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This book is dedicated to the memory of Thavathiru 
Kundrakudi Adigalar (11 July 1925 - 15 April 1995), a 
spiritual leader who worked tirelessly for social 
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development and communal harmony. His powerful 
writings and speeches provided a massive impetus to the 
promotion of Tamil literature and culture. Moving 
beyond the realm of religion, he was also actively 
involved in bringing change at the grassroots level. 
During his lifetime and after, he was celebrated for his 
successful efforts to develop poverty-stricken villages 
around Kundrakudi through planning, support and 
continued intervention. His initiatives for rural 
development earned praise even from Indira Gandhi, the 
then Prime Minister of India. Although he headed a 
famed religious center, Kundrakudi Adigalar maintained 
a scientific outlook towards the world and paid special 
attention to the educational uplift of poor people across 
caste, community or religion. The services rendered by 
him to society are endless, and the dedication of this 
book is a small gesture to pay homage to that great man.   



 7

 
 
 
 
 
 
 
 
 
PREFACE 
 
 
  
This book introduces the concept of neutrosophic bilinear 
algebras and their generalizations to n-linear algebras, n>2.  
 
This book has five chapters. The reader should be well-versed 
with the notions of linear algebras as well as the concepts of 
bilinear algebras and n- linear algebras. Further the reader is 
expected to know about neutrosophic algebraic structures as we 
have not given any detailed literature about it.  
 
The first chapter is introductory in nature and gives a few 
essential definitions and references for the reader to make use of 
the literature in case the reader is not thorough with the basics. 
The second chapter deals with different types of neutrosophic 
bilinear algebras and bivector spaces and proves several results 
analogous to linear bialgebra.  
 
In chapter three the authors introduce the notion of n-linear 
algebras and prove several theorems related to them. Many of 
the classical theorems for neutrosophic algebras are proved with 
appropriