\
\mathrm{p}_{2}^{2} \mathrm{~W}_{0}^{2} \oplus \mathrm{Z}\left(\mathrm{p}_{2}^{2} \gamma_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\mathrm{p}_{2}^{2} \gamma_{\mathrm{s}_{2}}^{2} ; \mathrm{T}_{2}\right)
\end{gathered}
$$

The proof follows from the fact if $\mathrm{r}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \geq(2,2)$ then $\mathrm{p}_{2}=$ $\mathrm{p}_{2}^{1} \cup \mathrm{p}_{2}^{2}=\mathrm{g}_{2}=\mathrm{g}_{2}^{1} \cup \mathrm{~g}_{2}^{2}$. We have made use of the facts (1) and (2) above and we have used the fact $p_{2} \alpha_{i}=p_{2}^{1} \alpha_{i_{1}}^{1} \cup p_{2}^{2} \alpha_{i_{2}}^{2}=0 \cup$ $0 ; i=\left(i_{1}, i_{2}\right)>(2,2)$. Since we know $p_{1}=g_{1}$ fact (3) above tell us that, $\quad \mathrm{Z}\left(\mathrm{p}_{2} \alpha_{\mathrm{i}} ; \mathrm{T}\right)=\mathrm{Z}\left(\mathrm{p}_{2}^{1} \alpha_{1}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\mathrm{p}_{2}^{2} \alpha_{1}^{2} ; \mathrm{T}_{2}\right)$
and

$$
\mathrm{Z}\left(\mathrm{p}_{2} \gamma_{\mathrm{i}} ; \mathrm{T}\right)=\mathrm{Z}\left(\mathrm{p}_{2}^{1} \gamma_{1}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\mathrm{p}_{2}^{2} \gamma_{1}^{2} ; \mathrm{T}_{2}\right)
$$

have the same bidimension. Hence it is apparent from above equalities that

$$
\operatorname{bidim} \mathrm{Z}\left(\mathrm{p}_{2} \gamma_{\mathrm{i}} ; \mathrm{T}\right)=0 \cup 0
$$

$\operatorname{dim} \mathrm{Z}\left(\mathrm{p}_{2}^{1} \gamma_{\mathrm{i}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \operatorname{dim} \mathrm{Z}\left(\mathrm{p}_{2}^{2} \gamma_{\mathrm{i}_{2}}^{2} ; \mathrm{T}_{2}\right)=0 \cup 0 ; \mathrm{i}=\left(\mathrm{i}_{1}, \mathrm{i}_{2}\right) \geq(2,2)$.
We conclude $\mathrm{p}_{2} \gamma_{2}=\left(\mathrm{p}_{2}^{1} \gamma_{2}^{1}\right) \cup\left(\mathrm{p}_{2}^{2} \gamma_{2}^{2}\right)=0 \cup 0$ and g_{2} bidivides p_{2}; that is g_{2}^{t} divides p_{2}^{t} for $t=1,2$. The argument can be reserved
to show that p_{2} bidivides g_{2}; i.e., $\mathrm{p}_{2}^{\mathrm{t}}$ divides $\mathrm{g}_{2}^{\mathrm{t}}$ for each $\mathrm{t} ; \mathrm{t}=1$, 2. Hence $\mathrm{p}_{2}=\mathrm{g}_{2}$.

We leave the following corollaries for the reader to prove.
COROLLARY 2.3.6: If $T=T_{1} \cup T_{2}$ is a bilinear operator on a finite $\left(n_{1}, n_{2}\right)$ bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ then T-biadmissible strong neutrosophic vector bisubspace has a complementary strong neutrosophic bivector subspace which is also invariant under T.

Corollary 2.3.7: Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a finite (n_{1}, n_{2}) strong neutrosophic bivector space $V=V_{1} \cup V_{2}$.
i. There exists bivectors $\alpha=\alpha_{1} \cup \alpha_{2}$ in $V=V_{1} \cup V_{2}$ such that the T biannihilator of α is the neutrosophic biminimal polynomial for T.
ii. Thas a bicyclic bivector if and only if the bicharacterstic and neutrosophic biminimal polynomials for T are identical.

Now we proceed on to prove the generalized Cayley Hamilton theorem.

Theorem 2.3.44: (Generalized Cayley Hamilton theorem). Let $T=T_{1} \cup T_{2}$ be a bilinear operator on a finite $\left(n_{1}, n_{2}\right)$ finite bidimensional strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ over a neutrosophic bifield $F=F_{1} \cup F_{2}$ of type II (Both F_{1} and F_{2} are not pure neutrosophic). Let p and f be the biminimal bicharacterstic neutrosophic bipolynomials for T, respectively.
i. p bidivides f i.e., $p=p_{1} \cup p_{2}$ and $f=f^{l} \cup f^{2}$ then p_{i} divides $f^{i} ; i=1,2$.
ii. p and f have the same prime factors except for multiplicities.
iii. If $p=f_{1}^{r_{1}} \ldots f_{k}^{r_{k}}$ is the prime factorization of p then $f=f_{1}^{d_{1}} \ldots f_{k}^{d_{k}}$ where d_{i} is the bimultiplicity of $f_{i}(T)^{r_{i}}$ bidivided by the bidegree f_{i}. That is if

$$
p=p_{1} \cup p_{2}=\left(f_{1}^{1}\right)^{r_{1}^{1}} \ldots\left(f_{k_{1}}^{1}\right)^{r_{k_{1}}^{1}} \cup\left(f_{1}^{2}\right)^{r_{1}^{2}} \ldots\left(f_{k_{2}}^{2}\right)^{r_{k_{2}}^{2}}
$$

then

$$
f=\left(f_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(f_{k_{1}}^{1}\right)^{d_{k_{1}}^{2}} \cup\left(f_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(f_{k_{2}}^{2}\right)^{d_{k_{2}^{2}}^{2}} ; d_{i}^{t}=\left(d_{1}^{t}, \ldots, d_{k_{t}}^{t}\right)
$$

is the nullity of $f_{i}^{t}\left(T_{t}\right)^{r_{i}^{t}}$ which is bidivided by the bidegree $f_{i}^{t} ; i . e ., ; 1 \leq i \leq k_{t}$; this is true for each $t, t=1,2$.

Proof: The trivial case V $=\{0\} \cup\{0\}$ is obvious. To prove (i) and (ii) consider a bicyclic decomposition

$$
\begin{gathered}
\mathrm{V}=\mathrm{Z}\left(\alpha_{1} ; \mathrm{T}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}} ; \mathrm{T}\right) \\
=\mathrm{Z}\left(\alpha_{1}^{1} ; \mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{2}}^{2} ; \mathrm{T}_{2}\right) .
\end{gathered}
$$

By the second corollary $p_{1}=p$. Let $S_{i}=S_{i}^{1} \cup S_{i}^{2}$ be the birestriction of $T=T_{1} \cup T_{2}$; i.e., each S_{i}^{s} is the restriction of T_{s} (for $\mathrm{s}=1,2, \ldots, \mathrm{r}_{\mathrm{s}}$) to $\mathrm{Z}\left(\alpha_{\mathrm{i}}^{\mathrm{s}} ; \mathrm{T}_{\mathrm{s}}\right)$. Then S_{i} has a bicyclic bivector so that $p_{i}=p_{i_{1}}^{1} \cup p_{i_{2}}^{1}$ is both biminimal neutrosophic polynomial and the bicharacteristic neutrosophic polynomial for S_{i}. Therefore the neutrosophic bicharacteristic polynomial $f=f^{1} \cup$ f^{2} is the byproduct $\mathrm{f}=\mathrm{p}_{1}^{1} \ldots \mathrm{p}_{\mathrm{r}_{1}}^{1} \cup \mathrm{p}_{1}^{2} \ldots \mathrm{p}_{\mathrm{r}_{2}}^{2}$. That is evident from earlier results that the neutrosophic bimatrix of T assumes a suitable bibasis.

Clearly $\mathrm{p}_{1}=\mathrm{p}$ bidivides f ; hence the claim (1). Obviously any prime bidivisor of p is a prime bidivisor of f. Conversely a prime bidivisor of $\mathrm{f}=\mathrm{p}_{1}^{1} \ldots \mathrm{p}_{\mathrm{r}_{1}}^{1} \cup \mathrm{p}_{1}^{2} \ldots \mathrm{p}_{\mathrm{r}_{2}}^{2}$ must bidivide one of the factor p_{i}^{t} which in turn bidivides p_{1}.

Let $\mathrm{p}=\left(\mathrm{f}_{1}^{1}\right)^{\mathrm{r}_{1}^{1}} \ldots\left(\mathrm{f}_{\mathrm{k}_{1}}^{1}\right)^{r^{r_{1 / 1}}} \cup\left(\mathrm{f}_{1}^{2}\right)^{\mathrm{r}_{1}^{2}} \ldots\left(\mathrm{f}_{\mathrm{k}_{2}}^{2}\right)^{\mathrm{r}_{k_{2}^{2}}^{2}}$ be the prime bifactorization of p . We employ the biprimary decomposition theorem which tells $V_{t}^{i}=V_{1}^{i} \cup V_{1}^{i}$ is the binull space for $f_{i}^{t}\left(T_{t}\right)^{r_{i}^{t}}$ then
$\mathrm{V}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}}=\left(\mathrm{V}_{1}^{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}_{1}}^{1}\right) \cup\left(\mathrm{V}_{1}^{2} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}_{2}}^{2}\right)$
and $\left(f_{i}^{t}\right)^{r_{i}^{t}}$ is the neutrosophic minimal polynomial of the operator T_{t}^{i} restricting T_{t} to the strong neutrosophic invariant subspace V_{t}^{i}. This is true for each t; $t=1,2$. Apply part (ii) of
the present theorem to the bioperator $\mathrm{T}_{\mathrm{t}}^{\mathrm{i}}$. Since its neutrosophic minimal polynomial is a power of the prime f_{i}^{t} the neutrosophic characteristic polynomial for T_{t}^{i} has the form $\left(f_{i}^{t}\right)^{r^{t}}$ where $d_{i}^{t}>r_{i}^{t} ; t=1,2$.
We have

$$
\mathrm{d}_{\mathrm{i}}^{\mathrm{t}}=\frac{\operatorname{dim} \mathrm{V}_{\mathrm{t}}^{\mathrm{i}}}{\operatorname{deg} f_{\mathrm{i}}^{\mathrm{t}}}
$$

for every $t=1,2$ and dim $V_{t}^{i}=$ nullity $f_{i}^{t}\left(T_{t}\right)^{r_{i}^{t}}$ for every $t ; t=$ 1, 2. Since T_{t} is the direct sum of operator $T_{t}^{1}, \ldots, T_{t}^{k_{1}}$ the neutrosophic characteristic polynomial f^{t} is the product $f^{t}=\left(f_{1}^{t}\right)^{d_{1}^{t}} \ldots\left(f_{k_{t}}^{t}\right)^{d_{k_{t}}}$. Hence the claim.

The following corollary is left as an exercise for the reader.
COROLLARY 2.3.8: Let $T=T_{1} \cup T_{2}$ be a binilpotent operator of the strong neutrosophic bivector space of $\left(n_{1}, n_{2}\right)$ bidimension over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (both F_{1} and F_{2} are not pure neutrosophic fields) of type II then the bicharacteristic bipolynomial for T is $x^{n_{1}} \cup \chi^{n_{2}}$.

Let us observe that the neutrosophic bimatrix analogue of the bicyclic decomposition theorem. If we have the bioperator $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ and the bidirect sum decomposition, let B^{i} be the bicyclic ordered bibasis

$$
\left\{\alpha_{i_{1}}^{1}, \mathrm{~T}_{1} \alpha_{\mathrm{i}_{1}}^{1}, \ldots, \mathrm{~T}_{1}^{\mathrm{k}_{1-1}^{1}} \alpha_{\mathrm{i}_{1}}^{1}\right\} \cup\left\{\alpha_{\mathrm{i}_{1}}^{2}, \mathrm{~T}_{2} \alpha_{\mathrm{i}_{2}}^{2}, \ldots, \mathrm{~T}_{2}^{\mathrm{k}_{2-1}^{2}} \alpha_{\mathrm{i}_{2}}^{2}\right\}
$$

for $\mathrm{Z}\left(\alpha_{\mathrm{i}} ; \mathrm{T}\right)=\mathrm{Z}\left(\alpha_{\mathrm{i}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{\mathrm{i}_{2}}^{2} ; \mathrm{T}_{2}\right)$. Here $\left(\mathrm{k}_{\mathrm{i}_{1}}^{1}, \mathrm{k}_{\mathrm{i}_{2}}^{2}\right)$ denotes the bidimension of $\mathrm{Z}\left(\alpha_{\mathrm{i}} ; \mathrm{T}\right)$ that is the bidegree of the biannihilator $p_{i}=p_{i_{1}}^{1} \cup p_{i_{2}}^{2}$.

The neutrosophic bimatrix of the induced operator T_{i} in the bibasis B_{i} is the bicompanion neutrosophic bimatrix of the neutrosophic bipolynomial p_{i}. Thus if we let B to be the bibasis for V.
which is the biunion of B^{i} arranged in order $\left\{B_{1}^{1} \ldots B_{r_{1}}^{1}\right\} \cup$ $\left\{B_{1}^{2} \ldots B_{r_{2}}^{2}\right\}$; then the neutrosophic bimatrix of T in the bibasis B will be $A=A_{1} \cup A_{2}$.

$$
=\left[\begin{array}{cccc}
A_{1}^{1} & 0 & \cdots & 0 \\
0 & A_{2}^{1} & \cdots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \cdots & A_{r_{1}}^{1}
\end{array}\right] \cup\left[\begin{array}{cccc}
A_{1}^{2} & 0 & \cdots & 0 \\
0 & A_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & A_{r_{2}}^{2}
\end{array}\right]
$$

where A_{i}^{t} is the $k_{i}^{t} \times k_{i}^{t}$ companion neutrosophic matrix of p_{i}^{t} for $t=1$, 2. $A\left(n_{1} \times n_{1}, n_{2} \times n_{2}\right)$ neutrosophic bimatrix A which is the bidirect sum of the neutrosophic bicompanion matrices of the non scalar monic neutrosophic bipolynomial $\left\{p_{1}^{1} \ldots p_{r_{1}}^{1}\right\} \cup\left\{p_{1}^{2} \ldots p_{r_{2}}^{2}\right\}$ such that $p_{i_{t}+1}^{t}$ divides $p_{i_{t}}^{t}$ for $i_{t}=1,2$, $\ldots, r_{t}-1$ and $t=1,2$ will be defined as the rational biform or equivalently birational form.

THEOREM 2.3.45: Let $F=F_{1} \cup F_{2}$ be a neutrosophic bifield (Both F_{1} and F_{2} are not pure neutrosophic). Let $B=B_{1} \cup B_{2}$ be $a\left(n_{1} \times n_{1}, n_{2} \times n_{2}\right)$ neutrosophic bimatrix over F. Then B is bisimilar over the bifield F to one and only one neutrosophic matrix in the rational form.

Proof: We know from the usual neutrosophic square matrix every square matrix over a fixed neutrosophic field is similar to one and only one neutrosophic matrix which is in the rational form.

So the neutrosophic bimatrix $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}$ over the neutrosophic bifield $F=F_{1} \cup F_{2}$ is such that each B_{i} is a $n_{i} \times n_{i}$ neutrosophic square matrix over F_{i}; is similar to one and only one neutrosophic matrix which is in the rational form say C_{i}.

This is true for every $i ; i=1,2$ so $B=B_{1} \cup B_{2}$ is bisimilar over the field to one and only one bimatrix C which is in the rational biform.

The neutrosophic bipolynomials $\left\{\mathrm{p}_{1}^{1} \ldots \mathrm{p}_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\mathrm{p}_{1}^{2} \ldots \mathrm{p}_{\mathrm{r}_{2}}^{2}\right\}$ are called invariant bifactors or biinvariant factors for the neutrosophic bimatrix $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}$.

We shall just introduce the notion of biJordan form or Jordan biform for a strong neutrosophic bivector space of type II.

Suppose that $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ be a nilpotent bilinear operator on finite ($\mathrm{n}_{1} \mathrm{n}_{2}$) bidimension strong neutrosophic bivector space V $=V_{1} \cup V_{2}$ over a neutrosophic bifield $F=F_{1} \cup F_{2}\left(F_{1}\right.$ and F_{2} are not pure neutrosophic) of type II. Consider the bicyclic decomposition for N which we have described in the theorem. We have a pair of positive integers ($\mathrm{r}_{1}, \mathrm{r}_{2}$) and non zero bivector $\left\{\alpha_{1}^{\mathrm{i}}, \alpha_{2}^{\mathrm{i}}\right\}$ in V with biannihilators $\left\{\mathrm{p}_{1}^{1} \ldots \mathrm{p}_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\mathrm{p}_{1}^{2} \ldots \mathrm{p}_{\mathrm{r}_{2}}^{2}\right\}$ such that

$$
\begin{gathered}
\mathrm{V}=\mathrm{Z}\left(\alpha_{1} ; \mathrm{N}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}} ; \mathrm{N}\right) \\
=\mathrm{Z}\left(\alpha_{1}^{1}, \mathrm{~N}_{1}\right) \oplus \ldots \oplus\left(\alpha_{\mathrm{r}_{1}}^{2}, \mathrm{~N}_{1}\right) \cup \mathrm{Z}\left(\alpha_{1}^{2}, \mathrm{~N}_{2}\right) \oplus \ldots \oplus\left(\alpha_{\mathrm{r}_{2}}^{2}, \mathrm{~N}_{2}\right)
\end{gathered}
$$

and $p_{i_{t}+1}^{t}$ divides $p_{i_{t}}^{t}$ for $i_{t}=1,2, \ldots, r_{t}-1$ and $t=1,2$. Since N is binilpotent and the biminimal neutrosophic polynomial is $x^{k_{1}} \cup x^{k_{2}}$ with $k_{t} \leq n_{t} ; t=1$, 2. Thus each $p_{i_{t}}^{t}$ is of the form $p_{i_{t}}^{t}=x^{k_{i}^{t}}$ and the bidivisibility condition says $k_{1}^{t} \geq k_{2}^{t} \geq \ldots \geq k_{r_{1}}^{t} ; t$ $=1$, 2 . Of course $k_{1}^{t}=k^{t}$ and $k_{r}^{t} \geq 1$.
The bicompanion neutrosophic bimatrix of $x^{k_{11}^{l}} \cup x^{k_{12}^{2}}$ is the $\mathrm{k}_{\mathrm{i}_{\mathrm{r}}} \times \mathrm{k}_{\mathrm{i}_{\mathrm{r}}}$ neutrosophic bimatrix. $\mathrm{A}=\mathrm{A}_{\mathrm{i}_{1}}^{1} \cup \mathrm{~A}_{\mathrm{i}_{2}}^{2}$ with

$$
\mathrm{A}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] ;
$$

$\mathrm{t}=1$, 2. Thus we from earlier results have a bibasis for $\mathrm{V}=\mathrm{V}_{1}$ $\cup \mathrm{V}_{2}$ in which the neutrosophic bimatrix of N is the bidirect
sum of the elementary nilpotent neutrosophic bimatrices of sizes of i_{t} which decreases as i_{t} increases. One sees from this that associated with a binilpotent ($\mathrm{n}_{1} \times \mathrm{n}_{1}, \mathrm{n}_{2} \times \mathrm{n}_{2}$) neutrosophic bimatrix is a positive pair of integers (r_{1}, r_{2}) that is $\left\{\mathrm{k}_{1}^{1}, \ldots, \mathrm{k}_{\mathrm{r}_{1}}^{1}\right\} \cup\left\{\mathrm{k}_{1}^{2}, \ldots, \mathrm{k}_{\mathrm{r}_{2}}^{2}\right\}$ such that

$$
\left\{\mathrm{k}_{1}^{1}+\ldots+\mathrm{k}_{\mathrm{r}_{1}}^{1}\right\}=\mathrm{n}_{1} \text { and }\left\{\mathrm{k}_{1}^{2}+\ldots+\mathrm{k}_{\mathrm{r}_{2}}^{2}\right\}=\mathrm{n}_{2}
$$

and $k_{i_{1}}^{t} \geq k_{i_{t+1}}^{t} ; t=1,2$ and $1 \leq i, i+1 \leq r_{t}$ and these bisets of positive integers determine the birational form of the neutrosophic bimatrix that is they determine the neutrosophic bimatrix up to similarity.

Here is one thing, we like to mention about the binilpotent bioperator N .

The positive biinteger $\left(r_{1}, r_{2}\right)$ is precisely the binullity of N infact the strong neutrosophic binull space has a bibasis with (r_{1}, r_{2}) bivectors $N_{1}^{k_{1}-1} \alpha_{i_{1}}^{1} \cup N_{2}^{k_{i_{2}}-1} \alpha_{i_{2}}^{2}$. For let $\alpha=\alpha_{1} \cup \alpha_{2}$ be in the strong neutrosophic binull space of N we write

$$
\alpha=\left(\mathrm{f}_{1}^{1} \alpha_{1}^{1}+\ldots+\mathrm{f}_{\mathrm{r}_{1}}^{1} \alpha_{\mathrm{r}_{1}}^{1}\right) \cup\left(\mathrm{f}_{1}^{2} \alpha_{1}^{2}+\ldots+\mathrm{f}_{\mathrm{r}_{2}}^{2} \alpha_{\mathrm{r}_{2}}^{2}\right)
$$

where $\left(f_{i_{1}}^{1}, f_{i_{2}}^{2}\right)$ is a neutrosophic bipolynomial the bidegree of which we may assume is less than $\mathrm{k}_{\mathrm{i}_{1}}, \mathrm{k}_{\mathrm{i}_{2}}$. Since $\mathrm{N}_{\alpha}=0 \cup 0$ for each i_{r} we have

$$
\begin{aligned}
0 \cup 0 & =\mathrm{N}\left(\mathrm{f}_{\mathrm{i}_{1}}, \alpha_{\mathrm{i}}\right) \\
& =\mathrm{N}_{1}\left(\mathrm{f}_{\mathrm{i}_{\mathrm{t}}}, \alpha_{\mathrm{i}_{\mathrm{t}}}\right) \cup \mathrm{N}_{2}\left(\mathrm{f}_{\mathrm{i}_{\mathrm{i}}}, \alpha_{\mathrm{i}_{\mathrm{i}}}\right) \\
& =\mathrm{N}_{1} \mathrm{f}_{\mathrm{i}_{1}}\left(\mathrm{~N}_{1}\right) \alpha_{\mathrm{i}_{1}} \cup \mathrm{~N}_{2} \mathrm{f}_{\mathrm{i}_{2}}\left(\mathrm{~N}_{2}\right) \alpha_{\mathrm{i}_{2}} \\
& =\left(\mathrm{xf}_{\mathrm{i}_{1}}\right) \alpha_{\mathrm{i}_{1}} \cup\left(\mathrm{xf}_{\mathrm{i}_{2}}\right) \alpha_{\mathrm{i}_{2}} .
\end{aligned}
$$

Thus $\left(\mathrm{xf}_{\mathrm{i}_{1}}\right) \cup\left(\mathrm{xf}_{\mathrm{i}_{2}}\right)$ is bidivisible by $\mathrm{x}^{\mathrm{k}_{\mathrm{i}_{1}}} \cup \mathrm{x}^{\mathrm{k}_{\mathrm{i}_{2}}}$ and some bi $\operatorname{deg}\left(f_{i_{1}}, f_{i_{2}}\right)>\left(\mathrm{k}_{\mathrm{i}_{1}}, \mathrm{k}_{\mathrm{i}_{2}}\right)$ this imply that

$$
f_{i_{1}} \cup f_{i_{2}}=C_{i_{1}}^{1} x^{k_{1-1}} \cup C_{i_{2}}^{2} x^{k_{i_{2}-1}}
$$

where $C_{i_{1}}^{1} \cup \mathrm{C}_{\mathrm{i}_{2}}^{2}$ is some biscalar, but then $\alpha=\alpha_{1} \cup \alpha_{2}$.

$$
C_{1}^{1}\left(x^{k_{\mathrm{i}_{1}-1}} \alpha_{1}^{1}\right)+\ldots+C_{r_{1}}^{1}\left(x^{k_{i_{1}-1}} \alpha_{r_{1}}^{1}\right) \cup C_{1}^{2}\left(x^{k_{i_{2}-1}} \alpha_{1}^{2}\right)+\ldots+C_{r_{2}}^{2}\left(x^{k_{i_{2}-1}} \alpha_{r_{2}}^{2}\right)
$$

which shows that all the bivectors form a bibasis for the strong neutrosophic binull space of $N=N_{1} \cup N_{2}$.

Suppose T is a bilinear operator on $V=V_{1} \cup V_{2}$ and that T factors over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ as $\mathrm{f}=\mathrm{f}_{1} \cup \mathrm{f}_{2}$

$$
=\left(x-C_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-C_{k_{1}}^{1}\right)^{d_{k_{1}}^{1}} \cup\left(x-C_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(x-C_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}}
$$

where $\left\{C_{1}^{1} \ldots C_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{C}_{1}^{2} \ldots \mathrm{C}_{\mathrm{k}_{2}}^{2}\right\}$ are bidistinct bielement of $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}$ and $\mathrm{d}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}} \geq 1 ; \mathrm{t}=1,2$.

Then the neutrosophic biminimal polynomial for T will be

$$
p=\left(x-C_{1}^{1}\right)^{r_{1}^{1}} \ldots\left(x-C_{k_{1}}^{1}\right)^{r_{k_{1}}^{r_{1}}} \cup\left(x-C_{1}^{2}\right)^{r_{1}^{2}} \ldots\left(x-C_{k_{2}}^{2}\right)^{r_{k_{2}}^{2}}
$$

where $1 \leq r_{i_{t}}^{t} \leq d_{i_{t}}^{t} ; t=1,2$.
If $W_{i_{1}}^{1} \cup W_{i_{2}}^{2}$ is the strong neutrosophic binull space of

$$
\left(\mathrm{T}-\mathrm{C}_{1} \mathrm{I}\right)^{\mathrm{r}_{\mathrm{F}}}=\left(\mathrm{T}_{1}-\mathrm{C}_{1}^{1} \mathrm{I}_{1}\right)^{\mathrm{r}_{1}^{1_{1}^{\prime}}} \cup\left(\mathrm{T}_{2}-\mathrm{C}_{1}^{2} \mathrm{I}_{2}\right)^{\mathrm{r}_{2}^{2}}
$$

then the biprimary decomposition theorem tells us that

$$
\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{W}_{1}^{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\}
$$

and that the operator $T_{i_{t}}^{t}$ induced on $W_{i_{t}}^{t}$ defined by $T_{t}^{i_{t}}$ has neutrosophic biminimal polynomial $\left(x-C_{i_{t}}^{t}\right)^{r_{i}}$ for $t=1,2 ; 1 \leq$ $\mathrm{i}_{\mathrm{t}} \leq \mathrm{k}_{\mathrm{t}}$. Let $\mathrm{N}_{\mathrm{i}_{\mathrm{t}}}^{t}$ be the bilinear operator on $\mathrm{W}_{\mathrm{i}_{t}}^{t}$ defined by $\mathrm{N}_{\mathrm{i}_{t}}^{\mathrm{t}}=$ $T_{i_{t}}^{t}-C_{i_{t}}^{t} I_{t} ; 1 \leq i_{t} \leq k_{t}$ then $N_{i_{t}}^{t}$ is binilpotent and has neutrosophic biminimal polynomial $X_{i_{t}}^{\mathrm{r}_{\mathrm{t}_{\mathrm{t}}}}$. On $\mathrm{W}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}}, \mathrm{T}_{\mathrm{t}}$ acts like $\mathrm{N}_{\mathrm{i}_{\mathrm{t}}}^{t}$ plus the scalar $C_{i_{t}}^{t}$ times the identity operator. Suppose we choose a bibasis for the strong neutrosophic bisubspace $W_{i_{1}}^{1} \cup W_{i_{2}}^{2}$ corresponding to the bicyclic decomposition for the binilpotent $\mathrm{N}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}}$. Then the neutrosophic k matrix $\mathrm{T}_{\mathrm{i}_{\mathrm{t}}}^{t}$ in this bibasis will be the bidirect sum of neutrosophic bimatrices;

$$
\left[\begin{array}{ccccc}
\mathrm{C}_{1} & 0 & \ldots & 0 & 0 \\
1 & \mathrm{C}_{1} & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & \mathrm{C}_{1} & 0 \\
0 & 0 & \ldots & 1 & \mathrm{C}_{1}
\end{array}\right] \cup\left[\begin{array}{ccccc}
\mathrm{C}_{2} & 0 & \ldots & 0 & 0 \\
1 & \mathrm{C}_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & \mathrm{C}_{2} & 0 \\
0 & 0 & \ldots & 1 & \mathrm{C}_{2}
\end{array}\right]
$$

each with $\mathrm{C}=\mathrm{C}_{\mathrm{i}_{t}}^{\mathrm{t}}$ for $\mathrm{t}=1,2$. Further more the sizes of these neutrosophic bimatrices will decrease as one reads from left to right. A neutrosophic bimatirx of the form described above is called a bielementary Jordan bimatrix with bicharacteristic values $\mathrm{C}_{1} \cup \mathrm{C}_{2}$.

Suppose we pull the bibasis for $\mathrm{W}_{\mathrm{i}_{1}}^{1} \cup \mathrm{~W}_{\mathrm{i}_{2}}^{2}$ together and obtain an biordered bibasis for $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$. Let us describe the neutrosophic bimatrix A of T in the bibasis. A neutrosophic bimatrix A is the bidirect sum

$$
\mathrm{A}=\left[\begin{array}{cccc}
\mathrm{A}_{1}^{1} & 0 & \ldots & 0 \\
1 & \mathrm{~A}_{2}^{1} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \mathrm{~A}_{\mathrm{k}_{1}}^{1}
\end{array}\right] \cup\left[\begin{array}{cccc}
\mathrm{A}_{1}^{2} & 0 & \ldots & 0 \\
1 & \mathrm{~A}_{2}^{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \mathrm{~A}_{\mathrm{k}_{2}}^{2}
\end{array}\right]
$$

of the k_{i} sets of neutrosophic bimatrices

$$
\left\{\mathrm{A}_{1}^{1} \ldots \mathrm{~A}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{A}_{1}^{2} \ldots \mathrm{~A}_{\mathrm{k}_{2}}^{2}\right\} .
$$

Each

$$
A_{i_{1}}^{t}=\left[\begin{array}{cccc}
\mathrm{J}_{\mathrm{t}_{1}}^{\mathrm{i}_{t}} & 0 & \ldots & 0 \\
0 & \mathrm{~J}_{\mathrm{t}_{2}}^{\mathrm{i}_{\mathrm{t}}} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \mathrm{~J}_{\mathrm{t}_{\mathrm{t}}}^{\mathrm{i}_{t}}
\end{array}\right]
$$

where each $J_{j_{\mathrm{t}}}^{\mathrm{i}_{\mathrm{t}}}$ is an elementary Jordon neutrosophic matrix with characteristic value $\mathrm{C}_{\mathrm{i}_{\mathrm{t}}}^{\mathrm{t}} ; 1 \leq \mathrm{i}_{\mathrm{t}} \leq \mathrm{k}_{\mathrm{t}} ; \mathrm{t}=1,2$. Also within
each $A_{i_{t}}^{t}$; the sizes of the neutrosophic matrices $J_{j_{t}}^{i_{t}}$ decrease as j_{t} increases $1 \leq \mathrm{j}_{\mathrm{t}} \leq \mathrm{n}_{\mathrm{t}} ; \mathrm{t}=1,2$.

A ($n_{1} \times n_{1}, n_{2} \times n_{2}$) neutrosophic bimatrix A which satisfies all the conditions described so far for some bisets of distinct k_{i} scalars $\left\{\mathrm{C}_{1}^{1} \ldots \mathrm{C}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{C}_{1}^{2} \ldots \mathrm{C}_{\mathrm{k}_{2}}^{2}\right\}$ will be said to be in Jordan biform or biJordan form.

2.4 Neutrosophic Biinner Product Bivector Space

Now we proceed onto define the new notion of biinner product strong neutrosophic bivector space of type II and derive a few interesting properties about them.

DEFINITION 2.4.1: Let $F=F_{1} \cup F_{2}$ be a real neutrosophic bifield and $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the bineutrosophic bifield. An biinner product on V is a bifunction which assigns to each biordered pair of bivectors α $=\alpha_{1} \cup \alpha_{2}$ and $\beta=\beta_{1} \cup \beta_{2}$ in V a biscalar $(\alpha / \beta)=\left(\alpha_{1} / \beta_{l}\right) \cup$ $\left(\alpha_{2} / \beta_{2}\right)$ in $F=F_{1} \cup F_{2}$ that is $\left(\alpha_{i} / \beta_{i}\right) \in F_{i}, i=1,2$ in such a way that for all $\alpha=\alpha_{1} \cup \alpha_{2}, \beta=\beta_{1} \cup \beta_{2}$, and $\gamma=\gamma_{1} \cup \gamma_{2}$ in $V=V_{1}$ $\cup V_{2}$ and for all biscalar $c=c_{1} \cup c_{2}$ in $F_{1} \cup F_{2}=F$.
i. $\quad(\alpha+\beta / \gamma)=(\alpha / \gamma)+(\beta / \gamma)$
$\left(\alpha_{1}+\beta_{1} / \gamma_{1}\right) \cup\left(\alpha_{2}+\beta_{2} / \gamma_{2}\right)$
$=\left(\alpha_{1} / \gamma_{1}\right)+\left(\beta_{1} / \gamma_{1}\right) \cup\left(\beta_{2} / \gamma_{2}\right)+\left(\beta_{2} / \gamma_{2}\right)$
ii. $\quad(c \alpha / \beta)=c(\alpha / \beta)$
that is $\left(c_{1} \alpha_{1} / \beta_{1}\right) \cup\left(c_{2} \alpha_{2} / \beta_{2}\right)$
$=c_{1}\left(\alpha_{1} / \beta_{1}\right) \cup c_{2}\left(\alpha_{2} / \beta_{2}\right)$
iii. $\quad(\alpha / \beta)=(\beta / \alpha)$
iv. $(\alpha / \alpha)=\left(\alpha_{1} / \alpha_{1}\right) \cup\left(\alpha_{2} / \alpha_{2}\right)>0 \cup 0$ if $\alpha_{i} \neq 0$ for $i=1,2$.

A strong neutrosophic bivector space $V=V_{1} \cup V_{2}$ endowed with a biinner product is called the strong neutrosophic biinner product space over the real neutrosophic bifield $F=F_{1} \cup F_{2}$.

Let $F=F_{1} \cup F_{2}$ and for $V=F_{1}^{n_{1}} \cup F_{2}^{n_{2}}$ a strong neutrosophic bivector space over the real neutrosophic bifield F
$=F_{1} \cup F_{2}$, there is a biinner product called the bistandard inner product. It is defined for

$$
\alpha=\alpha_{1} \cup \alpha_{2}=\left\{x_{1}^{1} \ldots x_{n_{1}}^{1}\right\} \cup\left\{x_{1}^{2} \ldots x_{n_{2}}^{2}\right\}
$$

and

$$
\begin{aligned}
\beta=\beta_{1} \cup \beta_{2} & =\left\{y_{1}^{1} \ldots y_{n_{1}}^{1}\right\} \cup\left\{y_{1}^{2} \ldots y_{n_{2}}^{2}\right\} \text { by } \\
(\alpha / \beta) & =\sum_{j_{1}} x_{j_{1}}^{1} y_{j_{1}}^{1} \cup \sum_{j_{2}} x_{j_{2}}^{2} y_{j_{2}}^{2} .
\end{aligned}
$$

If $A=A_{1} \cup A_{2}$ is a neutrosophic bimatrix over the bifield F $=F_{1} \cup F_{2}$ where $A_{i} \in F_{i}^{n_{1} \times n_{i}}$ for $i=1$, 2. $F_{i}^{n_{i} \times n_{i}}$ is a strong neutrosophic vector space over $F_{i} ; i=1,2 . V=F_{1}^{n_{1} \times n_{1}} \cup F_{2}^{n_{2} \times n_{2}}$ is a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ and V is isomorphic to the strong neutrosophic bivector space $F_{1}^{n_{1}^{2}} \cup F_{2}^{n_{2}^{2}}$ in a natural way. It therefore follows;

$$
(A / B)=\sum_{j_{1} k_{1}} A_{j_{1} k_{1}}^{1} B_{j_{1} k_{1}}^{1} \cup \sum_{j_{2} k_{2}} A_{j_{2} k_{2}}^{2} B_{j_{2} k_{2}}^{2}
$$

defines a biinner product on V. A strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (both F_{1} and F_{2} not pure neutrosophic) is known as the biinner product neutrosophic space or neutrosophic biinner product space.

We have the following interesting theorem.
THEOREM 2.4.1: If $V=V_{1} \cup V_{2}$ be a real biinner product neutrosophic space, then for any bivectors $\alpha=\alpha_{1} \cup \alpha_{2}$ and $\beta=$ $\beta_{1} \cup \beta_{2}$ in V and any scalar $c=c_{1} \cup c_{2}$.
i. $\|c \alpha\|=|c||\alpha| \mid$
that is $\|c \alpha\|=\left\|c_{1} \alpha_{1}\right\| \cup c_{2} \alpha_{2} \|$
$=\left|c_{1}\right|| | \alpha_{1}| | \cup\left|c_{2}\right|| | \alpha_{2}| | ;$
ii. $\|\alpha\|>(0 \cup 0)$ for $\alpha \neq 0$
that is $\left\|\alpha_{1}\right\| \cup\left\|\alpha_{2}\right\|>(0,0)=0 \cup 0$;
iii. $\quad\|(\alpha / \beta)\|<\|\alpha\|\|\beta\|$
that is $\left\|\left(\alpha_{1} / \beta_{1}\right)\right\| \cup\left\|\left(\alpha_{2} / \beta_{2}\right)\right\|$
$=\left\|\alpha_{1}\right\|\left\|\beta_{1}\right\| \cup\left\|_{2}| || | \beta_{2}\right\|$.

However as in case of usual bivector spaces we in case of strong neutrosophic bivector spaces define the concept of biorthogonal bivectors.

If $\alpha, \beta \in V=V_{1} \cup V_{2}$ be bivectors of a biinner product space, we can define

$$
\begin{gathered}
\gamma=\beta-\frac{(\beta / \alpha)}{\|\alpha\|^{2}} \alpha ; \\
\gamma_{1} \cup \gamma_{2}=\left(\beta_{1}-\frac{\left(\beta_{1} / \alpha_{1}\right)}{\left\|\alpha_{1}\right\|^{2}} \alpha_{1}\right) \cup\left(\beta_{2}-\frac{\left(\beta_{2} / \alpha_{2}\right)}{\left\|\alpha_{2}\right\|^{2}} \alpha_{2}\right) .
\end{gathered}
$$

As in case of usual vector spaces we can in case of strong neutrosophic biinner product spaces define biorthogonality or biorthogonal bivectors.

Let $\alpha=\alpha_{1} \cup \alpha_{2}$ and $\beta=\beta_{1} \cup \beta_{2}$ be neutrosophic bivectors in a neutrosophic biinner product space $V=V_{1} \cup V_{2}$.

Then $\alpha=\alpha_{1} \cup \alpha_{2}$ is biorthogonal to $\beta=\beta_{1} \cup \beta_{2}$ if $(\alpha / \beta)=$ $\alpha_{1} \beta_{1} \cup \alpha_{2} \beta_{2}=0 \cup 0$ that is $\left(\alpha_{1} / \beta_{1}\right) \cup\left(\alpha_{2} / \beta_{2}\right)=0 \cup 0$. Since this implies $\beta=\beta_{1} \cup \beta_{2}$ is biorthogonal to $\alpha=\alpha_{1} \cup \alpha_{2}$.

It is left as an exercise for the reader to prove, the following theorem.

Theorem 2.4.2: A biorthogonal biset of non zero bivectors is bilinearly independent.

THEOREM 2.4.3: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic biinner product space and let $\left\{\beta_{1}^{1} \ldots \beta_{n_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2} \ldots \beta_{n_{2}}^{2}\right\}$ be any biindependent vector in V. Then one way to construct biorthogonal vectors;

$$
\left\{\alpha_{1}^{1} \ldots \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2} \ldots \alpha_{n_{2}}^{2}\right\} \text { in } V=V_{1} \cup V_{2} \text { is such that for }
$$ each $k_{i}, i=1,2$ the biset $\left\{\alpha_{1}^{1} \ldots \alpha_{k_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2} \ldots \alpha_{k_{2}}^{2}\right\}$ is the bibasis for the strong neutrosophic bisubspace spanned by $\left\{\beta_{1}^{1} \ldots \beta_{k_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2} \ldots \beta_{k_{2}}^{2}\right\}$.

Proof: The bivectors $\left\{\alpha_{1}^{1} \ldots \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2} \ldots \alpha_{n_{2}}^{2}\right\}$ can be obtained by means of a construction analogous to Gram-Schmidt orthogonalization process called or defined as Gram-Schmidt biorthogonalization process.

First let $\alpha=\alpha_{1}^{1} \cup \alpha_{1}^{2}$ and $\beta_{1}=\beta_{1}^{1} \cup \beta_{1}^{2}$. The other bivector is calculated using the rule

$$
\begin{gathered}
\gamma=\beta-\frac{(\beta / \alpha)}{\|\alpha\|^{2}} \alpha \\
\gamma=\gamma_{1} \cup \gamma_{2}=\left(\beta_{1}-\frac{\left(\beta_{1} / \alpha_{1}\right)}{\left\|\alpha_{1}\right\|^{2}} \alpha_{1}\right) \cup\left(\beta_{2}-\frac{\left(\beta_{2} / \alpha_{2}\right)}{\left\|\alpha_{2}\right\|^{2}} \alpha_{2}\right)
\end{gathered}
$$

However we will indicate the proof of the result for any general n ; $\mathrm{n} \geq 3$ in chapter 3 of this book.

We cannot define orthonormality as $\mathrm{i} \in \mathrm{F}_{\mathrm{i}}$ as well as $\mathrm{i} \in \mathrm{V}_{\mathrm{i}} \mathrm{i}$ $=1$, 2 .

However we define just biapproximation in strong neutrosophic bivector spaces over neutrosophic bifields of type II.

DEFINITION 2.4.2: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (Both F_{1} and F_{2} are not pure neutrosophic) of type II. Let $W=W_{1} \cup$ W_{2} be a strong neutrosophic bivector subspace of V over the neutrosophic bifield $F=F_{1} \cup F_{2}$.

Let $\beta=\beta_{1} \cup \beta_{2}$ be a bivector in $V=V_{1} \cup V_{2}$. To find the bibest approximation to $\beta=\beta_{1} \cup \beta_{2}$ (or the best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$) in $W=W_{1} \cup W_{2}$. This means to find a bivector $\alpha=\alpha_{1} \cup \alpha_{2}$ for which $\|\beta-\alpha\|=\left\|\beta_{1}-\alpha_{1}\right\|$ $\cup\left\|\beta_{2}-\alpha_{2}\right\|$ is as small as possible subject to the restriction that $\alpha=\alpha_{1} \cup \alpha_{2}$ should belong to $W=W_{1} \cup W_{2}$; that is to be more precise.

A best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$ in $W=W_{1} \cup W_{2}$ is a bivector $\alpha=\alpha_{1} \cup \alpha_{2}$ in W such that $\|\beta-\alpha\| \leq\|\beta-\gamma\|$ that is
$\left\|\beta_{1}-\alpha_{1}\right\| \cup\left\|\beta_{2}-\alpha_{2}\right\| \leq\left\|\beta_{1}-\gamma_{1}\right\| \cup\left\|\beta_{2}-\gamma_{2}\right\|$ for every bivector $\gamma=\gamma_{1} \cup \gamma_{2}$ in W.

Theorem 2.4.4: Let $W=W_{1} \cup W_{2}$ be a strong neutrosophic subbispace of a strong neutrosophic biinner product space $V=$ $V_{1} \cup V_{2}$ and $\beta=\beta_{1} \cup \beta_{2}$ be in $V=V_{1} \cup V_{2}$,
i. The bivector $\alpha=\alpha_{1} \cup \alpha_{2}$ in W is a best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$ by bivectors in $W=W_{1} \cup W_{2}$ if and only if $\beta-\alpha=\left(\beta_{1}-\alpha_{1}\right) \cup\left(\beta_{2}-\alpha_{2}\right)$ is biorthogonal to every vector in W. That is each $\beta_{i}-\alpha_{i}$ is orthogonal to every vector in W_{i}, true for $i=1,2$.
ii. If a best biapproximation to $\beta=\beta_{1} \cup \beta_{2}$ by bivectors in W $=W_{1} \cup W_{2}$ exists, it is unique.

However we cannot define the notions and properties related to biorthonormality.

We now proceed onto define biorthogonal complement of a biset of bivectors in V .

DEFINITION 2.4.3: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}$ (Both F_{1} and F_{2} are not pure neutrosophic) of type II be a strong neutrosophic biinner product space.

Let $S=S_{1} \cup S_{2}$ be any set of bivectors in V. The biorthogonal complement of S denoted by $S^{\perp^{\perp 1)}}=S_{1}^{\perp} \cup S_{2}^{\perp}$ is the set of all bivectors in V which are biorthogonal to every bivector in S.

Properties related with the biorthogonal set is left as an exercise for the reader to derive.

The following results are simple and hence are left for the reader to prove.

THEOREM 2.4.5: Let $V=V_{1} \cup V_{2}$ be a strong neutrosophic biinner product space, $W=W_{1} \cup W_{2}$ a finite dimensional strong neutrosophic bisubspace and $E=E_{1} \cup E_{2}$ be the
biorthogonal projection of V on W. Then the bimapping $\beta \rightarrow$ $\beta-E \beta$; that is

$$
\beta_{1} \cup \beta_{2} \rightarrow\left(\beta_{1}-E_{1} \beta_{1}\right) \cup\left(\beta_{2}-E_{2} \beta_{2}\right)
$$

is the biorthogonal projection of V on W.
THEOREM 2.4.6: Let $W=W_{1} \cup W_{2}$ be a finite $\left(n_{1}, n_{2}\right)$ bidimensional strong neutrosophic bisubspace of the strong neutrosophic biinner product space $V=V_{1} \cup V_{2}$ of type II and let $E=E_{1} \cup E_{2}$ be the biorthogonal projection of V on W.

Then $E=E_{1} \cup E_{2}$ is an idempotent bilinear transformation of V onto W, W^{\perp} is the null bispace of E and $V=W \oplus W^{\perp}$ that is

$$
\begin{aligned}
V & =V_{1} \cup V_{2} \\
& =W_{1} \oplus W_{1}^{\perp} \cup W_{2} \oplus W_{2}^{\perp} .
\end{aligned}
$$

THEOREM 2.4.7: Under the conditions of the above theorem I -$E=I_{2}-E_{1} \cup I_{2}-E_{2}$ is the biorthogonal biprojection of V on W^{\perp}. It is a biidempotent bilinear transformation of V onto $W^{\perp}=$ $W_{1}^{\perp} \cup W_{2}^{\perp}$ with binull space $W=W_{1} \cup W_{2}$.

THEOREM 2.4.8: $\operatorname{Let}\left\{\alpha_{1}^{1} \ldots \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2} \ldots \alpha_{n_{2}}^{2}\right\}$ be a biorthogonal set of non zero bivectors in a strong neutrosophic biinner product space $V=V_{1} \cup V_{2}$ over $F_{1} \cup F_{2}$ of type II.

If $\beta=\beta_{1} \cup \beta_{2}$ is any bivector in $V=V_{1} \cup V_{2}$ then

$$
\sum_{k_{1}}\left(\frac{\left|\left(\beta_{1} / \alpha_{k_{1}}^{1}\right)\right|^{2}}{\left\|\alpha_{k_{1}}^{1}\right\|^{2}}\right) \cup \sum_{k_{2}}\left(\frac{\left|\left(\beta_{2} / \alpha_{k_{2}}^{2}\right)\right|^{2}}{\left\|\alpha_{k_{2}}^{2}\right\|^{2}}\right) \leq\left\|\beta_{1}\right\|_{2} \cup\left\|\beta_{2}\right\|_{2}
$$

and equality holds if and only if

$$
\beta=\sum_{k_{1}}\left(\frac{\left|\beta_{1} / \alpha_{k_{1}}^{1}\right|}{\left\|\alpha_{k_{1}}^{1}\right\|^{2}} \alpha_{k_{1}}^{1}\right) \cup \sum_{k_{2}}\left(\frac{\left|\beta_{2} / \alpha_{k_{2}}^{2}\right|}{\left\|\alpha_{k_{2}}^{2}\right\|^{2}} \alpha_{k_{2}}^{2}\right)=\beta_{1} \cup \beta_{2} .
$$

Now we proceed onto define the notion of strong neutrosophic n -vector spaces of type II, $\mathrm{n} \geq 3$ and neutrosophic n-vector space $n \geq 3$ in chapter three.

Several problems are proposed in chapter four of this book for the interested reader.

Chapter Three

Neutrosophic n-Vector Spaces

In this chapter we for the first time introduce the notion of neutrosophic n-vector spaces of both type I and type II ($\mathrm{n} \geq 3$) and discuss some of the important properties about them. This chapter has three sections. Section one introduces the notion of neutrosophic n-vector spaces. Neutrosophic strong n-vector spaces are introduced in section two and neutrosophic n-vector spaces of type II is studied in section three.

3.1 Neutrosophic n-Vector Spaces

In this section we introduce strong neutrosophic n-vector spaces $\mathrm{n} \geq 3$ and illustrate it by some examples and discuss some of their properties.

DEFINITION 3.1.1: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}(n \geq 3)$ be such that each V_{i} is a neutrosophic set and is a vector space over the
real field $F ; 1 \leq i \leq n$. We call $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ to be a neutrosophic n-vector space over the field F.

We illustrate this by some examples.
Example 3.1.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 6\right\} \cup \\
& \left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, c, d \in Q I\right\} \cup \\
& \left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{i} \in N(Q) ; 1 \leq i \leq 5\right\} \cup \\
& \left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 8\right\} \cup
\end{aligned}
$$

\{QI[x]; all polynomial in the variable x with coefficients from the neutrosophic field QI\}; V is a neutrosophic 5-vector space over the real field Q.

Example 3.1.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right) \right\rvert\, a, \mathrm{a}, \mathrm{c} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup\left\{[\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}] \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \in \mathrm{~N}\left(\mathrm{Z}_{7}\right)\right\}
$$

$\cup\left\{N\left(\mathrm{Z}_{7}\right)[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.N\left(\mathrm{Z}_{7}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I ; 1 \leq i \leq 9\right\}
$$

V is a neutrosophic 4-vector space over the real field Z_{7}.
Example 3.1.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{13} I\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \mid a_{i} \in N\left(Z_{13}\right) ; 1 \leq i \leq 6\right\} \cup \\
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 8\right\},
\end{gathered}
$$

V is a neutrosophic 3-vector space over the real field Z_{13}.
Note: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ be a neutrosophic n-vector space over the real field $F(n \geq 3)$. If $n=2$ we get the neutrosophic bivector space. Having seen examples of neutrosophic n-vector spaces ($n \geq 3$) we now proceed onto define some substructures related with them.

DEFINITION 3.1.2: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}(n \geq 3)$ be a neutrosophic n-vector space over the real field F. Let $W=W_{1} \cup$ $W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$; if W is itself a neutrosophic n-vector space over the same real field F then we call W to be a neutrosophic n-vector subspace of V over the field F (each $W_{i} \subseteq V_{i}$ is a proper subspace different $\{0\}$ space and $\left.V_{i}\right), i=1,2, \ldots, n$.

We will illustrate this definition by some examples.

Example 3.1.4: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} I ; 1 \leq i \leq 12\right\} \\
\left\{\left.\left\{\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in Z_{17} I ; 1 \leq i \leq 10
\end{array}\right\} \cup \\
\left.\left.\left\{\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in Z_{17} I ; 1 \leq i \leq 9
\end{array}\right\} \cup
\end{gathered}
$$

$\left\{\mathrm{Z}_{17} \mathrm{I}[\mathrm{x}]\right.$; all polynomials the variable x with coefficients from $\left.\mathrm{Z}_{17} \mathrm{I}\right\}$ be a neutrosophic 4-vector space over the real field Z_{17}. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left\{\left.\left(\left.\begin{array}{ccc}
a & a & a \\
a \\
a & a & a \\
a \\
a & a & a
\end{array} \right\rvert\,\right) \right\rvert\, a \in Z_{17} I\right\} \cup\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a \\
b & b \\
b & b \\
c & c
\end{array}\right) \right\rvert\, \begin{array}{l}
a, b, c \in Z_{17} I
\end{array}\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & \mathrm{~d} & \mathrm{e} \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup \\
& \\
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$. Clearly W is a neutrosophic 4-vector subspace of V over the real field Z_{17}.

Example 3.1.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{gathered}
\{\mathrm{N}(\mathrm{Q})\} \cup\left\{\left.\left(\begin{array}{cccccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6} \\
\mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10} & \mathrm{a}_{11} & \mathrm{a}_{12}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 12\right\} \\
\cup\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 7\right\} \cup
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} \\
a_{16} & a_{17} & a_{18} \\
a_{19} & a_{20} & a_{21}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(Q) ; 1 \leq i \leq 21\right\} \cup \\
& \left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 21\right\} \cup
\end{aligned}
$$

$\{\mathrm{N}(\mathrm{Q})[\mathrm{x}]$; all polynomials in the variable x with coefficient from $N(Q)\}$ be a neutrosophic 6 -vector space over the real field Q . Consider $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=\{\{\mathrm{QI}\}\}$

$$
\begin{gathered}
\cup\left\{\left.\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq i \leq 6\right\} \cup \\
\{x, x, x, x, x, x, x) \mid x \in Q I\} \cup
\end{gathered}
$$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
b & b & b \\
a & a & a \\
b & b & b \\
c & c & c \\
b & b & b \\
c & c & c
\end{array}\right) \right\rvert\, a, b, c \in Q I\right\} \cup \\
\left\{\left.\begin{array}{lll}
a & a & a
\end{array} \right\rvert\,\right. \\
\left.\left\{\begin{array}{lll}
b & b & b \\
c & b & c
\end{array}\right) \right\rvert\, a, b, c, d \in N(Q) \\
d
\end{gathered} d^{d}
$$

$\{\mathrm{QI}[\mathrm{x}] \mid$ all polynomials in the variable x with coefficients from $\mathrm{QI}\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$; W is a neutrosophic 6vector subspace of V over the real field Q .

Now having seen the examples of neutrosophic n-vector subspace of a neutrosophic n-vector spaces we proceed onto define the new notion of sub neutrosophic n-vector subspace.

DEFINITION 3.1.3: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}(n \geq 3)$ be a neutrosophic n-vector space over the real field F. Let $W=W_{1} \cup$ $W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that W is a neutrosophic n-vector space over a proper subfield K of F then we define W to be a sub neutrosophic n-vector subspace of V over the subfield K of F.

We will illustrate this situation by some examples.

Example 3.1.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{RI} ; 1 \leq \mathrm{i} \leq 8\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} \\
a_{16} & a_{17} & a_{18}
\end{array}\right) \right\rvert\, \begin{array}{c}
a_{i} \in Q(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \sqrt{19}) I \\
1 \leq i \leq 18
\end{array}\right\}
$$

$\cup\{\operatorname{RI}[\mathrm{x}]$; all polynomials in the variable x with coefficients from RI\} $\cup\{5 \times 5$ neutrosophic matrices with entries from RI $\}$ be a neutrosophic 4-vector space over the real field $\mathrm{F}=$ $\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \sqrt{19})$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left\{\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \left\lvert\, \begin{array}{l}
a_{i} \in Q(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13} \\
\sqrt{19}, \sqrt{23}, \sqrt{41}, \sqrt{43}, \sqrt{53}) I ; 1 \leq i \leq 8
\end{array}\right.\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right) \right\rvert\, a_{1}, a_{2}, a_{3} \in Q(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \sqrt{19}) I\right\}
$$

$$
\cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{RI}[\mathrm{x}] ; 0 \leq \mathrm{i} \leq \infty\right\} \cup
$$

$\{5 \times 5$ neutrosophic diagonal matrices with entries from RI$\} \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}, \mathrm{~W}$ is a sub neutrosophic 4-vector subspace of V over the subfield $\mathrm{K}=\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \subseteq \mathrm{F}=$ $\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \sqrt{19})$.

Example 3.1.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$ be a neutrosophic 7 -vector space over the real field R where

$$
\mathrm{V}_{1}=\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{~N}(\mathrm{R})\right\},
$$

$\mathrm{V}_{2}=\{\mathrm{N}(\mathrm{R})[\mathrm{x}]$; all polynomials in the variable x with coefficients from $\mathrm{N}(\mathrm{R})\}$,

$$
\begin{gathered}
V_{3}=\left\{\left.\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16} & a_{17} & a_{18}
\end{array}\right) \right\rvert\, a_{i} \in N(R) ; 1 \leq i \leq 18\right\}, \\
V_{4}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N(R)\right\}, V_{5}=\{N(R)\}, \\
V_{6}=\left\{\begin{array}{ll}
\end{array}\right\} \\
\left\{\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10} \\
a_{11} & a_{12} \\
a_{13} & a_{14}
\end{array}\right)\left|\mid a_{i} \in R I ; 1 \leq i \leq 14\right\}
\end{gathered}
$$

and $\mathrm{V}_{7}=\{$ all 9×9 neutrosophic matrices with entries from RI $\}$.
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}=$

$$
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in R I\right\} \cup
$$

\{RI[x] all polynomials in the variable x with coefficients from $R I\} \cup$

$$
\left.\left.\left.\begin{array}{l}
\left\{\left(\begin{array}{lllll}
a & a & a & a & a \\
b & b & b & b & b \\
c & b \\
c & c & c & c & c
\end{array} c\right.\right.
\end{array}\right) \mid a, b, c \in R I\right\} \cup\right\}
$$

$\{$ all 9×9 neutrosophic matrices with entries from $\mathrm{N}(\mathrm{Q})\} \subseteq \mathrm{V}_{1}$ $\cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6} \cup V_{7}$ is a sub neutrosophic 7-vector subspace of V over the subfield Q of the field R.

We define a neutrosophic n-vector space which has no proper sub neutrosophic n-vector subspace to be a subsimple neutrosophic n-vector space.

We will illustrate this by examples.
Example 3.1.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\{\mathrm{QI}[\mathrm{x}]\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 10\right\} \cup
$$

$\{10 \times 10$ neutrosophic matrices with entries from QI $\} \cup\left\{\left(\mathrm{a}_{1}\right.\right.$, $\left.\left.a_{2}, a_{3}\right) \mid a_{i} \in R I\right\}$ be a neutrosophic 5 -vector space over the real field Q. Clearly V has no sub neutrosophic 5 -vector subspace as Q is a prime field that Q has no proper subfields. Hence V is a subsimple neutrosophic 5 -vector space over Q .

Example 3.1.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=\left\{\mathrm{Z}_{2} \mathrm{I}\right.$ $\left.\times \mathrm{Z}_{2} \mathrm{I} \times \mathrm{Z}_{2} \mathrm{I} \times \mathrm{Z}_{2} \mathrm{I}\right\} \cup\left\{\mathrm{Z}_{2} \mathrm{I}[\mathrm{x}]\right.$ all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup$

$$
\begin{gathered}
\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I}
\end{array}\right) \mathrm{I}+\mathrm{I}=2 \mathrm{I} \equiv 0(\bmod 2)\right\} \cup \\
\left\{\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{~N}\left(\mathrm{Z}_{2}\right)\right\} \cup\right.
\end{gathered}
$$

$\left\{\right.$ all 3×7 neutrosophic matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{2}\right)\right\} \cup\{$ all 9×4 neutrosophic matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{2}\right)\right\}$ be a neutrosophic 6 -vector space over the real field Z_{2}. Further it can be easily verified V has no proper neutrosophic 6 -vector subspace over Z_{2}. Since Z_{2} is a prime field of characteristic two it has no proper subfields. This V is a subsimple neutrosophic 6vector space over Z_{2}.

THEOREM 3.1.1: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over a real field F. If F is a prime field that is F has no proper subfields then V is a subsimple neutrosophic nvector space over F.

Proof: Given $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is a neutrosophic nvector space over the real field F , such that F is a prime field; that is F has no proper subfields. By the definition of such neutrosophic n-vector subspaces we see V does not have a proper sub neutrosophic n-vector subspace hence V is a subsimple neutrosophic n-vector space over F.

We define the notion of doubly simple neutrosophic n-vector space over a real field F .

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ be a neutrosophic n-vector space over a field F . If V has no proper neutrosophic n-vector subspace over the field F then we all V to be a simple neutrosophic n-vector space over the field F.

We will first illustrate this situation by some examples.
Example 3.1.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{gathered}
\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
\mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I}
\end{array}\right), \left.\left(\begin{array}{ll}
2 \mathrm{I} & 2 \mathrm{I} \\
2 \mathrm{I} & 2 \mathrm{I}
\end{array}\right) \right\rvert\,\right. \text { elements of these matrices are from } \\
\left.\mathrm{Z}_{3} \mathrm{I}\right\} \cup\left\{\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
\mathrm{I} & \mathrm{I} & \mathrm{I} & \mathrm{I} \\
\mathrm{I} & \mathrm{I} & \mathrm{I} & \mathrm{I}
\end{array}\right), \left.\left(\begin{array}{llll}
2 \mathrm{I} & 2 \mathrm{I} & 2 \mathrm{I} & 2 \mathrm{I} \\
2 \mathrm{I} & 2 \mathrm{I} & 2 \mathrm{I} & 2 \mathrm{I}
\end{array}\right) \right\rvert\,\right.
\end{gathered}
$$

elements of these 2×4 matrices are from neutrosophic field $\left.Z_{3} I\right\} \cup\left\{5 \times 5\right.$ neutrosophic matrices with entries from $\left.Z_{3} I\right\} \times$ $\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mid a_{i} \in N\left(Z_{3}\right) ; 1 \leq i \leq 7\right\}$ be a neutrosophic 4 -vector space over the field Z_{3}. Clearly V has no neutrosophic 4 -vector subspaces so V is a simple neutrosophic n -vector space.

Example 3.1.11: Let $\mathrm{V}=\left\{(\mathrm{a}\right.$ a a a $\left.) \mid \mathrm{a} \in \mathrm{Z}_{5} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
0 & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{5} \mathrm{I}\right\} \cup
$$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{5} I\right\} \cup \\
\left\{\left\{\begin{array}{llll}
a & 0 & 0 & 0 \\
a \\
a & a & 0 & 0 \\
a \\
a & a & a & 0
\end{array} 0\right.\right. \\
a
\end{gathered} a_{1} a
$$

$=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ be a neutrosophic 4-vector space over the real field Z_{5}. V is a simple neutrosophic 4 -vector space.

We define doubly simple neutrosophic vector space.
DEFINITION 3.1.4: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over the real field F. Suppose V is a simple neutrosophic n-vector space as well as simple subneutrosophic bivector space then we call V to be a doubly simple neutrosophic n-vector space.

We will illustrate this situation by some simple examples.
Example 3.1.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$ be neutrosophic 7 -vector space over the real field Z_{7} where

$$
\mathrm{V}_{1}=\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\},
$$

$$
\mathrm{V}_{2}=\left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\}, V_{3}=\left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
a & a & 0 & 0 \\
a & a & a & 0 \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\}
$$

$$
\mathrm{V}_{4}=\left\{(\mathrm{a} \text { a a a a a } a \mathrm{a}\} \mid \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\}, \mathrm{V}_{5}=\left\{\left.\left(\begin{array}{l}
\mathrm{a} \\
\mathrm{a}
\end{array}\right) \right\rvert\,{ }_{\mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}}\right\} \text {, }
$$

$$
\mathrm{V}_{6}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & 0 \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

and

$$
\mathrm{V}_{7}=\left\{\left.\left(\begin{array}{cccccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\} .
$$

It is easily verified V is a simple neutrosophic 7-vector space as each V_{i} is a simple neutrosophic vector space for $i=1,2, \ldots, 7$. Further Z_{7} is a prime field so V has no subneutrosophic 7 vector subspaces. Thus V is a doubly simple neutrosophic 7-vector space over Z_{7}.

Example 3.1.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{17} I\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
b & b & b & b
\end{array}\right) \right\rvert\, a, b \in Z_{17} I\right\} \cup\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{17} I\right\}
\end{gathered}
$$

be a neutrosophic 3-vector space over the real field Z_{17}. Clearly V is also a doubly simple neutrosophic bivector space over the field Z_{17}.

A neutrosophic n-vector space can have neutrosophic n vector subspace still it can be a simple sub neutrosophic nvector space. This is shown by some simple examples.

Example 3.1.14: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ be a neutrosophic 5 -vector space over the real field $\mathrm{F}=\mathrm{Z}_{11}$. Here

$$
\begin{gathered}
V_{1}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{11} I\right\} \\
V_{2}=\left\{\left.\left(\begin{array}{llll}
a & a & a & a \\
a \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in N\left(Z_{11}\right)\right\}, \\
V_{3}=\left\{\left.\left(\begin{array}{ll}
a & a \\
b & b \\
c & c \\
d & d \\
e & e \\
f & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in N\left(Z_{11}\right)\right\}
\end{gathered}
$$

$$
V_{4}=\left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{11}\right) ; 1 \leq i \leq 10\right\}
$$

and $\mathrm{V}_{5}=\left\{\mathrm{Z}_{17} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\mathrm{Z}_{17} \mathrm{I}$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
a & a & a & a & a \\
a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$; W is a neutrosophic 5-vector subspace of V . So V is not a simple neutrosophic 5 -vector space, however V has no subneutrosophic subvector space as Z_{11} is a prime field so V is a subsimple neutrosophic 5 -vector space over Z_{11}.

Thus V is not a doubly simple neutrosophic 5 -vector space over the field Z_{11}.

Now we proceed onto define the notion of neutrosophic n-linear algebra $\mathrm{n} \geq 3$.

DEFINITION 3.1.5: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over the real field F. If each V_{i} is a neutrosophic linear algebra over the field F then we define V to be a neutrosophic n-linear algebra over the field F.

We illustrate this situation by some simple examples.
Example 3.1.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, \ldots, h, i \in Z_{2} I\right\} \cup\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{2} I\right\}
$$

$\cup\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I}, 1 \leq \mathrm{i} \leq 4\right\} \cup\left\{\mathrm{Z}_{2} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{2} \mathrm{I}\right\}$ be a neutrosophic 4 linear algebra over the real field $\mathrm{Z}_{2}=\{0,1\}$.

Example 3.1.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup
$$

$\{\mathrm{N}(\mathrm{Q})[\mathrm{x}]$; all polynomials in the variable x with coefficients from the neutrosophic field QI $\} \cup\{5 \times 5$ neutrosophic matrices
with entries from QI $\} \cup\{7 \times 7$ neutrosophic upper triangular matrices with entries from QI $\} \cup$

$$
\left\{\left.\left(\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in \mathrm{QI}\right\} \cup
$$

$\{N(Q)\}$ is a neutrosophic 6-linear algebra over the real field Q .
Now we will state the following theorem. The reader is expected to prove it.

THEOREM 3.1.2: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra defined over the real field F. Every neutrosophic n-linear algebra is a neutrosophic n-vector space. But in general a neutrosophic n-vector space need not be a neutrosophic n-linear algebra.

We give an example of a neutrosophic n-vector space which is not a neutrosophic n-linear algebra.

Example 3.1.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ccccc}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} \\
\mathrm{a} & \mathrm{~b}
\end{array}\right) \right\rvert\, \begin{array}{l}
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{Z}_{7} \mathrm{I}
\end{array}\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right) \right\rvert\, \begin{array}{l}
a, b, c, d, e \in N\left(Z_{7}\right)
\end{array}\right\} \cup \\
& \left.\left\{\begin{array}{lll}
a & 0 & 0 \\
0 & b & d \\
e & f & g
\end{array}\right) \right\rvert\,\left(a, b, c, d, e, f, g \in N\left(Z_{7}\right)\right\} \cup \\
& \\
& \left\{\left.\left(\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right) \right\rvert\, x, y \in N\left(Z_{7}\right)\right\}
\end{aligned}
$$

be a neutrosophic 5 -vector space over the real field Z_{7}. Clearly V is not a neutrosophic 5 -linear algebra over the real field Z_{7}. For we see in V_{1} we cannot define product so V_{1} is not a neutrosophic linear algebra over Z_{7}.

$$
\mathrm{V}_{2}=\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} \\
\mathrm{a} & \mathrm{~b}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

is not a neutrosophic linear algebra over Z_{7} a product in V_{2} cannot be defined only addition is valid. V_{4} is a neutrosophic linear algebra over Z_{7}. However V_{5} and V_{3} are not neutrosophic linear algebras. Thus $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}$ is not a neutrosophic 5-linear algebra over the field Z_{7}. Hence the claim.

We now proceed onto define the notion of neutrosophic n-linear subalgebra of a neutrosophic n-linear algebra.

DEFINITION 3.1.6: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n - linear algebra over the real field F. Let $W=W_{1} \cup W_{2} \cup \ldots$ $\cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over the field F then we call W to be neutrosophic n-linear subalgebra of V over the field F.

We will illustrate this situation by some examples.
Example 3.1.18: Let $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{Z}_{11} I\right\} \cup \\
\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right) ; 1 \leq \mathrm{i} \leq 5\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
d & d & f
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g} \in \mathrm{Z}_{11} \mathrm{I}\right\}
\end{gathered}
$$

$\left\{\mathrm{Z}_{11} \mathrm{I}[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{11} \mathrm{I}\right\} \cup\left\{10 \times 10\right.$ neutrosophic matrices with entries from $\left.\mathrm{Z}_{11} \mathrm{I}\right\}$ be a neutrosophic 5 -linear algebra over the real field Z_{11}. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup \\
\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{i} \in Z_{11} I ; 1 \leq i \leq 5\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a & a & 0 \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup\left\{\sum_{i=0}^{\infty} a_{i} x^{2 i} \mid a_{i} \in Z_{11} I ; 0 \leq i \leq \infty\right\} \cup
\end{gathered}
$$

\{all 10×10 upper triangular matrices with entries from $\left.\mathrm{Z}_{11} \mathrm{I}\right\} \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \mathrm{~W}$ is a neutrosophic 5-linear subalgebra of V over the real field Z_{11}.

Example 3.1.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\left\lvert\, \begin{array}{lll}
a & 0 & 0 \\
b & b & 0 \\
c & c & c
\end{array}\right.\right) \right\rvert\, a, b, c \in Z_{17} I\right\} \cup \\
\left\{\left\{\sum_{i=0}^{\infty} a_{i} \mathrm{i}^{i} \mid a_{i} \in Z_{17} I ; 0 \leq i \leq \infty\right\} \cup\right. \\
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{17} I\right\} \cup
\end{array}\right\}
$$

be a neutrosophic 4-linear algebra over the real field $\mathrm{Z}_{1} 7$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{a} & \mathrm{a} & 0 \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
a & a & a \\
0 & a & a \\
0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{17} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
b & b & b & b \\
c & c & c & c \\
d & d & d & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{17} I\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$; W is a neutrosophic 4-linear subalgerba of V over the real field Z_{17}.

We see in general all neutrosophic n-linear algebras need not have neutrosophic n-linear subalgebras.

Suppose we have a neutrosophic n-linear algebra V which no proper neutrosophic n-linear subalgebra then we call V to be a simple neutrosophic n-linear algebra.

We will illustrate this situation by some examples.
Example 3.1.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{19} I\right\} \cup\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
0 & a & a \\
0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{19} I\right\} \cup \\
\\
\left\{\left.\left\{\begin{array}{lllll}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{19} I\right\} \cup \\
\\
\left\{\left(a \text { a a a a a a a) } \mid a \in Z_{19}\right\} \cup\right.
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
a & a & 0 & 0 \\
a & a & a & 0 \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{19} I\right\}
$$

be a neutrosophic 5 -linear algebra over the real field Z_{19}. We see V has no neutrosophic 5 -linear subalgebra over the field Z_{19}. Thus V is a simple neutrosophic 5-linear algebra over Z_{19}.

Example 3.1.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$ $\cup \mathrm{V}_{8}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
a & a & 0 & 0 \\
a & a & a & 0 \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in Z_{7} I ; 0 \leq i \leq \infty\right\} \cup\left\{\left.\left(\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in N\left(Z_{7} I\right)\right\} \cup
\end{gathered}
$$

$\left\{\mathrm{N}\left(\mathrm{Z}_{7} \mathrm{I}\right)\right\} \cup\{$ all 9×9 upper triangular matrices with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{lllll}
a & a & a & a & a \\
a & a & a & a & a \\
a \\
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
a \\
a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\}
$$

\{all 10×10 lower triangular neutrosophic matrices with entries with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

be a neutrosophic 8 -linear algebra over the real field Z_{7}. Clearly V is a simple neutrosophic 8-linear algebra as the neutrosophic linear algebras V_{1}, V_{3}, V_{6} and V_{8} are simple neutrosophic linear algebras over the real field Z_{7}.

Now we proceed onto define yet another new substructures in neutrosophic n-linear algebras.

DEFINITION 3.1.7: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra a real field F. Suppose $W=W_{1} \cup W_{2} \cup \ldots \cup$ $W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a proper n-subset of V such that W is a neutrosophic n-linear algebra over a proper subfield K of F then we define W to be subneutrosophic n-linear subalgebra of V over the subfield K of the field F.

We will illustrate this by some examples.
Example 3.1.22: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in R I\right\} \cup\{R I\} \cup\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a & a & 0 \\
a & a & a
\end{array}\right) \right\rvert\, a \in N(R)\right\} \cup \\
\left\{\left\{\left.\begin{array}{l}
\sum_{i=0}^{\infty} a_{i} x^{i}
\end{array} \right\rvert\, a_{i} \in R I ; 0 \leq i \leq \infty\right\} \cup\right. \\
\left.\left\{\begin{array}{llll}
\text { a } & \text { a } & \text { a } & a \\
b & b & b & b \\
c & c & c & c \\
d & d & d & d
\end{array}\right) \right\rvert\, a, b, c, d \in R I
\end{array}\right\} \cup \begin{aligned}
&
\end{aligned}
$$

$\{11 \times 11$ neutrosophic matrices with entries from the neutrosophic field RI\} be a neutrosophic 6-linear algebra over the real field R, the field of reals. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup$ $\mathrm{W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in R I\right\} \cup\{Q I\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a & a & 0 \\
a & a & a
\end{array}\right) \right\rvert\, a \in R I\right\} \cup\left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
a & a & a & a \\
a & a & a & a \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in R I\right\} \cup \\
& \left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup
\end{aligned}
$$

\{all 11×11 neutrosophic matrices with entries from QI$\} \subseteq \mathrm{V}_{1}$ $\cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6}$, W is a subneutrosophic 6 linear algebra over the real field $\mathrm{Q} \subseteq \mathrm{R}$.

Example 3.1.23: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in R I\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a & 0 & 0 \\
b & c & 0 \\
d & e & 0
\end{array}\right) \right\rvert\, a, b, c, d, e \text { are in } N(R I)\right\} \cup \\
\\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in R I ; 0 \leq i \leq \infty\right\}
\end{gathered}
$$

$\cup\{\mathrm{N}(\mathrm{R})\} \cup\{7 \times 7$ neutrosophic matrices with entries from RI $\}$ is a neutrosophic 5 -linear algebra over the real field R .

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
\qquad\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq \infty\right\}
\end{gathered}
$$

$\{\mathrm{N}(\mathrm{Q})\} \cup\{7 \times 7$ neutrosophic matrices with entries from QI$\} \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ is a subneutrosophic 5-linear subalgebra of V over the subfield Q of R,

Now if a neutrosophic n -linear algebra V has no proper subneutrosophic linear subalgebra over a subfield K of $F(V$ is defined over F), then we call V to be subsimple. neutrosophic nlinear algebra.

We will illustrate this situation by some simple examples.
Example 3.1.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
\mathrm{a}_{2} & a_{3} & 0 & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & a_{6} & 0 \\
\mathrm{a}_{7} & \mathrm{a}_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 10\right\} \cup
\end{array}\right\}
$$

$\left\{\mathrm{N}\left(\mathrm{Z}_{7}\right)\right\}$ be a neutrosophic 4-linear algebra over the real field Z_{7}. Since Z_{7} has no proper subfields that is as Z_{7} is a prime field we see V has no subneutrosophic 4-linear subalgebras. Hence V is a subsimple 4-linear algebra.

Example 3.1.25: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & a_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6} \\
\mathrm{a}_{7} & \mathrm{a}_{8} & a_{9}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 9\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup\{\mathrm{N}(\mathrm{R})\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & a_{6} & 0 \\
\mathrm{a}_{7} & \mathrm{a}_{8} & a_{9} & \mathrm{a}_{10}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{RI} \quad 0 \leq \mathrm{i} \leq 10\right.
\end{array}\right\} \cup \mathrm{l}
$$

\{All 10×10 neutrosophic matrices with entries from RI\} is a neutrosophic 5-linear algebra over the field Q . Clearly Q is a prime field so V has no subneutrosophic 5 -linear algebra, hence V is a subsimple neutrosophic 5-linear algebra.

In view of this example we have nice theorem which gurantees the existence of subsimple neutrosophic n-linear algebras.

THEOREM 3.1.3: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over a real field F, where F is a prime field i.e., has no subfields then V is a subsimple neutrosophic nlinear algebra.

Proof: Follows from the fact that $\mathrm{V}=\mathrm{V}_{1} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is defined over the prime field F for a subneutrosophic n -linear algebra to
exist we need the existence of a subfield in F. Hence V is a subneutrosophic simple n-linear algebra.

A simple neutrosophic n-linear algebra need not in general be a simple subneutrosophic n-linear algebra.

Example 3.1.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{11}\right)\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} ; 1 \leq i \leq 6\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
0 & a_{5} & a_{6} & a_{7} \\
0 & 0 & a_{8} & a_{9} \\
0 & 0 & 0 & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 10\right\} \cup
\end{aligned}
$$

\{all 7×7 matrices with entries from $\mathrm{Z}_{11} \mathrm{I}$ \} be a neutrosophic 5linear algebra over the real field Z_{11}.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{a} & \mathrm{a} & 0 \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
0 & a & a & a \\
0 & 0 & a & a \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{lllllll}
a & 0 & 0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 & 0 & 0 \\
a & a & a & 0 & 0 & 0 & 0 \\
a & a & a & a & 0 & 0 & 0 \\
a & a & a & a & a & 0 & 0 \\
a & a & a & a & a & a & 0 \\
a & a & a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$.
W is a neutrosophic 5 -linear subalgebra of V over the field Z_{11}. But V has no subneutrosophic 5 -sublinear algebra. Hence the claim.

Now we define yet another new substructures.
DEFINITION 3.1.8: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over the real field F. Let $W=W_{1}$ $\cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$; be such that W is only a neutrosophic n-vector space over F and not a neutrosophic nlinear subalgebra of V; then we call W to be a neutrosophic pseudo n-vector subspace of V or W is a pseudo neutrosophic n vector subspace of V.

We will illustrate this situation by some simple examples.

Example 3.1.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{QI}\right\} \cup \\
\left\{\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{i}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; 0 \leq \mathrm{i} \leq \infty\right\} \cup\right.
\end{gathered}
$$

$\{\mathrm{N}(\mathrm{Q})\} \cup\{5 \times 5$ neutrosophic upper triangular matrices with entries from $\mathrm{N}(\mathrm{Q})\}$ be a neutrosophic 5 -linear algebra over the real field Q .

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{aligned}
&\left\{\left.\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right) \right\rvert\, b, c \in N(Q)\right\} \cup\left\{\left.\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
d & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Q I\right\} \cup \\
&\left\{\sum_{i=0}^{8} a_{i} x^{i} \mid a_{i} \in N(Q) ; 0 \leq i \leq 8\right\} \cup\{Q I\} \cup \\
&\left\{\left.\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & b & 0 \\
0 & 0 & c & 0 & 0 \\
0 & d & 0 & 0 & 0 \\
e & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d, e \in N(Q)\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$; W is only a neutrosophic 5-vector space over the field Q ; thus W is only a pseudo neutrosophic 5vector subspace of V over Q .

Example 3.1.28: Let $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in N\left(Z_{2}\right)\right\} \cup \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in N\left(Z_{2}\right)\right\} \cup\left\{\left.\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right) \right\rvert\, a, b \in N\left(Z_{2}\right)\right\} \cup
\end{gathered}
$$

$\left\{5 \times 5\right.$ neutrosophic matrices with entries from $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup\{7 \times 7$ neutrosophic matrices with entries from $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup\{4 \times 4$ neutrosophic matrices with entries from $\left.\mathrm{Z}_{2} \mathrm{I}\right\}$ be a neutrosophic 6-linear algebra over the real field Z_{2}.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
0 & 0 & a \\
0 & b & 0 \\
c & 0 & 0
\end{array}\right) \right\rvert\, \text { a,b,c } \in N\left(Z_{2}\right)\right\} \cup \\
\left\{\sum_{i=0}^{29} a_{i} x^{i} \mid a_{i} \in N\left(Z_{2}\right) ; 0 \leq i \leq 29\right\} \cup\left\{\left.\left(\begin{array}{ll}
0 & b \\
a & 0
\end{array}\right) \right\rvert\, a, b \in N\left(Z_{2}\right)\right\} \cup \\
\left\{\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & b
\end{array}\right) \\
0
\end{gathered} 0
$$

$$
\left.\begin{array}{l}
\left\{\left.\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & a \\
0 & 0 & 0 & 0 & a & a & a \\
0 & 0 & 0 & a & a & a & a \\
0 & 0 & a & a & a & a & a \\
0 & a & a & a & a & a & a \\
a & a & a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{2} I\right.
\end{array}\right\} \cup
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$.

It is easily verified that W is only a neutrosophic 6-vector space over Z_{2}, so W is a pseudo neutrosophic 6 -vector subspace of V over Z_{2}.

Now we proceed onto define pseudo subneutrosophic n-vector subspace of V.

DEFINITION 3.1.9: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over a real field F. Suppose $W=$ $W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n vector space over a subfield K of F then we call W to be a pseudo subneutrosophic n-vector subspace of V over the subfield K of F.

We will illustrate this by some simple examples.
Example 3.1.29: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{R})\right\} \cup\{\mathrm{N}(\mathrm{R})\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{7} & a_{8} \\
a_{2} & a_{3} & a_{9} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in R I ; 1 \leq i \leq 9\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{11} & a_{5} & a_{6} & a_{7} \\
a_{12} & a_{13} & a_{8} & a_{9} \\
a_{14} & a_{15} & a_{16} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(\mathrm{R}) ; 1 \leq i \leq 16\right\} \cup
\end{aligned}
$$

$\{\mathrm{N}(\mathrm{R})[\mathrm{x}]$; all polynomials in the variable x with coefficients from $\mathrm{N}(\mathrm{R})$ \} be a neutrosophic 5 -linear algebra over the real field R . Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\{\mathrm{Q}(\mathrm{R})\} \cup \\
& \left.\left.\left\{\begin{array}{|ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 6\right\} \cup \\
& \left.\left.\left\{\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & a_{4} \\
0 & \mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} \\
0 & 0 & a_{8} & \mathrm{a}_{9} \\
0 & 0 & 0 & a_{10}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; 1 \leq \mathrm{i} \leq 10\right\} \cup
\end{aligned}
$$

$\{\mathrm{N}(\mathrm{Q})[\mathrm{x}]$; all polynomials in the variable x with coefficients from $N(Q)\} \subseteq V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}$ is a subneutrosophic 5linear subalgebra of V .

This will be different from pseudo subneutrosophic 5-vector subspace of V .

$$
\text { Take } \mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=
$$

$$
\left\{\left.\left(\begin{array}{cc}
0 & \mathrm{~b} \\
\mathrm{c} & 0
\end{array}\right) \right\rvert\, \mathrm{b}, \mathrm{c} \in \mathrm{QI}\right\} \cup\{\mathrm{QI}\} \cup\left\{\left.\left(\begin{array}{ccc}
0 & 0 & \mathrm{a} \\
0 & \mathrm{~b} & 0 \\
\mathrm{c} & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{QI}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{QI}\right\} \cup\left\{\sum_{i=0}^{41} a_{i} x^{i} \mid a_{i} \in \mathrm{QI} ; 0 \leq i \leq 41\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$; W is only a neutrosophic 5-vector space over the field Q (Q a subfield R).

W is a pseudo subneutrosophic 5 -vector subspace of V over the subfield Q of R.

Example 3.1.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$ $\{\mathrm{N}(\mathrm{R})\} \cup\{\mathrm{N}(\mathrm{R})[\mathrm{x}]$; all neutrosophic polynomials in the variable x with coefficients from $\mathrm{N}(\mathrm{R})\} \cup$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in N(R) ; 1 \leq i \leq 9\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right) \right\rvert\, a_{i} \in R I ; 1 \leq i \leq 16\right\} \cup
\end{gathered}
$$

\{All 8×8 matrices with entries from the neutrosophic field RI\} $\cup\{6 \times 6$ matrices with entries from the neutrosophic 6 -linear algebra over the real field R$\}$ be a neutrosophic 6-linear algebra
over the real field R. Take $W=W_{1} \cup W_{2} \cup W_{3} \cup W_{4} \cup W_{5} \cup$ $\mathrm{W}_{6}=\{\mathrm{QI}\} \cup$

$$
\begin{aligned}
& \left\{\sum_{i=0}^{50} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 50\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
0 & 0 & a \\
0 & b & 0 \\
c & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathrm{QI}\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & 0 \\
0 & d & a & 0 \\
e & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d, a, e \in Q I\right\} \cup
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccccc}
0 & 0 & 0 & a & 0 & b \\
0 & 0 & 0 & 0 & d & 0 \\
0 & 0 & e & f & 0 & 0 \\
0 & 0 & g & h & 0 & 0 \\
0 & p & 0 & 0 & 0 & 0 \\
\mathrm{a} & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, d, e, f, g, h, p, a \in \mathrm{QI}\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} ; \mathrm{W}$ is a pseudo subneutrosophic 6-vector subspace of V over the real field Q .

If a neutrosophic n-linear algebra $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ does not contain any pseudo subneutrosophic n-vector subspace over a subfield K of F where V is defined over F ; then we call V to be a pseudo simple subneutrosophic n-vector space over the field F.

We will illustrate this by some simple examples.
Example 3.1.31: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{7} I\right\} \cup\left\{N\left(Z_{7}\right)\right\} \cup \\
\left\{\begin{array}{llll}
\left.\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} \mathrm{I} ; 1 \leq i \leq 16\right\} \cup \\
& \left\{\left.\begin{array}{lll}
\sum_{i=0}^{\infty} a_{i} x^{i}
\end{array} \right\rvert\, a_{i} \in Z_{7} I ; 0 \leq i \leq \infty\right\} \cup
\end{array}\right. \\
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{7} I\right\}
\end{gathered}
$$

be a neutrosophic 5 -linear algebra over the real field Z_{7}. Since Z_{7} is a prime field it has no proper subfields. Hence V does not contain any pseudo subneutrosophic 5 -vector subspace over Z_{7}. Hence V is a pseudo simple subneutrosophic 5 -vector space over the field Z_{7}.

Now we proceed onto define linear transformation of neutrosophic n-vector space over the real field and discuss a few of its properties.

DEFINITION 3.1.10: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over a real field F and $W=W_{1} \cup$ $W_{2} \cup \ldots \cup W_{n}$ be a neutrosophic n-vector space over the same real field F. Define $T: V \rightarrow W . T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}: V=V_{1}$ $\cup V_{2} \cup \ldots \cup V_{n} \rightarrow W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ by $T\left(V_{i}\right)=W_{j}$ such that no two distinct V_{i} 's are mapped on to the same $W_{j} ; 1 \leq i, j \leq$ n, where T_{i} is a neutrosophic linear transformation from V_{i} into $W_{j} ; 1 \leq i, j \leq n$, for $i=1,2,3, \ldots, n$. We call $T=T_{1} \cup T_{2} \cup \ldots \cup$ T_{n} to be a neutrosophic n-linear transformation of V into W.

If $W=V$ then we call T to be a neutrosophic n-linear operator on V. The set of all neutrosophic n-linear transformations of V into W, V and W defined over a real field F is denoted by
$N \operatorname{Hom}_{F}(V, W)=\{$ all neutrosophic n-linear transformations of V into $W\} . N H o m_{F}(V, V)=\{$ Collection of all neutrosophic n linear operators of V into $V\}$.

It is interesting and important to note that $\mathrm{V}=\mathrm{V}_{1} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ are both defined over the same field F and both of them are only neutrosophic n-linear vector spaces.

We will illustrate by an example the neutrosophic n-linear transformation of V into W .

Example 3.1.32: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{5} \mathrm{I}\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in\left(\mathrm{Z}_{5}\right)\right\} \cup
\end{gathered}
$$

$$
\begin{gathered}
\left.\left.\left\{\begin{array}{llll}
a & 0 & 0 & 0 \\
b & c & 0 & 0 \\
d & e & f & 0 \\
g & h & i & j
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j \in Z_{5} I\right\} \cup \\
\left\{\left.\begin{array}{l}
\sum_{i=0}^{6} a_{i} x^{i}
\end{array} \right\rvert\, a_{i} \in Z_{5} I ; 0 \leq i \leq 6\right\} \cup \\
\left.\left.\left\{\begin{array}{lllll}
a & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & d & 0 \\
0 & 0 & 0 & 0 & e
\end{array}\right) \right\rvert\, a, b, c, d, e \in Z_{5} I\right\}
\end{gathered}
$$

be a neutrosophic 5 -vector space over the real field Z_{5}. W = W_{1} $\cup \mathrm{W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{5} I\right\} \cup \\
\left\{(a, b, c, d) \mid a, b, c, e \in Z_{5} I\right\} \cup \\
\left.\left.\left\{\begin{array}{llll}
a & b & c & d \\
0 & 0 & 0 & 0 \\
e & f & g & h \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h \in Z_{5} I\right\} \cup \\
\left\{\left\{\sum_{i=0}^{9} a_{i} x^{i} \mid a_{i} \in Z_{5} I ; 0 \leq i \leq 9\right\} \cup\right.
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{ccccccc}
\mathrm{a} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathrm{e} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \mathrm{f} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathrm{~h}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~h} \in \mathrm{Z}_{5} \mathrm{I}\right\}
$$

be a neutrosophic 5-vector space over the field Z_{5}.
Define T: V \rightarrow W i.e., $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}: V=$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}$ where

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{2}, \\
& \mathrm{~T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}, \\
& \mathrm{~T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{4}, \\
& \mathrm{~T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{5}
\end{aligned}
$$

and

$$
\begin{gathered}
\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{3} . \\
\mathrm{T}_{1}\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) ; \\
\mathrm{T}_{2}\left[\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & \mathrm{~d} & \mathrm{e} \\
0 & 0 & \mathrm{f}
\end{array}\right],
\end{gathered}
$$

$T_{3}\left[\begin{array}{llll}a & 0 & 0 & 0 \\ b & c & 0 & 0 \\ d & e & f & 0 \\ g & h & i & j\end{array}\right]=\left(a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}+g x^{6}+h x^{7}+\right.$ $\left.i x^{8}+j x^{9}\right) ;$

$$
\mathrm{T}_{4}\left[\sum_{\mathrm{i}=0}^{6} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right]=\left[\begin{array}{ccccccc}
\mathrm{a}_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{a}_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{a}_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{5} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{6}
\end{array}\right]
$$

and

$$
\mathrm{T}_{5}\left[\begin{array}{ccccc}
\mathrm{a} & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 & 0 \\
0 & 0 & 0 & \mathrm{~d} & 0 \\
0 & 0 & 0 & 0 & \mathrm{e}
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
0 & 0 & 0 & 0 \\
\mathrm{e} & \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is easily verified that T is a neutrosophic 6-linear transformation of V into W .

Example 3.1.33: \quad Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
\{(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{QI}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 5\right\} \cup
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
a & b & c & d \\
0 & e & f & g \\
0 & 0 & h & i \\
0 & 0 & 0 & j
\end{array}\right) \right\rvert\, \text { a,b,c,d,e,f,g,h,i,j,QI}\right\} \cup \\
& \left\{\left.\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
b & c & 0 & 0 \\
d & e & f & 0 \\
g & h & i & j
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j \in Q I\right\}
\end{aligned}
$$

be a neutrosophic 6-vector space over the field Q . Define $\mathrm{T}=\mathrm{T}_{1}$
$\cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6}: V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6}$
$\rightarrow \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$ by

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}, \\
& \mathrm{~T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{1} \\
& \mathrm{~T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{4}, \\
& \mathrm{~T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~V}_{3} \\
& \mathrm{~T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~V}_{6}
\end{aligned}
$$

and

$$
\mathrm{T}_{6}: \mathrm{V}_{6} \rightarrow \mathrm{~V}_{5}
$$

defined as follows:

$$
\begin{aligned}
& \mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) \\
& \mathrm{T}_{2}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)
\end{aligned}
$$

$$
T_{3}\left(\begin{array}{lll}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{array}\right)=\left(a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}\right)
$$

$$
\begin{aligned}
\mathrm{T}_{4}\left(\sum_{i=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{i}\right) & =\left(\begin{array}{ccc}
\mathrm{a}_{0} & 0 & 0 \\
\mathrm{a}_{1} & \mathrm{a}_{2} & 0 \\
\mathrm{a}_{3} & a_{4} & a_{5}
\end{array}\right), \\
\mathrm{T}_{5}\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
0 & \mathrm{e} & \mathrm{f} & \mathrm{~g} \\
0 & 0 & \mathrm{~h} & \mathrm{i} \\
0 & 0 & 0 & j
\end{array}\right) & =\left[\begin{array}{cccc}
\mathrm{a} & 0 & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} & 0 \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i} & j
\end{array}\right]
\end{aligned}
$$

and

$$
\mathrm{T}_{6}\left[\begin{array}{cccc}
\mathrm{a} & 0 & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} & 0 \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{j}
\end{array}\right]=\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
0 & \mathrm{e} & \mathrm{f} & \mathrm{~g} \\
0 & 0 & \mathrm{~h} & \mathrm{i} \\
0 & 0 & 0 & \mathrm{j}
\end{array}\right)
$$

It is easily verified that T is a neutrosophic 6-linear operator on V.

Now we proceed onto define other types of neutrosophic nlinear operators which will be know as the usual or common neutrosophic n-linear operators.

DEFINITION 3.1.11: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over a real field F.

Let $T: V \rightarrow V$ be a n-map such that $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$: $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n} \rightarrow V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ where $T_{i}: V_{i} \rightarrow$ $V_{i} ; i=1,2, \ldots, n$ if each T_{i} is a linear operator then we define T : $V \rightarrow V$ to be a neutrosophic common n-linear operator on V or common neutrosophic n-linear operator on V.

We will denote the collection of all common neutrosophic nlinear operators on V by $C N \operatorname{Hom}_{F}(V, V)$; clearly CN Hom ${ }_{F}(V$, V) is a neutrosophic n^{2}-subvector space of $\mathrm{NHom}_{F}(V, V)$.

Further CN $\operatorname{Hom}_{F}(V, V)=\operatorname{Hom}_{F}\left(V_{1}, V_{1}\right) \cup \operatorname{Hom}_{F}\left(V_{2}, V_{2}\right)$ $\cup \ldots \cup \operatorname{Hom}_{F}\left(V_{n}, V_{n}\right)$.

We will illustrate this situation by an example.

Example 3.1.34: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup \cup \\
& \left\{(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) \mid \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{12} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 0 \leq \mathrm{i} \leq 12\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & d & 0 \\
0 & 0 & 0 & 0 & e
\end{array}\right) \right\rvert\, a, b, c, d, e \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
0 & 0 & a & b & d \\
0 & 0 & 0 & e & f \\
0 & 0 & 0 & 0 & g \\
a & 0 & 0 & 0 & 0 \\
b & e & 0 & 0 & 0 \\
d & f & g & 0 & 0
\end{array}\right) \right\rvert\, a, b, e, f, g, d \in Z_{11} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 12\right\}
\end{aligned}
$$

be a neutrosophic 7-vector space over the field Z_{11}.
Define T: $V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6} \cup V_{7} \rightarrow V_{1} \cup V_{2}$ $\cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6} \cup V_{7}$ where $T: T_{1} \cup T_{2} \cup \ldots \cup T_{7}$ such that $T_{i}: V_{i} \rightarrow V_{i} ; i=1,2, \ldots, 7$.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ is a neutrosophic linear operator on V_{i} defined by

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left\{\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & \mathrm{~d}
\end{array}\right)\right\},
$$

T_{2} is a neutrosophic linear operator on V_{2} defined by $T_{2}: V_{2} \rightarrow$ V_{2} and $\mathrm{T}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(\mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b})$.
T_{3} is a neutrosophic linear operator on $V_{3}, T_{3}: V_{3} \rightarrow V_{3}$ is given by

$$
\mathrm{T}_{3}\left(\sum_{\mathrm{i}=0}^{12} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\left(\mathrm{a}_{0}+\mathrm{a}_{2} \mathrm{X}^{2}+\mathrm{a}_{4} \mathrm{X}^{4}+\mathrm{a}_{6} \mathrm{X}^{6}+\mathrm{a}_{8} \mathrm{X}^{8}+\mathrm{a}_{10} \mathrm{X}^{10}+\mathrm{a}_{12} \mathrm{X}^{12}\right) .
$$

$T_{4}: V_{4} \rightarrow V_{4}$ is a neutrosophic linear operator given by

$$
\mathrm{T}_{4}\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right)=\left\{\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & \mathrm{e} & \mathrm{f} \\
0 & 0 & \mathrm{i}
\end{array}\right)\right\}
$$

and $\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~V}_{5}$ is a neutrosophic linear operator given by

$$
\mathrm{T}_{5}\left(\begin{array}{ccccc}
\mathrm{a} & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 & 0 \\
0 & 0 & 0 & \mathrm{~d} & 0 \\
0 & 0 & 0 & 0 & \mathrm{e}
\end{array}\right)=\left[\begin{array}{ccccc}
\mathrm{a} & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}+\mathrm{b} & 0 & 0 & 0 \\
0 & 0 & \mathrm{~b}+\mathrm{c} & 0 & 0 \\
0 & 0 & 0 & \mathrm{c}+\mathrm{d} & 0 \\
0 & 0 & 0 & 0 & \mathrm{~d}+\mathrm{a}
\end{array}\right] .
$$

$\mathrm{T}_{6}: \mathrm{V}_{6} \rightarrow \mathrm{~V}_{6}$ is a neutrosophic linear operator on V_{6} given by

$$
\mathrm{T}_{6}\left(\begin{array}{ccccc}
0 & 0 & \mathrm{a} & \mathrm{~b} & \mathrm{~d} \\
0 & 0 & 0 & e & \mathrm{f} \\
0 & 0 & 0 & 0 & \mathrm{~g} \\
\mathrm{a} & 0 & 0 & 0 & 0 \\
\mathrm{~b} & \mathrm{e} & 0 & 0 & 0 \\
\mathrm{~d} & \mathrm{f} & \mathrm{~g} & 0 & 0
\end{array}\right)=\left[\begin{array}{ccccc}
0 & 0 & \mathrm{a}+\mathrm{b} & \mathrm{~b}+\mathrm{d} & \mathrm{~d}+\mathrm{e} \\
0 & 0 & 0 & \mathrm{f}+\mathrm{e} & \mathrm{f}+\mathrm{g} \\
0 & 0 & 0 & 0 & \mathrm{~g} \\
\mathrm{a}+\mathrm{b} & 0 & 0 & 0 & 0 \\
\mathrm{~b}+\mathrm{d} & \mathrm{f}+\mathrm{e} & 0 & 0 & 0 \\
\mathrm{~d}+\mathrm{e} & \mathrm{f}+\mathrm{g} & \mathrm{~g} & 0 & 0
\end{array}\right]
$$

and
$\mathrm{T}_{7}: \mathrm{V}_{7} \rightarrow \mathrm{~V}_{7}$ is a neutrosophic linear operator on V_{7} given by

$$
\mathrm{T}_{7}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8} \\
\mathrm{a}_{9} & \mathrm{a}_{10} & \mathrm{a}_{11} & a_{12}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a}_{4} & \mathrm{a}_{3} & \mathrm{a}_{2} & a_{1} \\
\mathrm{a}_{6} & \mathrm{a}_{5} & \mathrm{a}_{8} & a_{7} \\
\mathrm{a}_{12} & \mathrm{a}_{11} & a_{10} & a_{9}
\end{array}\right)
$$

It is easily verified that $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6} \cup T_{7}$ is a neutrosophic 7 -linear operator on V .

Now we define two types of neutrosophic (m, n) linear transformation of a neutrosophic m-vector space into a neutrosophic n-vector space $\mathrm{m} \neq \mathrm{n}$ and $\mathrm{m}>\mathrm{n}$.

DEFINITION 3.1.12: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{m}$ be a neutrosophic m-vector space over the real field F and $W=W_{1}$ $\cup W_{2} \cup \ldots \cup W_{n}$ be a neutrosophic n-vector space over the same field F; $(m \neq n)$ and $m>n)$.

Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{m}$ be a m-map from V into W such that $T_{1} \cup T_{2} \cup \ldots \cup T_{m}: V_{1} \cup V_{2} \cup \ldots \cup V_{m} \rightarrow W_{1} \cup W_{2} \cup \ldots \cup$ W_{n} given by $T_{i}: V_{i} \rightarrow W_{j}$, it is sure to happen that more than one V_{i} is mapped onto a W_{j}, such that each T_{i} is a neutrosophic linear transformation from V_{i} to $W_{j} ; 1 \leq i \leq m$ and $1 \leq j \leq n$.

Then $T=T_{1} \cup T_{2} \cup \ldots \cup T_{m}$ is defined as a special (m, n) neutrosophic linear transformation of V to W.

We will first illustrate this situation by an example.

Example 3.1.35: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Q I\right\} \cup \\
\{(a, b, c, d, e, f) \mid a, b, c, d, e, f \in Q I\} \cup \\
\left\{\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6}
\end{array}\right) \left\lvert\,\left(\begin{array}{ll}
a_{i} \in Q I ; 1 \leq i \leq 6
\end{array}\right\} \cup\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Q I\right\} \cup\right.\right. \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{5} & a_{4} \\
a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 8\right\} \cup \\
\left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 8\right\}
\end{gathered}
$$

be a neutrosophic 6-vector space over the field Q.
Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Q I\right\} \cup \\
\left\{\sum_{i=0}^{7} a_{i} x^{i} \mid a_{i} \in Q I ; 0 \leq i \leq 7\right\} \cup\{(a, b, c, d) \mid a, b, c, d \in Q I\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 6\right\}
\end{gathered}
$$

be a neutrosophic 4-vector space over the real field Q .
Define $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6}: V=V_{1} \cup V_{2} \cup$
$V_{3} \cup V_{4} \cup V_{5} \cup V_{6} \rightarrow W=W_{1} \cup W_{2} \cup W_{3} \cup W_{4}$ by
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{3}$
$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{4}$
$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{1}$
$\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{1}$,

$$
\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{2}
$$

and

$$
\mathrm{T}_{6}: \mathrm{V}_{6} \rightarrow \mathrm{~W}_{3}
$$

where each T_{i} is a neutrosophic linear transformation from V_{i} to $W_{j} ; i=1,2, \ldots, 6$ and $j=1,2,3,4$.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{3}$ is defined by

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

T_{1} is a neutrosophic linear transformation from V_{1} to W_{3}.
$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{4}$ is such that

$$
\mathrm{T}_{2}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f})=\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right)
$$

Clearly T_{2} is neutrosophic linear transformation from V_{2} to W_{4}.
$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{1}$ is given by

$$
\mathrm{T}_{3}\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{3} \\
\mathrm{a}_{2} & \mathrm{a}_{5} \\
\mathrm{a}_{6} & \mathrm{a}_{4}
\end{array}\right)
$$

T_{3} is a neutrosophic linear transformation from V_{3} to W_{1}.
$\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{1}$ is defined by

$$
\mathrm{T}_{4}\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right)=\left[\begin{array}{cc}
\mathrm{a}+\mathrm{b} & \mathrm{~d} \\
\mathrm{c} & \mathrm{e}+\mathrm{f}
\end{array}\right]
$$

T_{4} is a neutrosophic linear transformation of V_{4} to W_{1}.
$\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{2}$ is such that

$$
\begin{gathered}
\mathrm{T}_{5}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right)= \\
a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}+a_{5} x^{4}+a_{6} x^{5}+ \\
a_{7} x^{6}+a_{8} x^{7}
\end{gathered}
$$

T_{5} is a neutrosophic linear transformation of V_{5} to W_{2}.
$\mathrm{T}_{6}: \mathrm{V}_{6} \rightarrow \mathrm{~W}_{3}$ is defined by

$$
\mathrm{T}_{6}\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6} \\
\mathrm{a}_{7} & a_{8}
\end{array}\right)=\left(\mathrm{a}_{1}+\mathrm{a}_{2}, a_{3}+a_{4}, a_{5}+a_{6}, a_{7}+a_{8}\right)
$$

Clearly T_{6} is a neutrosophic linear transformation of V_{6} to W_{3}. Thus $T=\left(T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6}\right)$ is a (6, 4) neutrosophic linear transformation of V to W .

DEFINITION 3.1.13: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \cup V_{m}$ be a neutrosophic m-vector space over a field F and $W=W_{1} \cup W_{2} \cup$ $\ldots \cup W_{n}$ be a neutrosophic n-vector space defined over the same field $F(m \neq n, m<n)$. Define a m-map, $T=T_{1} \cup T_{2} \cup \ldots \cup T_{m}$: $V=V_{1} \cup V_{2} \cup \ldots \cup V_{m}$ into $W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ such that T_{i} : $V_{i} \rightarrow W_{j}$ where each V_{i} is mapped into a distinct $W_{j} ; 1 \leq i \leq m$ and $1 \leq j \leq n$; where each T_{i} is a neutrosophic linear transformation of V_{i} to W_{j}.

We define $T=T_{1} \cup T_{2} \cup \ldots \cup T_{m}$ as a (m, n) neutrosophic linear transformation of V into W.

We will illustrate this situation by an example.
Example 3.1.36: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} ; 1 \leq i \leq 6\right\} \cup
$$

be a neutrosophic 5-vector space over the field Z_{17}. Let $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \text { a,b,c,d,e,f:} \mathrm{Z}_{17} \mathrm{I}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6} \\
\mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10} & \mathrm{a}_{11} & \mathrm{a}_{12}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 12\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
a & d & e & b \\
g & h & i & j \\
k & l & m & n \\
s & p & q & r
\end{array}\right) \right\rvert\, a, b, d, e, g, h, i, j, k, l, m, n, s, p, q, r \in Z_{17} I\right\} \cup
$$

$$
\left\{(a, b, c, d, e) \mid a, b, c, d, e \in Z_{17} I\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} I ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\sum_{i=0}^{11} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq 11\right\} \cup\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, a, b, c, \mathrm{~d} \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} I ; 1 \leq i \leq 10\right\}
\end{aligned}
$$

$$
\left.\begin{array}{c}
\left.\left.\left\{\begin{array}{ccccc}
a_{1} & 0 & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & a_{5}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} \mathrm{I} ; 1 \leq i \leq 5\right\} \cup \\
\left\{\left\{\sum_{i=0}^{9} a_{i} x^{i} \mid a_{i} \in Z_{17} I ; 0 \leq i \leq 9\right\} \cup\right.
\end{array}\right\}\left\{\begin{array}{l}
\left.\left\{\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, \begin{array}{l}
\left.a_{i} \in Z_{17} \mathrm{I} ; 1 \leq i \leq 12\right\}
\end{array}
\end{array}\right.
$$

be a neutrosophic 7-vector space over the field Z_{17}. Define $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3} \cup \mathrm{~T}_{4} \cup \mathrm{~T}_{5}: V=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \rightarrow \mathrm{~W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}$ such that

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}, \\
& \mathrm{~T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{6}, \\
& \mathrm{~T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{2}, \\
& \mathrm{~T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{3},
\end{aligned}
$$

and

$$
\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{5} .
$$

where
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{1}$ is a neutrosophic linear transformation given by

$$
\mathrm{T}_{1}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left\{\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & a_{3} & 0 \\
\mathrm{a}_{4} & a_{5} & a_{6}
\end{array}\right)\right\}
$$

and
$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{6}$ is defined by

$$
T_{2}\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right)=\left(a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}+a_{5} x^{4}+a_{6} x^{5}+a_{7} x^{6}+\right.
$$

is a neutrosophic linear transformation of V_{2} to W_{6}.
$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{2}$ is given by

$$
T_{3}\left(\sum_{i=0}^{11} a_{i} x^{i}\right)=\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} & a_{10} & a_{11} & a_{0}
\end{array}\right) .
$$

T_{3} is again a neutrosophic linear transformation from V_{3} to W_{2}.
Consider $\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{3}$ given by

$$
\mathrm{T}_{4}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a} & 0 & 0 & \mathrm{~b} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\mathrm{c} & 0 & 0 & \mathrm{~d}
\end{array}\right)
$$

T_{4} is also a neutrosophic linear transformation from V_{4} to W_{3}.
$\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{5}$ defined by
$\mathrm{T}_{5}\left(\begin{array}{cccc}a_{1} & 0 & 0 & 0 \\ a_{2} & a_{3} & 0 & 0 \\ a_{4} & a_{5} & a_{6} & 0 \\ a_{7} & a_{8} & a_{9} & a_{10}\end{array}\right)=\left(\begin{array}{ccccc}a_{1}+a_{2} & 0 & 0 & 0 & 0 \\ 0 & a_{3}+a_{4} & 0 & 0 & 0 \\ 0 & 0 & a_{5}+a_{6} & 0 & 0 \\ 0 & 0 & 0 & a_{7}+a_{8} & 0 \\ 0 & 0 & 0 & 0 & a_{9}+a_{10}\end{array}\right)$
is a neutrosophic linear transformation. Thus $T=T_{1} \cup T_{2} \cup T_{3}$ $\cup T_{4} \cup T_{5}$ is a $(5,7)$ neutrosophic linear transformation of V to W.

Now having defined several types of neutrosophic n-linear transformations of neutrosophic n-vector spaces V and W we can define in a similar way all types of neutrosophic n-linear transformation for neutrosophic n-linear algebras with appropriate changes.

We will only illustrate them by examples as modified definitions can be easily obtained by any reader.

Example 3.1.37: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{13} I\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \mid a_{i} \in Z_{13} I ; 1 \leq i \leq 6\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 6\right\} \cup
\end{array}\right\}\left\{\begin{array}{l}
\left.\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{5} & a_{4} \\
a_{9} & a_{6} & a_{7} \\
a_{10} & a_{8} \\
a_{13} & a_{14} & a_{15} \\
a_{12}
\end{array}\right) \right\rvert\, a_{i 1} \in Z_{13} I ; 1 \leq i \leq 16\right\}
\end{array}\right.
$$

be a neutrosophic 4-linear algebra over the field Z_{13}. Let $\mathrm{W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 6\right\} \cup
$$

$$
\left.\begin{array}{c}
\left\{\left.\left\{\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{13} I\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{13} I\right\} \cup
\end{array}\right\}
$$

be a neutrosophic 4-linear algebra over the field Z_{13}. Define a 4map $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4}: V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \rightarrow W_{1} \cup$ $\mathrm{W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}$ as follows.

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{2}, \\
& \mathrm{~T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}, \\
& \mathrm{~T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{4}
\end{aligned}
$$

and

$$
\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{3}
$$

so that each T_{i} is a neutrosophic linear transformation.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{2}$ is such that

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a} & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 \\
0 & 0 & 0 & \mathrm{~d}
\end{array}\right)
$$

is a neutrosophic linear transformation of neutrosophic linear algebras V_{1} into W_{2}.
$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}$ is such that

$$
\mathrm{T}_{2}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}\right)=\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
0 & a_{4} & \mathrm{a}_{5} \\
0 & 0 & a_{6}
\end{array}\right)
$$

is a neutrosophic linear transformation of V_{2} to W_{1}.
$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{4}$ is defined by

$$
\mathrm{T}_{3}\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left(\begin{array}{ccccc}
\mathrm{a}_{1} & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & a_{5}
\end{array}\right)
$$

is a neutrosophic linear transformation of V_{3} into W_{4}.
$\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{3} \quad$ given by

$$
\mathrm{T}_{4}\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}+a_{2}+a_{3}+a_{4} & a_{5}+a_{6}+a_{7}+a_{8} \\
a_{9}+a_{10}+a_{11}+a_{12} & a_{13}+a_{14}+a_{15}+a_{16}
\end{array}\right]
$$

is a neutrosophic linear transformation of V_{4} into W_{3}.
Thus $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4}$ is a neutrosophic 4-linear transformation the neutrosophic 4-linear algebra $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup$ $\mathrm{V}_{3} \cup \mathrm{~V}_{4}$ into the neutrosophic 4-linear algebra $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup$ $\mathrm{W}_{3} \cup \mathrm{~W}_{4}$.

We will now give an example of a neutrosophic n-linear operator.

Example 3.1.38: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ be a neutrosophic 5-linear algebra over the field Z_{17} where

$$
\begin{gathered}
\mathrm{V}_{1}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{17} \mathrm{I}\right\}, \\
\mathrm{V}_{2}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I}, 1 \leq \mathrm{i} \leq 6\right\}, \\
\mathrm{V}_{3}=\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & a_{3} & 0 \\
\mathrm{a}_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\}, \\
\mathrm{V}_{4}=\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 \\
0 & 0 & a_{3} & 0 \\
0 & 0 & 0 & a_{4}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 4\right\}
\end{gathered}
$$

and
$\mathrm{V}_{5}=\left\{\right.$ all 6×6 neutrosophic matrices with entries from $\left.\mathrm{Z}_{17} \mathrm{I}\right\}$.
Define $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}: V=V_{1} \cup V_{2} \cup V_{3} \cup$
$\mathrm{V}_{4} \cup \mathrm{~V}_{5} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$; where

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{4} ; \\
& \mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{3} ; \\
& \mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{2} ; \\
& \mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~V}_{1}
\end{aligned}
$$

and

$$
\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~V}_{2}
$$

such that

$$
\begin{gathered}
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 \\
0 & 0 & a_{3} & 0 \\
0 & 0 & 0 & a_{4}
\end{array}\right) ; \\
\mathrm{T}_{2}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}\right)=\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right) ;
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{T}_{3}\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}\right) ; \\
\mathrm{T}_{4}\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 \\
0 & 0 & a_{3} & 0 \\
0 & 0 & 0 & a_{4}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & a_{4}
\end{array}\right)
\end{gathered}
$$

and

$$
\mathrm{T}_{5}\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16} & a_{17} & a_{18} \\
a_{19} & a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\
a_{25} & a_{26} & a_{27} & a_{28} & a_{29} & a_{30} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36}
\end{array}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)
$$

It is easily verified $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}$ is a neutrosophic 5 -linear operator on V . Clearly T is not a usual neutrosophic 5-linear operator on V.

We will now illustrate by the example the usual neutrosophic n-linear operator on V.

Example 3.1.39: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{19} I\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right) \mid a_{i} \in Z_{19} I, 1 \leq i \leq 7\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a \in Z_{19} I ; 1 \leq i \leq 10\right\} \cup
\end{gathered}
$$

$\left\{\right.$ All 5×5 neutrosophic matrix with entries from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup\{8 \times 8$ neutrosophic diagonal matrices with entries from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
0 & a_{5} & a_{6} & a_{7} \\
0 & 0 & a_{8} & a_{9} \\
0 & 0 & 0 & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{19} I ; 1 \leq i \leq 10\right\}
$$

be a neutrosophic 6-linear algebra over the real field Z_{19}.
Define $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6}: V=V_{1} \cup V_{2} \cup$
$V_{3} \cup V_{4} \cup V_{5} \cup V_{6} \rightarrow V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6}=V$ such that $T_{i}: V_{i} \rightarrow V_{i}$ for $i=1,2, \ldots, 6$.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ such that

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{b} & \mathrm{a} \\
\mathrm{~d} & \mathrm{c}
\end{array}\right) ;
$$

$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ is defined by

$$
\begin{gathered}
\mathrm{T}_{2}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, a_{5}, a_{6}\right)=\left(a_{1}+\mathrm{a}_{2}, a_{2}+a_{3}, a_{3}+a_{4}, a_{4}+a_{5}, a_{5}+a_{6},\right. \\
\left.a_{6}+a_{1}\right), \\
\mathrm{T}_{3}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & a_{4} \\
0 & a_{5} & a_{6} & a_{7} \\
0 & 0 & a_{8} & a_{9} \\
0 & 0 & 0 & a_{10}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
0 & a_{3} & 0 & 0 \\
0 & 0 & a_{6} & 0 \\
0 & 0 & 0 & a_{10}
\end{array}\right)
\end{gathered}
$$

where $T_{3}: V_{3} \rightarrow V_{3}$;
$\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~V}_{4}$ is such that
$\mathrm{T}_{4}\left(\begin{array}{ccccc}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} & \mathrm{a}_{5} \\ \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10} \\ \mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} & \mathrm{a}_{14} & \mathrm{a}_{15} \\ \mathrm{a}_{16} & \mathrm{a}_{17} & \mathrm{a}_{18} & \mathrm{a}_{19} & \mathrm{a}_{20} \\ \mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} & \mathrm{a}_{24} & \mathrm{a}_{25}\end{array}\right) \rightarrow\left(\begin{array}{ccccc}\mathrm{a}_{1} & 0 & 0 & 0 & 0 \\ \mathrm{a}_{2} & \mathrm{a}_{3} & 0 & 0 & 0 \\ \mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6} & 0 & 0 \\ \mathrm{a}_{7} & a_{8} & a_{9} & a_{10} & 0 \\ \mathrm{a}_{11} & a_{12} & a_{13} & a_{14} & a_{15}\end{array}\right)$
T_{4} is a neutrosophic linear operator on V_{4}.
$\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~V}_{5}$ is such that T_{5} maps any 8×8 matrix into the $8 \times$ 8 diagonal matrix
$\mathrm{T}_{6}: \mathrm{V}_{6} \rightarrow \mathrm{~V}_{6}$ is such that

$$
\mathrm{T}_{6}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
0 & \mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} \\
0 & 0 & \mathrm{a}_{8} & \mathrm{a}_{9} \\
0 & 0 & 0 & \mathrm{a}_{10}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
0 & \mathrm{a}_{5} & 0 & 0 \\
0 & 0 & a_{8} & 0 \\
0 & 0 & 0 & a_{10}
\end{array}\right)
$$

T_{6} is a neutrosophic linear operator on V_{6}. Thus $T=T_{1} \cup T_{2} \cup$ $T_{3} \cup T_{4} \cup T_{5} \cup T_{6}$ is a usual neutrosophic 6-linear operator on $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$.

Example 3.1.40: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6} \cup V_{7}$

$$
\begin{gathered}
=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{QI}\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 \\
\mathrm{a}_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 6\right\} \cup
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 6\right\} \cup
$$

$\{$ All 5×5 neutrosophic matrices with entries from QI $\} \cup\{$ all 7 $\times 7$ neutrosophic diagonal matrices with entries from QI $\} \cup$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
0 & a_{5} & a_{6} & a_{7} \\
0 & 0 & a_{8} & a_{9} \\
0 & 0 & 0 & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 10\right\}
\end{aligned}
$$

be a neutrosophic 7-linear algebra over the field Q .
Let $W=W_{1} \cup W_{2} \cup W_{3} \cup W_{4}=\{(a, b, c, d, e, f) \mid a, b, c, d$, e, $f \in Q I\} \cup$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup
$$

$\{7 \times 7$ neutrosophic upper triangular matrices with entries from $\mathrm{QI}\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 10\right\}
$$

be a neutrosophic 4-linear algebra over the real field Q.

Define $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6} \cup T_{7}: V=V_{1} \cup$ $\mathrm{V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}$ as follows.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{2}$ where

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a}+\mathrm{b} & \mathrm{~b}+\mathrm{c} \\
\mathrm{c}+\mathrm{d} & \mathrm{~d}+\mathrm{a}
\end{array}\right)
$$

$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}$ defined by

$$
\mathrm{T}_{2}\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
\mathrm{a}_{2} & a_{3} & 0 \\
\mathrm{a}_{4} & a_{5} & a_{6}
\end{array}\right)=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right),
$$

$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{1}$ is defined by

$$
\mathrm{T}_{3}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)
$$

$\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{4}$ is such that
$\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{3}$ is defined by

$$
\mathrm{T}_{5}\left(\begin{array}{ccccccc}
\mathrm{a}_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{5} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{7}
\end{array}\right)=\left(\begin{array}{ccccccc}
a_{1} & a_{1} & a_{1} & a_{1} & a_{1} & a_{1} & a_{1} \\
0 & a_{2} & a_{2} & a_{2} & a_{2} & a_{2} & a_{2} \\
0 & 0 & a_{3} & a_{3} & a_{3} & a_{3} & a_{3} \\
0 & 0 & 0 & a_{4} & a_{4} & a_{4} & a_{4} \\
0 & 0 & 0 & 0 & a_{5} & a_{5} & a_{5} \\
0 & 0 & 0 & 0 & 0 & a_{6} & a_{6} \\
0 & 0 & 0 & 0 & 0 & 0 & a_{7}
\end{array}\right)
$$

$\mathrm{T}_{6}: \mathrm{V}_{6} \rightarrow \mathrm{~W}_{4}$ defined by

$$
\mathrm{T}_{6}\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right)=\left(\begin{array}{cccc}
a_{10} & 0 & 0 & 0 \\
a_{9} & a_{8} & 0 & 0 \\
a_{7} & a_{6} & a_{5} & 0 \\
a_{4} & a_{3} & a_{2} & a_{1}
\end{array}\right)
$$

and $\mathrm{T}_{7}: \mathrm{V}_{7} \rightarrow \mathrm{~W}_{4}$ is defined by

$$
\mathrm{T}_{7}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
0 & \mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} \\
0 & 0 & \mathrm{a}_{8} & \mathrm{a}_{9} \\
0 & 0 & 0 & \mathrm{a}_{10}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6} & 0 \\
\mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10}
\end{array}\right)
$$

$T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6} \cup T_{7}: V=V_{1} \cup V_{2} \cup V_{3} \cup$ $\mathrm{V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}$ is a $(7,4)$ neutrosophic linear algebra transformation of V into W .

Example 3.1.41: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{7} I\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right) \mid a_{i} \in Z_{7} I ; 1 \leq i \leq 8\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{7} I\right\} \cup
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I ; 1 \leq i \leq 10\right\} \cup
$$

$\left\{5 \times 5\right.$ diagonal neutrosophic matrices with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\}$ be a neutrosophic 5-linear algebra over the real field Z_{7}. Let $\mathrm{W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}=\{8 \times 8$ neutrosophic diagonal matrices with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
0 & \mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} \\
0 & 0 & \mathrm{a}_{8} & \mathrm{a}_{9} \\
0 & 0 & 0 & \mathrm{a}_{10}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 10\right.
\end{array}\right\} \cup
$$

$\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 5\right\} \cup\{4 \times 4$ neutrosophic diagonal matrices with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f, \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} ; 1 \leq i \leq 6\right\}
\end{aligned}
$$

be a neutrosophic 7-linear algebra over Z_{7}.

Define $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}: V=V_{1} \cup V_{2} \cup V_{3} \cup$ $\mathrm{V}_{4} \cup \mathrm{~V}_{5} \rightarrow \mathrm{~W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}$ as follows;

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{5}, \\
& \mathrm{~T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}, \\
& \mathrm{~T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{7}, \\
& \mathrm{~T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{3}
\end{aligned}
$$

and

$$
\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{5}
$$

defined in the following way.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~W}_{5}$ is such that

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a} & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 \\
0 & 0 & 0 & \mathrm{~d}
\end{array}\right),
$$

$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~W}_{1}$ is defined as

$$
\mathrm{T}_{2}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right)=\left(\begin{array}{cccccccc}
\mathrm{a}_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{5} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{6} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{8}
\end{array}\right),
$$

$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~W}_{7}$ is given by

$$
\mathrm{T}_{3}\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right)
$$

and $\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~W}_{3}$ is defined as

$$
\mathrm{T}_{4}\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
\mathrm{a}_{2} & \mathrm{a}_{3} & 0 & 0 \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6} & 0 \\
\mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
0 & \mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} \\
0 & 0 & \mathrm{a}_{8} & \mathrm{a}_{9} \\
0 & 0 & 0 & \mathrm{a}_{10}
\end{array}\right)
$$

$\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~W}_{4}$ is expressed as

$$
\mathrm{T}_{5}\left(\begin{array}{ccccc}
\mathrm{a}_{1} & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & a_{5}
\end{array}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) .
$$

It is easily verified that $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}$ is a $(5,7)$ neutrosophic linear transformation of V to W or neutrosophic $(5,7)$ linear transformation of V to W .

Now having seen several types of neutrosophic (m, n) linear transformation of neutrosophic m-linear algebra and neutrosophic n-linear algebra now we proceed onto define more properties about these neutrosophic n-linear transformation of neutrosophic n-linear algebra.

We have defined several subalgebraic structures of neutrosophic n-linear algebras (n-linear vector spaces) we now define subspace preserving n-linear operators in case of neutrosophic n -linear algebras (n -vector spaces).

DEFINITION 3.1.14: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over the real field F. Suppose $W=$ $W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ be a neutrosophic n-vector subspace of V over F. Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ be a neutrosophic n-linear operator on V. Suppose $T_{i}\left(W_{i}\right) \subseteq W_{i}$ for every $W_{i}, i=1,2, \ldots, n$ then we call $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ to be a vector subspace preserving neutrosophic n-linear operator on V.

It is important to note that in general every neutrosophic nlinear operator on V need not preserve every neutrosophic n vector subspace of V or even a single neutrosophic n-subspace of V.

We will say however the neutrosophic n-linear operator T which is the identity operator on V however preserves every neutrosophic n-vector subspace of V .

We will illustrate subspace preserving neutrosophic n-linear operator by an example.

Example 3.1.42: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Q I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup \\
& \left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a & b & c & d \\
0 & e & f & g \\
0 & h & i & j \\
0 & 0 & 0 & k
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j, k \in Q I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 12\right\}
\end{aligned}
$$

be a neutrosophic 5-vector space over the field Q.
Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Q I\right\} \cup \\
\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in Q I\right\} \cup\left\{\sum_{i=0}^{\infty} a_{i} x^{2 i} \mid a_{i} \in Q I ; 0 \leq i \leq \infty\right\} \cup \\
\left\{\left.\left\{\begin{array}{llll}
a & a & a & a \\
0 & a & a & a \\
0 & a & a & a \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Q I\right\} \cup
\end{array}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$, be a neutrosophic 5-vector subspace of V over the field Q .

Define $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}: V=V_{1} \cup V_{2} \cup V_{3} \cup$ $\mathrm{V}_{4} \cup \mathrm{~V}_{5} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ as follows. $\mathrm{T}_{\mathrm{i}}: \mathrm{V}_{\mathrm{i}} \rightarrow$ $V_{i}, i=1,2, \ldots, 5$ is a neutrosophic linear operator for each i and T_{i} is defined as follows;
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ is such that

$$
\mathrm{T}_{1}\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & e & f \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right)
$$

$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ is given by

$$
\mathrm{T}_{2}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & \mathrm{~d}
\end{array}\right)
$$

$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ is defined by

$$
\mathrm{T}_{3}\left(\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}}
$$

that is $\mathrm{Ix}^{\mathrm{i}} \rightarrow \mathrm{Ix}^{2 \mathrm{i}}$ for every $\mathrm{i}=0,1, \ldots, \infty$.
$\mathrm{T}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~V}_{4}$ is such that

$$
\mathrm{T}_{4}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
0 & \mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} \\
0 & 0 & \mathrm{a}_{8} & \mathrm{a}_{9} \\
0 & 0 & 0 & \mathrm{a}_{10}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
0 & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
0 & 0 & \mathrm{a} & \mathrm{a} \\
0 & 0 & 0 & \mathrm{a}
\end{array}\right)
$$

and $\mathrm{T}_{5}: \mathrm{V}_{5} \rightarrow \mathrm{~V}_{5}$ is defined by

$$
\mathrm{T}_{5}\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & a_{3} & a_{4} \\
\mathrm{a}_{5} & a_{6} & a_{7} & a_{8} \\
\mathrm{a}_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right) .
$$

It is easily verified that $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5}$ is a neutrosophic 5-linear operator on V . Further this T preserves the neutrosophic 5-vector subspace $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup$ W_{5}. It is easily verified that $\mathrm{T}_{\mathrm{i}}\left(\mathrm{W}_{\mathrm{i}}\right) \subseteq \mathrm{W}_{\mathrm{i}}$ for $\mathrm{i}=1,2, \ldots, 5$. Hence the claim.

We see in general all neutrosophic n-linear operators T on V need not preserve a neutrosophic n-vector subspace of V .

We will illustrate this situation by an example.
Example 3.1.43: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{11} \mathrm{I} ; 1 \leq \mathrm{i} \leq 9\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 15\right\}
\end{aligned}
$$

be a neutrosophic 4 -vector space over the field Z_{11}. Take $\mathrm{W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
a_{1} & a_{2} & a_{3} \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 3\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 5\right\} \cup \\
\left\{\begin{array}{ll}
\sum_{i=0}^{\infty} a_{i} x^{2 i} & \left.\mid a_{i} \in Z_{11} I ; 0 \leq i \leq \infty\right\} \cup
\end{array}\right\} \\
\left.\left\{\begin{array}{lll}
a_{1} & 0 & a_{6} \\
a_{2} & 0 & a_{7} \\
a_{3} & 0 & a_{8} \\
a_{4} & 0 & a_{9} \\
a_{5} & 0 & a_{10}
\end{array}\right) \right\rvert\,
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$ to be a neutrosophic 4-subspace of V over Z_{11}. Define $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3} \cup \mathrm{~T}_{4}: V=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup$ $\mathrm{V}_{4} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$ as $\mathrm{T}_{\mathrm{i}}: \mathrm{V}_{\mathrm{i}} \rightarrow \mathrm{V}_{\mathrm{i}} ; \mathrm{i}=1$ to 4 as follows.
$\mathrm{T}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$; where

$$
\mathrm{T}_{1}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & a_{6} \\
\mathrm{a}_{7} & \mathrm{a}_{8} & a_{9}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a_{4} & a_{5} & a_{6} \\
0 & 0 & 0
\end{array}\right),
$$

$\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ as

$$
\mathrm{T}_{2}\left(\begin{array}{ccccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} & \mathrm{a}_{5} \\
\mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8} & \mathrm{a}_{9} & \mathrm{a}_{10}
\end{array}\right),
$$

$\mathrm{T}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ is defined by

$$
\mathrm{T}_{3}\left(\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}},
$$

that is $a_{i} x^{i} \mapsto a_{i} x^{2 i}$ for $i=0,1, \ldots, \infty$ and $T_{4}: V_{4} \rightarrow V_{4}$ is such that

$$
\mathrm{T}_{4}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{15} & \mathrm{a}_{6} \\
\mathrm{a}_{2} & \mathrm{a}_{14} & \mathrm{a}_{7} \\
\mathrm{a}_{3} & \mathrm{a}_{13} & \mathrm{a}_{8} \\
\mathrm{a}_{4} & \mathrm{a}_{11} & \mathrm{a}_{9} \\
\mathrm{a}_{5} & \mathrm{a}_{12} & \mathrm{a}_{10}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & \mathrm{a}_{6} \\
\mathrm{a}_{2} & 0 & a_{7} \\
\mathrm{a}_{3} & 0 & a_{8} \\
\mathrm{a}_{4} & 0 & a_{9} \\
\mathrm{a}_{5} & 0 & a_{10}
\end{array}\right) .
$$

It is easily verified $T=T_{1} \cup T_{2} \cup T_{3} \cup T_{4}: V \rightarrow V$ is a neutrosophic 4-linear operator on V and it preserve the neutrosophic 4-subspace $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}$ that is $T(W)=T_{1}\left(W_{1}\right) \cup T_{2}\left(W_{2}\right) \cup T_{3}\left(W_{3}\right) \cup T_{4}\left(W_{4}\right) \subseteq W_{1} \cup W_{2} \cup$ $\mathrm{W}_{3} \cup \mathrm{~W}_{4}$.

Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4}: V=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$ $\rightarrow V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ where $P_{i}: V_{i} \rightarrow V_{i} ; i=1,2,3,4$ are neutrosophic linear operators defined as follows.
$\mathrm{P}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{1}$ such that

$$
P_{1}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{5} & 0 \\
0 & 0 & a_{9}
\end{array}\right),
$$

$\mathrm{P}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ is defined by

$$
P_{2}\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right)=\left(\begin{array}{ccccc}
a_{1} & 0 & a_{3} & 0 & a_{5} \\
a_{6} & 0 & a_{8} & 0 & a_{10}
\end{array}\right),
$$

$\mathrm{P}_{3}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ is given by

$$
P_{3}\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots+a_{2 n+1} x^{2 n+1}+\ldots
$$

and $\mathrm{P}_{4}: \mathrm{V}_{4} \rightarrow \mathrm{~V}_{4}$ is defined by

$$
P_{4}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{2} & 0 \\
0 & a_{5} & 0 \\
0 & a_{8} & 0 \\
0 & a_{11} & 0 \\
0 & a_{14} & 0
\end{array}\right) .
$$

The neutrosophic 4-linear operator P on V does not preserve the neutrosophic 4-subspace W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2}$ $\cup V_{3} \cup V_{4}$. Thus $P=P_{1} \cup P_{2} \cup P_{3} \cup P_{4}$ is neutrosophic 4-linear operator which does not preserve the subspace W .

It can be easily proved that for V and W any two neutrosophic n-vector spaces over a real field F if T and S are neutrosophic n-linear transformations of V to W then $(\mathrm{T}+\mathrm{S})$ is a neutrosophic n -linear transformation of V to W . Further if T is a
neutrosophic n-linear transformation of V to W for any c an element of F , the function cT defined by (cT) $\alpha=\mathrm{cT} \alpha$ is again a neutrosophic n-linear transformation of V to W . It is interesting to note the set of all neutrosophic n-linear transformations from V into W with addition and scalar multiplication defined above is a neutrosophic n-vector space over F.

Further as in case of usual n-vector spaces of type I we see in case of two neutrosophic n-vector spaces V and W over the field F both V and W are of n-finite dimension say ($\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots$, $\left.n_{n}\right)$ and $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ over the field F, and if $T=T_{1} \cup T_{2} \cup$ $\ldots \cup T_{n}$ is a neutrosophic n-linear transformation of V into W, where $T_{i}: V_{i} \rightarrow W_{j}$ (That is no two V_{i} 's are mapped on to the same W_{j}) true for $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$; then n rank $\mathrm{T}+\mathrm{n}$ nullity $\mathrm{T}=\mathrm{n}$ $\operatorname{dim} \mathrm{V}$; that is rank $\mathrm{T}_{1} \cup \ldots \cup$ rank $\mathrm{T}_{\mathrm{n}}+\left(\right.$ nullity $\mathrm{T}_{1} \cup \ldots \cup$ nullity T_{n}) $=\operatorname{dim} V_{1} \cup \ldots \cup \operatorname{dim} V_{n}$; that is (rank $T_{1}+$ nullity $\left.\mathrm{T}_{1}\right) \cup\left(\right.$ rank $\mathrm{T}_{2}+$ nullity $\left.\mathrm{T}_{2}\right) \cup \ldots \cup\left(\right.$ rank $\mathrm{T}_{\mathrm{n}}+$ nullity $\left.\mathrm{T}_{\mathrm{n}}\right)=\operatorname{dim}$ $\mathrm{V}_{1} \cup \operatorname{dim} \mathrm{~V}_{2} \cup \ldots \cup \operatorname{dim} \mathrm{~V}_{\mathrm{n}}$.

We can also prove the result which is as follows:
Let $\mathrm{V}=\mathrm{V}_{1} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ be two neutrosophic n-vector spaces over the field F . Let
$B=\left\{\left(\alpha_{1}^{1}, \alpha_{2}^{1}, \ldots, \alpha_{n_{1}}^{1}\right) \cup\left(\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots, \alpha_{n_{2}}^{2}\right) \cup \ldots \cup\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{n_{n}}^{n}\right)\right\}$ be a n-basis of $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$; i.e., $\left(\alpha_{1}^{i}, \alpha_{2}^{i}, \ldots, \alpha_{n_{i}}^{i}\right)$ is a basis of $\mathrm{V}_{\mathrm{i}} ; \mathrm{i}=1,2, \ldots$, n . Let
$C=\left\{\left(\beta_{1}^{1}, \beta_{2}^{1}, \ldots, \beta_{n_{1}}^{1}\right) \cup\left(\beta_{1}^{2}, \beta_{2}^{2}, \ldots, \beta_{n_{2}}^{2}\right) \cup \ldots \cup\left(\beta_{1}^{\mathrm{n}}, \beta_{2}^{\mathrm{n}}, \ldots, \beta_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right)\right\}$
be any n-vector in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ then there is precisely only one neutrosophic linear n-transformation $T=T_{1}$ $\cup \mathrm{T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}$ from V onto W such that $\mathrm{T} \alpha_{\mathrm{j}}^{\mathrm{i}}=\beta_{\mathrm{j}}^{\mathrm{i}} ; \mathrm{j}=1,2$, $\ldots, \mathrm{n}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}$.

The following result is also true and it can be proved as in the case of n-vector spaces.

Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic ($\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots$, n_{n}) n -dimensional vector space over a field F . If $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ $\cup \ldots \cup \mathrm{W}_{\mathrm{n}}$ is a neutrosophic $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \mathrm{n}$-dimensional vector space over the field F. Then $\mathrm{NL}^{\mathrm{n}}(\mathrm{V}, \mathrm{W})=$ \{collection of
all neutrosophic n -linear transformations from V to W$\}$ is finite $\left(m_{1} n_{1}, m_{2} n_{2}, \ldots, m_{n} n_{n}\right)$ dimensional neutrosophic n-vector space over F. It is to be noted that as in case of n-vector spaces we in case of neutrosophic n-vector spaces also define neutrosophic nlinear transformations V to W where V is a neutrosophic n vector space where as W is a neutrosophic m -vector space $\mathrm{m}>$ n.

Let V and W be two neutrosophic n -vector space and neutrosophic m -vector space respectively ($\mathrm{m}>\mathrm{n}$) over a real field F. Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ be a neutrosophic n-linear transformation of V into W such that $T_{i}: V_{i} \rightarrow W_{j}$, where each V_{i} is mapped onto a distinct $\mathrm{W}_{\mathrm{j}} 1 \leq \mathrm{i} \leq \mathrm{n}$ and $1 \leq \mathrm{j} \leq \mathrm{m}$ that is no two V_{i} 's are mapped onto the same W_{j} true for each $i, i=1,2$, \ldots, n. Then $\mathrm{NL}^{\mathrm{n}}(\mathrm{V}, \mathrm{W})$ can be defined and in this case $\mathrm{NL}^{\mathrm{n}}(\mathrm{V}$, W) is finite dimensional n -space over F of n -dimension $\left(m_{i_{1}} n_{1}, m_{i_{2}} n_{2}, \ldots, m_{i_{n}} n_{n}\right)$ where $1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq m$.

Now as in case of n-vector spaces we can define for neutrosophic n -vector spaces composition of neutrosophic n linear transformations.

Let V, W and Z be three neutrosophic n-vector spaces over the field F , i.e., $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}, \mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup$ W_{n} and $\mathrm{Z}=\mathrm{Z}_{1} \cup \mathrm{Z}_{2} \cup \ldots \cup \mathrm{Z}_{\mathrm{n}}$.

Define $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}: V=V_{1} \cup V_{2} \cup \ldots \cup V_{n} \rightarrow$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}} ; \mathrm{T}_{\mathrm{i}}: \mathrm{V}_{\mathrm{i}} \rightarrow \mathrm{W}_{\mathrm{j}} ; \mathrm{i}=1,2, \ldots, \mathrm{n} ; 1 \leq \mathrm{j} \leq \mathrm{n}$. Let $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \ldots \cup \mathrm{P}_{\mathrm{n}}: W=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}} \rightarrow \mathrm{Z}=\mathrm{Z}_{1} \cup$ $Z_{2} \cup \ldots \cup Z_{n} ; P_{j}: W_{j} \rightarrow Z_{k} ; j=1,2, \ldots ., n$ and $1 \leq k \leq m$ so that no two subspaces W_{j} are mapped on to same $Z_{k} ; k=1,2, \ldots, n$. Now

$$
\begin{aligned}
\left(\mathrm{P}_{\mathrm{j}} \mathrm{~T}_{\mathrm{i}}\right) & \left(\mathrm{c} \alpha^{\mathrm{i}}+\beta^{\mathrm{i}}\right) \\
& =\mathrm{P}_{\mathrm{j}}\left[\mathrm{~T}_{\mathrm{i}}\left(c \alpha^{\mathrm{i}}+\beta^{\mathrm{i}}\right)\right] \\
& =\mathrm{P}_{\mathrm{j}} \mathrm{~T}_{\mathrm{i}}\left(c \alpha^{\mathrm{i}}\right)+\mathrm{P}_{\mathrm{j}}\left(\beta^{\mathrm{i}}\right) \\
& =\mathrm{P}_{\mathrm{j}}\left[c \omega^{\mathrm{i}}+\delta^{\mathrm{j}}\right]\left(a s \mathrm{~T}_{\mathrm{i}}: \mathrm{V}_{\mathrm{i}} \rightarrow \mathrm{~W}_{\mathrm{j}} ; \delta^{\mathrm{j}}, \omega^{\mathrm{j}} \in \mathrm{~W}_{\mathrm{j}}\right) \\
& =\mathrm{cP} \mathrm{P}_{\mathrm{j}}\left(\omega^{\mathrm{j}}\right)+\mathrm{P}_{\mathrm{j}}\left(\delta^{\mathrm{j}}\right) \\
& =c \mathrm{a}^{\mathrm{k}}+\mathrm{b}^{\mathrm{k}} ; \mathrm{a}^{\mathrm{k}}, \mathrm{~b}^{\mathrm{k}} \in \mathrm{Z}_{\mathrm{k}} .
\end{aligned}
$$

Thus $P_{j} T_{i}$ is a neutrosophic n-linear transformation from W_{j} to Z_{k}. Hence the claim and the result is true for each i and j . Thus PT is a neutrosophic n-linear transformation from W to Z.

So PT $=\left(\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \ldots \cup \mathrm{P}_{\mathrm{n}}\right)\left(\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\underline{n}}\right)=\mathrm{P}_{1} \mathrm{~T}_{\mathrm{i}_{1}} \cup$ $P_{2} T_{i_{2}} \cup \ldots \cup P_{n} T_{i_{n}}$ where $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ is a permutation of (1 , $2, \ldots, n$).

Now we for the notational convenience recall that if $\mathrm{V}=\mathrm{V}_{1}$ $\cup V_{2} \cup \ldots \cup V_{\mathrm{n}}$ is a neutrosophic n -vector space over the field F then V_{i} 's will be known as the component neutrosophic subvector space of V . V_{i} 's are also known as the component of V. Now we proceed onto give some properties of neutrosophic n-linear operators.

Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ be a neutrosophic n-vector space over the field F. Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ be a neutrosophic n-linear operator on V with $T_{i}: V_{i} \rightarrow V_{i}, i=1,2$, \ldots, n. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{n}}$ be another neutrosophic nlinear operator on V with $S_{i}: V_{i} \rightarrow V_{i}, i=1,2, \ldots, n$. Now $S T$ and TS is again neutrosophic n-linear operators on V .

Thus the neutrosophic n-space of all neutrosophic n-linear operators has a product defined as composition.

In this case the neutrosophic n-linear operator TS is also defined. In general $\mathrm{ST} \neq \mathrm{TS}$; that is $\mathrm{ST}-\mathrm{TS} \neq 0$.
$\mathrm{NL}^{\mathrm{n}}(\mathrm{V}, \mathrm{V})$ is a neutrosophic n -vector space of n -dimension $\left(n_{1}^{2}, n_{2}^{2}, \ldots, n_{n}^{2}\right)$ where the n-dimension of V is $\left(n_{1}, n_{2}, \ldots, n_{n}\right)$. All relations like n-nilpotent, n-diagonalizable can be defined in case of neutrosophic n-vector spaces of type I with appropriate modifications.

3.2 Neutrosophic Strong n-Vector Spaces

In this section we proceed onto define the new notion of neutrosophic strong n-vector spaces ($n \geq 3$) and discuss a few of their properties.

DEFINITION 3.2.1: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that each V_{i} is a neutrosophic vector space over the same neutrosophic field F then we call V to be a neutrosophic strong n-vector space or strong neutrosophic n-vector space.

We will first illustrate this by some examples.
Example 3.2.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N(Q)\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 6\right\} \cup \\
\left.\left.\left\{\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 10\right\} \cup
\end{gathered}
$$

$\{\mathrm{QI}[\mathrm{x}]$; all polynomials in the variable x with coefficients from $\mathrm{QI}\} \cup(\mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI} \times \mathrm{QI})=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e} \in$ QI\} be a neutrosophic strong 5 -vector space over the neutrosophic field F = QI.

Example 3.2.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{2} \mathrm{I} ; 1 \leq i \leq 8\right\} \cup \\
& \left.\left.\left\{\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{2}\right) ; 1 \leq i \leq 15\right\} \cup
\end{aligned}
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{2} I ; 1 \leq i \leq 9\right\} \cup
$$

$\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I} ; 1 \leq \mathrm{i} \leq 7\right\} \cup\{9 \times 9$ upper triangular matrices with entries from $\left.N\left(\mathrm{Z}_{2}\right)\right\} \cup\left\{\mathrm{N}\left(\mathrm{Z}_{2}\right)[\mathrm{x}]\right.$; all polynomials in the variable x with coefficients from $\left.N\left(Z_{2}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10} \\
a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Z_{2} \mathrm{I} ; 1 \leq \mathrm{i} \leq 12\right\}
$$

be a strong neutrosophic 7-vector space over the neutrosophic field $\mathrm{F}=\mathrm{Z}_{2} \mathrm{I}$.

Now having seen examples of strong neutrosophic n-vector spaces $n \geq 3$ we define substructures in them. It is both interesting and important to note that in a strong neutrosophic nvector space V if $\mathrm{n}=2$ we get the strong neutrosophic bivector space defined and discussed in chapter two of this book. When $\mathrm{n}=3$ we call V to be a strong neutrosophic trivector space.

Example 3.2.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in R I\right\} \cup \\
\left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{6} & a_{5} \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq i \leq 10\right\} \cup
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(\mathrm{R}) ; 1 \leq i \leq 8\right\}
$$

V is a strong neutrosophic trivector space (3-vector space) over the neutrosophic field F = QI.

DEFINITION 3.2.2: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-vector space over the neutrosophic field F. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ such that $\phi \neq W_{i}$ $\not \subset V_{i} ; i=1,2, \ldots, n$ be a strong neutrosophic n-vector space over the same neutrosophic field F. Then we call W to be a strong neutrosophic n-vector subspace of V over F.

We note that even if one $\mathrm{W}_{\mathrm{i}}=\phi$ or $\mathrm{W}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{n})$ then we do not call $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ to be a strong neutrosophic n-vector subspace of V.

We will first illustrate this situation by some examples.
Example 3.2.4: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{5} & \mathrm{a}_{4} \\
\mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 8\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; \mathrm{i}=0,1,2, \ldots, \infty\right\} \cup
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i} \\
\mathrm{k} & \mathrm{l} & \mathrm{~m} \\
\mathrm{o} & \mathrm{p} & \mathrm{q}
\end{array}\right) \right\rvert\, a, \mathrm{~b}, \ldots, \mathrm{p}, \mathrm{q} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

$\cup\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mid x_{i} \in N\left(Z_{7}\right) ; 1 \leq i \leq 6\right\}$ be a strong neutrosophic 5 -vector space over the neutrosophic field Z_{7} I. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup\left\{\left.\left(\begin{array}{lll}
a & a & a \\
b & b & b \\
b
\end{array}\right) \right\rvert\, a, b \in Z_{7} I\right\} \cup \\
\\
\left\{\sum_{i=0}^{51} a_{i} x^{i} \mid a_{i} \in Z_{7} I ; 0 \leq i \leq 51\right\} \cup \\
\\
\left.\left.\left\{\begin{array}{lll}
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup
\end{gathered}
$$

$\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup$ $\mathrm{V}_{4} \cup \mathrm{~V}_{5}$. It is easily verified that W is a strong neutrosophic 5vector subspace of V over the neutrosophic field $\mathrm{Z}_{7} \mathrm{I}$.

Example 3.2.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}(\mathrm{Q}) ; 1 \leq \mathrm{i} \leq 4\right\} \cup
$$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; \mathrm{i}=0,1,2, \ldots, \infty ;\right.
$$

all polynomials in the variable x with coefficients from the neutrosophic field $N(Q)\} \cup$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 5\right\} \cup
\end{array}\right\} \begin{aligned}
& \left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Q \mathrm{QI} ; 1 \leq \mathrm{i} \leq 8\right\} \cup
\end{aligned}
$$

$\{$ all 8×8 neutrosophic matrices with entries from $\mathrm{N}(\mathrm{Q})\} \cup\{$ All 4×4 lower triangular matrices with entries from $N(Q)\} \cup\{$ all 7 $\times 7$ upper triangular matrices with entries from $\mathrm{N}(\mathrm{Q})\}$ be a neutrosophic strong 7-vector space over the neutrosophic field QI. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}=$

$$
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in N(Q)\right\} \cup\left\{\sum_{i=0}^{8} a_{i} x^{i} \mid a_{i} \in N(Q) ; i=0,1,2, \ldots, 8 ;\right.
$$

all polynomials in the variable x with coefficients from the neutrosophic field $N(Q)$ of degree less than or equal to 8$\} \cup$

$$
\left\{\left(\begin{array}{l}
\mathrm{a} \\
\mathrm{a} \\
\mathrm{a} \\
\mathrm{a} \\
\mathrm{a}
\end{array}\right)\left|\left.\right|_{\mathrm{a} \in \mathrm{QI}}\right\} \cup\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{~b} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{QI}\right\} \cup\right.
$$

\{All 8×8 neutrosophic matrices with entries from the neutrosophic field QI $\} \cup\{$ All 4×4 lower triangular matrices with entries from the neutrosophic field QI\} $\cup\{$ All 7×7 diagonal matrices with entries from the neutrosophic field N $(\mathrm{Q})\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$; it is easily verified that W is a strong neutrosophic 7 -vector subspace of V over the neutrosophic field QI.

We say a strong neutrosophic n-vector space is simple if V has no proper strong neutrosophic n-vector subspaces.

We will illustrate this by some examples.
Example 3.2.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{3} I\right\} \cup\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{3} I\right\} \cup
$$

$\left\{\left(\mathrm{a}\right.\right.$ a a a a a) $\left.\mid \mathrm{a} \in \mathrm{Z}_{3} \mathrm{I}\right\} \cup\{$ All 8×8 neutrosophic diagonal matrices of the form $\mathrm{Z}_{3} \mathrm{I}$, that is

$$
\left.\left.\left(\begin{array}{cccccccc}
a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{3} I\right\}
$$

be a strong neutrosophic 4 -vector space over the neutrosophic field $\mathrm{Z}_{3} \mathrm{I}$. Clearly V has no strong neutrosophic 4 -vector subspace. Hence V is a simple neutrosophic strong 4 -vector space or simple strong neutrosophic 4 -vector space over Z_{3} I.

Example 3.2.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\begin{aligned}
& \left\{\left(\text { aaaaaaaa) } \mid a \in Z_{7} I\right\} \cup\right. \\
& \left\{\left.\left(\begin{array}{ll}
a & a \\
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{lllll}
a & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
a & a & a & 0 & 0 \\
a & a & a & a & 0 \\
a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
a & a & a & a & a & a & a \\
a & a & a & a & a & a & a \\
a & a & a & a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup\left\{\left.\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & a & 0 \\
0 & 0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup
\end{aligned}
$$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
0 & 0 & 0 \\
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
0 & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

be a strong neutrosophic 7 -vector space over the neutrosophic field $Z_{7} I$. It is easily verified that V has no proper strong neutrosophic 7 -vector subspace. Hence V is a simple strong neutrosophic 7 -vector space over $\mathrm{Z}_{7} \mathrm{I}$.

DEFINITION 3.2.3: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-vector space over a neutrosophic field F. If each V_{i} is a neutrosophic strong linear algebra over F then we call V $=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ to be a strong neutrosophic n-linear algebra over F.

We will illustrate then by some examples.
Example 3.2.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Q I ; 1 \leq i \leq 9\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 \\
0 & 0 & \mathrm{a}_{3} & 0 \\
0 & 0 & 0 & a_{4}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{QI}\right\} \cup
\end{aligned}
$$

\{All 8×8 upper triangular matrices with entries from $N(Q)$ \} be a strong neutrosophic 5-linear algebra over QI.

Example 3.2.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19} \mathrm{I}\right\} \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & 0 \\
\mathrm{a} & \mathrm{a} & 0 \\
\mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{~N}\left(\mathrm{Z}_{19}\right)\right\} \cup
\end{gathered}
$$

\{All 9×9 upper triangular neutrosophic matrices with entries from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup\left\{\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{\mathrm{y}}\right) \mid \mathrm{X}_{\mathrm{i}} \in \mathrm{Z}_{19} \mathrm{I} ; 1 \leq \mathrm{i} \leq 4\right\} \cup\{$ all 5×5 lower triangular matrices with entries from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup\{$ All 12×12 neutrosophic diagonal matrices with entries from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}\left(\mathrm{Z}_{19}\right)\right\} .
$$

V is a strong neutrosophic 7-linear algebra over the neutrosophic field $\mathrm{Z}_{19} \mathrm{I}$.

It is important and interesting to record that every strong neutrosophic n-linear algebra is a strong neutrosophic n-vector space but in general every strong neutrosophic n-vector space need not be a strong neutrosophic n-linear algebra. We leave the proof of this to the reader; however we give an example of a neutrosophic strong n-vector space which is not a neutrosophic strong n-linear algebra.

Example 3.2.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} \mathrm{I} ; 1 \leq \mathrm{i} \leq 8\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 5\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a_{1} \\
0 & 0 & a_{2} & 0 \\
0 & a_{3} & 0 & 0 \\
a_{4} & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 4\right\} \cup \\
& \left.\left.\left\{\begin{array}{llll}
a & 0 & b & 0 \\
a & c & 0 & d \\
e & 0 & f & 0 \\
a & h & a & i
\end{array}\right) \right\rvert\, a_{i}, b, e, d, f, h, i \in Z_{13} I\right\} \cup \\
& \left\{\begin{array}{cc}
a
\end{array}\right\}
\end{aligned}
$$

be a strong neutrosophic 5-vector space over the neutrosophic field $Z_{13} \mathrm{I}$. Clearly V is not a strong neutrosophic 5-linear algebra over $\mathrm{Z}_{13} \mathrm{I}$ as none of V_{i} is closed under multiplication; 1 $\leq \mathrm{i} \leq 5$.

Hence in general a strong neutrosophic n-vector space need not be a strong neutrosophic n-linear algebra.

Now we proceed onto define the notion of strong neutrosophic n-linear subalgebra of a strong neutrosophic n-linear algebra.

DEFINITION 3.2.4: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-linear algebra over the neutrosophic field F. Suppose $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}\left(W_{i} \nsubseteq\right.$ $V_{i} ; W_{i} \neq \phi$ and $W_{i} \neq V_{i}$ for each $i, 1 \leq i \leq n$) is such that W is
strong neutrosophic n-linear algebra over the field F, then we call W to be a strong neutrosophic n-linear subalgebra of V.

It is interesting and important to note that even if one of the W_{i} is $\{0\}$ or V_{i} then W is not a strong neutrosophic n-linear subalgebra of V over F.

We will illustrate this by some simple examples.
Example 3.2.11: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N(Q)\right\} \cup \\
\{(a, b, c, d, e, f) \mid a, b, c, d, e, f \in N(Q)\} \cup \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in N(Q)\right\} \cup\left\{\left.\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & d
\end{array}\right) \right\rvert\, a, b, d \in N(Q)\right\} \cup \\
\left.\left.\left\{\begin{array}{llll}
a & 0 & 0 & 0 \\
b & c & 0 & 0 \\
d & e & f & 0 \\
g & h & j & k
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, j, k \in N(Q)\right\}
\end{gathered}
$$

be a strong neutrosophic n-linear algebra over QI. Let $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{QI}\right\} \cup\{(\mathrm{a} \text { a a a a a }) \mid \mathrm{a} \in \mathrm{~N}(\mathrm{Q})\} \cup \\
\left\{\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q})\right\} \cup\right.
\end{gathered}
$$

$$
\begin{gathered}
\left\{\left(\left.\left(\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, a \in N(Q)\right\} \cup\right. \\
\left.\left.\left\{\begin{array}{llll}
a & 0 & 0 & 0 \\
b & c & 0 & 0 \\
d & e & g & 0 \\
p & q & r & s
\end{array}\right) \right\rvert\, a, b, c, d, e, g, p, q, r, s \in Q I\right\} \\
\\
\subseteq V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} .
\end{gathered}
$$

It is easily verified that W is a strong neutrosophic n-linear subalgebra of V over the field QI.

Example 3.2.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in Z_{3} I ; 1 \leq i \leq 9\right\} \cup
$$

$\left\{\right.$ All 4×4 neutrosophic matrices with entries from $\left.N\left(Z_{3}\right)\right\} \cup$ $\left\{\right.$ All 9×9 upper triangular matrices with entries from $\left.N\left(Z_{3}\right)\right\} ; V$ is a neutrosophic strong trilinear algebra over the neutrosophic field Z_{3} I. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{3} I\right\} \cup
$$

$\left\{\right.$ All 4×4 neutrosophic matrices with entries from $\left.Z_{3} \mathrm{I}\right\} \cup\{$ All 9×9 upper triangular matrices with entries from $\left.\mathrm{Z}_{3} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup$ $\mathrm{V}_{2} \cup \mathrm{~V}_{3}$. W is a strong neutrosophic 3-linear subalgebra of V of V over the neutrosophic field $\mathrm{Z}_{3} \mathrm{I}$.

We call a strong neutrosophic n-linear algebra to be simple if $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ has no proper strong neutrosophic n linear subalgebra.

We will illustrate this by some examples.
Example 3.2.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{5} I\right\} \cup\left\{(a, a, a, a, a, a) \mid a \in Z_{5} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{5} I\right\} \cup\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a & a & 0 \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{5} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & a & 0 \\
0 & 0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{5} I\right\}
\end{aligned}
$$

be a strong neutrosophic 5 -linear algebra over the neutrosophic field $\mathrm{Z}_{5} \mathrm{I}$. Clearly V has no proper strong neutrosophic 5 -linear subalgebra.

Thus V is a simple strong neutrosophic 5-linear algebra over $\mathrm{Z}_{5} \mathrm{I}$.

Example 3.2.14: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup\left\{\left.\left(\begin{array}{cc}
a & 0 \\
a & 0
\end{array}\right) \right\rvert\, a \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
$$

$\left\{\left(\mathrm{a} 0\right.\right.$ a 0 a 0 a) $\left.\mid \mathrm{a} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup\{9 \times 9$ diagonal matrices where all the diagonal entries are equal to (say) $\left.a ; a \in Z_{11} I\right\} \cup$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
a & a & 0 & 0 \\
a & a & a & 0 \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in \mathrm{Z}_{11} \mathrm{I}\right\}
\end{array}\right\} \cup
$$

be a strong neutrosophic 6-linear algebra over the neutrosophic field $\mathrm{Z}_{11} \mathrm{I}$. It is easy to vertify that V has no proper strong neutrosophic 6-linear subalgebras; hence V is a simple strong neutrosophic linear algebra.

Now we proceed onto define the notion of pseudo strong neutrosophic n-linear subalgebra.

DEFINITION 3.2.5: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-linear algebra over the neutrosophic field F.

Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, where some $W_{i}\left(W_{i} \neq(0)\right.$ and $\left.W_{i} \neq V_{i}\right)$ contained in V_{i} are just strong neutrosophic vector space over the neutrosophic field $F ; i=1$, $2, \ldots, n$.

We define $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ to be a pseudo strong neutrosophic linear subalgebra of V over F if some W_{i} 's are strong neutrosophic vector spaces and some W_{j} 's are strong neutrosophic linear algebras over the neutrosophic field F. $1 \leq i, j \leq n(i \neq j)$.

We will illustrate this situation by some examples.
Example 3.2.15: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{23} I\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \mid a_{i} \in Z_{23} I ; 1 \leq i \leq 6\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{23} I\right\} \cup \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in Z_{23} I ; i=0,1,2, \ldots, \infty\right\}
\end{gathered}
$$

be a strong neutrosophic 4-linear algebra over the neutrosophic field $\mathrm{Z}_{23} \mathrm{I}$. Choose $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\begin{aligned}
\left\{\left.\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right) \right\rvert\, a, b \in Z_{23} \mathrm{I}\right\} & \cup\left\{(\text { a a a a a a }) \mid a \in \mathrm{Z}_{23} \mathrm{I}\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
0 & 0 & a \\
0 & b & 0 \\
c & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{23} \mathrm{I}\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{23} \mathrm{I} ; \mathrm{i}=0,1,2, \ldots, \infty\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$. It is easily verified that $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup$ $\mathrm{W}_{3} \cup \mathrm{~W}_{4}$ is a pseudo strong neutrosophic linear subalgebra of V over the neutrosophic field $\mathrm{F}=\mathrm{Z}_{23} \mathrm{I}$.

Example 3.2.16: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{13} I\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right) \mid a_{i} \in Z_{13} I ; 1 \leq i \leq 8\right\} \cup \\
\left\{\begin{array}{lll}
\left.\left(\begin{array}{lll}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 10
\end{array}\right\} \cup \\
\left\{\left.\left\{\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 4\right\} \cup
\end{array}\right\}
$$

that is all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{13} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccccc}
\mathrm{a}_{1} & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 & 0 \\
0 & 0 & \mathrm{a}_{3} & 0 & 0 \\
0 & 0 & 0 & \mathrm{a}_{4} & 0 \\
0 & 0 & 0 & 0 & \mathrm{a}_{5}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} \mathrm{I} ; 1 \leq \mathrm{i} \leq 5\right\}
$$

be a strong neutrosophic 6-linear algebra over the neutrosophic field $\mathrm{Z}_{13} \mathrm{I}$.

Choose $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
0 & 0 & a \\
0 & b & 0 \\
d & 0 & 0
\end{array}\right) \right\rvert\, a, b, d \in Z_{13} I\right\} \cup \\
& \left\{\left(a_{1}, 0, a_{2}, 0, a_{3}, 0, a_{4}, 0\right) \mid a_{i} \in Z_{13} I ; 1 \leq i \leq 4\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
a & a & 0 & 0 \\
a & a & a & 0 \\
a & a & a & a
\end{array}\right) \right\rvert\, a \in Z_{13} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cc}
0 & a \\
b & 0
\end{array}\right) \right\rvert\, a, b \in Z_{13} I\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{27} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} \mathrm{I} ; 0 \leq \mathrm{i} \leq 27 ;\right.
\end{aligned}
$$

all polynomials in the variable x with coefficients from $\left.\mathrm{Z}_{13} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & a & 0 \\
0 & 0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in \mathrm{Z}_{13} \mathrm{I}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$.
It is easily verified that W is a pseudo strong neutrosophic 6-linear subalgebra of V over the field $\mathrm{Z}_{13} \mathrm{I}$.

Now we proceed onto give an example and then define the notion of strong pseudo neutrosophic n-vector space of a strong neutrosophic n-linear algebra over the neutrosophic field F .

Example 3.2.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field QI; $\left.0 \leq \mathrm{a}_{\mathrm{i}} \leq \infty\right\} \cup$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in N(Q)\right\} \cup \\
\left.\left.\left\{\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} & a_{16}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{QI} ; 1 \leq \mathrm{i} \leq 16\right\} \cup
\end{gathered}
$$

\{all 8×8 neutrosophic matrices with entries from QI \} be a strong neutrosophic 5 -linear algebra over the neutrosophic field QI.

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right) \right\rvert\, a, b \in N(Q)\right\} \cup
$$

$\left\{\sum_{i=0}^{10} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field QI of degree less than equal to 10 ; a_{i} \in QI; $i=0,1,2, \ldots, 10\} \cup$

$$
\left.\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{ccc}
0 & 0 & a \\
0 & a & 0 \\
a & 0 & 0
\end{array}\right) \right\rvert\, a \in \mathrm{QI}\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
a & 0 & 0 & 0
\end{array}\right) \right\rvert\,\right.
\end{array}\right\} a \in \mathrm{QI}\right\} \cup,
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$. W is a strong neutrosophic 5vector space over the neutrosophic field QI. We call this strong neutrosophic 5 -vector space as strong pseudo neutrosophic 5vector space of V over the neutrosophic field QI.

We now give the formal definition of this new notion.
DEFINITION 3.2.6: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-linear algebra over the neutrosophic field F. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that each $W_{i} \subseteq V_{i}$ is different from (0) and V_{i} for $i=1,2, \ldots, n$ and each W_{i} is only a strong neutrosophic vector space over the field F and is not a strong neutrosophic linear algebra over F.

We define $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ to be a strong pseudo neutrosophic n-vector space of V over the field F.

We will give an example of this concept.
Example 3.2.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left.\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{Z}_{17} \mathrm{I}\right\}
\end{array}\right\} \left.\cup \mathrm{u}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup \cup \mathrm{l}
$$

$\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{Z}_{17} \mathrm{I} ; \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq \infty\right\} \cup\{$ all $6 \times$ 6 matrices with entries from $\mathrm{Z}_{17} \mathrm{I}$ \} be a strong neutrosophic 4linear algebra over the neutrosophic field Z_{17} I. Take $\mathrm{W}=\mathrm{W}_{1} \cup$ $\mathrm{W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left.\left\{\left.\left(\begin{array}{ccc}
0 & 0 & \mathrm{a} \\
0 & \mathrm{~b} & 0 \\
\mathrm{c} & 0 & 0
\end{array}\right) \right\rvert\, \text { a,b,c } \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup\left\{\left.\left(\begin{array}{cc}
0 & \mathrm{a} \\
\mathrm{~b} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{17} \mathrm{I}\right\}\right\}
$$

$\left\{\sum_{i=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in variable x with coefficients from $\mathrm{Z}_{17} \mathrm{I}$ of degree less than or equal to five $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 0 \leq \mathrm{i} \leq 5\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & a_{1} \\
0 & 0 & 0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & a_{4} & 0 & 0 & 0 \\
0 & a_{5} & 0 & 0 & 0 & 0 \\
a_{6} & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$. It is easy to verify each $\mathrm{W}_{\mathrm{i}} \subseteq \mathrm{V}_{\mathrm{i}}$ is only a strong neutrosophic vector space over $\mathrm{Z}_{17} \mathrm{I}$. $\mathrm{i}=1,2,3,4$. So W $=W_{1} \cup W_{2} \cup W_{3} \cup W_{4} \subseteq V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ is only a pseudo strong neutrosophic 4 -vector space of V over the field $\mathrm{Z}_{17} \mathrm{I}$.

DEFINITION 3.2.7: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-linear algebra over the neutrosophic field F. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over the neutrosophic field $K \subseteq F$ (K is only a proper subfield of $F, K \neq F$). We define W to be a pseudo strong neutrosophic n-linear subalgebra of V over the real field $K \subseteq F$.

We will illustrate this situation by some examples.
Example 3.2.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{23}\right)\right\} \cup \\
\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}\left(\mathrm{Z}_{23}\right) 1 \leq \mathrm{i} \leq 7\right\} \cup
\end{gathered}
$$

$\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.\mathrm{N}\left(\mathrm{Z}_{23}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{23}\right) ; 1 \leq i \leq 9\right\} \cup
$$

$\left\{9 \times 9\right.$ matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{23}\right)\right\}$ be a strong neutrosophic 5 -linear algebra over the neutrosophic field $\mathrm{N}\left(\mathrm{Z}_{23}\right)$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{aligned}
&\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{23} I\right\} \cup\left\{(\text { a a a a a a a }) \mid a \in Z_{23} I\right\} \cup \\
&\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in Z_{23} I ; 0 \leq i \leq \infty\right\} \cup \\
&\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & 0
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{23}\right)\right\} \cup
\end{aligned}
$$

\{all 9×9 lower triangular matrices with entries from $\mathrm{N}\left(\mathrm{Z}_{23}\right) \subseteq$ $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ is a neutrosophic 5-linear algebra over the field $\mathrm{Z}_{23} \subseteq \mathrm{~N}\left(\mathrm{Z}_{23}\right)$. Thus W is a pseudo strong neutrosophic 5-linear subalgebra of V over the subfield $\mathrm{Z}_{23} \subseteq$ $\mathrm{N}\left(\mathrm{Z}_{23}\right)$.

Example 3.2.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=\{$ All 5×5 neutrosophic matrices with entries from $N(R)\} \cup\{$ All polynomial $\sum_{i=0}^{\infty} a_{i} x^{i}$ with coefficients from $N(R)$ in the variable $x\} \cup\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7}, \mathrm{x}_{8}, \mathrm{x}_{9}, \mathrm{x}_{10}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{N}(\mathrm{R}) ; 1 \leq \mathrm{i} \leq\right.$ 10\} be a strong neutrosophic 3-linear algebra over the neutrosophic field $\mathrm{N}(\mathrm{R})$. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3}=\{$ All 5×5 diagonal matrices with entries from $\mathrm{N}(\mathrm{R})\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{R})\right\} \cup
$$

$\left\{(\right.$ a а а а а а а а а a) $\mid \mathrm{a} \in \mathrm{N}(\mathrm{R})\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} ; \mathrm{W}$ is a neutrosophic 3-linear algebra over the field $R \subseteq N(R)$. Thus W is a pseudo strong neutrosophic 3-linear subalgebra of V over the field $R \subseteq N(R)$.

DEFINITION 3.2.8: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-linear algebra over the neutrosophic field K. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-vector space over a real field $F, F \subseteq K$; we call $W=W_{1} \cup W_{2} \cup \ldots \cup$ $W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ to be a pseudo n-vector subspace of V over the real subfield F of K.

We will illustrate this situation by some examples.
Example 3.2.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{2}\right)\right\} \cup
$$

$\left\{\sum_{i=0}^{\infty} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients from $N\left(Z_{2}\right) ; a_{i} \in N\left(Z_{2}\right)$ and $\left.i=0,1,2, \ldots, \infty\right\} \cup\{$ All 5×5 matrices with entries from $\left.N\left(Z_{2}\right)\right\} \cup\{$ All 7×7 matrices with entries from $\left.N\left(Z_{2}\right)\right\} \cup\{$ All 4×4 matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{2}\right)\right\} \cup\left\{\right.$ All 6×6 matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{2}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, a, \mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{~N}\left(\mathrm{Z}_{2}\right)\right\}
$$

be a strong neutrosophic 7-linear algebra over the neutrosophic field $N\left(\mathrm{Z}_{2}\right)$. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}$

$$
=\left\{\left.\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right) \right\rvert\, a, b \in Z_{2}\right\} \cup
$$

$\left\{\sum_{i=0}^{6} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients from the real field Z_{2} of degree less than or equal to 6$\} \cup$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & a & 0 \\
0 & 0 & a & 0 & 0 \\
0 & a & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a \in Z_{2}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & a_{1} \\
0 & 0 & 0 & 0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & a_{5} & 0 & 0 & 0 & 0 \\
0 & a_{6} & 0 & 0 & 0 & 0 & 0 \\
a_{7} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{2} ; 1 \leq \mathrm{i} \leq 7\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{2}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & a_{1} \\
0 & 0 & 0 & 0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & a_{5} & 0 & 0 & 0 & 0 \\
0 & a_{6} & 0 & 0 & 0 & 0 & 0 \\
a_{7} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in Z_{2} ; 1 \leq i \leq 7
\end{array}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
0 & 0 & a \\
0 & b & 0 \\
d & 0 & 0
\end{array}\right) \right\rvert\, a, b, d \in Z_{2}\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$. W is only a 7-vector space over the field $\mathrm{Z}_{2} \subseteq \mathrm{~N}\left(\mathrm{Z}_{2}\right)$. Thus W is a pseudo 7-vector subspace of V over the real field $\mathrm{Z}_{2} \subseteq \mathrm{~N}\left(\mathrm{Z}_{2}\right)$.

Example 3.2.22: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{7}\right)\right\} \cup
$$

$\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{i} \in N\left(Z_{7}\right) ; 1 \leq i \leq 5\right\} \cup\{$ All 4×4 matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{7}\right)\right\} \cup\{$ All 6×6 matrices with entries from $\left.N\left(\mathrm{Z}_{7}\right)\right\} \cup\left\{\right.$ All 5×5 matrices with entries from $\left.N\left(\mathrm{Z}_{7}\right)\right\}$ be a strong neutrosophic 5 -linear algebra over the neutrosophic field $N\left(Z_{7}\right)$.

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\left\{\left.\left(\begin{array}{cc}
0 & \mathrm{a} \\
\mathrm{~b} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{7}\right\} \cup
$$

$$
\left\{\left(\mathrm{a}_{1} 0 \mathrm{a}_{2} 0 \mathrm{a}_{3}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} ; 1 \leq \mathrm{i} \leq 3\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, \text { a,b,c,d } \in \mathrm{Z}_{7}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & d & 0 & 0 & 0 \\
0 & e & 0 & 0 & 0 & 0 \\
p & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
\left.a, b, c, d, e, p \in \mathrm{Z}_{7}\right\} \cup .
\end{array}\right\}
$$

$$
\left\{\left.\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in Z_{7}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$. Clearly W is only a 7-vector space over the real field Z_{7}. Thus W is a pseudo 7 -vector subspace of V over the real field Z_{7} of $\mathrm{N}\left(\mathrm{Z}_{7}\right)$.

DEFINITION 3.2.9: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-linear algebra over the neutrosophic field F. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-linear algebra over the real field $K ; K \nsubseteq F$. We define W to be a pseudo n-linear subalgebra of V over the real field $K \subseteq F$.

We will illustrate this situation by some examples.
Example 3.2.23: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{11}\right)\right\} \cup \\
\left.\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \mid a_{i} \in N\left(Z_{11}\right) ; 1 \leq i \leq 6\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & u
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in N\left(Z_{11}\right)\right\} \cup \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in N\left(Z_{11}\right)\right\}
\end{gathered}
$$

be a strong neutrosophic 4-linear algebra over the neutrosophic field $N\left(Z_{11}\right)$.

Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{11}\right\} \cup\left\{(a, a, a, b, b, b) \mid a, b \in Z_{11}\right\} \cup \\
\left\{\left(\left.\left(\begin{array}{lll}
a & a & a \\
b & b & b \\
c & c & c
\end{array}\right) \right\rvert\, a, b, c \in Z_{11}\right\} \cup\right. \\
\left\{\sum_{i=0}^{\infty} a_{i} x^{2 i} \mid a_{i} \in Z_{11}\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$.
It can be easily verified that W is a pseudo 4-linear subalgebra of V over the field $\mathrm{Z}_{11} \subseteq \mathrm{~N}\left(\mathrm{Z}_{11}\right)$.

Example 3.2.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
& \{(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \mid \mathrm{c}, \mathrm{a}, \mathrm{~b} \in \mathrm{~N}(\mathrm{Q})\} \cup
\end{aligned}
$$

$\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in N(Q)\right.$; collection of all polynomials in the variable x with coefficients from the neutrosophic field $N(Q)\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{~d} & 0 & 0 \\
0 & 0 & e & f \\
0 & 0 & \mathrm{~g} & \mathrm{~h}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
b & d & 0 & 0 & 0 \\
e & f & g & 0 & 0 \\
h & i & j & k & 0 \\
l & m & n & p & q
\end{array}\right) \right\rvert\, a, b, d, e, f, g, h, i, j, k, l, m, n, p, q \in N(Q)\right\} \\
& \cup\left\{\left.\left(\begin{array}{cccccc}
a & 0 & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & e & 0 \\
0 & 0 & 0 & 0 & 0 & g
\end{array}\right) \right\rvert\, a, b, c, d, e, g \in N(Q)\right\}
\end{aligned}
$$

be a strong neutrosophic 6-linear algebra over the neutrosophic field $N(Q)$. Consider $W=W_{1} \cup W_{2} \cup W_{3} \cup W_{4} \cup W_{5} \cup W_{6}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & 0 \\
0 & \mathrm{~b}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Q}\right\} \cup\{(\mathrm{a}, \mathrm{~b}, 0) \mid \mathrm{a}, \mathrm{~b} \in \mathrm{Q}\} \cup \\
& \left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in Q ; 0 \leq i \leq \infty\right\} \cup\left\{\left.\left(\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Q\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
\mathrm{a} & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & d & 0 \\
0 & 0 & 0 & 0 & e
\end{array}\right) \right\rvert\, a, b, c, d, e \in Q\right\} \cup
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{llllll}
\mathrm{a} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b} & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{c} & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & e & 0 \\
0 & 0 & 0 & 0 & 0 & \mathrm{f}
\end{array}\right) \right\rvert\, \text { a,b,c,d,e,f,g are in } \mathrm{Q}\right\} \\
& \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} .
\end{aligned}
$$

It is easy to prove, W is a 5 -linear algebra over Q , the real field of rationals. Hence W is a pseudo 5 -linear subalgebra of V over the real field Q.

Now as in case of strong neutrosophic bivector spaces we can define in case of strong neutrosophic n-vector spaces V and W defined over the same neutrosophic field F ; where $\mathrm{V}=\mathrm{V}_{1} \cup$ $\mathrm{V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$; a strong neutrosophic n -linear transformation T from V to W such that T $=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}: V=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}} \rightarrow \mathrm{W}=\mathrm{W}_{1} \cup$ $\mathrm{W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ with $\mathrm{T}_{\mathrm{i}}: \mathrm{V}_{\mathrm{i}} \rightarrow \mathrm{W}_{\mathrm{j}} ; 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$ so that no two V_{i} 's are mapped on to the same W_{j}. We denote the collection of all strong neutrosophic n-linear transformations of V to W by $\mathrm{SNHom}_{\mathrm{F}}(\mathrm{V}, \mathrm{W})$. Like in case of strong neutrosophic bivector spaces we can define strong neutrosophic n-linear operator for strong neutrosophic n-vector space V defined over the field K.

That is if $\mathrm{V}=\mathrm{W}$ then the strong neutrosophic n -linear transformation will be known as strong neutrosophic n-linear operator on V . $\mathrm{SNHom}_{\mathrm{K}}(\mathrm{V}, \mathrm{V})$ denotes the set of all strong neutrosophic n-linear operators on V .

Now as in case of usual neutrosophic n-vector spaces over the real field F we can define special (m, n) linear transformation where $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{m}}$ and $\mathrm{W}=\mathrm{W}_{1} \cup$ $\mathrm{W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}, \mathrm{m}<\mathrm{n}$ and (m, n) linear transformations when m $>\mathrm{n}$. All properties derived for neutrosophic n -vector spaces (n linear algebras) defined over a real field can be derived with appropriate modifications in case of strong neutrosophic nvector spaces (n -linear algebras) defined over the neutrosophic field.

Interested reader can construct examples.
Now we proceed onto define n-basis.
DEFINITION 3.2.10: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-vector space over the neutrosophic field K. A proper n-subset $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is said to be a n-basis of V if S a n-linearly independent n-set and each $S_{i} \subseteq V_{i}$ generates V_{i} and S_{i} is a basis of V_{i} true for each $i=$ $1,2, \ldots, n$.

If the n-set $X=X_{1} \cup X_{2} \cup \ldots \cup X_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is such that each X_{i} is a linearly independent subset of $V_{i} ; i=1,2$, \ldots, n then we say $X=X_{1} \cup X_{2} \cup \ldots \cup X_{n}$ is a n-linearly independent n-subset of V.

A n-basis $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is always a n-linearly independent n - subset of V over the field F.

However every n-linearly independent n-subset of V need not be a n-basis of V. If a n-subset $Y=Y_{1} \cup Y_{2} \cup \ldots \cup Y_{n} \subseteq V_{1} \cup$ $\mathrm{V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is not a n-linearly independent n -subset of V then we define Y to be a n-linearly dependent n -subset of V .

Interested reader can give examples of these concepts.
We can as in case of neutrosophic n-vector spaces define the notion of n-kernel of a n-linear transformation.

DEFINITION 3.2.11: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ and $W=W_{1} \cup$ $W_{2} \cup \ldots \cup W_{n}$ be two strong neutrosophic n-vector spaces over the neutrosophic field F. Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}: V=V_{1} \cup$ $V_{2} \cup \ldots \cup V_{n} \rightarrow W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} ; T_{i}: V_{i} \rightarrow W_{j} ; i=1$, $2,3, \ldots, n$ and $j=1,2, \ldots, n$ such that no two V_{i} 's are mapped onto the same W_{j}. The n-kernel of $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ denoted by

$$
\operatorname{ker} T=\operatorname{ker} T_{1} \cup \operatorname{ker} T_{2} \cup \ldots \cup \operatorname{ker} T_{n}
$$

where ker $T_{i}=\left\{v^{i} \in V_{i} \mid T_{i}\left(v^{i}\right)=0\right\} ; i=1,2, \ldots, n$.
Thus kerT $=\left\{\left(v^{1}, v^{2}, \ldots, v^{n}\right) / T\left(v^{1}, v^{2}, \ldots, v^{n}\right)=\left\{T_{1}\left(v^{1}\right) \cup\right.\right.$ $\left.T_{2}\left(v^{2}\right) \cup \ldots \cup T_{n}\left(v^{n}\right)=0 \cup 0 \cup \ldots \cup 0\right\}$.

It is left as a simple exercise for the reader to prove kerT is a proper neutrosophic n-subgroup of V. Further kerT is a strong neutrosophic n -vector subspace of V .

3.3 Neutrosophic n-Vector Spaces of Type II

In this section we proceed onto define the new notion of neutrosophic n-vector spaces of type II. We discuss several interesting results about them.

DEFINITION 3.3.1: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$; where each V_{i} is a neutrosophic vector space over $F_{i} ; V_{i} \nsubseteq V_{j}$ and $V_{j} \nsubseteq V_{i}$ (if $i \neq j$, $i \leq i, j \leq n)$ and $F_{i} \nsubseteq F_{j}$ as well as $F_{j} \nsubseteq F_{i}(i \neq j, 1 \leq i, j \leq n)$. We define $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ to be a neutrosophic n-vector space over the real n field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ of type II.

We will illustrate this situation by some examples.
Example 3.3.1: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{7} I\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 6\right\} \cup \\
\left.\left.\left\{\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10} \\
a_{11} & a_{12}
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in N(Q) ; 1 \leq i \leq 12
\end{array}\right\} \cup
\end{gathered}
$$

$\left\{\sum_{i=0}^{12} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{Z}_{2} \mathrm{I}$ of degree less than or equal to $\left.12 \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{2} \mathrm{I} ; 0 \leq \mathrm{i} \leq 12\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & 0 & \mathrm{a} \\
0 & \mathrm{~b} & 0 \\
\mathrm{~d} & 0 & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{29} \mathrm{I}\right\}
$$

be a neutrosophic 5-vector space over the 5-field $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{11} \cup$ $\mathrm{Q} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{29}$ of type II.

Example 3.3.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right) \right\rvert\,\left(a, b, c, d, e \in N\left(Z_{2}\right)\right\} \cup\right. \\
\left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{3}\right) ; 1 \leq i \leq 8\right\} \cup
\end{gathered}
$$

$\left\{\sum_{i=0}^{20} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x of degree less than or equal to 20 with coefficients from the field $\left.\mathrm{Z}_{23} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
0 & \mathrm{~g} & \mathrm{e} & \mathrm{f} \\
0 & 0 & \mathrm{~h} & \mathrm{i} \\
0 & 0 & 0 & \mathrm{k}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{~g}, \mathrm{e}, \mathrm{f}, \mathrm{~h}, \mathrm{i}, \mathrm{k} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
$$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{lll}
a & b & c \\
b & a & c \\
c & a & b \\
b & c & a \\
c & b & a \\
a & c & b
\end{array}\right) \right\rvert\, a, b, c \in N(Q)\right\} \cup \\
\left\{\left.\left\{\begin{array}{lll}
0 & 0 \\
0 & 0 & b \\
0 & c & 0 \\
d & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{17} I\right\} \cup \\
d
\end{array}\right\}
$$

be a neutrosophic 7-vector space over the 7-field $\mathrm{F}=\mathrm{Z}_{2} \cup \mathrm{Z}_{3} \cup$ $\mathrm{Z}_{23} \cup \mathrm{Z}_{11} \cup \mathrm{Q} \cup \mathrm{Z}_{17} \cup \mathrm{Z}_{31}$ of type II.

Even if we do not mention the word type II by the context one of easily understand what type of n-spaces are under study.

DEFINITION 3.3.2: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Let $W=$ $W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$, to be a neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$, then we define $W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ to be a neutrosophic n-vector subspace of V of type II over the n-field F.

We illustrate this situation by some simple examples.

Example 3.3.3: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10} \\
a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 12\right\} \cup
\end{aligned}
$$

$\left\{\sum_{i=0}^{12} a_{i} x^{i}\right.$; all polynomials of degree less than or equal to 12 with coefficients from the neutrosophic field $N\left(Z_{5}\right) ; a_{i} \in N\left(Z_{5}\right)$; $0 \leq \mathrm{i} \leq 12\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{3}\right)\right\}
$$

be a neutrosophic 4-vector space over the 4-field $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{11} \cup$ $\mathrm{Z}_{5} \cup \mathrm{Z}_{3}$ of type II.

Choose W $=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \text { QI; } 1 \leq \mathrm{i} \leq 10\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ll}
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{11} I\right\} \cup
$$

$\left\{\sum_{i=0}^{12} a_{i} x^{i}\right.$; all polynomials in the variable x of degree less than or equal to 12 with coefficients from $\left.\mathrm{Z}_{5} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
a & 0 & 0 & 0
\end{array}\right) \right\rvert\, a \in N\left(Z_{3}\right)\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$; W is a neutrosophic 4-vector subspace of V over the 4 -field F of type II.

Example 3.3.4: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I ; 1 \leq i \leq 8\right\} \cup
$$

$\left\{\sum_{i=0}^{30} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials of degree less than or equal to thirty with coefficients from the field $\left.N\left(Z_{13}\right) ; \mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{13}\right) ; 0 \leq \mathrm{i} \leq 30\right\}$

$$
\begin{aligned}
& \cup\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{17}\right) ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
0 & 0 & a \\
0 & b & 0 \\
d & e & f
\end{array}\right) \right\rvert\, a, b, d, e, f \in Z_{19} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 5\right\} \cup
\end{aligned}
$$

\{All 10×19 matrices with entries from $N\left(\mathrm{Z}_{2}\right)$ \} be a neutrosophic 6-vector space over the 6-field $F=F_{1} \cup F_{2} \cup F_{3} \cup$ $\mathrm{F}_{4} \cup \mathrm{~F}_{5} \cup \mathrm{~F}_{6}=\mathrm{Z}_{7} \cup \mathrm{Z}_{13} \cup \mathrm{Z}_{17} \cup \mathrm{Z}_{19} \cup \mathrm{Q} \cup \mathrm{Z}_{2}$ of type II. Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=$

$$
\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a \\
a & a \\
a & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup
$$

$\left\{\sum_{i=0}^{10} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}}\right.$; all polynomials of degree less than or equal to 10 with coefficients from $Z_{13} I$ in the variable $x ; a_{i} \in Z_{13} I ; 0 \leq i \leq$ $10\} \cup$

$$
\left\{\left.\left(\begin{array}{ccccc}
a & a & a & a & a \\
a & a & a & a & a
\end{array}\right) \right\rvert\, a \in N\left(Z_{17}\right)\right\} \cup
$$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
0 & 0 & a \\
0 & a & 0 \\
a & 0 & 0
\end{array}\right) \right\rvert\, a \in Z_{19} I\right\} \\
\left\{\left(\begin{array}{l}
a \\
a \\
a \\
a \\
a
\end{array}\right)|\mid a \in Q I\} \cup\right.
\end{gathered}
$$

$\left\{\right.$ All 10×19 matrices with entries from $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup$ $\mathrm{V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$ is a neutrosophic 6-vector subspace of V over the 6 -field F of type II.

DEFINITION 3.3.3: Let $V=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots$ $\cup F_{n}$. If $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ and K_{1} $\cup K_{2} \cup \ldots \cup K_{n}=K \subseteq F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. If W is a neutrosophic n-vector space over the n-field K then we call W to be a special subneutrosophic n-vector subspace of V over the n subfield K of F of type II.

We will illustrate this by some examples and counter examples.
Example 3.3.5: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{llll}
a & a & a & a \\
b & b & b & b \\
b
\end{array}\right) \right\rvert\, a, b \in N\left(Z_{5}\right)\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{7}\right) ; 1 \leq i \leq 12\right\} \cup
\end{gathered}
$$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 7\right\} \cup
\end{array}\right\} \left.\left\{\begin{array}{l}
\left\{\left.\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & b & 0 \\
0 & 0 & c & 0 & 0 \\
0 & d & 0 & 0 & 0 \\
e & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d, e \in Z_{19} I\right\} \cup \\
\left.\left\{\begin{array}{llll}
a_{1} \\
a_{1} & a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & 0 \\
0 & 0 & 0 & a_{10} \\
0 \\
0 & 0 & 0 & a_{12} \\
a_{11}
\end{array}\right) \right\rvert\, a_{13}
\end{array}\right) \right\rvert\, \begin{aligned}
& \left.a_{i} \in N(Q) ; 1 \leq i \leq 13\right\}
\end{aligned}
$$

be a neutrosophic 5-vector space over the 5-field $\mathrm{F}=\mathrm{Z}_{5} \cup \mathrm{Z}_{7} \cup$ $\mathrm{Z}_{11} \cup \mathrm{Z}_{19} \cup \mathrm{Q}$. We see each of the fields are prime so F has no 5 -subfield. Thus V has no special subneutrosophic 5-vector subneutrosophic 5 -vector subspace.

Example 3.3.6: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{19}))\right\} \cup
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
0 & b & 0 \\
0 & 0 & d
\end{array}\right) \right\rvert\, \text { a, }, \mathrm{d} \in \mathrm{~N}(\mathrm{Q}(\sqrt{17}, \sqrt{3}, \sqrt{5}, \sqrt{13}, \sqrt{11}))\right\} \cup \\
& \left\{\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right) \left\lvert\, \begin{array}{l}
a, b, c, d, e \in \mathrm{~N}(\mathrm{Q}(\sqrt{23}, \sqrt{29}, \sqrt{11}, \sqrt{7}, \sqrt{2}))\} \cup \sim
\end{array}\right.\right\} \\
& \left\{\left.\left(\begin{array}{ccccc}
a & \text { b } & \text { c } & \text { d } & e \\
f & \text { g } & \text { h } & \text { i } & j
\end{array}\right) \right\rvert\, \begin{array}{c}
a, \ldots, j \in N(Q(\sqrt{2}, \sqrt{23}, \sqrt{19}, \\
\sqrt{17}, \sqrt{41}, \sqrt{43}, \sqrt{53}))
\end{array}\right\}
\end{aligned}
$$

be a neutrosophic 4 -vector space over the 4 -field

$$
\begin{gathered}
\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4} \\
=\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{19}) \cup \mathrm{Q}(\sqrt{17}, \sqrt{3}, \sqrt{5}, \sqrt{13}, \sqrt{11}) \cup \\
\mathrm{Q}(\sqrt{23}, \sqrt{29}, \sqrt{11}, \sqrt{7}, \sqrt{2}) \cup \\
\mathrm{Q}(\sqrt{2}, \sqrt{23}, \sqrt{19}, \sqrt{17}, \sqrt{41}, \sqrt{43}, \sqrt{53})
\end{gathered}
$$

of type II. Consider $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{~N}(\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{19}))\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
0 & \mathrm{a} & 0 \\
0 & 0 & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{~N}(\mathrm{Q}(\sqrt{17}, \sqrt{3}, \sqrt{5}, \sqrt{13}, \sqrt{11}))\right\} \cup
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\left(\begin{array}{l}
a \\
b \\
a \\
b \\
a
\end{array}\right) \left\lvert\, \begin{array}{l}
a, b \in N(Q(\sqrt{23}, \sqrt{29}, \sqrt{11}, \sqrt{7}, \sqrt{2}))\}
\end{array}\right.\right\} \\
& \left\{\left(\begin{array}{lllll}
a & b & c & d & e \\
a & b & c & d & e
\end{array}\right) \left\lvert\, \begin{array}{l}
a, b, c, d, e \in N(Q(\sqrt{2}, \sqrt{23}, \\
\sqrt{19}, \sqrt{17}, \sqrt{41}, \sqrt{43}, \sqrt{53}))
\end{array}\right.\right\}
\end{aligned}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$. W is a neutrosophic 4-vector space over the 4-field

$$
\begin{gathered}
\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2} \cup \mathrm{~K}_{3} \cup \mathrm{~K}_{4} \\
=\mathrm{Q}(\sqrt{3}, \sqrt{19}) \cup \mathrm{Q}(\sqrt{17}, \sqrt{5}, \sqrt{13}) \cup \\
\mathrm{Q}(\sqrt{23}, \sqrt{29}, \sqrt{11}, \sqrt{2}) \cup \mathrm{Q}(\sqrt{41}, \sqrt{43}) \\
\subseteq \mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4}
\end{gathered}
$$

K is clearly a 4-subfield of F. Thus W is a special sub neutrosophic 4-vector subspace of V over $K=K_{1} \cup K_{2} \cup K_{3} \cup$ K_{4}.

Example 3.3.7: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}\left(\frac{\mathrm{Z}_{2}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle}\right)\right\}
$$

$\left(\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle\right.$ denotes the ideal generated by $\left.\mathrm{x}^{2}+\mathrm{x}+1,1 \leq \mathrm{i} \leq 6\right)$

$$
\cup\left\{\left.\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right) \right\rvert\, a, b, c, d, e \in N\left(\frac{Z_{3}[x]}{\left\langle x^{3}+x^{2}+x+2\right\rangle}\right)\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & d & 0 & 0 \\
c & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(\frac{Z_{5}[x]}{\left\langle x^{2}+2\right\rangle}\right)\right\}
$$

be a neutrosophic 3-vector space over the 3-field

$$
\begin{gathered}
\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \\
=\frac{\mathrm{Z}_{2}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle} \cup \frac{\mathrm{Z}_{3}[\mathrm{x}]}{\left\langle\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+2\right\rangle} \cup \frac{\mathrm{Z}_{5}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+2\right\rangle} .
\end{gathered}
$$

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3}=$

$$
\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{a} & \mathrm{~b} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{~N}\left(\frac{\mathrm{Z}_{2}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle}\right)\right\} \cup
$$

$$
\left\{\left(\begin{array}{l}
a \\
a \\
a \\
a \\
a
\end{array}\right) \left\lvert\, a \in N\left(\frac{Z_{3}[x]}{\left\langle x^{3}+x^{2}+x+2\right\rangle}\right)\right.\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
a & 0 & 0 & 0
\end{array}\right) \right\rvert\, a \in N\left(\frac{Z_{5}[x]}{\left\langle x^{2}+2\right\rangle}\right)\right\}
$$

$\subseteq V_{1} \cup V_{2} \cup V_{3}$; be a neutrosophic 3-vector space over the 3field $K=Z_{2} \cup Z_{3} \cup Z_{5} \subseteq F_{1} \cup F_{2} \cup F_{3}$. Clearly W is a special
subneutrosophic 3-vector subspace of V over the 3-subfield $\mathrm{K}=$ $\mathrm{Z}_{2} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{5} \subseteq \mathrm{~F}$.

Now a neutrosophic n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over a n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ of type II is said to be nsimple if V has no proper special subneutrosophic n-vector subspace over the n-subfield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2} \cup \ldots \cup \mathrm{~K}_{\mathrm{n}} \subseteq \mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$.

Example 3.3.8: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{llll}
a & a & b & c \\
d & e & f & g
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g \in N\left(Z_{2}\right)\right\} \cup \\
& \left\{\left(\begin{array}{cc}
a & b \\
c & d \\
e & f \\
g & h \\
i & j
\end{array}\right)\left|\mid a, b, c, d, e, f, g, h, i, j \in N\left(Z_{3}\right)\right\} \cup\right. \\
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{5}\right)\right\} \cup
\end{aligned}
$$

$\left\{\sum_{i=0}^{6} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{17}\right) ; \mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{17}\right) ; 0 \leq \mathrm{i} \leq 6\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} \\
\mathrm{f} & \mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{j} \\
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}, \mathrm{j} \in \mathrm{~N}\left(\mathrm{Z}_{7}\right)\right\} \cup
$$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right) \right\rvert\,\right. \\
\left\{\begin{array}{lll}
a_{i} \in N\left(Z_{13}\right) ; 1 \leq i \leq 7
\end{array}\right\} \cup \\
\left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{17} & a_{8} \\
a_{9} & a_{18} \\
a_{13} & a_{11} & a_{12} & a_{19} \\
a_{14} & a_{15} & a_{16} & a_{20}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{19}\right) ; 1 \leq i \leq 20\right\}
\end{gathered}
$$

be a neutrosophic 7-vector space over the 7-field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup$ $\ldots \cup \mathrm{F}_{\mathrm{n}}=\mathrm{Z}_{2} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{5} \cup \mathrm{Z}_{17} \cup \mathrm{Z}_{7} \cup \mathrm{Z}_{13} \cup \mathrm{Z}_{19}$. Clearly every F_{i} in F is a prime field. So F has no proper 7 -subfield. Hence even if V has a proper 7-subset $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup$ $\mathrm{W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7} \subseteq \mathrm{~V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$ which is a neutrosophic 7 -vector subspace yet it cannot become a special subneutrosophic 7 -vector subspace of V as F has no proper 7-subfield.

Inview of this we has the following theorem the proof of which is straight forward.

THEOREM 3.3.1: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be any neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ where each F_{i} is a prime field; $1 \leq i \leq n$. V is a simple neutrosophic n vector space over the n-field F.

DEFINITION 3.3.4: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over a n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ where some of the F_{i} 's are prime fields and some of the F_{j} 's are non prime fields; $1 \leq i, j \leq n$. Let $K=K_{1} \cup K_{2} \cup \ldots \cup K_{n} \subseteq F_{1} \cup F_{2}$ $\cup \ldots \cup F_{n}$ where some of the K_{i} 's are equal to $F_{i}\left(K_{i}=F_{i}\right)$ and
some K_{j} 's are proper subfields of F_{j} for $1 \leq i, j \leq n$. We call $K=$ $K_{1} \cup K_{2} \cup \ldots \cup K_{n} \subseteq F_{1} \cup F_{2} \cup \ldots \cup F_{n}=F$ to be a quasi $n-$ field. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that W is a neutrosophic n-vector space over $K=K_{1} \cup K_{2} \cup \ldots$ $\cup K_{n} \subseteq F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

We call W as a quasi special neutrosophic n-vector subspace of V over the quasi n-field $K_{1} \cup K_{2} \cup \ldots \cup K_{n}$.

We will illustrate this situation by an example.
Example 3.3.9: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in N(R) ; 1 \leq i \leq 10\right\} \cup \\
\left\{\begin{array}{lll}
\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} \\
a_{16} & a_{17} & a_{18} \\
a_{19} & a_{20} & a_{21}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{7}\right) ; 1 \leq i \leq 21
\end{array}\right\} \cup
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in N\left\langle\frac{Z_{3}[x]}{\left\langle x^{3}+x^{2}+x+2\right\rangle}\right\rangle\right\} \cup
$$

$\left\{\sum_{i=0}^{24} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x of degree less than or equal to 24 with coefficients from $N\left(Z_{17}\right) a_{i} \in N\left(Z_{17}\right) ; 0 \leq i \leq$ $24\}$ be a neutrosophic 4 -vector space over the 4 -field

$$
\begin{gathered}
\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4} \\
=\mathrm{R} \cup \mathrm{Z}_{7} \cup\left\langle\frac{\mathrm{Z}_{3}[\mathrm{x}]}{\left\langle\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+2\right\rangle}\right\rangle \cup \mathrm{Z}_{17}
\end{gathered}
$$

Take $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccccc}
a & a & a & a & a \\
b & b & b & b & b
\end{array}\right) \right\rvert\, a, b \in N\left(Z_{7}\right)\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a \\
a & a & a \\
b & b & b \\
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a, b \in N\left(Z_{7}\right)\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{3}\right)\right\} \cup
$$

$\left\{\sum_{i=0}^{15} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{N}\left(\mathrm{Z}_{17}\right)$ of degree less than or equal to 17$\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} ;$ Take $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2} \cup \mathrm{~K}_{3} \cup \mathrm{~K}_{4}=$ $\mathrm{Q} \cup \mathrm{Z}_{7} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{17} \subseteq \mathrm{~F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4}$. Clearly W is a neutrosophic 4-vector space over the 4-field $K=K_{1} \cup K_{2} \cup K_{3}$ $\cup \mathrm{K}_{4}$. Thus W is a quasi special neutrosophic 4-vector subspace of V over the 4 -quasi field K .

The notion of n-basis and n-linearly independent elements can be defined as in case of neutrosophic n-vector spaces of
type I here each $S_{i} \subseteq V_{i}$ is a basis of V_{i} over $F_{i} ; i=1,2, \ldots, n$ where $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is defined over the n-field $F=F_{1}$ $\cup \mathrm{F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$.

The reader is expected to construct examples. Also the notion of n-linear transformation of type II neutrosophic nvector spaces can be defined as in case of type I n-vector spaces with necessary changes. Further the notion of kernel T, T a nlinear transformation of the neutrosophic n-vector space V to a neutrosophic n-vector space W defined over the same n-field F $=F_{1} \cup \ldots \cup F_{n}$ is defined as follows.

Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{\mathrm{n}}: V=V_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}} \rightarrow \mathrm{W}$ $=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ be a map such that $\mathrm{T}_{\mathrm{i}}: \mathrm{V}_{\mathrm{i}} \rightarrow \mathrm{W}_{\mathrm{j}}$ is a linear transformation and no two V_{i} is mapped onto the same $\mathrm{W}_{\mathrm{j}} ; 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n} . \mathrm{i}=1,2, \ldots, \mathrm{n}$. The n-kernel of T denoted by $\operatorname{kerT}=\operatorname{ker}_{1} \cup \operatorname{kerT}_{2} \cup \ldots \cup \operatorname{ker}_{\mathrm{n}}$ where ker $\mathrm{T}_{\mathrm{i}}=\left\{\mathrm{v}^{\mathrm{i}} \in \mathrm{V}_{\mathrm{i}} \mid \mathrm{T}_{\mathrm{i}}\right.$ $\left.\left(\mathrm{v}^{\mathrm{i}}\right)=\overline{0}\right\}, \mathrm{i}=1,2, \ldots$, n. Thus

$$
\begin{gathered}
\text { ker } T=\operatorname{kerT}_{1} \cup \operatorname{kerT}_{2} \cup \ldots \cup \operatorname{kerT}_{\mathrm{n}} \\
=\left\{\left(\mathrm{v}^{1}, \mathrm{v}^{2}, \ldots, \mathrm{v}^{\mathrm{n}}\right) \in \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}} / \mathrm{T}\left(\mathrm{v}^{1}, \mathrm{v}^{2}, \ldots, \mathrm{v}^{\mathrm{n}}\right)\right. \\
=\mathrm{T}_{1}\left(\mathrm{v}^{1}\right) \cup \mathrm{T}_{2}\left(\mathrm{v}^{2}\right) \cup \ldots \cup \mathrm{T}_{\mathrm{n}}\left(\mathrm{v}^{2}\right) \\
=0 \cup 0 \cup \ldots \cup 0\} .
\end{gathered}
$$

It is easily verified that kerT is a neutrosophic n-vector subspace of V over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ of type II.

We can prove if V and W are n -finite dimensional and T a n -linear transformation then n rank $\mathrm{T}+\mathrm{n}$ nullity $\mathrm{T}=\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots\right.$, n_{n}) $\operatorname{dim} \mathrm{V}=\mathrm{n}$-dimension of V .
(rank $\mathrm{T}_{1} \cup \operatorname{rank} \mathrm{~T}_{2} \cup \ldots \cup \operatorname{rank} \mathrm{~T}_{\mathrm{n}}$) + nullity $\mathrm{T}_{1} \cup \ldots \cup$ nullity $\mathrm{T}_{\mathrm{n}}=\operatorname{dim} \mathrm{V}_{1} \cup \operatorname{dim} \mathrm{~V}_{2} \cup \ldots \cup \operatorname{dim} \mathrm{~V}_{\mathrm{n}}\left(\operatorname{dim} \mathrm{V}_{\mathrm{i}}\right.$ over the field $\mathrm{F}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}$)

Thus $\left(\right.$ rank $T_{1}+$ nullity $\left.T_{1}\right) \cup\left(\right.$ rank $T_{2}+$ nullity $\left.T_{2}\right) \cup \ldots \cup$ rank $T_{n}+$ nullity $T_{n}=\left(n_{1}, n_{2}, \ldots, n_{n}\right)$.

Further if $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ and $W=W_{1} \cup W_{2} \cup \ldots$ $\cup \mathrm{W}_{\mathrm{n}}$ be two neutrosophic n-vector spaces over the n -field $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$ of type II and if $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{n}}$ and T $=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}$ are two n-linear transformations of V to W then the n function $(\mathrm{T}+\mathrm{S})=$
$\left(T_{1} \cup T_{2} \cup \ldots \cup T_{n}+S_{1} \cup S_{2} \cup \ldots \cup S_{n}\right)=T_{1}+S_{1} \cup T_{2}+S_{2} \cup$ $\ldots \cup T_{n}+S_{n}$ is defined by
(T + S $) \alpha$
$=\left(\left(\mathrm{T}_{1}+\mathrm{S}_{1}\right) \cup\left(\mathrm{T}_{2}+\mathrm{S}_{2}\right) \cup \ldots \cup\left(\mathrm{T}_{\mathrm{n}}+\mathrm{S}_{\mathrm{n}}\right)\right]\left(\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{n}}\right)$
$=\left(\mathrm{T}_{1}+\mathrm{S}_{1}\right) \alpha_{1} \cup\left(\mathrm{~T}_{2}+\mathrm{S}_{2}\right) \alpha_{2} \cup \ldots \cup\left(\mathrm{~T}_{\mathrm{n}}+\mathrm{S}_{\mathrm{n}}\right) \alpha_{\mathrm{n}}$
$=\left(T_{1} \alpha_{1}+S_{1} \alpha_{1}\right) \cup\left(T_{2} \alpha_{2}+S_{2} \alpha_{2}\right) \cup \ldots \cup\left(T_{n} \alpha_{n}+S_{n} \alpha_{n}\right)$
is a neutrosophic n-linear transformation from $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup$ $\ldots \cup \mathrm{V}_{\mathrm{n}}$ to $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}=\mathrm{W}$ and $\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{n}} \in$ $V_{1} \cup V_{2} \cup \ldots \cup V_{n}$. Also if $c=c_{1} \cup c_{2} \cup c_{3} \cup \ldots \cup c_{n} \in F_{1} \cup$ $F_{2} \cup \ldots \cup F_{n}$ then $\left(c_{1} \cup c_{2} \cup \ldots \cup c_{n}\right)\left(T_{1} \cup T_{2} \cup \ldots \cup T_{n}\right)\left(\alpha_{1}\right.$ $\left.\cup \alpha_{2} \cup \ldots \cup \alpha_{n}\right)=c_{1} T_{1} \alpha_{1} \cup c_{2} T_{2} \alpha_{2} \cup \ldots \cup c_{n} T_{n} \alpha_{n}$.

Thus the set of all n -linear transformations of V to V with n addition and n-scalar multiplication defined above is again a neutrosophic n-vector space of type II over the n-field $\mathrm{F}=\mathrm{F}_{1} \cup$ $\mathrm{F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$.

Thus NL $(\mathrm{V}, \mathrm{W})=\mathrm{NL}^{1}\left(\mathrm{~V}_{1}, \mathrm{~W}_{1}\right) \cup \mathrm{NL}^{2}\left(\mathrm{~V}_{2}, \mathrm{~W}_{2}\right) \cup \ldots \cup \mathrm{NL}^{\mathrm{n}}$ $\left(V_{n}, W_{n}\right)$ is a neutrosophic n-vector space over the n-field $F=F_{1}$ $\cup F_{2} \cup \ldots \cup F_{n}$ where V_{i} and W_{i} are neutrosophic vector spaces defined over the field $\mathrm{F}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}$.

Now we proceed onto define the new notion of neutrosophic nlinear algebra of type II.

DEFINITION 3.3.5: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ of type II. If each V_{i} is a neutrosophic linear algebra over F_{i} for $i=1,2$, ..., n; then we call V to be a neutrosophic n-linear algebra over the n-field F of type II.

We will illustrate this situation by some examples.
Example 3.3.10: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from $\mathrm{N}\left(\mathrm{Z}_{11}\right)$ that is $\left.\mathrm{a}_{\mathrm{i}} \in\left(\mathrm{Z}_{11}\right) ; 0 \leq \mathrm{i} \leq \infty\right\} \cup$

$$
\begin{gathered}
\left.\left.\left\{\begin{array}{llll}
a & 0 & 0 & 0 \\
b & c & 0 & 0 \\
d & e & g & 0 \\
p & q & r & s
\end{array}\right) \right\rvert\, a, b, c, d, e, g, p, q, r, s \in N(Q)\right\} \cup \\
\\
\\
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in N\left(Z_{2}\right)\right\}
\end{gathered}
$$

be a neutrosophic 4-linear algebra over the 4-field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ $\cup \mathrm{F}_{3} \cup \mathrm{~F}_{4}=\mathrm{Z}_{7} \cup \mathrm{Z}_{11} \cup \mathrm{Q} \cup \mathrm{Z}_{2}$.

Example 3.3.11: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$ $\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{19}\right) . \mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{19}\right) ; 0 \leq \mathrm{i} \leq \infty\right\} \cup$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & 0 \\
\mathrm{~b} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{~d} \in \mathrm{Z}_{13} \mathrm{I}\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
\end{gathered}
$$

\{All 10×10 upper triangular matrices with entries from the neutrosophic field $\left.\mathrm{N}\left(\mathrm{Z}_{23}\right)\right\} \cup\{$ All 12×12 diagonal matrices with
entries from $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup\{$ All 5×5 lower triangular matrices with entries from the neutrosophic field. $\left.\mathrm{N}\left(\mathrm{Z}_{41}\right)\right\}$; is a neutrosophic 6-linear algebra over the 6-field F $=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4} \cup \mathrm{~F}_{5} \cup$ $\mathrm{F}_{6}=\mathrm{Z}_{19} \cup \mathrm{Z}_{13} \cup \mathrm{Q} \cup \mathrm{Z}_{23} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{41}$ of type II.

Now we proceed onto define the substructure in neutrosophic nlinear algebras of type II.

DEFINITION 3.3.6: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Let W $=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$; if W itself is a neutrosophic n-linear algebra of type II over the n-field $F=F_{1}$ $\cup F_{2} \cup \ldots \cup F_{n}$ and $W_{i} \neq\{0\}$ or $W_{i} \neq V_{i}$ for every $i, i=1,2, \ldots$, n. We call W to be a neutrosophic n-linear subalgebra of V over the n-field F of type II. If V has no neutrosophic n-linear subalgebras then we define V to be a n-simple neutrosophic nlinear algebra over F of type II.

We will illustrate both the situations by some simple examples.
Example 3.3.12: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$

$$
\begin{gathered}
=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N(Q)\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{i} \in \mathrm{Z}_{11} \mathrm{I} ; 1 \leq \mathrm{i} \leq 5\right\} \cup
\end{gathered}
$$

$\left\{\sum_{i=0}^{\infty} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients
from the neutrosophic field $\mathrm{N}\left(\mathrm{Z}_{19}\right) \cup\{$ All 10×10 neutrosophic matrices with entries form $\left.\mathrm{Z}_{41} \mathrm{I}\right\} \cup\{$ All 8×8 upper triangular matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{2}\right)\right\} \cup\{$ All 5×5 low triangular matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{5}\right)\right\} \cup\{3 \times 3$ matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{31}\right)\right\}$ be a neutrosophic 7-linear algebra over the 7-field $\mathrm{F}=\mathrm{F}_{1} \cup \ldots \cup \mathrm{~F}_{7}=\mathrm{Q} \cup \mathrm{Z}_{11} \cup \mathrm{Z}_{19} \cup \mathrm{Z}_{41} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{5} \cup$ Z_{31}. Consider $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6} \cup \mathrm{~W}_{7}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup\left\{(\mathrm{a} \text { a a a } 0) \mid \mathrm{a} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
$$

$\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}}\right.$; all polynomials of even degree in the variable x with coefficients from $\left.\mathrm{Z}_{19} \mathrm{I}\right\} \cup\{$ All 10×10 neutrosophic upper triangular matrices with entries from $\left.\mathrm{Z}_{41} \mathrm{I}\right\} \cup\{$ All 8×8 upper triangular matrices with entries from $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup\{$ All 5×5 lower triangular matrices with entries from $\left.\mathrm{Z}_{5} \mathrm{I}\right\} \cup\{3 \times 3$ matrices with entries from $\left.\mathrm{Z}_{31} \mathrm{I}\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$; it is easily verified W is a neutrosophic 7-linear subalgebra of V over the 7-field F.

Example 3.3.13: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{a}
\end{array}\right) \right\rvert\, \mathrm{a} \in \mathrm{Z}_{2} \mathrm{I}\right\} \cup\left\{(\mathrm{a} \text { a a a } \mathrm{a} a) \mid \mathrm{a} \in \mathrm{Z}_{3} \mathrm{I}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a & a & 0 \\
a & a & a
\end{array}\right) \right\rvert\, a \in Z_{5} I\right\} \cup\left\{\left.\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & a & 0 \\
0 & 0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
0 & a & a & a \\
0 & 0 & a & a \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in Z_{13} I\right\}
\end{aligned}
$$

be a neutrosophic 5-linear algebra over the 5-field $\mathrm{F}=\mathrm{Z}_{2} \cup \mathrm{Z}_{3}$ $\cup \mathrm{Z}_{5} \cup \mathrm{Z}_{7} \cup \mathrm{Z}_{13}$. It is easy to verify V has no proper neutrosophic 5-sublinear algebras of type II over F in V. Thus V is a simple neutrosophic 5-linear algebra over F.

DEFINITION 3.3.7: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-linear algebra over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ of type II. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that W is a neutrosophic n-vector space over the n-field F and no $W_{i} \subseteq V_{i}$ is a neutrosophic linear algebra over $F_{i} ; W_{i} \neq V_{i}, i=$ $1,2, \ldots, n$. We define W to be a pseudo neutrosophic n-vector subspace of V over the n-field F.

We will illustrate this situation by some examples.
Example 3.3.14: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{7} I\right\} \cup
$$

$\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from $\left.Z_{2} I\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a & b & c & d \\
a & e & f & g \\
a & a & p & g \\
a & a & a & r
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, p, q, r \in N(Q)\right\} \cup
$$

$\left\{\right.$ All 7×7 neutrosophic matrices with entries from $\mathrm{N}\left(\mathrm{Z}_{11}\right)$ \} be a neutrosophic 4-linear algebra over 4-field $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{2} \cup \mathrm{Q} \cup$ Z_{11}. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4}=$

$$
\left\{\left.\left(\begin{array}{ccc}
0 & 0 & \mathrm{~b} \\
0 & \mathrm{c} & 0 \\
\mathrm{~d} & 0 & 0
\end{array}\right) \right\rvert\, \text { b, c, } \mathrm{d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup
$$

$\left\{\sum_{\mathrm{i}=0}^{12} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials of degree less than or equal to 12 with coefficients from $\left.Z_{2} I ; a_{i} \in Z_{2} I ; 0 \leq i \leq 12\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & d \\
0 & 0 & f & 0 \\
0 & a & 0 & 0 \\
a & 0 & 0 & 0
\end{array}\right) \right\rvert\, f, d, a \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & e & 0 & 0 & 0 \\
0 & 0 & \mathrm{f} & 0 & 0 & 0 & 0 \\
0 & \mathrm{~g} & 0 & 0 & 0 & 0 & 0 \\
\mathrm{~h} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$ be a neutrosophic 4-vector space over F $=\mathrm{Z}_{7} \cup \mathrm{Z}_{2} \cup \mathrm{Q} \cup \mathrm{Z}_{11}$. Clearly W is a pseudo neutrosophic 4vector subspace of V over the 4-field $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{2} \cup \mathrm{Q} \cup \mathrm{Z}_{11}$ of type II.

Example 3.3.15: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{11}\right)\right\} \cup\{$ all 8×8 neutrosophic matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{29}\right)\right\} \cup\{$ all 7×7 upper triangular matrices with entries from $\left.N\left(Z_{3}\right)\right\} \cup\left\{4 \times 4\right.$ matrices with entries from $\left.\mathrm{Z}_{23} \mathrm{I}\right\} \cup\{5 \times 5$ neutrosophic matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{41}\right)\right\}$ be a
neutrosophic 6-linear algebra over the 6-field algebra over the 6-field $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{11} \cup \mathrm{Z}_{29} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{23} \cup \mathrm{Z}_{41}$ of type II. Let $\mathrm{W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=$

$$
\left\{\left.\left(\begin{array}{ll}
0 & \mathrm{a} \\
\mathrm{~b} & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{QI}\right\} \cup
$$

$\left\{\sum_{i=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x of degree less than or equal to 5 with coefficients from $\left.\mathrm{N}\left(\mathrm{Z}_{11}\right)\right\} \cup$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{~g} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{f} & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{~g}, \mathrm{f}, \mathrm{p} \in \mathrm{Z}_{29} \mathrm{I}\right\} \\
& \left\{\left.\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & g & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, g \in \mathrm{Z}_{3} \mathrm{I}\right\} \\
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & 0 \\
0 & d & g & 0 \\
g & 0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, g, f \in Z_{3} I\right\} \cup
\end{aligned}
$$

$$
\left\{\left.\left(\begin{array}{ccccc}
0 & 0 & a & b & c \\
0 & 0 & 0 & d & 0 \\
0 & 0 & e & f & 0 \\
0 & g & 0 & 0 & h \\
g & 0 & 0 & 0 & p
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, p \in Z_{41} I\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$ is a pseudo neutrosophic 6vector subspace of V over $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{11} \cup \mathrm{Z}_{29} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{43} \cup \mathrm{Z}_{41}$ of type II.

DEFINITION 3.3.8: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-finite neutrosophic n-vector space (n-linear algebra) of type II over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Suppose $W=W_{1} \cup W_{2} \cup \ldots$ $\cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector subspace (n-linear subalgebra) of V of n-dimension ($n_{1}-1, n_{2}-1, \ldots, n_{n}$ - 1) over the n-field F of type II, where n-dimension of V is $\left(n_{1}\right.$, n_{2}, \ldots, n_{n}). Then we define W to be a neutrosophic hyper n-space (n-algebra) of V.

The reader is requested to give examples of the above definition.

We define neutrosophic n-polynomial ring or neutrosophic polynomial n-ring over the n-field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$ to be $\mathrm{F}_{1}[\mathrm{x}] \cup \mathrm{F}_{2}[\mathrm{x}] \cup \ldots \cup \mathrm{F}_{\mathrm{n}}[\mathrm{x}]=\mathrm{F}[\mathrm{x}]$ where $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}$ are n distinct neutrosophic fields.

Example 3.3.16: $\mathrm{F}[\mathrm{x}]=\mathrm{N}\left(\mathrm{Z}_{7}\right)[\mathrm{x}] \cup \mathrm{Z}_{11} \mathrm{I}[\mathrm{x}] \cup \mathrm{RI}[\mathrm{x}] \cup \mathrm{Z}_{2} \mathrm{I}[\mathrm{x}] \cup$ $\mathrm{N}\left[\mathrm{Z}_{13}\right][\mathrm{x}] \cup \mathrm{N}\left(\mathrm{Z}_{47}\right)[\mathrm{x}]$ is a 6-polynomial neutrosophic ring.

DEFINITION 3.3.9: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space (linear algebra) over the n-field $F=F_{1} \cup F_{2} \cup$ $\ldots \cup F_{n}$. Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that W is only just a n-vector space (linear algebra) over the n-field F then we all W to be pseudo n-vector space (n linear algebra) of V over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

We will illustrate this situation by some simple examples.
Example 3.3.17: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right)\right|_{i_{i}} \in N(Q) ; 1 \leq i \leq 6\right\} \cup \\
\left\{\left.\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in N\left(Z_{11}\right) ; 1 \leq i \leq 10
\end{array}\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a_{1} \\
0 & 0 & a_{2} & a_{3} \\
0 & a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{2}\right) ; 1 \leq i \leq 10\right\} \cup
\end{gathered}
$$

$\left\{\sum_{i=0}^{19} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients
from $N\left(Z_{17}\right)$ of degree less than or equal to $19 ; a_{i} \in N\left(Z_{17}\right) ; 0 \leq i$ $\leq 19\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{5} & a_{6} \\
a_{3} & a_{4} & a_{7} & 0 \\
a_{8} & a_{9} & 0 & 0 \\
a_{10} & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{43}\right) ; 1 \leq i \leq 10\right\}
$$

be a neutrosophic 5-vector space over the 5-field F $=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup$ $\mathrm{F}_{3} \cup \mathrm{~F}_{4} \cup \mathrm{~F}_{5}=\mathrm{Q} \cup \mathrm{Z}_{11} \cup \mathrm{Z}_{2} \cup \mathrm{Z}_{17} \cup \mathrm{Z}_{43}$ of type II. Let $\mathrm{W}=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\left.\left.\begin{array}{l}
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right) \right\rvert\, a_{i} \in Q ; 1 \leq i \leq 3\right\} \cup \\
\left\{\left.\left(\begin{array}{ll}
a & a \\
b & b \\
c & c \\
d & d \\
e & e
\end{array}\right) \right\rvert\, a, b, c, d, e \in Z_{11}\right\} \cup
\end{array}\right\} \begin{array}{l}
\left\{\left.\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & b \\
0 & c & c
\end{array}\right) \right\rvert\, \begin{array}{l}
c \\
d
\end{array} d\right.
\end{array}\right\}
$$

$\left\{\sum_{i=0}^{10} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x of degree less than or equal to 10 with coefficients from $\left.\mathrm{Z}_{17}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a & a & a & a \\
b & b & b & 0 \\
c & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{43}\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ be a pseudo 5-vector space of V over the 5-field F.

Example 3.3.18: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{2}\right)\right\} \cup
$$

$\left\{\right.$ All 9×9 neutrosophic matrices with entries from $\left.N\left(Z_{11}\right)\right\} \cup$ \{all 7×7 upper triangular neutrosophic matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{13}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{~d} & 0 & 0 \\
0 & 0 & \mathrm{e} & \mathrm{f} \\
0 & 0 & \mathrm{~g} & \mathrm{~h}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} \in \mathrm{~N}\left(\mathrm{Z}_{47}\right)\right\} \cup
$$

$\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomial in the variable x with coefficients from $\left.N\left(Z_{53}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & 0 & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 & 0 & 0 \\
a_{7} & a_{8} & a_{9} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{10} & a_{11} & a_{12} \\
0 & 0 & 0 & a_{13} & a_{14} & a_{15} \\
0 & 0 & 0 & a_{16} & a_{17} & a_{18}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{5}\right) ; 1 \leq i \leq 18\right\}
$$

be a neutrosophic 6-linear algebra over the field $\mathrm{F}=\mathrm{Z}_{2} \cup \mathrm{Z}_{11} \cup$ $\mathrm{Z}_{13} \cup \mathrm{Z}_{47} \cup \mathrm{Z}_{53} \cup \mathrm{Z}_{5}$ of type II. Consider $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3}$ $\cup \mathrm{W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{2}\right\} \cup
$$

$\left\{\right.$ All 9×9 matrices with entries from $\left.\mathrm{Z}_{11}\right\} \cup\{$ all 7×7 upper triangular matrices with entries from $\left.\mathrm{Z}_{13}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a & a & 0 & 0 \\
a & a & 0 & 0 \\
0 & 0 & b & b \\
0 & 0 & b & b
\end{array}\right) \right\rvert\, a, b \in Z_{47}\right\} \cup
$$

$\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomial in the variable x with coefficients from $\left.\mathrm{Z}_{53}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccccc}
a & a & a & 0 & 0 & 0 \\
a & a & a & 0 & 0 & 0 \\
a & a & a & 0 & 0 & 0 \\
0 & 0 & 0 & b & b & b \\
0 & 0 & 0 & b & b & b \\
0 & 0 & 0 & b & b & b
\end{array}\right) \right\rvert\, a, b \in Z_{5}\right\}
$$

$\subseteq V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6}$; is a 6-linear algebra over F. Thus W is a pseudo 6 linear algebra of V over the 6 -field F of type II.

A neutrosophic n-vector space (n-linear algebra) $\mathrm{V}=\mathrm{V}_{1} \cup$ $\mathrm{V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ of type II over the n -field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$ is said to be pseudo simple n-vector space (n -linear algebra) if V does not contain any pseudo n-vector subspace (n -linear subalgebra).

In view of this we give the following theorem which guarantees the existence of pseudo simple n-vector spaces (n -linear algebras).

THEOREM 3.3.2: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space (n-linear algebra) over the n-field $F=F_{1} \cup F_{2}$ $\cup \ldots \cup F_{n}$ of type II. If each V_{i} is defined over a field K_{i} with K_{i} $=F_{i} I$ (F_{i} real prime field) for $i=1,2, \ldots, n . V$ is a pseudo simple n-vector space (n-linear algebra) over F of type II.

Proof: Given $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is a neutrosophic n vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ where each V_{i} is defined over $\mathrm{F}_{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{n}$. Thus there does not exist a $\mathrm{W}_{\mathrm{i}} \subseteq \mathrm{V}_{\mathrm{i}}$ where W_{i} is a real vector space over F_{i} as $\mathrm{F}_{\mathrm{i}} \nsubseteq \mathrm{F}_{\mathrm{i}} \mathrm{I}$ for i $=1,2, \ldots$, . Thus $V=V_{1} \cup V_{2} \cup \ldots \cup V_{\text {n }}$ does not contain any n -vector subspace. So V is a pseudo simple n -vector space.

We will illustrate this by some simple examples.
Example 3.3.19: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6} \cup \mathrm{~V}_{7}$

$$
\begin{gathered}
=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{2} I\right\} \cup \\
\left\{\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} ; 1 \leq i \leq 15\right\} \cup\right. \\
\left\{\left.\left\{\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{8} & a_{5} & a_{5} & a_{6} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{14}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 14\right\} \cup \\
\left\{\left.\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7} \\
a_{8}
\end{array}\right\} \right\rvert\,\left(a_{i 1} \in Z_{19} I ; 1 \leq i \leq 8\right\} \cup\right.
\end{gathered}
$$

$\left\{\sum_{i=0}^{8} a_{i} x^{i}\right.$; all polynomials in the variable x of degree less than or equal to 8 with coefficients from the field QI; $\mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq$ 8\} \cup

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & d \\
0 & c & d & f \\
g & h & p & q
\end{array}\right) \right\rvert\, a, b, d, c, f, g, h, p, q \in Z_{3} I\right\} \cup \\
& \left.\left.\left\{\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & a_{1} \\
0 & 0 & 0 & 0 & a_{2} & a_{3} \\
0 & 0 & 0 & a_{4} & 0 & 0 \\
0 & 0 & a_{5} & 0 & a_{6} & 0 \\
0 & a_{7} & 0 & 0 & 0 & 0 \\
a_{8} & 0 & 0 & 0 & 0 & a_{9}
\end{array}\right) \right\rvert\, \begin{array}{l}
\left.a_{i} \in Z_{31} ; 1 \leq i \leq 9\right\}
\end{array}\right\} .\left\{\begin{array}{l}
\end{array}\right\}
\end{aligned}
$$

be a neutrosophic 7-vector space over the 7-field $\mathrm{F}=\mathrm{Z}_{2} \cup \mathrm{Z}_{7} \cup$ $\mathrm{Z}_{11} \cup \mathrm{Z}_{19} \cup \mathrm{Q} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{31}$ of type II. It is easily verified that V has no proper pseudo 7 -vector subspace over the 7 -field F . Hence V is a pseudo simple 7 -vector space.

Example 3.3.20: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{QI}\right\} \cup \\
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{i} \in \mathrm{Z}_{7} I ; 1 \leq i \leq 5\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 \\
a_{4} & a_{5} & a_{6} & 0 \\
a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{19} I ; 1 \leq i \leq 10\right\} \cup
\end{gathered}
$$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right) \right\rvert\, a, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{i} \in \mathrm{Z}_{47} \mathrm{I}\right\}
$$

be a neutrosophic 4-linear algebra over the 4-field $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{7} \cup$ $\mathrm{Z}_{19} \cup \mathrm{Z}_{47}$. It is easily verified that V has no pseudo 4-linear subalgebra over F . Thus V is a pseudo simple 4-linear algebra.

DEFINITION 3.3.10: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a neutrosophic n-vector space (n-linear algebra) over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Suppose $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n} \subseteq V_{1}$ $\cup V_{2} \cup \ldots \cup V_{n}\left(W_{i} \neq V_{i}, W_{i} \neq\{0\}\right.$ for $\left.i=1,2, \ldots, n\right\}$ is a neutrosophic n-vector space (n-linear algebra) over the n subfield $K=K_{1} \cup K_{2} \cup \ldots \cup K_{n} \subseteq F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ (Each K_{i} is a proper subfield of $F_{i} ; i=1,2, \ldots, n$) the we call W to be a subneutrosophic n-vector subspace (n-linear subalgebra) of V over the n-subfield $K \subset F$ of type II. If V has no proper subneutrosophic n-vector subspace (n-linear subalgebra) over a proper n-subfield of F then we call V to be a n-simple subneutrosophic n-vector space (n-linear algebra).

Now we can define strong neutrosophic n-vector spaces of type II and derive for them also some interesting properties with appropriate modifications.

DEFINITION 3.3.11: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that each V_{i} is a strong neutrosophic vector space over the neutrosophic field $F_{i}, i=1,2, \ldots, n$ then we call $V=V_{1} \cup V_{2} \cup$ $\ldots \cup V_{n}$ to be a strong neutrosophic n-vector space over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

We will illustrate them by some examples.
Example 3.3.21: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a}
\end{array} \mathrm{a}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\} \cup
$$

$$
\begin{gathered}
\left\{\left.\left\{\begin{array}{ll}
a & a \\
b & b \\
c & c \\
d & d
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{7}\right)\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a_{1} \\
0 & 0 & a_{2} & 0 \\
0 & a_{3} & 0 & 0 \\
a_{4} & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{47}\right) ; 1 \leq i \leq 4\right\} \cup \\
\left\{\left.\left(\begin{array}{lllll}
a & b & c & d & e
\end{array}\right) \right\rvert\,\right. \\
a
\end{gathered}
$$

be a strong neutrosophic 4-vector space over the 4 neutrosophic field $\mathrm{F}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{7}\right) \cup \mathrm{Z}_{47} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{19}\right)$.

Example 3.3.22: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\left\{\left.\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cccccc}
a & b & a & b & a & b \\
b & c & b & c & b & c \\
c & d & c & d & c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{41}\right)\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
a & b & c \\
d & e & f \\
a & a & a
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{11} I\right\}
$$

be a strong neutrosophic trivector space over the neutrosophic trifield $\mathrm{F}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{Z}_{41} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I}$.

We can define the notion of strong neutrosophic n-linear algebra.

DEFINITION 3.3.12: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-vector space over the neutrosophic n-field $F=$ $F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. If each V_{i} is strong neutrosophic linear algebra over the neutrosophic field $F_{i}, i=1,2, \ldots, n$ then we call V to be a strong neutrosophic n-linear algebra over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

We will illustrate this situation by some examples.
Example 3.3.23: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup
$$

$\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all neutrosophic polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{Z}_{11} \mathrm{I} ; \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; 0 \leq \mathrm{i} \leq$ $\infty\} \cup\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots . \mathrm{a}_{20}\right\} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{3} \mathrm{I} ; 1 \leq \mathrm{i} \leq 20\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{2} I ; 1 \leq i \leq 6\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccccc}
\mathrm{a}_{1} & 0 & 0 & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 & 0 & 0 \\
0 & 0 & \mathrm{a}_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & a_{5}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 5\right\}
$$

be a strong neutrosophic 5-linear algebra over the neutrosophic 5-field $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{3} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I}$ of type II.

Example 3.3.24: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=\{$ All 10×10 upper triangular neutrosophic matrices with entries from the neutrosophic field $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup$ set of all 15×15 neutrosophic diagonal matrices with entries from the neutrosophic field $\left.\mathrm{Z}_{3} \mathrm{I}\right\}$ \cup \{set of all 3×3 lower triangular matrices with entries from the neutrosophic field $N(Q)\} \cup\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right) \mid a_{i} \in\right.$ $\left.\mathrm{Z}_{5} \mathrm{I}\right\}$ be a strong neutrosophic 4-linear algebra over the neutrosophic 4-field $F=Z_{2} I \cup Z_{3} I \cup N(Q) \cup Z_{5} I$.

We as in case of neutrosophic n-vector spaces (n-linear algebras) of type II define in case of strong neutrosophic nvector spaces (n-linear algebras) the notion of strong neutrosophic n-vector subspaces (n-linear subalgebras) of type II.

Recall in $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ and if some of the F_{i} 's are neutrosophic fields and some of the F_{j} 's of real fields; $1 \leq i, j \leq$ n then we call F to be a quasi neutrosophic n-field. We shall just give some examples of them.

$$
\begin{gathered}
\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4} \cup \mathrm{~F}_{5} \cup \mathrm{~F}_{6} \\
=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{2} \cup \mathrm{~N}(\mathrm{Q}) \cup \mathrm{R} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{~N}\left(\mathrm{Z}_{23}\right)
\end{gathered}
$$

is a quasi neutrosophic 6-field.

$$
\begin{gathered}
K=K_{1} \cup K_{2} \cup K_{3} \cup K_{4} \cup K_{5} \cup K_{6} \cup K_{7} \cup K_{8} \\
=Q(\sqrt{2}) I \cup Z_{3} I \cup N\left(Z_{29}\right) \cup Z_{17} I \cup Q(\sqrt{7} \sqrt{11}) \cup \\
N\left(Q(\sqrt{19} \sqrt{23} \sqrt{3}) \cup N\left(Z_{47}\right) \cup Z_{43} I\right.
\end{gathered}
$$

is a quasi neutrosophic 8 -field.

Using the notion of quasi neutrosophic n-field we can define the new notion of quasi strong neutrosophic n-vector spaces (n-linear algebras) over quasi n-neutrosophic fields.

DEFINITION 3.3.13: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be such that some V_{i} 's are vector spaces over the real field F_{i} and some of the V_{j} 's are strong neutrosophic vector spaces over the neutrosophic field $F_{j}(i \neq j, 1 \leq i, j \leq n)$. We define $V_{1} \cup V_{2} \cup \ldots$ $\cup V_{n}$ to be a quasi strong neutrosophic n-vector space over the quasi neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

We will illustrate this and the substructures mentioned earlier by some examples.

Example 3.3.25: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$

$$
\left.\begin{array}{c}
\left\{\left.\left(\begin{array}{lll}
a & b & a \\
c & d & b
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{5} I\right\} \cup \\
\left\{\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I\right\} \cup\right.
\end{array}\right\} \begin{aligned}
& \left\{\left.\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & a_{1} \\
0 & 0 & 0 & a_{2} & a_{4} \\
0 & 0 & a_{3} & a_{1} & a_{6} \\
0 & a_{4} & a_{6} & a_{7} & a_{8} \\
a_{9} & a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 6\right\} \cup \\
& \left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 8\right\} \cup
\end{aligned}
$$

$\left\{\sum_{i=0}^{12} a_{i} x^{i}\right.$; all neutrosophic polynomials in the variable x with coefficients from the neutrosophic field $\mathrm{Z}_{41} \mathrm{I}$ of degree less than or equal to $\left.12 ; \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{41} \mathrm{I} ; 0 \leq \mathrm{i} \leq 12\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10} \\
a_{11} & a_{12} \\
a_{13} & a_{14}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{11} \mathrm{I} ; 1 \leq \mathrm{i} \leq 14\right\}
$$

be a quasi strong neutrosophic 6 -vector space over the quasi neutrosophic 6-field $\mathrm{F}=\mathrm{Z}_{5} \cup \mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{13} \cup \mathrm{~N}(\mathrm{Q}) \cup \mathrm{Z}_{41} \cup \mathrm{Z}_{11} \mathrm{I}$.

Example 3.3.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12} \\
a_{13} & a_{14} & a_{15} \\
a_{16} & a_{17} & a_{18} \\
a_{19} & a_{20} & a_{21}
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in \mathrm{~N}(Q) ; 1 \leq i \leq 21
\end{array}\right\} \cup \\
& \left\{\left.\left(\begin{array}{lllllll}
a & b & c & d & e & f & g \\
b & c & d & e & g & f & a \\
a & b & d & f & g & a & e
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g \in N\left(Z_{41}\right)\right\} \cup
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{41}\right)\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
a & b & c & d & e \\
a & b & a & c & a \\
d & e & d & e & c
\end{array}\right) \right\rvert\, a, b, c, d, e \in N\left(Z_{17} I\right)\right\}
\end{aligned}
$$

be a quasi strong neutrosophic 4 -vector space over the quasi neutrosophic 4-field $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{5} \mathrm{I} \cup \mathrm{Z}_{4} 1 \cup \mathrm{Z}_{17} \mathrm{I}$.

Example 3.3.27: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right)\right\} \cup
$$

$\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 7\right\} \cup\{$ All 7×7 upper triangular matrices with entries from $\mathrm{N}(\mathrm{Q})\} \cup\{$ All 8×8 lower triangular neutrosophic matrices with entries from $\left.N\left(Z_{23}\right)\right\} \cup$ $\left\{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.N\left(Z_{41}\right) ; a_{i} \in N\left(Z_{41}\right) ; 0 \leq i \leq \infty\right\}$ be a strong quasi neutrosophic 5 -linear algebra over the quasi neutrosophic is field $\mathrm{F}=\mathrm{Z}_{11} \cup \mathrm{Z}_{17} \mathrm{I} \cup \mathrm{N}(\mathrm{Q}) \cup \mathrm{Z}_{23} \cup \mathrm{~N}\left(\mathrm{Z}_{41}\right)$.

Example 3.3.28: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=\{$ All 10×10 neutrosophic matrices with entries from $\left.N\left(Z_{53}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
a_{1} & a_{2} & a_{3}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} ; 1 \leq i \leq 3\right\} \cup
$$

$\left\{\right.$ All 5×5 diagonal matrices with entries from $\left.N\left(\mathrm{Z}_{41}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & 0 & 0 \\
\mathrm{c} & \mathrm{~d} & 0 & 0 \\
0 & 0 & \mathrm{~b} & \mathrm{a} \\
0 & 0 & \mathrm{~d} & \mathrm{c}
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{~N}\left(\mathrm{Z}_{2}\right)\right\}
$$

be a strong quasi neutrosophic 4-linear algebra over the quasi neutrosophic 4-field $\mathrm{F}=\mathrm{N}\left(\mathrm{Z}_{53}\right) \cup \mathrm{Z}_{11} \cup \mathrm{~N}\left(\mathrm{Z}_{41}\right) \cup \mathrm{Z}_{2}$.

Example 3.3.29: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}\left(\mathrm{Z}_{3}\right) ; 1 \leq \mathrm{i} \leq 6\right\} \cup
$$

$\left\{\sum_{i=0}^{15} a_{i} x^{i}\right.$; all neutrosophic polynomials in the variable x of
degree less than or equal to fifteen with coefficients from $N(Q)$; $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{N}(\mathrm{Q}) ; 0 \leq \mathrm{i} \leq 15\right\} \cup\{$ All 5×5 neutrosophic matrices with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d \\
e & f \\
g & h \\
i & j
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j \in Z_{11} I\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & c \\
0 & c & d & a \\
a & b & c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{17} I\right\}
\end{gathered}
$$

be a strong neutrosophic 5 -vector space over the 5 -neutrosophic field $\mathrm{F}=\mathrm{Z}_{3} \mathrm{I} \cup \mathrm{N}(\mathrm{Q}) \cup \mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I}$. $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3}$ $\cup \mathrm{W}_{4} \cup \mathrm{~W}_{5}=$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{a} & \mathrm{a} \\
\mathrm{~b} & \mathrm{~b} & \mathrm{~b}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{3} \mathrm{I}\right\} \cup
$$

$\left\{\sum_{i=0}^{6} a_{i} x^{i}\right.$; all polynomial in the variable x with coefficients from the field $N(Q)$ of degree less than or equal to $6 ; 0 \leq i \leq 6$; $a_{i} \in$ $N(Q)\} \cup\{$ All 5×5 upper triangular matrices with entries from the field $\left.\mathrm{Z}_{7} \mathrm{I}\right\} \cup$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cc}
a & a \\
a & a \\
a & a \\
a & a \\
b & b
\end{array}\right) \right\rvert\, a, b \in Z_{11} I\right\} \cup \\
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & d & 0 & 0 \\
e & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, d, e \in Z_{17} I\right\}
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ is a strong neutrosophic 5-vector subspace over the 5 -neutrosophic field F .

Example 3.3.30: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=\left\{\left(\mathrm{a}_{1}\right.\right.$, $\left.\left.\mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 6\right\} \cup\{$ All polynomials in the variable x with coefficients from $N(Q) ; N(Q)[x]\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{k}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{k} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
$$

$\left\{\right.$ All 7×7 neutrosophic matrices with entries from $\left.\mathrm{Z}_{5} \mathrm{I}\right\} \cup\{$ All 9×9 upper triangular matrices with entries from $\left.N\left(Z_{23}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
a & b & 0 & 0 \\
d & e & 0 & 0 \\
0 & 0 & a & a \\
0 & 0 & a & a
\end{array}\right) \right\rvert\, a, b, e, b \in Z_{29} I\right\}
$$

be a strong neutrosophic 6-linear algebra over the neutrosophic 6 -field $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{23}\right) \cup \mathrm{Z}_{29} \mathrm{I}$. Let $\mathrm{W}=\mathrm{W}_{1}$ $\cup \mathrm{W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5} \cup \mathrm{~W}_{6}=\left\{(\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{b}, \mathrm{b}, \mathrm{a}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{7} \mathrm{I}\right\}$ $\cup\{$ All polynomials in the variable x with coefficients from QI; that is $\mathrm{QI}[\mathrm{x}]\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a & a & a \\
a & a & a \\
b & a & b
\end{array}\right) \right\rvert\, a, b \in Z_{11} I\right\} \cup
$$

$\{7 \times 7$ neutrosophic upper triangular matrices with entries from $\left.\mathrm{Z}_{5} \mathrm{I}\right\} \cup\left\{\right.$ All 9×9 diagonal matrices with entries form $\left.\mathrm{N}\left(\mathrm{Z}_{23}\right)\right\}$

$$
\cup\left\{\left.\left(\begin{array}{cccc}
a & a & 0 & 0 \\
a & a & 0 & 0 \\
0 & 0 & a & a \\
0 & 0 & a & a
\end{array}\right) \right\rvert\, a \in Z_{29} I\right\}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}$ is a strong neutrosophic 6linear subalgebra of V over the neutrosophic 6-field F.

Thus we have given examples of strong neutrosophic nvector subspaces (n -linear subalgebras) over a neutrosophic n field F.

As in case of neutrosophic n-vector spaces (n -linear algebras) one can in case of strong neutrosophic n-vector spaces
(n -linear algebras) define the notion of n -linearly independent n subset, n-basis, strong neutrosophic n-linear transformations from a strong neutrosophic n-vector space (n -linear algebra) into a strong neutrosophic n-vector space (n-linear algebra) W both defined on the same n-neutrosophic field F. We can also define and study the properties enjoyed by strong neutrosophic n -linear operators on a strong neutrosophic n-vector space (n linear algebra) V. Concepts like strong neutrosophic eigen values, eigen vectors, etc of strong neutrosophic n-linear operators can be obtained after suitable modifications.

Further almost all theorems derived in case of strong neutrosophic bivector spaces can be derived for strong neutrosophic n-vector spaces. Hence we leave this task for the interested reader. Only in case of strong neutrosophic n-vector spaces one can define n-linear functions, strong neutrosophic dual n-vector spaces and prove $\left(\mathrm{V}^{*}\right)^{*}=\mathrm{V}$. That is if

$$
\begin{aligned}
\mathrm{V}^{*} & =\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}^{*} \\
& =\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}\right)^{*} \\
\left(\mathrm{~V}^{*}\right)^{*} & =\left(\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}^{*}\right)^{*} \\
& =\left(\mathrm{V}_{1}^{*}\right)^{*} \cup\left(\mathrm{~V}_{2}^{*}\right)^{*} \cup \ldots \cup\left(\mathrm{~V}_{\mathrm{n}}^{*}\right)^{*} \\
& =\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}} .
\end{aligned}
$$

As $\left(V_{i}^{*}\right)^{*}=V_{i}$ for each $i, i=1,2, \ldots, n$.
The reader is expected to prove the following theorem.
THEOREM 3.3.3: Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ be a n-linear operator on a finite ($n_{1}, n_{2}, \ldots, n_{n}$) dimension strong neutrosophic n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the n field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Let

$$
C=\left\{C_{1}^{1}, C_{2}^{1}, \ldots, C_{k_{1}}^{1}\right\} \cup\left\{C_{1}^{2}, C_{2}^{2}, \ldots, C_{k_{2}}^{2}\right\} \cup \ldots \cup\left\{C_{1}^{n}, C_{2}^{n}, \ldots, C_{k_{n}}^{n}\right\}
$$

be distinct n-characteristic values of $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ and let $W_{i}=W_{i_{1}}^{1} \cup W_{i_{2}}^{2} \cup \ldots \cup W_{i_{n}}^{n}$ be the null n-space (n-null space) of

$$
T-C I_{d}=\left[T_{1}-C_{i_{1}}^{1} I_{d_{1}}\right] \cup\left[T_{2}-C_{i_{2}}^{2} I_{d_{2}}\right] \cup \ldots \cup\left[T_{n}-C_{i_{n}}^{n} I_{d_{n}}\right] ;
$$

The following are equaivalent
(i) T is n-diagonalizable
(ii) The n-characeristic n-polynomial for $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ is
$f=f_{1} \cup f_{2} \cup \ldots \cup f_{n}$
$=\left(x-C_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-C_{k_{1}}^{1}\right)^{d_{k_{1}}^{1}} \cup\left(x-C_{1}^{2}\right)^{d_{1}^{2}} \ldots\left(x-C_{k_{2}}^{2}\right)^{d_{k_{2}}^{2}}$
$\cup \ldots \cup\left(x-C_{1}^{n}\right)^{d_{1}^{n}} \ldots\left(x-C_{k_{n}}^{n}\right)^{d_{k_{n}}^{n}}$.

We define the notion of the n-ideal generated by n-polynomials which n-annihilate $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$.

DEFINITION 3.3.14: Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ be a n-linear operator of the finite $\left(n_{1}, n_{2}, \ldots, n_{n}\right)$ dimensional strong neutrosophic n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the neutrosophic n-field $F=F_{1} \cup \ldots \cup F_{n}$. The n-minimal neutrosophic n-polynomial for T is the unique monic n generator of the n-ideal of n-polynomials over the n-field $F=F_{1}$ $\cup F_{2} \cup \ldots \cup F_{n}$ which n-annihilate $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$.

The n-minimal neutrosophic n-polynomial $p=p_{1} \cup p_{2} \cup \ldots$ $\cup p_{n}$ for the n-linear operator $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ is uniquely determined by the following properties.
i. $\quad p$ is a n-monic neutrosophic n-polynomial over the n-field F $=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.
ii. $p(T)=p_{1}\left(T_{1}\right) \cup p_{2}\left(T_{2}\right) \cup \ldots \cup p_{n}\left(T_{n}\right)=0 \cup 0 \cup \ldots \cup 0$.
iii. No neutrosophic n-polynomial over the n-field $F=F_{1} \cup F_{2}$ $\cup \ldots \cup F_{n}$ which n-annihilates $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ has smaller n-degree than $p=p_{1} \cup p_{2} \cup \ldots \cup p_{n}$, has.
iv. $\left(n_{1} \times n_{1}, n_{2} \times n_{2}, \ldots, n_{n} \times n_{n}\right)$ to be the order of the neutrosophic n-matrix $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ over the n field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ (Each A_{i} is the neutrosophic matrix of order $n_{i} \times n_{i}$ associated with T_{i} with entries from the field $F_{i}, i=1,2, \ldots, n$).

The reader to expected to derive these facts and also obtain all the related results like Cayley Hamilton Theorem, n-projection primary n-decomposition theorem, n-cyclic decomposition
theorem, Generalized Cayley Hamilton theorem and so on. All these concepts can be extended appropriately from the results proved in case of strong neutrosophic bivector spaces over bifields.

The reader can define and derive n-Jordan form or Jordan nform analogous to bi Jordan form or Jordan biform.

The notion of n-inner product on strong neutrosophic nvector spaces of type II is an important and an interesting notion.

DEFINITION 3.3.15: Let $F=F_{1} \cup F_{2} \cup F_{3} \cup \ldots \cup F_{n}$ be a real neutrosophic n-field and $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-vector space over F. A n-inner product of V is a n-function which assigns to each n-ordered pair of n-vectors α $=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}$ and $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ in Van-scalar $(\alpha / \beta)=\left(\alpha_{1} / \beta_{1}\right) \cup\left(\alpha_{2} / \beta_{2}\right) \cup \ldots \cup\left(\alpha_{n} / \beta_{n}\right)$ in $F=F_{1} \cup F_{2} \cup \ldots$ $\cup F_{n}$; that is $\left(\alpha_{i} / \beta_{i}\right) \in F_{i} ; i=1,2, \ldots, n .\left(\alpha_{i}, \beta_{i} \in V_{i}\right)$ in such a way that for all $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}, \beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ and $\gamma=\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{n}$ in $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ and for all n-scalars $c=c_{1} \cup c_{2} \cup \ldots \cup c_{n}$ in $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.
(a) $(\alpha+\beta / \gamma)=(\alpha / \gamma)+(\beta / \gamma)$
$\left(\alpha_{1}+\beta_{1} / \gamma_{1}\right) \cup\left(\alpha_{2}+\beta_{2} / \gamma_{2}\right) \cup \ldots \cup\left(\alpha_{n}+\beta_{n} / \gamma_{n}\right)$
$=\left(\alpha_{1} / \gamma_{1}\right)+\left(\beta_{1} / \gamma_{1}\right) \cup\left(\alpha_{2} / \gamma_{2}\right)+\left(\beta_{2} / \gamma_{2}\right) \cup \ldots \cup\left(\alpha_{n} / \gamma_{n}\right)+\left(\beta_{n} / \gamma_{n}\right)$.
(b) $(c \alpha / \beta)=c(\alpha / \beta)$ that is
$\left(c_{1} \alpha_{1} / \beta_{1}\right) \cup\left(c_{2} \alpha_{2} / \beta_{2}\right) \cup \ldots \cup\left(c_{n} \alpha_{n} / \beta_{n}\right)$
$=c_{1}\left(\alpha_{1} / \beta_{l}\right) \cup c_{2}\left(\alpha_{2} / \beta_{2}\right) \cup \ldots \cup c_{n}\left(\alpha_{n} / \beta_{n}\right)$.
(c) $(\alpha / \beta)=(\beta / \alpha)$ that is
$\left(\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n} / \beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}\right)=$
$\left(\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n} / \alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}\right)$.
(d) $(\alpha / \alpha)=\left(\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n} / \alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}\right)$
$=\left(\alpha_{l} / \alpha_{1}\right) \cup\left(\alpha_{2} / \alpha_{2}\right) \cup \ldots \cup\left(\alpha_{n} / \alpha_{n}\right)>(0 \cup 0 \cup \ldots \cup 0)$
if $\alpha_{i} \neq 0$ for $i=1,2, \ldots, n$.

A strong neutrosophic n-vector space endowed with a n-linear product is defined as a strong neutrosophic n-inner product space over the real neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

Let $V=F_{1}^{n_{1}} \cup F_{2}^{n_{2}} \cup \ldots \cup F_{n}^{n_{n}}$ be a strong neutrosophic n vector space over the real neutrosophic n-field $F=F_{1} \cup F_{2} \cup$ $\ldots \cup F_{n}$, there is a standard n-inner product called the n standard inner product. It is defined for

$$
\begin{gathered}
\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n} \\
=\left(x_{1}^{1} \ldots x_{n_{1}}^{1}\right) \cup\left(x_{1}^{2} \ldots x_{n_{2}}^{2}\right) \cup \ldots \cup\left(x_{1}^{n} \ldots x_{n_{n}}^{n}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n} \\
=\left(y_{1}^{1} \ldots y_{n_{1}}^{1}\right) \cup\left(y_{1}^{2} \ldots y_{n_{2}}^{2}\right) \cup \ldots \cup\left(y_{1}^{n} \ldots y_{n_{n}}^{n}\right)
\end{gathered}
$$

by

$$
(\alpha / \beta)=\sum_{j_{1}} x_{j_{1}}^{1} y_{j_{1}}^{1} \cup \sum_{j_{2}} x_{j_{2}}^{2} y_{j_{2}}^{2} \cup \ldots \cup \sum_{j_{n}} x_{j_{n}}^{n} y_{j_{n}}^{n} .
$$

If $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is a neutrosophic n-matrix over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$, where $A_{i} \in F_{i}^{n_{i} \times n_{i}}, i=1,2, \ldots, n$. $F_{i}^{n_{i} \times n_{i}}$ is a strong neutrosophic vector space over $F_{i} ; i=1,2$, $\ldots, n . V=F_{1}^{n_{1} \times n_{1}} \cup F_{2}^{n_{2} \times n_{2}} \cup \ldots \cup F_{n}^{n_{n} \times n_{n}}$ is a strong neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots$ $\cup F_{n}$ and $V=F_{1}^{n_{1} \times n_{1}} \cup F_{2}^{n_{2} \times n_{2}} \cup \ldots \cup F_{n}^{n_{n} \times n_{n}}$ is a strong neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots$ $\cup F_{n}$ is isomorphic to the strong neutrosophic n-vector space $F_{1}^{n_{1}^{2}} \cup F_{2}^{n_{2}^{2}} \cup \ldots \cup F_{n}^{n_{n}^{2}}$ in a natural way.

$$
(A / B)=\sum_{j_{1} k_{1}} A_{j_{1} k_{1}}^{1} B_{j_{1} k_{1}}^{1} \cup \sum_{j_{2} k_{2}} A_{j_{2} k_{2}}^{2} B_{j_{2} k_{2}}^{2} \cup \ldots \cup \sum_{j_{j} k_{n}} A_{j_{n} k_{n}}^{n} B_{j_{n} k_{n}}^{n}
$$

defines a n-inner product on V. A strong neutrosophic n-vector space over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ on which is defined a n-linear product is known as the n-inner product neutrosophic space or neutrosophic n-inner product space.

The reader is expected to prove the following theorem.
THEOREM 3.3.4: If $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-inner product neutrosophic space then for any n-vectors $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup$ α_{n} and $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ in V and any scalar $c=c_{1} \cup c_{2} \cup$ $\ldots \cup c_{n}$ in $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$
i. $\quad\|c \alpha|\|=|c|\| \alpha| \mid$ that is

$$
\|c \alpha\|=\left\|c_{1} \alpha_{1}\right\| \cup \ldots \cup\left\|c_{n} \alpha_{n}\right\|
$$

$$
=\left|c_{1}\right|\left\|\alpha_{1}| | \cup \ldots \cup\left|c_{n}\right|\right\| \alpha_{n} \| ;
$$

ii. $\|\alpha\|>0 \cup 0 \cup \ldots \cup 0$ for $\alpha \neq 0$,
that is $\left\|\alpha_{1}\right\| \cup\left\|\alpha_{2}\right\| \cup \ldots \cup\left\|\alpha_{n}\right\|>(0,0, \ldots, 0)$

$$
=0 \cup 0 \cup \ldots \cup 0
$$

iii. $\quad\|(\alpha / \beta)\|<\|\alpha\|\|\beta\|$ that is
$\left\|\left(\alpha_{1} / \beta_{1}\right)\right\| \cup\left\|\left(\alpha_{2} / \beta_{2}\right)\right\| \cup \ldots \cup\left\|\left(\alpha_{n} / \beta_{n}\right)\right\|$
$\leq\left\|\alpha_{1}\right\|\left\|\beta_{1}\right\| \cup\left\|\alpha_{2}\right\| /\left\|\beta_{2}\right\| \cup \ldots \cup\left\|\alpha_{n}\right\| /\left\|\beta_{n}\right\|$.
As in case of strong neutrosophic bivector spaces we can define in case of strong neutrosophic n-vector spaces the notion of northogornal n-vectors.

If $\alpha, \beta \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a n-vector in a n-inner product space we can define

$$
\gamma=\beta-\frac{(\beta / \alpha)}{\|\alpha\|^{2}} \alpha ;
$$

that is

$$
\begin{gathered}
\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{\mathrm{n}} \\
=\left(\beta_{1}-\frac{\left(\beta_{1} / \alpha_{1}\right)}{\left\|\alpha_{1}\right\|^{2}} \alpha_{1}\right) \cup\left(\beta_{2}-\frac{\left(\beta_{2} / \alpha_{2}\right)}{\left\|\alpha_{2}\right\|^{2}} \alpha_{2}\right) \\
\cup \ldots \cup\left(\beta_{\mathrm{n}}-\frac{\left(\beta_{\mathrm{n}} / \alpha_{\mathrm{n}}\right)}{\left\|\alpha_{\mathrm{n}}\right\|^{2}} \alpha_{\mathrm{n}}\right) .
\end{gathered}
$$

We say $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}$ is n-orthogonal to $\beta=\beta_{1} \cup \beta_{2} \cup$ $\ldots \cup \beta_{\mathrm{n}}$ if

$$
\begin{aligned}
(\alpha \mid \beta) & =\left(\alpha_{1} \mid \beta_{1}\right) \cup\left(\alpha_{2} \mid \beta_{2}\right) \cup \ldots \cup\left(\alpha_{\mathrm{n}} \mid \beta_{\mathrm{n}}\right) \\
& =0 \cup 0 \cup \ldots \cup 0 .
\end{aligned}
$$

This clearly implies $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{\mathrm{n}}$ is n-orthogonal to $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{n}}$.

The reader can easily prove the following theorem.
Theorem 3.3.5: A n-orthogonal n-set of non zero n-vectors is n-linearly independent.

THEOREM 3.3.6: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-inner product space and let $\left(\beta_{1}^{1}, \ldots, \beta_{n_{1}}^{1}\right) \cup$ $\left(\beta_{1}^{2}, \ldots, \beta_{n_{2}}^{2}\right) \cup \ldots \cup\left(\beta_{1}^{n}, \ldots, \beta_{n_{n}}^{n}\right)$ be any n-independent vectors in V. Then one way to construct n-orthogonal vectors $\left(\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right) \cup\left(\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right) \cup \ldots \cup\left(\alpha_{1}^{n}, \ldots, \alpha_{n_{n}}^{n}\right)$ in $V=V_{1} \cup V_{2}$ $\cup \ldots \cup V_{n}$ is such that for each $k_{i}=1,2, \ldots, n_{i}$ the set $\left(\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}\right) \cup\left(\alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}\right) \cup \ldots \cup\left(\alpha_{1}^{n}, \ldots, \alpha_{k_{n}}^{n}\right)$ is a n-basis for the neutrosophic n-vector subspace spanned by $\left(\beta_{1}^{1}, \ldots, \beta_{k_{1}}^{1}\right) \cup$ $\left(\beta_{1}^{2}, \ldots, \beta_{k_{2}}^{2}\right) \cup \ldots \cup\left(\beta_{1}^{n}, \ldots, \beta_{k_{n}}^{n}\right)$.

Proof: The n-vectors $\left(\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right) \cup\left(\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right) \cup \ldots \cup$ $\left(\alpha_{1}^{n}, \ldots, \alpha_{n_{n}}^{n}\right)$ will be obtained by means of a construction known as Gram-Schmidt n-orthogonalization process.

First let $\alpha_{1}=\alpha_{1}^{1} \cup \alpha_{1}^{2} \cup \ldots \cup \alpha_{1}^{\mathrm{n}}=\beta_{1}=\beta_{1}^{1} \cup \beta_{1}^{2} \cup \ldots \cup \beta_{1}^{\mathrm{n}}$. The other n-vector are given inductively as follows.

Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m_{i}}\left(1 \leq m_{i}<n_{i}\right)$ have been choosen so that for every $k_{i},\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k_{i}}\right\} ; 1 \leq k_{i} \leq m_{i}$ is an orthogonal n-basis for the n-subspace of V that is spanned by $\beta_{1} \ldots \beta_{\mathrm{k}}$. To construct the next n-vector $\alpha_{m_{i}+1}$ let

$$
\begin{aligned}
& \alpha_{m_{i}+1}=\alpha_{m_{i}+1}^{1} \cup \alpha_{m_{i}+1}^{2} \cup \ldots \cup \alpha_{m_{i}+1}^{n} \\
& \beta_{m_{i}+1}=\sum_{k=1}^{m} \frac{\left(\beta_{m+1} / \alpha_{k}\right) \alpha_{k}}{\left\|\alpha_{k}\right\|^{2}} \\
& =\beta_{\mathrm{m}_{\mathrm{i}_{1}}+1}^{1} \cup \beta_{\mathrm{m}_{\mathrm{i}_{2}+1}}^{2} \cup \ldots \cup \beta_{\mathrm{m}_{\mathrm{i}_{\mathrm{n}}}+1}^{\mathrm{n}} \\
& -\sum_{\mathrm{k}_{\mathrm{i}_{1}}} \frac{\left(\beta_{\mathrm{m}_{\mathrm{i}_{1}}+1}^{1} / \alpha_{\mathrm{k}_{\mathrm{i}_{1}}}^{1}\right)}{\left\|\alpha_{\mathrm{k}_{\mathrm{i}_{1}}}^{1}\right\|^{2}} \alpha_{\mathrm{k}_{\mathrm{i}_{1}}}^{1} \cup \sum_{\mathrm{k}_{\mathrm{i}_{2}}} \frac{\left(\beta_{\mathrm{m}_{\mathrm{i}_{2}}+1}^{2} / \alpha_{\mathrm{k}_{\mathrm{i}_{2}}}^{2}\right)}{\left\|\alpha_{\mathrm{k}_{\mathrm{i}_{2}}}^{2}\right\|^{2}} \alpha_{\mathrm{k}_{\mathrm{i}_{2}}}^{2} \cup \ldots \cup
\end{aligned}
$$

$$
\begin{aligned}
& \left(\beta_{m_{i_{n}}+1}^{n}-\sum \frac{\left(\beta_{m_{i_{n}+1}}^{n} / \alpha_{k_{i_{n}}}^{n}\right)}{\left\|\alpha_{k_{i_{n}}}^{n}\right\|^{2}} \alpha_{{k_{i_{n}}}_{n}^{n}}^{2}\right) .
\end{aligned}
$$

Then $\alpha_{m_{i}+1} \neq 0$ i.e., $\alpha_{m+1}^{i} \neq 0$; for other wise β_{m+1}^{i} is a linear combination of $\alpha_{1}^{i} \cup \alpha_{2}^{i} \cup \ldots \cup \alpha_{m+1}^{i} ; i=1,2, \ldots, n$. Further more it can be verified $\left(\alpha_{m_{i}+1}^{\mathrm{i}} / \alpha_{\mathrm{j}}^{\mathrm{i}}\right)=0 ; 1 \leq \mathrm{j} \leq \mathrm{m}_{\mathrm{i}}$ true for $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Hence true for $\left(\alpha_{m+1} / \alpha_{j}\right)=0 \cup \ldots \cup 0$.
Therefore

$$
\left\{\alpha_{1}^{1}, \ldots, \alpha_{m_{1}+1}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{m_{2}+1}^{2}\right\} \cup \ldots \cup\left\{\alpha_{1}^{\mathrm{n}}, \ldots, \alpha_{\mathrm{m}_{\mathrm{n}}+1}^{\mathrm{n}}\right\}
$$

is an n-orthogonal set consisting ($m_{1}+1, m_{2}+1, \ldots, m_{n}+1$) non zero n-vectors in the n-subspace spanned by

$$
\left\{\beta_{1}^{1}, \ldots, \beta_{\mathrm{m}_{1}+1}^{1}\right\} \cup\left\{\beta_{1}^{2}, \ldots, \beta_{\mathrm{m}_{2}+1}^{2}\right\} \cup \ldots \cup\left\{\beta_{1}^{\mathrm{n}}, \ldots, \beta_{\mathrm{m}_{\mathrm{n}}+1}^{\mathrm{n}}\right\} .
$$

In particular for $\mathrm{m}=4$ we have

$$
\alpha_{1}^{1} \cup \alpha_{1}^{2} \cup \ldots \cup \alpha_{1}^{\mathrm{n}}=\beta_{1}^{1} \cup \beta_{1}^{2} \cup \ldots \cup \beta_{1}^{\mathrm{n}} .
$$

$$
\begin{gathered}
\alpha_{2}^{1} \cup \alpha_{2}^{2} \cup \ldots \cup \alpha_{2}^{\mathrm{n}}=\beta_{2}^{1} \cup \beta_{2}^{2} \cup \ldots \cup \beta_{2}^{\mathrm{n}}-\frac{\left(\beta_{2}^{1} / \alpha_{1}^{1}\right)}{\left\|\alpha_{1}^{1}\right\|^{2}} \alpha_{1}^{1} \cup \\
\frac{\left(\beta_{2}^{2} / \alpha_{1}^{2}\right)}{\left\|\alpha_{1}^{2}\right\|^{2}} \alpha_{1}^{2} \cup \ldots \cup \frac{\left(\beta_{2}^{\mathrm{n}} / \alpha_{1}^{\mathrm{n}}\right)}{\left\|\alpha_{1}^{\mathrm{n}}\right\|^{2}} \alpha_{1}^{\mathrm{n}} \\
=\beta_{2}^{1}-\frac{\left(\beta_{2}^{1} / \alpha_{1}^{1}\right)}{\left\|\alpha_{1}^{1}\right\|^{2}} \alpha_{1}^{1} \cup \beta_{2}^{2}-\frac{\left(\beta_{2}^{2} / \alpha_{1}^{2}\right)}{\left\|\alpha_{1}^{2}\right\|^{2}} \alpha_{1}^{2} \cup \ldots \cup \beta_{2}^{\mathrm{n}}-\frac{\left(\beta_{2}^{\mathrm{n}} / \alpha_{1}^{\mathrm{n}}\right)}{\left\|\alpha_{1}^{\mathrm{n}}\right\|^{2}} \alpha_{1}^{\mathrm{n}}
\end{gathered}
$$

and so on.

Interested reader on similar lines can construct $\alpha_{3}=$ $\alpha_{3}^{1} \cup \alpha_{3}^{2} \cup \ldots \cup \alpha_{3}^{\text {n }}$ interms of β_{3}, α_{2} and α_{1} and so on.

Now we define the notion of best n-approximation in case of strong neutrosophic n-vector spaces over the neutrosophic n field F.

DEFINITION 3.3.16: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-vector space over the neutrosophic n-field $F=$ $F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ (All F_{i} 's are not pure neutrosophic for $i=1$, 2, ..., n) of type II.

Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ be a strong neutrosophic n vector subspace of V over F. Let $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ be a $n-$ vector in $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}, \beta \notin W$ (i.e., $\beta_{i} \notin W_{i}$ for $i=1$, $2, \ldots, n$).
To find the n best approximation (best n-approximation) to $\beta=$ $\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ in $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$.
That is to find a n-vector $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}$ for which

$$
\|\beta-\alpha\|=\left\|\beta_{1}-\alpha_{1}\right\| \cup\left\|\beta_{2}-\alpha_{2}\right\| \cup \ldots \cup\left\|\beta_{n}-\alpha_{n}\right\|
$$

is as small as possible subject to the restriction $\alpha=\alpha_{1} \cup \alpha_{2} \cup$ $\ldots \cup \alpha_{n}$ is in $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ (that is each $\left\|\beta_{i}-\alpha_{i}\right\|$ is
as small as possible subject to the restriction that α_{i} should belong to $W_{i}, i=1,2, \ldots, n$).

To be more precise a best n-approximation to $\beta=\beta_{1} \cup \beta_{2}$ $\cup \ldots \cup \beta_{n}$ in $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ is a n-vector $\alpha=\alpha_{1} \cup$ $\alpha_{2} \cup \ldots \cup \alpha_{n}$ in W such that

$$
\|\beta-\alpha\|<\|\beta-\gamma\|
$$

that is

$$
\begin{aligned}
& \left\|\beta_{1}-\alpha_{1}\right\| \cup\left\|\beta_{2}-\alpha_{2}\right\| \cup \ldots \cup\left\|\beta_{n}-\alpha_{n}\right\| \\
& \leq\left\|\beta_{1}-\gamma_{1}\right\| \cup\left\|\beta_{2}-\gamma_{2}\right\| \cup \ldots \cup\left\|\beta_{n}-\gamma_{n}\right\|
\end{aligned}
$$

for every n-vector $\gamma=\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{n}$ in W.
It is important to note that as in case of n-vector spaces of type II, we as in case of strong neutrosophic n-vector spaces define the notion of n-orthogonality.

However the interested reader can prove the following theorem.

THEOREM 3.3.7: Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ be a strong neutrosophic n-vector subspace of a strong neutrosophic ninner product space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$. Let $\beta=\beta_{1} \cup \beta_{2} \cup$ $\ldots \cup \beta_{n} \in V=V_{1} \cup V_{2} \cup \ldots \cup V_{n} ; \beta_{i} \in V_{i} ; i=1,2, \ldots, n$.
i. The n-vector $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{n}$ in W is a best n approximation to $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ by n-vectors in W $=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ if and only if $\beta-\alpha=\left(\beta_{1}-\alpha_{1}\right) \cup\left(\beta_{2}\right.$ $\left.-\alpha_{2}\right) \cup \ldots \cup\left(\beta_{n}-\alpha_{n}\right)$ is n-orthogonal to every n-vector in W.

That is each $\beta_{i}-\alpha_{i}$ is orthogonal to every vector in W_{i}; true for $i=1,2, \ldots, n$.
ii. If the best n-approximation to $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ in W $=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ exists then it is unique.

Now we proceed onto define the notion of n-orthogonal complement of a n-set of n-vectors in $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$.

DEFINITION 3.3.17: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic inner produce space of type II defined over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.

Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be any n-set of n-vectors in $V=$ $V_{1} \cup V_{2} \cup \ldots \cup V_{n}$. The n-orthogonal complement of S denoted by $S^{\perp}=S_{1}^{\perp} \cup S_{2}^{\perp} \cup \ldots \cup S_{n}^{\perp}$ is the set of all n-vectors in V which are n-orthogonal to every n-vector in S.

The reader is expected to prove the following theorems.
ThEOREM 3.3.8: Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a strong neutrosophic n-inner product space. Let $W=W_{1} \cup W_{2} \cup \ldots \cup$ W_{n} be a finite dimensional strong neutrosophic n-vector subspace of V and $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$ be the n-orthogonal projection of V on W.

Then the n-mapping $\beta \rightarrow(\beta-E \beta)$; that is
$\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n} \rightarrow\left(\beta_{1}-E \beta_{1}\right) \cup\left(\beta_{2}-E \beta_{2}\right) \cup \ldots \cup\left(\beta_{n}-E \beta_{n}\right)$ i.e., each $\beta_{i} \rightarrow\left(\beta_{i}-E \beta_{i}\right)$ for $i=1,2, \ldots, n$ is the n-orthogonal projection of V on W.

THEOREM 3.3.9: Let $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$ be a finite (n_{1}, n_{2}, \ldots, n_{n}) n-dimensional strong neutrosophic n-vector subspace of the strong neutrosophic n-inner product space $V=V_{1} \cup V_{2} \cup$ $\ldots \cup V_{n}$ of type II.

Let $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$ be an n-idempotent n-linear transformation of V onto $W . W^{\perp}=W_{1}^{\perp} \cup W_{2}^{\perp} \cup \ldots \cup W_{n}^{\perp}$ is the null n-subspace of $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$ and $V=W \oplus W^{\perp}$ that is

$$
\begin{aligned}
& V=V_{1} \cup V_{2} \cup \ldots \cup V_{n} \\
= & W_{1} \oplus W_{1}^{\perp} \cup \ldots \cup W_{n} \oplus W_{n}^{\perp} .
\end{aligned}
$$

Theorem 3.3.10: Under the conditions of the above theorem I $-E=I_{1} \cup I_{2} \cup \ldots \cup I_{n}-\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)=I_{1}-E_{1} \cup I_{2}-$ $E_{2} \cup \ldots \cup I_{n}-E_{n}$ is the n-orthogonal n-projection of V on W^{\perp}. It is a n-idempotent n-linear transformation of V on to W^{\perp} with n null space $W=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$.

THEOREM 3.3.11: Let

$$
\left\{\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\} \cup \ldots \cup\left\{\alpha_{1}^{n}, \ldots, \alpha_{n_{n}}^{n}\right\}
$$

be a n-orthogonal set of non zero n-vectors in a strong n-inner product space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over $F=F_{1} \cup F_{2} \cup \ldots \cup$ F_{n} of type II.

If $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n}$ is any n-vector in $V=V_{1} \cup V_{2} \cup$ $\ldots \cup V_{n}$ then

$$
\begin{gathered}
\sum_{k_{1}}\left(\frac{\mid\left(\beta_{1} /\left.\alpha_{k_{1}}^{1}\right|^{2}\right.}{\left\|\alpha_{k_{1}}^{1}\right\|^{2}}\right) \cup \\
\sum_{k_{2}}\left(\frac{\mid\left(\beta_{2} /\left.\alpha_{k_{2}}^{2}\right|^{2}\right.}{\left\|\alpha_{k_{2}}^{2}\right\|^{2}}\right) \cup \ldots \cup \\
\sum_{k_{n}}\left(\frac{\mid\left(\beta_{n} /\left.\alpha_{k_{n}}^{2}\right|^{2}\right.}{\left\|\alpha_{k_{n}}^{2}\right\|^{2}}\right) \\
\leq\left\|\beta_{1}\right\|^{2} \cup\left\|\beta_{2}\right\|^{2} \cup \ldots \cup\left\|\beta_{n}\right\|^{2}
\end{gathered}
$$

and equality holds if and only if

$$
\begin{gathered}
\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{n} \\
=\sum_{k_{1}}\left(\frac{\left(\beta_{1} / \alpha_{k_{1}}^{1}\right)}{\left\|\alpha_{k_{1}}^{1}\right\|^{2}} \alpha_{k_{1}}^{1}\right) \cup \\
\sum_{k_{2}}\left(\frac{\left(\beta_{2} / \alpha_{k_{2}}^{2}\right)}{\left\|\alpha_{k_{2}}^{2}\right\|^{2}} \alpha_{k_{2}}^{2}\right) \cup \ldots \cup
\end{gathered}
$$

$$
\sum_{k_{n}}\left(\frac{\left(\beta_{n} / \alpha_{k_{n}}^{2}\right)}{\left\|\alpha_{k_{n}}^{2}\right\|^{2}} \alpha_{k_{n}}^{2}\right)
$$

Results on neutrosophic bivector spaces (bilinear algebras) discussed and derived in Chapter 2 can be derived for neutrosophic n-vector spaces (n-linear algebras).

Further all results true in case of n-linear algebras of type II can be derived in case of neutrosophic n-linear algebras of type II with appropriate modifications.

Chapter Four

APPLICATIONS OF Neutrosophic n-Linear Algebras

In this chapter we just suggest the possible applications of the neutrosophic n-linear algebras of type I and II ($n \geq 2$), strong neutrosophic n-linear algebras of type I and II and quasi strong neutrosophic linear algebras of type II.

These neutrosophic n-linear algebras over the neutrosophic n-fields or over the real n-field can be used in neutrosophic fuzzy models like Neutrosophic Cognitive Maps (NCMs) and when we have multiexperts we can use the neutrosophic nmatrices and model n - NCMs ($\mathrm{n} \geq 2$).

These neutrosophic n-matrices can also be used to model Neutrosophic Fuzzy Relational maps, when n-experts give their opinion on any real world problem. Use of these neutrosophic n-matrices will save time and economy.

These neutrosophic n-matrices can be used in n-models whenever the concept of indeterminacy is present.

The n-NCMs (i.e., NCMs constructed using neutrosophic nmatrices which gives the NCM model of n-experts $n \geq 2$) can be used in creating metabolic regulatory n-Network models. Also multi expert NCM models can be used to find the driving speed vehicles of any one in free way. These n-NCM models will be very useful in Medical diagnostics. n-NCMs using neutrosophic n-matrices with entries from [0, 1] can be used in diagnosis and study of specific language impairment.

These structures will be best suited for web mining ninferences and in robotics.

The strong neutrosophic n-linear operators when analyzing the eigen values and eigen vectors in any real models where indeterminacy is dominant can be used.

We see pure complex numbers ni, (i is such that $\mathrm{i}^{2}=-1$ and $n \in R$) at an even stages (powers) merges with real but when we use the indeterminant ' I ' they at no point of time merge with reals. Thus if the presence of indeterminacy prevails use of neutrosophic models is more appropriate.

The n-NCM models can be used in legal rules when several lawyers give their opinion about a case.

These models will also be better suited in analysis of Business Performance Assessment as in business always a factor of indeterminacy is present.

Chapter Five

Suggested Problems

In this chapter we have given over eighty problems for the reader to solve. This will help one to understand the concepts introduced in this book.

1. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{13} \mathrm{I}\right\} \cup \cup\left\{\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & a_{5} & a_{6}
\end{array}\right)\right.
$$

where $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{13}\right) ; 1 \leq \mathrm{i} \leq 6\right\}$ be a neutrosophic bivector space over the field Z_{13}.
a. Find neutrosophic bivector subspaces of V .
b. Find $\mathrm{NHom}_{\mathrm{Z}_{13}}(\mathrm{~V}, \mathrm{~V})$.
c. Can V have special neutrosophic bivector subspaces over a subfield of Z_{13} ?
2. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ be a neutrosophic bivector space over a real field F . Develop some interesting properties of V.
3. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be two neutrosophic bivector spaces over the field F . Find the algebraic structure of $\mathrm{NHom}_{\mathrm{F}}(\mathrm{V}, \mathrm{W})$.
4. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{17} I\right\} \cup \\
\begin{cases}\left.\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, \begin{array}{l}
a_{i} \in N\left(Z_{17}\right)
\end{array}\right\}\end{cases}
\end{gathered}
$$

be a neutrosophic bivector space over the real field Z_{17}. Find atleast one neutrosophic linear bioperator on V which is inverible. Does there exist a neutrosophic linear bioperator T on V which is inverible but T has a non trivial kernel?
5. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{11} \mathrm{I}[\mathrm{x}]\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{Z}_{17} \mathrm{I} ; 1 \leq \mathrm{i} \leq 10\right\}
$$

be a neutrosophic bivector space over the field Z_{11}. Find a bibasis of V over Z_{11}. Define a bilinear bioperator T on V which is not inverible.
6. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ be three neutrosophic bivector spaces over the real field F . Suppose T : $\mathrm{V} \rightarrow \mathrm{W}$ is a neutrosophic bilinear bitransformation, $\mathrm{P}: \mathrm{W} \rightarrow$
S is a neutrosophic bilinear transformation. Will TP: $\mathrm{V} \rightarrow \mathrm{S}$ be a neutrosophic bilinear transformation from V to S ?(we define (TP) $(v)=\mathrm{P}(\mathrm{T}(v)) \mid v \in \mathrm{~V}$ so $\mathrm{T}(v) \in \mathrm{W} ; \mathrm{P}((\mathrm{T}(v)) \in \mathrm{S})$.
7. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be two finite bidimensional neutrosophic bivector spaces over the real field F. Prove if $T=T_{1} \cup T_{2}: V \rightarrow W$ is a linear bitransformation then nullity $T+$ rank $T=\operatorname{bidim} V$, that is nullity $\left(T_{1} \cup T_{2}\right)+$ $\operatorname{rank}\left(\mathrm{T}_{1} \cup \mathrm{~T}_{2}\right)=\operatorname{dim} \mathrm{V}_{1} \cup \operatorname{dim} \mathrm{~V}_{2}$.
8. Define neutrosophic hyperbisubspace of V. Illustrate this concept by an example.
9. Does there exist a neutrosophic bivector space which has no neutrosophic hyper bisubspace? Justify your claim.
10. Can you characterize those neutrosophic bivector spaces which has no neutrosophic hyper bisubspace?
11. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{17} \mathrm{I}\right\} \cup\left\{\mathrm{Z}_{17} \mathrm{I}[\mathrm{x}]\right\}$ be a neutrosophic bivector space over the field Z_{17}. Does V have neutrosophic hyper bisubspace?
12. Obtain some interesting properties about the special strong neutrosophic bivector spaces over the neutrosophic bifield $\mathrm{F}=$ $\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.
13. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in Z_{11} I\right\} \cup \\
& \left\{\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right)\left|\left\lvert\, \begin{array}{l}
a_{i} \in N(Q) ; 1 \leq i \leq 8
\end{array}\right.\right\}\right.
\end{aligned}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $F=Z_{11} I \cup N(Q)=F_{1} \cup F_{2}$.
a. Find a bibasis of V over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.
b. Can V have proper strong neutrosophic bivector subspaces $\mathrm{W}_{1}, \mathrm{~W}_{2}$ which are such that $\mathrm{W}_{1} \cong \mathrm{~W}_{2}$?
c. Is V bisimple?
d. Find a linear bioperator on V which is non biinvertible.
e. Find a linear bioperator on V which is biinvertible.
f. Can V have proper hyper bisubspace?
14. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{$ collection of all 7×7 neutrosophic matrices with entries from the neutrosophic field $\left.\mathrm{Z}_{5} I\right\} \cup$ \{Collection of all 9×9 neutrosophic matrices with entries from the neutrosophic field QI\} be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}=Z_{5} I$ \cup QI.
a. Is V a strong neutrosophic bilinear algebra over F ?
b. Can V have proper strong neutrosophic bilinear subalgebras over $F=F_{1} \cup F_{2}$?
c. Find SNH (V, V).
d. Define a linear bioperator T on V which is biinvertible.
e. Find a bibasis for V.
f. Can V have pseudo strong bivector subspaces?
g. Find for a bilinear operator T on V the associated bicharacteristic values and bicharacteristic vectors.
h. Is V bisimple?
i. Can V have pseudo real bilinear subalgebras?
15. Obtain some interesting properties about SNH (V, W) where V and W are strong neutrosophic bivector spaces defined over the pure neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.
16. Will every strong neutrosophic bivector space have strong neutrosophic hyper space?
17. Let $\mathrm{B}=\mathrm{B}_{1} \cup \mathrm{~B}_{2}=$

$$
\left(\begin{array}{ccc}
3 \mathrm{I} & 0 & 1 \\
0 & 5 \mathrm{I} & 4 \\
0 & 2 \mathrm{I} & 2
\end{array}\right) \cup\left(\begin{array}{cccc}
\mathrm{I} & 0 & 1 & 2 \\
0 & 2 \mathrm{I} & \mathrm{I} & 0 \\
0 & 1+\mathrm{I} & 0 & 2+\mathrm{I} \\
2 \mathrm{I}+1 & 0 & 0 & \mathrm{I}
\end{array}\right)
$$

be a neutrosophic bimatrix with entries from the neutrosophic bifield $F=F_{1} \cup F_{2}=N\left(Z_{5}\right) \cup N\left(Z_{3}\right)$. Find the bicharacteristic values associated with B. Find the bicharacteristic neutrosophic bipolynomial associated with it.
18. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8} \\
a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} I ; 1 \leq i \leq 10\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{5} I ; 1 \leq i \leq 10\right\}
\end{aligned}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$. $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e, f, g) $\left.\mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g} \in \mathrm{Z}_{17} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Z_{5} \mathrm{I} ; 1 \leq i \leq 12\right\}
$$

be a strong neutrosophic bivector space over the same neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$.
a. Find $\operatorname{SNH}(\mathrm{V}, \mathrm{W})=\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W})$. Is $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W})$ a strong neutrosophic bivector space over the bifield $\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$?
b. Find a $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ such that T is not biinvertible.
c. Can $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be such that, T is biinvertible?
d. Find a $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{W}$ such that S is biinvertible.
e. Find $L^{2}(W, V)$.
f. Find a bibasis for V.
g. Find a bibasis for W.
h. What is the bidimension of V?
i. What is the bidimension of $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W})$ over $\mathrm{Z}_{17} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$?
j. Is V and W bisimple strong neutrosophic bivector spaces?
k. Find $\operatorname{SNH}(\mathrm{V}, \mathrm{V})=\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~V})$.
l. Find SNH $(W, W)=L^{2}(W, W)$.
19. Let $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=$

$$
\left(\begin{array}{ccc}
\mathrm{I} & 0 & 3 \\
7 \mathrm{I} & 6 & 2 \\
0 & 0 & 4 \mathrm{I}
\end{array}\right) \cup\left(\begin{array}{cccc}
4 \mathrm{I} & 0 & 2 & \mathrm{I} \\
3 \mathrm{I} & \mathrm{I} & 0 & 7 \\
0 & \mathrm{I} & 0 & 0 \\
8 & 0 & 7 \mathrm{I} & 4 \mathrm{I}
\end{array}\right)
$$

be a neutrosophic bimatrix with entries from the neutrosophic bifield $N\left(Z_{11}\right) \cup N(Q)=F_{1} \cup F_{2}=F$.
a. Find the bicharacteristic bipolynomial associated with A.
b. Find the bicharacteristic bieigen values of A .
c. Is A bidiagonalizable over the bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$?
20. Obtain some interesting properties about bipolynomial biideals.
21. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{19} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{2 \mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{~N}(\mathrm{Q}) ; 0 \leq \mathrm{i} \leq 19\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{N}(\mathrm{Q})$. Define $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ and find the
bicharacteristic values associated with T. Find the bidimension of V over $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{N}(\mathrm{Q})$.
22. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{llll}
a & a & a & a \\
a & a \\
a & a & a & a
\end{array} a\right) \right\rvert\, a \in N(R)\right\} \cup \\
& \\
& \left.\left.\left\{\begin{array}{|cc}
a & b \\
b & a \\
a & b \\
b & a
\end{array}\right) \right\rvert\, a, b \in Z_{7} I\right\}
\end{aligned}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{N}(\mathrm{R}) \cup \mathrm{Z}_{7} \mathrm{I}$.
a. Find a bibasis of V relative to the bifield $\mathrm{F}=\mathrm{R}(\mathrm{I}) \cup \mathrm{Z}_{7} \mathrm{I}$.
b. Find a bibasis of V relative to the bifield $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2}=$ $\mathrm{RI} \cup \mathrm{Z}_{7} \mathrm{I}$.
c. Find the bibasis of V relative to the bifield $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=$ $\mathrm{N}(\mathrm{Q}) \cup \mathrm{Z}_{7} \mathrm{I}$ where V is a strong neutrosophic bivector space defined over $S=S_{1} \cup S_{2}$.
d. Find the bibasis of V relative to the bifield $P=P_{1} \cup P_{2}=$ $\mathrm{QI} \cup \mathrm{Z}_{7} \mathrm{I}$.
Compare the bibasis of V when defined over 4 different fields and establish that the bidimension of a strong neutrosophic bivector space is dependent on the neutrosophic bifield over which the bispace is defined.
23. Does there exist a strong neutrosophic bivector space whose bidimension is independent of the neutrosophic bifield over which it is defined?
24. Let $\mathrm{V}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{11} \mathrm{I}\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
0 & \mathrm{~d} & \mathrm{e} \\
0 & 0 & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{7} \mathrm{I}\right\}
$$

be a strong neutrosophic bilinear algebra defined over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{7} \mathrm{I}$.
a. Find a bibasis of V and the bidimension of V over F .
b. Find the bidimension of $\mathrm{NL}(\mathrm{V}, \mathrm{V})=\{$ all linear bioperators on V \} over $\mathrm{F}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{7} \mathrm{I}$.
c. Is V pseudo bisimple? Justify your claim.
25. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{N}(\mathrm{Q})\right\} \cup$

$$
\left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I\right\}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d, e \in Q I\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I\right\}
\end{aligned}
$$

be a strong neutrosophic bivector space over the same bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$.
Find $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W})$ and $\mathrm{L}^{2}(\mathrm{~W}, \mathrm{~V})$.

Determine the bidimension of $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W})$ and $\mathrm{L}^{2}(\mathrm{~W}, \mathrm{~V})$ over F $=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$.
26. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{9} \mathrm{a}_{\mathrm{i}} \mathrm{X}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{13} \mathrm{I} ; 0 \leq \mathrm{i} \leq 9\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{13}$ I. Find the bidimension of $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~V})$ over $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{13} \mathrm{I}$.
27. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{QI}\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{9} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{QI} ; 0 \leq \mathrm{i} \leq 9\right\}
\end{aligned}
$$

be a neutrosophic space over the neutrosophic field F = QI.
a. Find a bibasis for V.
b. Find the bidimension of $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~V})$.
28. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, a, \mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{3} \mathrm{I}\right\} \cup
$$

$\left\{(\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{b}, \mathrm{b}, \mathrm{b}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{2} \mathrm{I}\right\}$ be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{Z}_{3} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I}$.
a. Find a bibasis for V.
b. What is the bidimension of V over F ?
c. Find a $T=T_{1} \cup T_{2}: V=V_{1} \cup V_{2} \rightarrow V_{1} \cup V_{2}$ such that all the bicharacteristic values associated with T are distinct.
d. Find $L^{2}(V, V)$.
e. What is the bidimension of $L^{2}(V, V)$ over F ?
29. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI}\} \cup\left\{\mathrm{Z}_{11} \mathrm{I}\right\}$ be a strong neutrosophic bilinear algebra defined over the neutrosophic bifield $\mathrm{F}=\mathrm{QI}$ $\cup \mathrm{Z}_{11} \mathrm{I}$.
a. What is the bidimension of V ?
b. Suppose $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is only a strong neutrosophic bivector space over $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$, what is the bidimension of V ?
c. Does the bidimension in general dependent on its algebraic structure?
30. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{Z}_{19} \mathrm{I}$ be a strong neutrosophic bivector space over the neutrosophic bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{19} \mathrm{I}$.
a. What is bidimension of V ?
b. If $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ is realized as a strong neutrosophic bilinear algebra over the bifield $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{19} \mathrm{I}$. What is its bidimension?
c. Compare and find if any difference exists.
31. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\{\mathrm{QI}\} \cup\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \in \mathrm{Z}_{17} \mathrm{I}\right\}$ be neutrosophic bivector space over the real bifield $\mathrm{F}=\mathrm{Q} \cup \mathrm{Z}_{17}$.
a. Find a bibasis for V over F .
b. Find the bidimension of V over F .
c. Find $L^{2}(\mathrm{~V}, \mathrm{~V})$.
d. What is the bidimension of $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~V})$?
32. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11} \mathrm{I} ; \mathrm{i}=0,1,2, \ldots, \infty\right\}
$$

$$
\cup\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{17} \mathrm{I} ; \mathrm{i}=0,1,2, \ldots, \infty\right\}
$$

be a neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{Z}_{11} \cup$ Z_{17}.
a. What is the bidimension of V over $\mathrm{F}=\mathrm{Z}_{11} \cup \mathrm{Z}_{17}$?
b. Suppose the same V is defined to be a strong neutrosophic bivector space over the field $\mathrm{K}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I}$, what is the bidimension of V over the bifield $\mathrm{K}=\mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I}$?
c. Find $L_{F}^{2}(V, V)$ and $L_{k}^{2}(V, V)$.
d. What is the bidimensions of $L_{F}^{2}(V, V)$?
33. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be two $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ and $\left(\mathrm{m}_{1}\right.$, m_{2}) bidimensional strong neutrosophic bivector spaces over the bifield $F=F_{1} \cup F_{2}$. Let C^{*} and B^{*} be the dual bibasis of V and W of C and B respectively.If A is a neutrosophic bimatrix of $T=T_{1} \cup T_{2}$, a bilinear transformation of V to W relative to the bibasis C and B and T^{t} relative to C^{*} and B^{*} respectively. Obtain some interesting relations between T and T^{t}.
34. Obtain some interesting properties / results about bidiagonalizable bilinear operator.
35. Find the bipolynomial for the neutrosophic bimatrix $\mathrm{A}=\mathrm{A}_{1} \cup$ $\mathrm{A}_{2}=$

$$
\left(\begin{array}{cccc}
3 \mathrm{I} & 0 & 4 \mathrm{I} & 1 \\
0 & 7 \mathrm{I} & 3 & 0 \\
2 & 1 & 4 & 3 \\
10 \mathrm{I} & 0 & 9 & \mathrm{I}
\end{array}\right) \cup\left(\begin{array}{lll}
\mathrm{I} & 0 & 1 \\
0 & \mathrm{I} & 1 \\
0 & 1 & \mathrm{I}
\end{array}\right)
$$

where A is defined over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ $=\mathrm{N}\left(\mathrm{Z}_{11}\right) \cup \mathrm{N}\left(\mathrm{Z}_{2}\right)$.
36. Illustrate by an example that birank $\mathrm{T}^{\mathrm{t}}=$ birank T .
37. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{11} I\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in N(Q), 1 \leq i \leq 6\right\}
\end{gathered}
$$

be a strong neutrosophic bivector space over the bifield $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2}$ and let $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}$ be a bilinear operator on V defined by $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}: \mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ where $\mathrm{T}_{1}: \mathrm{V}_{1}$ $\rightarrow \mathrm{V}_{1}$ and $\mathrm{T}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ such that

$$
\mathrm{T}_{1}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
0 & \mathrm{~d}
\end{array}\right)
$$

and

$$
\mathrm{T}_{2}\left(\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{a}_{4} & \mathrm{a}_{5} & \mathrm{a}_{6}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & \mathrm{a}_{3} \\
0 & \mathrm{a}_{5} & 0
\end{array}\right) .
$$

Find T^{t}. Is birank $\mathrm{T}^{\mathrm{t}}=$ birank T ?
38. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & \text { h } & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in Z_{29} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{5} & a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{2}\right) ; 1 \leq i \leq 8\right\}
\end{aligned}
$$

and

$$
W=\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{29} I ; 1 \leq i \leq 8\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} \\
a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{2}\right) ; 1 \leq i \leq 12\right\}
$$

be two strong neutrosophic bivector spaces over the neutrosophic bifield $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{Z}_{29} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{2}\right)$. Define a $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2}: V=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \rightarrow \mathrm{~W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ such that T^{t}, its bitranspose of T .
a. Prove birange of T^{t} is the biannihilator of the binull space of T .
b. Prove birank $\mathrm{T}^{\mathrm{t}}=$ birank T.
39. For the V and W given in problem (38) Find $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W})$ and L^{2} (W, V).
40. For V and W given in problem (38) find a T such that (a) T is biinverible (b) T is binon singular.
41. For a give strong neutrosophic bivector space $V=V_{1} \cup V_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i \in N(Q)\right\} \cup \\
& \left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{29}\right) ; 1 \leq i \leq 6\right\}
\end{aligned}
$$

defined over the neutrosophic bifield $\mathrm{F}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{29}\right)$. Define a bilinear functional $f=f_{1} \cup f_{2}$ from V into F.
a. Find for a bibasis B of $V=V_{1} \cup V_{2}$, the bibasis B^{*} of $V^{*}=$ $V_{1}^{*} \cup V_{2}^{*}$.
b. Prove $\mathrm{V}^{* *}=\mathrm{V}$ and bidimension $\mathrm{V}=$ bidimension V^{*}.
42. Obtain some interesting properties about bilinear functionals defined on a strong neutrosophic bivector space over a neutrosophic bifield.
43. Find for $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N(Q)\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{5} & a_{4} \\
a_{6} & a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in \mathrm{~N}\left(\mathrm{Z}_{11}\right) ; 1 \leq \mathrm{i} \leq 8\right\}
\end{gathered}
$$

a strong neutrosophic bivector space defined over the neutrosophic bifield $\mathrm{F}=\mathrm{N}(\mathrm{Q}) \cup \mathrm{N}\left(\mathrm{Z}_{11}\right)$, a T bidiagonalizable linear bioperator on V. If $B=B_{1} \cup B_{2}$ is a bibasis prove [T]B $=\left[\mathrm{T}_{1}\right]_{\mathrm{B}_{1}} \cup\left[\mathrm{~T}_{2}\right]_{\mathrm{B}_{2}}$.
44. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in N(Q) ; 1 \leq i \leq 8\right\} \cup\right. \\
\left\{\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array} a_{5}\right.\right. \\
a_{6} \\
a_{7}
\end{gathered} a_{8}
$$

be a strong neutrosophic bivector space over the neutrosophic bifield $F=F_{1} \cup F_{2}=N(Q) \cup N\left(Z_{17}\right)$. Find V^{*}. Prove $V^{* *}=V$. Find two distinct strong neutrosophic bivector subspaces W_{1} and W_{2} in V and find $\mathrm{W}_{1}^{\mathrm{o}}$ and W_{2}^{0}.
45. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\} \cup\left\{\mathrm{Z}_{11} \mathrm{I}\right\}, \\
\mathrm{W}=\left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{e} \\
\mathrm{c} & \mathrm{~d} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{~N}(\mathrm{Q})\right\} \cup \\
\left\{(\mathrm{a}, \mathrm{a}, \mathrm{a}, \mathrm{~b}, \mathrm{~b}) \mid \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{11} \mathrm{I}\right\}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}
\end{gathered}
$$

$$
\text { and } \mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=
$$

$$
\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f}
\end{array}\right) \right\rvert\, \text { a,b,c,d,e,f(N(Q)\}}\right\}
$$

$$
\left\{\left.\left(\begin{array}{ccccc}
a & b & c & d & e \\
f & g & h & i & j
\end{array}\right) \right\rvert\, a, b, c, d, e, f, g, h, i, j \in Z_{11} I\right\}
$$

be three strong neutrosophic bivector spaces over the bifield F $=\mathrm{QI} \cup \mathrm{Z}_{11} \mathrm{I}$.
a. Find linear bioperator $T=T_{1} \cup T_{2}: V_{1} \cup V_{2}=V \rightarrow W=$ $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ and $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}: \mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \rightarrow \mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}$.
b. Find $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{~W}), \mathrm{L}^{2}(\mathrm{~W}, \mathrm{P})$ and $\mathrm{L}^{2}(\mathrm{~V}, \mathrm{P})$ and their bidimensions.
46. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \\
& \left\{\left.\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{~N}(\mathrm{Q})\right\}
\end{aligned}
$$

be a strong neutrosophic bilinear algebra over the neutrosophic bifield $F=F_{1} \cup F_{2}=Z_{7} I \cup N(Q)$.
a. What is the bidimension of V ?
b. Find a bibasis of V .
c. What is the bidimension of $L^{2}(\mathrm{~V}, \mathrm{~W})=\mathrm{L}^{2}\left(\mathrm{~V}_{1}, \mathrm{~W}_{1}\right) \cup$ $\mathrm{L}^{2}\left(\mathrm{~V}_{2}, \mathrm{~W}_{2}\right)$?
d. Find a linear bifunctional $f=f_{1} \cup f_{2}: V=V_{1} \cup V_{2} \rightarrow F_{1}$ $\cup F_{2}$ and find bikernel $f=$ kernel $f_{1} \cup$ kernel f_{2}.
47. Let $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ be a neutrosophic bifield. Show that the neutrosophic biideal generated by finite number of neutrosophic bipolynomial f^{1}, f^{2} where $f^{1}=f_{1}^{1} \cup f_{2}^{1}$ and $f^{2}=$ $f_{1}^{2} \cup f_{2}^{2}$ in $F[x]=F_{1}[x] \cup F_{2}[x]$ is the intersection of all neutrosophic biideals in $\mathrm{F}[\mathrm{x}]$.
48. Let $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ be a biset of positive integers and $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ be a neutrosophic bifield, let $W=W_{1} \cup W_{2}$ be the set of all bivectors $\left(\mathrm{x}_{1}^{1}, \ldots, \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \cup\left(\mathrm{x}_{1}^{2}, \ldots, \mathrm{x}_{\mathrm{n}_{3}}^{2}\right)$ in $\mathrm{F}^{\mathrm{n}_{1}} \cup \mathrm{~F}^{\mathrm{n}_{2}}$ such that $x_{1}^{1}+x_{2}^{1}+\ldots+x_{n_{1}}^{1}=0$ and $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n_{2}}^{2}=0$.
a. Prove $\mathrm{W}^{0}=\mathrm{W}_{1}^{0} \cup \mathrm{~W}_{2}^{0}$ consists of all bilinear functionals $\mathrm{f}=\mathrm{f}^{1} \cup \mathrm{f}^{2}$ of the form

$$
f_{1}\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{n_{1}}^{1}\right) \cup f_{2}\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n_{2}}^{2}\right)=c_{1} \sum_{j=1}^{n_{1}} x_{j}^{1} \cup c_{2} \sum_{j=1}^{n_{2}} x_{j}^{2} .
$$

b. Show that the bidual space W^{*} of W can be naturally identified with the bilinear functionals

$$
\begin{aligned}
& f_{1}\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{n_{1}}^{1}\right) \cup f_{2}\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n_{2}}^{2}\right) \\
= & \left(c_{1}^{1} x_{1}^{1}+\ldots+c_{n_{1}}^{1} x_{n_{1}}^{1}\right) \cup\left(c_{1}^{2} x_{1}^{2}+\ldots+c_{n_{2}}^{2} x_{n_{2}}^{2}\right)
\end{aligned}
$$

on $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}}$ which satisfy $\mathrm{c}_{1}^{\mathrm{i}}+\ldots+\mathrm{c}_{\mathrm{n}_{1}}^{\mathrm{i}}=0$ for $\mathrm{i}=1,2$.
49. Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ be a strong neutrosophic bisubspace of a finite ($\mathrm{n}_{1}, \mathrm{n}_{2}$) bidimensional bivector space over $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and if $g=g^{1} \cup g^{2}=\left\{\left(g_{1}^{1}, \ldots, g_{r_{1}}^{1}\right)\right\} \cup\left\{\left(g_{1}^{2}, \ldots, g_{r_{2}}^{2}\right)\right\}$ is a bibasis for $\mathrm{W}^{0}=\mathrm{W}_{1}^{\mathrm{o}} \cup \mathrm{W}_{2}^{0}$ then prove

$$
W=\bigcap_{i} N_{g_{i}}=\bigcap_{i_{1}=1}^{r_{1}} N_{\mathrm{g}_{i_{1}}}^{1} \cup \bigcap_{i_{2}=1}^{r_{2}} N_{\mathrm{g}_{i_{2}}}^{2}
$$

where $\left\{\left(\mathrm{N}_{1}^{1}, \ldots, \mathrm{~N}_{\mathrm{r}_{1}}^{1}\right)\right\} \cup\left\{\left(\mathrm{N}_{1}^{2}, \ldots, \mathrm{~N}_{\mathrm{r}_{2}}^{2}\right)\right\}$ is the biset of binull space of bilinear functionals

$$
\begin{aligned}
& \mathrm{f}=\mathrm{f}^{1} \cup \mathrm{f}^{2}=\left\{\left(\mathrm{f}_{1}^{1}, \mathrm{f}_{2}^{1}, \ldots, \mathrm{f}_{\mathrm{r}_{1}}^{1}\right)\right\} \cup\left\{\left(\mathrm{f}_{1}^{2}, \mathrm{f}_{2}^{2}, \ldots, \mathrm{f}_{\mathrm{r}_{2}^{2}}^{2}\right)\right\} \text { and } \\
& \mathrm{g}=\mathrm{g}^{1} \cup \mathrm{~g}^{2}=\left\{\left(\mathrm{g}_{1}^{1}, \ldots, \mathrm{~g}_{\mathrm{r}_{1}}^{1}\right)\right\} \cup\left\{\left(\mathrm{g}_{1}^{2}, \ldots, \mathrm{~g}_{\mathrm{r}_{2}}^{2}\right)\right\}
\end{aligned}
$$

and is the bilinear combination of the bilinear functionals $\mathrm{f}=$ $\mathrm{f}^{1} \cup \mathrm{f}^{2}$.

50 Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{e} \\
\mathrm{c} & \mathrm{~d} & \mathrm{f}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f} \in \mathrm{Z}_{7} \mathrm{I}\right\} \cup \cup \\
& \left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 8\right\} \cup \\
& \left\{\left.\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9} & a_{10} & a_{11} & a_{12}
\end{array}\right) \right\rvert\, a_{i} \in Z_{13} I ; 1 \leq i \leq 12\right\}
\end{aligned}
$$

be a neutrosophic trivector space over the 3-field $\mathrm{F}=\mathrm{Z}_{7} \cup \mathrm{Z}_{11}$ $\cup \mathrm{Z}_{13}$.
a. Find a tribasis of V .
b. Find neutrosophic trivector subspaces of V.
c. What is the 3 -dimension of V ?
d. Define a neutrosophic trilinear operator T on V which is non invertible (if $T=T_{1} \cup T_{2} \cup T_{3}$ then $T^{-1}=T_{1}^{-1} \cup T_{2}^{-1} \cup$ T_{3}^{-1}) Show T^{-1} does not exists for the T defined.
51. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a & b & c \\
b & a & c
\end{array}\right) \right\rvert\, a, b, c \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & a_{4} \\
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right) \right\rvert\, a_{i} \in Z_{11} I ; 1 \leq i \leq 8\right\} \cup \\
& \left\{\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{17} I ; 1 \leq i \leq 6\right\} \cup \\
& \left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10} \\
a_{11} & a_{12} & a_{13} & a_{14} & a_{15}
\end{array}\right) \right\rvert\, a_{i} \in N(Q)\right\} \cup
\end{aligned}
$$

$\left\{\sum_{i=0}^{25} a_{i} x^{i}\right.$; all polynomials in the variable x with coefficients from the neutrosophic field $\left.N\left(Z_{19}\right) ; a_{i} \in N\left(Z_{19}\right) ; 0 \leq i \leq 25\right\}$ be a strong neutrosophic 5 -vector space over the neutrosophic 5field $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{17} \mathrm{I} \cup \mathrm{QI} \cup \mathrm{N}\left(\mathrm{Z}_{19}\right)$.
a. Find a strong neutrosophic 5 -vector subspace of V .
b. Is V pseudo simple?
c. Can on V be defined a strong neutrosophic 5-linear operator T so that T is invertible?
d. What is the 5-dimension of V ?
e. Find a 5-basis of V.
f. Find a 5-linearly independent 5 -subset of V which is not a 5-basis.
52. Obtain some important properties about $\mathrm{SNHom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$; V is a strong neutrosophic n-vector space over a neutrosophic n field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. What is the algebraic structure of $\mathrm{SNHom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$?
53. Characterize those strong neutrosophic n-vector spaces which are simple.
54. Give an example of a strong neutrosophic 5-vector space which is pseudo simple.
55. Prove in case of a finite n-vector space V of type II, where $\operatorname{dim} \mathrm{V}=\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{n}}\right)$. Rank $\mathrm{T}+$ nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$.
56. Derive primary decomposition theorem for strong neutrosophic n-vector space over the neutrosophic n-field.
57. Let $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & d \\
0 & 0 & b & c
\end{array}\right) \right\rvert\, a, b, c, d \in N(Q)\right\} \cup \\
\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right) \right\rvert\, a_{i} \in N\left(Z_{29}\right) ; 1 \leq i \leq 9\right\} \cup \\
\left\{\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in N\left(Z_{11}\right)\right\} \cup\right.
\end{gathered}
$$

$\left.\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{9}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{23}\right) ; 1 \leq \mathrm{i} \leq 29\right)\right\} \cup\{$ All 5×5 upper triangular matrices with entries from $\left.\mathrm{N}\left(\mathrm{Z}_{13}\right)\right\}$ be a strong neutrosophic 5-linear algebra over the 5-field, $\mathrm{F}=\mathrm{QI} \cup \mathrm{Z}_{29} \mathrm{I}$ $\cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{23}\right) \cup \mathrm{Z}_{13} \mathrm{I}$.
Let $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=$

$$
\begin{gathered}
\left\{\left.\left\{\begin{array}{llll}
a & a & 0 & 0 \\
b & b & 0 & 0 \\
0 & 0 & a & a \\
0 & 0 & b & b
\end{array}\right) \right\rvert\, a, b \in \mathrm{QI}\right\} \cup \\
\left\{\begin{array}{ccc}
\left.\left.a\left(\begin{array}{ccc}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right) \right\rvert\, a \in N\left(Z_{29}\right)\right\} \cup\left\{\left.\left\{\begin{array}{ll}
a & a \\
b & b
\end{array}\right) \right\rvert\, a, b \in N\left(Z_{11}\right)\right\} \cup \\
\left\{(a, a, a, a, a, a, a, a, a) \mid a \in N\left(Z_{23}\right)\right\} \cup \\
& \left\{\left.\left(\begin{array}{lllll}
a & a & a & a & a \\
0 & a & a & a & a \\
0 & 0 & a & a & a \\
0 & 0 & 0 & a & a \\
0 & 0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a \in N\left(Z_{13}\right)\right\}
\end{array}\right.
\end{gathered}
$$

$\subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}$ be a strong neutrosophic 5-linear subalgebra over V the 5 -field F.
For $\beta=\beta_{1} \cup \beta_{2} \cup \beta_{3} \cup \beta_{4} \cup \beta_{5}=$

$$
\left(\begin{array}{cccc}
7 & 2 \mathrm{I} & 0 & 0 \\
5+\mathrm{I} & 0 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 2 \mathrm{I} & 5+\mathrm{I}
\end{array}\right) \cup\left\{\left(\begin{array}{ccc}
0 & 3 \mathrm{I} & 0 \\
7+\mathrm{I} & 0 & \mathrm{I} \\
1 & 0 & 2+\mathrm{I}
\end{array}\right)\right\} \cup
$$

$$
\left\{\left(\begin{array}{cc}
3 & 3+8 \mathrm{I} \\
10 \mathrm{I} & 0
\end{array}\right)\right\} \cup
$$

$$
\{(0, \mathrm{I}, 0,3 \mathrm{I}, 7+\mathrm{I}, 0,1,2 \mathrm{I}+1,0)\} \cup
$$

$$
\left\{\left(\begin{array}{ccccc}
9 & 1 & 2 \mathrm{I} & 9 & \mathrm{I} \\
0 & \mathrm{I} & 0 & 1 & 2 \mathrm{I} \\
0 & 0 & 7 \mathrm{I} & 0 & 0 \\
0 & 0 & 0 & 2 \mathrm{I} & -4 \\
0 & 0 & 0 & 0 & \mathrm{I}
\end{array}\right)\right\}
$$

$\in V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}$, find $\alpha \in W$ such that $=\alpha_{1} \cup \alpha_{2}$ $\cup \alpha_{3} \cup \alpha_{4} \cup \alpha_{5} \in \mathrm{~W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=\mathrm{W}$ is the best 5 -approximation of β. Prove β - α is 5 -orthogonal to every 5 -vector in W , that is $\beta_{1}-\alpha_{1} \cup \beta_{2}-\alpha_{2} \cup \beta_{3}-\alpha_{3} \cup \beta_{4}-\alpha_{4} \cup$ $\beta_{5}-\alpha_{5}$ is 5-orthogonal to every 5-vector in $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup$ $\mathrm{W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}$. Prove $\beta_{\mathrm{i}}-\alpha_{\mathrm{i}}$ is orthogonal to every vector in $W_{i} ; i=1,2,3,4,5$. Find W^{\perp}. Prove $V=W \oplus W^{\perp}$ where $W^{\perp}=$ $\mathrm{W}_{1}^{\perp} \cup \mathrm{W}_{2}^{\perp} \cup \mathrm{W}_{3}^{\perp} \cup \mathrm{W}_{4}^{\perp} \cup \mathrm{W}_{5}^{\perp}$, that is $\mathrm{W}_{1} \oplus \mathrm{~W}_{1}^{\perp} \cup \mathrm{W}_{2} \oplus$ $\mathrm{W}_{2}^{\perp} \cup \mathrm{W}_{3} \oplus \mathrm{~W}_{3}^{\perp} \cup \mathrm{W}_{4} \oplus \mathrm{~W}_{4}^{\perp} \cup \mathrm{W}_{5} \oplus \mathrm{~W}_{5}^{\perp}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup$ $\mathrm{V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5}=\mathrm{V}$.
58. Prove if $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ is a strong neutrosophic nvector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ of finite $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{n}}\right)$ dimension over $\mathrm{F} . \mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}$ be a n -linear operator on V .
Prove there exists a n-set $\left\{\alpha_{1}^{1}, \ldots, \alpha_{r_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{r_{2}}^{2}\right\} \cup \ldots \cup$ $\left\{\alpha_{1}^{\mathrm{n}}, \ldots, \alpha_{r_{\mathrm{n}}}^{\mathrm{n}}\right\}$ in V such that $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}=\mathrm{Z}\left(\alpha_{1}^{1}\right.$; $\left.\mathrm{T}_{1}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{1}}^{1} ; \mathrm{T}_{1}\right) \cup \mathrm{Z}\left(\alpha_{1}^{2} ; \mathrm{T}_{2}\right) \oplus \ldots \oplus \mathrm{Z}\left(\alpha_{\mathrm{r}_{2}}^{2} ; \mathrm{T}_{2}\right) \cup \ldots$ $\cup Z\left(\alpha_{1}^{n} ; T_{n}\right) \oplus \ldots \oplus Z\left(\alpha_{r_{n}}^{n} ; T_{n}\right)$; i.e., V is the n-direct sum of n -cyclic strong neutrosophic n -vector subspaces.
59. State and prove Generalized Cayley Hamilton Theorem for a finite (n_{1}, \ldots, n_{n}) dimensional strong neutrosophic n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the neutrosophic n-field F $=F_{1} \cup F_{2} \cup \ldots \cup F_{\mathrm{n}}$ after appropriate changes.
60. Define n-projections associated with the n-primary decomposition of $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$.
61. Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{\mathrm{n}}$ be a n-linear operator on the strong neutrosophic n-vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}\left(F_{i}\right.$'s are not pure neutrosophic; $i=1,2, \ldots, n$)
Let

$$
\left\{\mathrm{W}_{1}^{1}, \ldots, \mathrm{~W}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{W}_{1}^{2}, \ldots, \mathrm{~W}_{\mathrm{k}_{2}}^{2}\right\} \cup \ldots \cup\left\{\mathrm{W}_{1}^{\mathrm{n}}, \ldots, \mathrm{~W}_{\mathrm{k}_{\mathrm{n}}}^{\mathrm{n}}\right\}
$$

and

$$
\left\{\mathrm{E}_{1}^{1}, \ldots, \mathrm{E}_{\mathrm{k}_{1}}^{1}\right\} \cup\left\{\mathrm{E}_{1}^{2}, \ldots, \mathrm{E}_{\mathrm{k}_{2}}^{2}\right\} \cup \ldots \cup\left\{\mathrm{E}_{1}^{\mathrm{n}}, \ldots, \mathrm{E}_{\mathrm{k}_{\mathrm{n}}}^{\mathrm{n}}\right\} ;
$$

where $\left\{W_{1}^{i}, \ldots, W_{k_{i}}^{i}\right\}$ are independent for $i=1,2, \ldots, n . E=E_{1}$ $\cup \mathrm{E}_{2} \cup \ldots \cup \mathrm{E}_{\mathrm{n}}$ is a n-projection operator on V such that $\mathrm{E}^{2}=$ E that is $E^{2}=\left(E_{1} \cup \ldots \cup E_{n}\right)^{2}=E_{1}^{2} \cup \ldots \cup E_{n}^{2}=E_{1} \cup \ldots \cup E_{n}$ (That is each E_{i} is a projection of V_{i} such that $E_{i}^{2}=E_{i}, i=1,2$, ..., n).
Then a necessary and sufficient condition that each strong neutrosophic n-vector subspace $\mathrm{W}_{\mathrm{i}}^{\mathrm{t}}$ to be invariant under T_{i} for $1 \leq \mathrm{i} \leq \mathrm{k}_{\mathrm{t}} ; \mathrm{t}=1,2, \ldots, \mathrm{n}$ is that $\mathrm{E}_{\mathrm{i}}^{\mathrm{t}} \mathrm{T}_{\mathrm{t}}=\mathrm{T}_{\mathrm{t}} \mathrm{E}_{\mathrm{i}}^{\mathrm{t}}$ or $\mathrm{ET}=\mathrm{TE}$ for every $1 \leq \mathrm{i} \leq \mathrm{k}_{\mathrm{t}}$; $\mathrm{t}=1,2, \ldots$, n .
62. Let $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ be a n-linear operator on a ($\mathrm{n}_{1}, \mathrm{n}_{2}$, $\ldots, \mathrm{n}_{\mathrm{n}}$) finite n -dimensional strong neutrosophic n -vector space $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the neutrosophic n-field F $=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ (F_{i} 's are not pure neutrosophic; $i=1,2$, \ldots, n). Suppose that the n-minimal neutrosophic polynomial for $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ decomposes over $F=F_{1} \cup F_{2} \cup \ldots$ $\cup \mathrm{F}_{\mathrm{n}}$ into a n-product of n-linear neutrosophic polynomials. Then there is a n-diagonalizable operator $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2} \cup \ldots$ $\cup N_{n}$ on $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ such that
a. $\quad \mathrm{T}=\mathrm{D}+\mathrm{N}$ that is

$$
\begin{aligned}
\mathrm{T}_{1} \cup \mathrm{~T}_{2} & \cup \ldots \cup \mathrm{~T}_{\mathrm{n}} \\
& =\mathrm{D}_{1} \cup \mathrm{D}_{2} \cup \ldots \cup \mathrm{D}_{\mathrm{n}}+\left(\mathrm{N}_{1} \cup \mathrm{~N}_{2} \cup \ldots \cup \mathrm{~N}_{\mathrm{n}}\right) \\
& =D_{1}+\mathrm{N}_{1} \cup \mathrm{D}_{2}+\mathrm{N}_{2} \cup \ldots \cup \mathrm{D}_{\mathrm{n}}+\mathrm{N}_{\mathrm{n}} .
\end{aligned}
$$

b. $\quad \mathrm{DN}=\mathrm{ND}$ that is

$$
\begin{aligned}
\left(D_{1} \cup\right. & \left.D_{2} \cup \ldots \cup D_{n}\right)\left(N_{1} \cup N_{2} \cup \ldots \cup N_{n}\right) \\
& =D_{1} N_{1} \cup D_{2} N_{2} \cup \ldots \cup D_{n} N_{n} \\
& =N_{1} D_{1} \cup N_{2} D_{2} \cup \ldots \cup N_{n} D_{n} \\
& =N D .
\end{aligned}
$$

The n-diagonalizable operator $\mathrm{D}=\mathrm{D}_{1} \cup \mathrm{D}_{2} \cup \ldots \cup \mathrm{D}_{\mathrm{n}}$ and the n-nilpotent operator $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2} \cup \ldots \cup \mathrm{~N}_{\mathrm{n}}$ are uniquely determined by (a) and (b) and each of them is a n-polynomial in $T_{1}, T_{2}, \ldots, T_{n}$. Prove.
63. Prove $S(\beta ; W)=S\left(\beta_{1} ; W_{1}\right) \cup S\left(\beta_{2} ; W_{2}\right) \cup \ldots \cup S\left(\beta_{n} ; W_{n}\right)$ is the n -conductor of T where T is a n-linear operator on the strong neutrosophic n-vector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ and $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is a proper T-n-invariant neutrosophic n-vector subspace of V .

Prove some interesting results about these structures like relating it with neutrosophic n-ideals. Hence or other wise prove the n-cyclic decomposition theorem.
64. If $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ is a n-linear operator of a finite $\left(n_{1}\right.$, n_{2}, \ldots, n_{n}) dimension strong neutrosophic n-vector space $V=$ $V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Prove T is n -diagonalizable if and only if the n -characteristic n-polynomial $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ is $f=f_{1} \cup f_{2} \cup \ldots \cup f_{n}$ $=\left(x-c_{1}^{1}\right)^{d_{1}^{1}} \ldots\left(x-c_{k_{1}}^{1}\right)^{d_{k_{1}}} \cup \ldots \cup\left(x-c_{1}^{n}\right)^{d_{1}^{n}} \ldots\left(x-c_{k_{1}}^{n}\right)^{d_{k_{1}}^{n}}$ under the usual notations.
65. Obtain some interesting properties about quasi strong neutrosophic n-vector spaces over quasi neutrosophic n-field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$.
66. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{6}=$

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) \right\rvert\, a_{i} \in Z_{7} I\right\} \cup \\
& \left\{\left.\left(\begin{array}{cc}
a & a \\
b & b \\
c & c \\
d & d \\
e & e
\end{array}\right) \right\rvert\, \begin{array}{l}
a, b, c, d, e \in Z_{11} I
\end{array}\right\} \cup
\end{aligned}
$$

\{All 5×5 lower triangular matrices with entries from the field $\left.N\left(Z_{2}\right)\right\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in Z_{3}\right\} \cup
$$

$\left\{\sum_{i=0}^{4} a_{i} x^{i}\right.$; all polynomials in the variable x of degree less than or equal to 4 with coefficients from $\left.\mathrm{Z}_{5} \mathrm{I}\right\} \cup$

$$
\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{6} & a_{7} & a_{8} & a_{9} & a_{10}
\end{array}\right) \right\rvert\, a_{i} \in Z_{23} I\right\}
$$

be a strong neutrosophic 6-vector space over the neutrosophic 6 -field $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{2}\right) \cup \mathrm{Z}_{3} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I} \cup \mathrm{Z}_{23} \mathrm{I}$.
a. Find a 6-basis of V .
b. Is V n-finite?
c. Find at least two strong neutrosophic 6 -subspaces of V.
d. Write V as a direct sum of neutrosophic strong 6 -vector subspaces.
e. If $\mathrm{F}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{N}\left(\mathrm{Z}_{2}\right) \cup \mathrm{Z}_{3} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I} \cup \mathrm{Z}_{23} \mathrm{I}$ is changed to a 6-field $K=Z_{7} \cup Z_{11} \cup Z_{2} \cup Z_{3} \cup Z_{5} \cup Z_{23}$. Find a 6basis.
f. Does the change of 6-field affect the structure of V ? Justify your claim.
67. Find some interesting properties about neutrosophic n-linear algebras.
68. Can Cayley Hamilton theorem hold good for neutrosophic nvector spaces defined over a real n-field? Justify your answer!
69. For the strong neutrosophic 4-linear algebra given by $\mathrm{V}=\mathrm{V}_{1}$ $\cup \mathrm{V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{gathered}
\left\{\left.\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{2} \mathrm{I}\right\} \cup \\
\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{3} \mathrm{I} ; 1 \leq \mathrm{i} \leq 3\right\} \cup \\
\left\{\left.\left(\begin{array}{ccc}
\mathrm{a}_{1} & 0 & 0 \\
0 & \mathrm{a}_{2} & 0 \\
0 & 0 & \mathrm{a}_{3}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{5} \mathrm{I} ; 1 \leq \mathrm{i} \leq 3\right\} \cup
\end{gathered}
$$

\{All 4×4 upper triangular neutrosophic matrices with entries from $\left.\mathrm{Z}_{7} \mathrm{I}\right\}$ defined over the neutrosophic 4 -field $\mathrm{F}=\mathrm{Z}_{2} \mathrm{I} \cup \mathrm{Z}_{3} \mathrm{I}$ $\cup \mathrm{Z}_{5} \mathrm{I} \cup \mathrm{Z}_{7} \mathrm{I}$.
a. Find a 4-basis for V.
b. Define a strong neutrosophic linear operator T on V and for that T find the neutrosophic 4-characteristic polynomial, neutrosophic 4 -eigen values and 4 -eigen vectors.
c. If F is replaced by $\mathrm{K}=\mathrm{Z}_{2} \cup \mathrm{Z}_{3} \cup \mathrm{Z}_{5} \cup \mathrm{Z}_{7}$ will the 4-basis be different?
d. Find $\mathrm{SNHom}_{\mathrm{K}}(\mathrm{V}, \mathrm{V})$ and $\mathrm{SNHom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$. What is the difference between them as algebraic structures?
e. Is 4-rank $\mathrm{T}+4$-nullity $\mathrm{T}=4$-dim V ? Justify your claim ($\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a neutrosophic strong linear operator on V).
f. If V is assumed only as a neutrosophic strong 4 -vector space over the neutrosophic 4 -field, what will be 4-basis of V? Will the 4-basis of V differ? Justify / substantiate your claim.
70. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathrm{I} & 0 \\
1 & 3 \mathrm{I}
\end{array}\right) \cup\left(\begin{array}{cccc}
\mathrm{I} & 2 \mathrm{I} & 1 & 0 \\
0 & 3 \mathrm{I} & \mathrm{I} & 6 \mathrm{I} \\
6 & 0 & 3 \mathrm{I} & 0 \\
2 \mathrm{I} & 1 & 0 & 1
\end{array}\right) \cup \\
& \left(\begin{array}{lll}
\mathrm{I} & 0 & 1 \\
0 & 1 & \mathrm{I} \\
1 & 0 & \mathrm{I}
\end{array}\right) \cup\left(\begin{array}{llllc}
\mathrm{I} & 0 & 0 & 0 & \mathrm{I} \\
2 & 0 & \mathrm{I} & 1 & 0 \\
0 & 1 & 1 & 0 & \mathrm{I} \\
0 & 0 & \mathrm{I} & 2 & 0 \\
0 & \mathrm{I} & 0 & 0 & 2 \mathrm{I}
\end{array}\right)
\end{aligned}
$$

be a neutrosophic 4-matrix with entries from the 4-field $\mathrm{F}=\mathrm{F}_{1}$ $\cup \mathrm{F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4}=\mathrm{Z}_{5} \mathrm{I} \cup \mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I} \cup \mathrm{Z}_{3} \mathrm{I}$ respectively. Find the 4-characteristic neutrosophic 4-polynomial associated with the neutrosophic 4-matrix V. Can this have neutrosophic 4eigen values? Justify your claim.
71. For the example 2.3 .72 given chapter two find $\mathrm{SNHom}_{\mathrm{F}}(\mathrm{V}$, $W)$. Find a $T: V \rightarrow W$ so that $\operatorname{kerT}=(0) \cup(0)$.
72. Obtain some interesting and special features enjoyed by quasi neutrosophic n-vector spaces.
73. If $\mathrm{L}=\mathrm{L}_{\alpha_{1}}^{1} \cup \mathrm{~L}_{\alpha_{2}}^{2} \cup \ldots \cup \mathrm{~L}_{\alpha_{n}}^{\mathrm{n}}$ is a n -linear function induced by $\alpha=\alpha^{1} \cup \alpha^{2} \cup \ldots \cup \alpha^{\mathrm{n}}$ in $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$, a strong neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots$
$\cup \mathrm{F}_{\mathrm{n}}$. Is $\alpha=\alpha^{1} \cup \alpha^{2} \cup \ldots \cup \alpha^{\mathrm{n}} \mapsto \mathrm{L}_{\alpha}=\mathrm{L}_{\alpha_{1}}^{1} \cup \mathrm{~L}_{\alpha_{2}}^{2} \cup \ldots \cup \mathrm{~L}_{\alpha_{\mathrm{n}}}^{\mathrm{n}}$ a n-isomorphism of $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ onto $\mathrm{V}^{* *}=$ $\mathrm{V}_{1}^{* *} \cup \mathrm{~V}_{2}^{* *} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}^{* *}$? Justify your claim.
74. Study the properties enjoyed by $\operatorname{SNL}\left(\mathrm{V}_{1}, \mathrm{~F}_{1}\right) \cup \operatorname{SNL}\left(\mathrm{V}_{2}, \mathrm{~F}_{2}\right)$ $\cup \ldots \cup \operatorname{SNL}\left(\mathrm{V}_{\mathrm{n}}, \mathrm{F}_{\mathrm{n}}\right)$ where $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ is a strong neutrosophic n-vector space defined over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.
75. Find a set $X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \subseteq V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$

$$
=\left\{\left.\left(\begin{array}{cccc}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4} \\
\mathrm{a}_{5} & \mathrm{a}_{6} & \mathrm{a}_{7} & \mathrm{a}_{8}
\end{array}\right) \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{7} \mathrm{I} ; 1 \leq \mathrm{i} \leq 8\right\} \cup
$$

\{All 7×3 neutrosophic matrices with entries from the neutrosophic field $\left.\mathrm{Z}_{2} \mathrm{I}\right\} \cup$
$\left\{\sum_{\mathrm{i}=0}^{5} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right.$; all neutrosophic polynomials of degree less than or equal to 5 with coefficients from $\mathrm{Z}_{5} \mathrm{I}$ in the variable x$\} \cup$

$$
\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in \mathrm{~N}(\mathrm{Q})\right\}
$$

a strong neutrosophic 4-vector space over the 4-field $\mathrm{F}=\mathrm{F}_{1} \cup$ $\mathrm{F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4}=\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I} \cup \mathrm{QI}$; a 4-linearly independent 4-set of V which is not a 4-basis of V .
a. Find a 4-basis of V.
b. What is the 4-dimension of V ?
c. Define a invertible 4-linear operator on V.
d. Find $\operatorname{SNHom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$. What is the dimension of SNHom $_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$?
e. Does $\operatorname{SNL}(\mathrm{V}, \mathrm{F})=\operatorname{SNL}\left(\mathrm{V}_{1}, \mathrm{~F}_{1}\right) \cup \operatorname{SNL}\left(\mathrm{V}_{2}, \mathrm{~F}_{2}\right) \cup$ $\operatorname{SNL}\left(\mathrm{V}_{3}, \mathrm{~F}_{3}\right) \cup \mathrm{SNL}\left(\mathrm{V}_{4}, \mathrm{~F}_{4}\right)$ exist? Justify your claim.
76. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ be neutrosophic strong n-linear algebra over the n -field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$. Consider a nbasis $\left\{\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\} \cup \ldots \cup\left\{\alpha_{1}^{n}, \ldots, \alpha_{n_{n}}^{n}\right\}$ of V over F. If $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ is a strong neutrosophic $\mathrm{n}-$ vector space over the same F and if

$$
\beta=\left\{\beta_{1}^{1}, \ldots, \beta_{n_{1}}^{1}\right\} \cup\left\{\beta_{1}^{2}, \ldots, \beta_{n_{2}}^{2}\right\} \cup \ldots \cup\left\{\beta_{1}^{n}, \ldots, \beta_{n_{n}}^{n}\right\}
$$

be any n-vector in W. Prove there exists precisely a n-linear transformation $T=T_{1} \cup T_{2} \cup \ldots \cup T_{\mathrm{n}}$ from V into W such that $T_{i}\left(\alpha_{j}^{i}\right)=\beta_{j}^{i}$ for $j=1,2, \ldots, n_{i}$ and $i=1,2$.
77. Prove if $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ and $W=W_{1} \cup W_{2} \cup \ldots \cup$ W_{n} are two strong neutrosophic n-vector spaces over the same neutrosophic n-field $\mathrm{F}=\mathrm{F}_{1} \cup \mathrm{~F}_{2} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}$ of type II. If $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}$ is a n-linear transformation of V into W then prove the following are equivalent.
a. $\quad T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ is n-invertible.
b. $\quad T=T_{1} \cup T_{2} \cup \ldots \cup T_{n}$ is n-non singular.
c. $\quad \mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}$ is onto that is the n-range of $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \cup \mathrm{~T}_{\mathrm{n}}$ is $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$.
78. Prove every ($\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{n}}$) dimensional strong neutrosophic n-vector space $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ over the neutrosophic n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$ is n-isomorphism to $\mathrm{F}_{1}^{\mathrm{n}_{1}} \cup \mathrm{~F}_{2}^{\mathrm{n}_{2}} \cup \ldots \cup \mathrm{~F}_{\mathrm{n}}^{\mathrm{n}_{\mathrm{n}}}$.
79. Let $V=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ be a finite ($\left.n_{1}, n_{2}, \ldots, n_{n}\right) n-$ dimensional strong neutrosophic n-vector space over the neutrosophic n-field F $=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$. Let

$$
\begin{gathered}
B=B_{1} \cup B_{2} \cup \ldots \cup B_{n} \\
=\left\{\alpha_{1}^{1}, \ldots, \alpha_{n_{1}}^{1}\right\} \cup\left\{\alpha_{1}^{2}, \ldots, \alpha_{n_{2}}^{2}\right\} \cup \ldots \cup\left\{\alpha_{1}^{n}, \ldots, \alpha_{n_{n}}^{n}\right\}
\end{gathered}
$$

be a n-basis of $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$. There is a unique n dual basis (dual n-basis)

$$
\begin{gathered}
B=B_{1}^{*} \cup B_{2}^{*} \cup \ldots \cup B_{n}^{*} \\
=\left\{f_{1}^{1}, f_{2}^{1}, \ldots, f_{n_{1}}^{1}\right\} \cup\left\{f_{1}^{2}, f_{2}^{2}, \ldots, f_{n_{2}}^{2}\right\} \cup \ldots \cup\left\{f_{1}^{\mathrm{n}}, \mathrm{f}_{2}^{\mathrm{n}}, \ldots, \mathrm{f}_{\mathrm{n}_{\mathrm{n}}}^{\mathrm{n}}\right\} \\
\text { for } \mathrm{V}^{*}=\mathrm{V}_{1}^{*} \cup \mathrm{~V}_{2}^{*} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}^{*} \text { such that } \mathrm{f}_{\mathrm{i}}^{\mathrm{k}}\left(\alpha_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}^{\mathrm{k}} .
\end{gathered}
$$

Prove for each n-linear functional $f=f_{1} \cup f_{2} \cup \ldots \cup f_{n}$ we have

$$
f=\sum_{k=1}^{n_{i}} f^{i}\left(\alpha_{k}^{i}\right) f_{k}^{i}
$$

that is

$$
f=\left(\sum_{k=1}^{n_{1}} f^{1}\left(\alpha_{k}^{1}\right) f_{k}^{1}\right) \cup\left(\sum_{k=1}^{n_{2}} f^{2}\left(\alpha_{k}^{2}\right) f_{k}^{2}\right) \cup \ldots \cup\left(\sum_{k=1}^{n_{n}} f^{n}\left(\alpha_{k}^{n}\right) f_{k}^{n}\right)
$$

and for each $\mathrm{n}-$ vector $\alpha=\alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{\mathrm{n}}$ in $\mathrm{V}=\mathrm{V}_{1} \cup$ $\mathrm{V}_{2} \cup \ldots \cup \mathrm{~V}_{\mathrm{n}}$ we have

$$
\begin{gathered}
\alpha=\left(\sum_{k=1}^{n_{1}} f_{k}^{1}\left(\alpha^{1}\right)\left(\alpha_{k}^{1}\right)\right) \cup\left(\sum_{k=1}^{n_{2}} f_{k}^{2}\left(\alpha^{2}\right)\left(\alpha_{k}^{2}\right)\right) \\
\cup \ldots \cup\left(\sum_{k=1}^{n_{n}} f_{k}^{n}\left(\alpha^{n}\right)\left(\alpha_{k}^{n}\right)\right) .
\end{gathered}
$$

80. Obtain some important properties about n-best approximations on strong neutrosophic n-vector space over the n-field $F=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$.
81. Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{9}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{\mathrm{I}} \mathrm{I}, 1 \leq \mathrm{i}\right.$ $\leq 9\} \cup\left\{\left(a_{1}, a_{2}, \ldots, a_{20}\right) \mid a_{i} \in N\left(Z_{2}\right), 1 \leq i \leq 20\right\} \cup\left\{\left(a_{1}, a_{2}, a_{3}\right.\right.$, $\left.\left.a_{4}, a_{5}\right) \mid a_{i} \in N\left(Z_{11}\right), 1 \leq i \leq 5\right\} \cup\left\{\left(a_{1}, a_{2}, \ldots, a_{8}\right) \mid a_{i} \in N\left(Z_{5}\right), 1\right.$ $\leq \mathrm{i} \leq 8\}$ be a strong neutrosophic inner product 4-space over the 4 -field $\mathrm{Z}_{7} \mathrm{I} \cup \mathrm{Z}_{2} \mathrm{I} \cup \mathrm{Z}_{11} \mathrm{I} \cup \mathrm{Z}_{5} \mathrm{I}$.

Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{\left(a_{1}, a_{2}, 0,0,0,0, a_{7}, a_{8}, 0\right),(0\right.$, $\left.0, a_{3}, a_{4}, a_{5}, 0,0,0, a_{9}\right)\left(0,0,0,0,0, a_{6}, a_{7}, a_{8}, 0\right) \mid a_{i} \in Z_{7} I ; 1 \leq$ $i \leq 9\} \cup\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, 0,0, \ldots, 0\right),\left(0,0,0,0,0,0,0, a_{8}\right.\right.$,
$\left.a_{9}, a_{10}, a_{11}, a_{12}, 0,0, \ldots, 0\right) \mid a_{i} \in Z_{2} I ; 1 \leq i \leq 5 ; i=8,9,10,11$, 12) $\cup\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, 0,0, \mathrm{a}_{5}\right)\left(0,0,0, \mathrm{a}_{4}, \mathrm{a}_{5}\right)\right\} \cup\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, 0,0, \mathrm{a}_{5}, \mathrm{a}_{6}\right.\right.$, $\left.0,0) \cup\left(\mathrm{a}_{1}, \mathrm{a}_{2}, 0,0,0,0 \mathrm{a}_{7}, \mathrm{a}_{8}\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{N}\left(\mathrm{Z}_{5}\right)\right\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}$ $\cup V_{4}$ be any 4 -set of 4 -vectors in V. Find the 4-orthogonal complement of S denoted by $S^{\perp}=S_{1}^{\perp} \cup S_{2}^{\perp} \cup S_{3}^{\perp} \cup S_{4}^{\perp}$.
82. Derive Cayley Hamilton theorem and Primary ndecomposition theorem for strong neutrosophic n-vector space V defined over the n-field F.

Further Reading

1. Abraham, R., Linear and Multilinear Algebra, W. A. Benjamin Inc., 1966.
2. Albert, A., Structure of Algebras, Colloq. Pub., 24, Amer. Math. Soc., 1939.
3. Berlekamp, E.R., Algebraic Coding Theory, Mc Graw Hill Inc, 1968.
4. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra, Macmillan Publ. Company, 1977.
5. Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Philos. Soc., 31 433-435, 1995.
6. Bruce, Schneier., Applied Cryptography, Second Edition, John Wiley, 1996.
7. Burrow, M., Representation Theory of Finite Groups, Dover Publications, 1993.
8. Charles W. Curtis, Linear Algebra - An introductory Approach, Springer, 1984.
9. Dubreil, P., and Dubreil-Jacotin, M.L., Lectures on Modern Algebra, Oliver and Boyd., Edinburgh, 1967.
10. Gel'fand, I.M., Lectures on linear algebra, Interscience, New York, 1961.
11. Greub, W.H., Linear Algebra, Fourth Edition, SpringerVerlag, 1974.
12. Halmos, P.R., Finite dimensional vector spaces, D Van Nostrand Co, Princeton, 1958.
13. Hamming, R.W., Error Detecting and error correcting codes, Bell Systems Technical Journal, 29, 147-160, 1950.
14. Harvey E. Rose, Linear Algebra, Bir Khauser Verlag, 2002.
15. Herstein I.N., Abstract Algebra, John Wiley,1990.
16. Herstein, I.N., and David J. Winter, Matrix Theory and Linear Algebra, Maxwell Pub., 1989.
17. Herstein, I.N., Topics in Algebra, John Wiley, 1975.
18. Hoffman, K. and Kunze, R., Linear algebra, Prentice Hall of India, 1991.
19. Hummel, J.A., Introduction to vector functions, AddisonWesley, 1967.
20. Jacob Bill, Linear Functions and Matrix Theory, SpringerVerlag, 1995.
21. Jacobson, N., Lectures in Abstract Algebra, D Van Nostrand Co, Princeton, 1953.
22. Jacobson, N., Structure of Rings, Colloquium Publications, 37, American Mathematical Society, 1956.
23. Johnson, T., New spectral theorem for vector spaces over finite fields Z_{p}, M.Sc. Dissertation, March 2003 (Guided by Dr. W.B. Vasantha Kandasamy).
24. Katsumi, N., Fundamentals of Linear Algebra, McGraw Hill, New York, 1966.
25. Kostrikin, A.I, and Manin, Y. I., Linear Algebra and Geometry, Gordon and Breach Science Publishers, 1989.
26. Lang, S., Algebra, Addison Wesley, 1967.
27. Lay, D. C., Linear Algebra and its Applications, Addison Wesley, 2003.
28. Mac William, F.J., and Sloane N.J.A., The Theory of Error Correcting Codes, North Holland Pub., 1977.
29. Pettofrezzo, A. J., Elements of Linear Algebra, PrenticeHall, Englewood Cliffs, NJ, 1970.
30. Pless, V.S., and Huffman, W. C., Handbook of Coding Theory, Elsevier Science B.V, 1998.
31. Roman, S., Advanced Linear Algebra, Springer-Verlag, New York, 1992.
32. Rorres, C., and Anton H., Applications of Linear Algebra, John Wiley \& Sons, 1977.
33. Semmes, Stephen, Some topics pertaining to algebras of linear operators, November 2002. http://arxiv.org/pdf/math.CA/0211171
34. Shannon, C.E., A Mathematical Theory of Communication, Bell Systems Technical Journal, 27, 379-423 and 623-656, 1948.
35. Shilov, G.E., An Introduction to the Theory of Linear Spaces, Prentice-Hall, Englewood Cliffs, NJ, 1961.
36. Smarandache, Florentin (editor), Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic set, Neutrosophic probability and Statistics, December 1-3, 2001 held at the University of New Mexico, published by Xiquan, Phoenix, 2002.
37. Smarandache, Florentin, A Unifying field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic set, Neutrosophic probability, second edition, American Research Press, Rehoboth, 1999.
38. Smarandache, Florentin, An Introduction to Neutrosophy, http://gallup.unm.edu/~smarandache/Introduction.pdf
39. Smarandache, Florentin, Collected Papers II, University of Kishinev Press, Kishinev, 1997.
40. Smarandache, Florentin, Neutrosophic Logic, A Generalization of the Fuzzy Logic, http://gallup.unm.edu/~smarandache/NeutLog.txt
41. Smarandache, Florentin, Neutrosophic Set, A Generalization of the Fuzzy Set, http://gallup.unm.edu/~smarandache/NeutSet.txt
42. Smarandache, Florentin, Neutrosophy : A New Branch of Philosophy, http://gallup.unm.edu/~smarandache/Neutroso.txt
43. Smarandache, Florentin, Special Algebraic Structures, in Collected Papers III, Abaddaba, Oradea, 78-81, 2000.
44. Thrall, R.M., and Tornkheim, L., Vector spaces and matrices, Wiley, New York, 1957.
45. VaN Lint, J.H., Introduction to Coding Theory, Springer, 1999.
46. Vasantha Kandasamy and Rajkumar, R. Use of best approximations in algebraic bicoding theory, Varahmihir Journal of Mathematical Sciences, 6, 509-516, 2006.
47. Vasantha Kandasamy and Thiruvegadam, N., Application of pseudo best approximation to coding theory, Ultra Sci., 17, 139-144, 2005.
48. Vasantha Kandasamy, W.B., Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, Rehoboth, 2003.
49. Vasantha Kandasamy, W.B., Bivector spaces, U. Sci. Phy. Sci., 11, 186-190 1999.
50. Vasantha Kandasamy, W.B., Linear Algebra and Smarandache Linear Algebra, Bookman Publishing, 2003.
51. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Introduction to bimatrices, Hexis, Phoenix, 2005.
52. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Introduction to Linear Bialgebra, Hexis, Phoenix, 2005.
53. Vasantha Kandasamy, W.B., and Florentin Smarandache, Basic Neutrosophic Algebraic Structures and their Applications to Fuzzy and Neutrosophic Models, Hexis, Church Rock, 2005.
54. Vasantha Kandasamy, W.B., and Florentin Smarandache, n linear algebra of type I and its applications, InfoLearnQuest, Ann Arbor, 2008.
55. Vasantha Kandasamy, W.B., and Florentin Smarandache, n linear algebra of type II, InfoLearnQuest, Ann Arbor, 2008.
56. Vasantha Kandasamy, W.B., Smarandache, Florentin and K. Ilanthenral, Special Set Linear Algebra and Special Fuzzy Linear Algebra, Editura CuArt, 2010.
57. Voyevodin, V.V., Linear Algebra, Mir Publishers, 1983.
58. Zelinksy, D., A first course in Linear Algebra, Academic Press, 1973.

InDEX

B

Best biapproximation, 201-2
Best n-approximation, 354-5
Biadmissible, 178
Biannihilate, 144
Bibasis for type II space, 55-7
Bibasis, 44
Bibest approximation, 201-2
Biblock form, 141-2
Bicharacteristic bivector, 137
Bicharacteristic roots, 137
Bicharacteristic space, 137
Bicharacteristic value, 137
Bicommutative neutrosophic linear bialgebra, 125
Bicomplementary, 178
Bicyclic vector for T, 170-171
Bidiagonalizable bilinear operator, 141-2
Bidivides, 129

Bidivisible, 129
Bidual basis, 120-2
Bidual space, 120-2
Bieigen values, 137
Bigenerator, 144
Bigreatest common divisor, 135
Bigroup, 9
Biideal, 133
Biidentity, 125
Biinvariant under T, 151
Biinvertible bilinear transformation, 105
Biirreducible, 135-6
Bikernel of a linear bitransformation, 48
Bikernel of type II, 60
Bilinearly biindependent biset, 44-5
Bilinearly dependent bisubset, 44-5
Bilinearly independent, 83
Bimonic neutrosophic bipolynomial, 144-5
Bimonic polynomial, 125
Binon singular, 110
Binull space of T, 103
Biorthogonal bivectors, 200
Biorthogonal complement, 202
Biprime, 135-6
Biproper values, 137
Biquotient, 129
Birange of T, 103
Birank of T, 103
Bireducible, 135-6
Bisimple strong neutrosophic bivector space, 81
Bisimple strong subneutrosophic linear subalgebra, 96
Bispectral values, 137
Bi T-annihilator, 172
Bivector space, 9-10

C

Common neutrosophic n-linear operator, 245

D

Doubly simple neutrosophic n-vector space, 216

E

Extension neutrosophic field, 14-5

F

Finite dimension, 9-10
Finite neutrosophic group, 14
I
Infinite dimension, 9-10
Infinite neutrosophic group, 14
L
Linear bialgebra, 10
Linear bifunctionals, 113
Linear bitransformation of type II, 58
Linear subbialgebra, 11
Linearly biindependent bisubset, 57
Linearly biindependent, 83
Linearly independent bisubset, 55

M

Monic bipolynomial, 125
monic n-generator, 348

N

n-basis, 306
n-best approximation, 354-5
Neutrosophic biinner product bivector space,198-9
Neutrosophic bilinear algebra, 22

Neutrosophic bilinear subalgebra, 23
Neutrosophic bilinear transformation, 31
Neutrosophic bipolynomial, 124
Neutrosophic bisubfield, 79
Neutrosophic bivector space of type II, 50
Neutrosophic bivector space, 15-6
Neutrosophic bivector subspace of type II, 51
Neutrosophic bivector subspace, 17
Neutrosophic common n-linear operator, 245
Neutrosophic field, 14-5
Neutrosophic group, 11-2
Neutrosophic hyper n-space, 330
Neutrosophic hyperbispace, 67
Neutrosophic linear bioperator, 31
Neutrosophic n-inner product space, 349-351
Neutrosophic n-linear algebra of type II, 323
Neutrosophic n-linear algebra, 220
Neutrosophic n-linear operator, 240
Neutrosophic n-linear subalgebra, 223
Neutrosophic n-linear transformation, 240
Neutrosophic n-vector space of type II, 307
Neutrosophic n-vector subspace, 205-7
Neutrosophic special bilinear subalgebra, 23
Neutrosophic special bivector subspace, 20
Neutrosophic special simple bivector space, 21
Neutrosophic strong n-vector space, 276-7
Neutrosophic subbifield, 79
Neutrosophic subbilinear algebra, 64
Neutrosophic subfield, 14-5
Neutrosophic subgroup, 13
Neutrosophic vector space, 14-5
n-ideal of n-polynomials, 348
n-inner product space, 349-351
n-kernel of T, 306-7
n-linearly independent n-set, 306
n-minimal neutrosophic n-polynomial, 348
Non biinvertible, 141
n-orthogonal complement, 356
n-orthogonal n-projection, 356
n-simple neutrosophic n-linear algebra of type II, 325
n-simple subneutrosophic n-vector space, 337
Null bispace of T, 103

P

Principle biideal, 133
Pseudo bilinear subalgebra, 25, 41-2
Pseudo bivector subspace, 19, 40-41, 68
Pseudo neutrosophic bivector subspace of type II, 65
Pseudo neutrosophic bivector subspace, 26
Pseudo neutrosophic n-vector subspace, 327
Pseudo neutrosophic quasi bilinear algebra, 28
Pseudo neutrosophic quasi bilinear subalgebra, 29
Pseudo n-linear subalgebra, 302
Pseudo n-vector space, 330-1
Pseudo n-vector subspace, 232, 299
Pseudo quasi neutrosophic bivector subspace, 18
Pseudo strong neutrosophic bilinear subalgebra, 36-40, 88-9
Pseudo strong neutrosophic bivector subspace, 38, 77, 90
Pseudo strong neutrosophic n-linear subalgebra, 290-1
Pseudo strong neutrosophic n-vector subspace, 297
Pseudo subneutrosophic n-vector subspace, 235
Pure neutrosophic field, 14

Q

Quasi bisubfield, 54-5
Quasi neutrosophic bifield, 78
Quasi neutrosophic bilinear algebra, 27-8
Quasi neutrosophic bivector space, 16
Quasi n-field, 319-320
Quasi pseudo bivector subspace, 70
Quasi special neutrosophic bivector subspace, 54
Quasi special neutrosophic n-vector subspace, 319-320
Quasi strong neutrosophic bilinear algebra, 88
Quasi strong neutrosophic bilinear subalgebra, 91
Quasi strong neutrosophic bivector space, 78
Quasi strong neutrosophic n-vector space, 341

S

Simple neutrosophic n-vector subspace, 317-8
Special (m, n) neutrosophic linear transformation, 248-251
Special subneutrosophic n-vector subspace, 313
Special subneutrosophic bivector subspace, 53
Strong neutrosophic bihyper subspace, 117-8
Strong neutrosophic bilinear algebra, 34, 86
Strong neutrosophic bilinear operator, 43
Strong neutrosophic bilinear subalgebra, 35, 90
Strong neutrosophic bilinear transformation, 97
Strong neutrosophic bivector space, 32-3, 74
Strong neutrosophic bivector subspace, 33, 75
Strong neutrosophic linear bitransformation, 43
Strong neutrosophic n-linear algebra, 284, 339
Strong neutrosophic n-linear subalgebra, 286-7
Strong neutrosophic n-vector space, 276-7, 337
Strong neutrosophic n-vector subspace, 279
Strong pseudo neutrosophic n-vector space, 295-6
Strong subneutrosophic bivector subspace, 81
Strong subneutrosophic bilinear subalgebra, 92-4
Subbisimple neutrosophic bivector subspace, 72-3
Subneutrosophic n-vector subspace, 210
Subneutrosophic bivector subspace, 72-3
Subneutrosophic n-linear subalgebra, 227
Subspace preserving neutrosophic n-linear operator, 267-8

T

T- biconductor, 155

AbOUT THE AUTHORS

Dr.W.B.Vasantha Kandasamy is an Associate Professor in the Department of Mathematics, Indian Institute of Technology Madras, Chennai. In the past decade she has guided 13 Ph.D. scholars in the different fields of non-associative algebras, algebraic coding theory, transportation theory, fuzzy groups, and applications of fuzzy theory of the problems faced in chemical industries and cement industries.

She has to her credit 646 research papers. She has guided over 68 M.Sc. and M.Tech. projects. She has worked in collaboration projects with the Indian Space Research Organization and with the Tamil Nadu State AIDS Control Society. She is presently working on a research project funded by the Board of Research in Nuclear Sciences, Government of India. This is her $48^{\text {th }}$ book.

On India's 60th Independence Day, Dr.Vasantha was conferred the Kalpana Chawla Award for Courage and Daring Enterprise by the State Government of Tamil Nadu in recognition of her sustained fight for social justice in the Indian Institute of Technology (IIT) Madras and for her contribution to mathematics. The award, instituted in the memory of Indian-American astronaut Kalpana Chawla who died aboard Space Shuttle Columbia, carried a cash prize of five lakh rupees (the highest prize-money for any Indian award) and a gold medal.
She can be contacted at vasanthakandasamy@gmail.com Web Site: http://mat.iitm.ac.in/home/wbv/public html/

Dr. Florentin Smarandache is a Professor of Mathematics at the University of New Mexico in USA. He published over 75 books and 150 articles and notes in mathematics, physics, philosophy, psychology, rebus, literature.

In mathematics his research is in number theory, nonEuclidean geometry, synthetic geometry, algebraic structures, statistics, neutrosophic logic and set (generalizations of fuzzy logic and set respectively), neutrosophic probability (generalization of classical and imprecise probability). Also, small contributions to nuclear and particle physics, information fusion, neutrosophy (a generalization of dialectics), law of sensations and stimuli, etc. He can be contacted at smarand@unm.edu

This book introduces over a 100 new concepts related to neutrosophic bilinear algebras and their generalizations. Illustrated by more than 225 examples. these innovative, new notions find applications in various fields.

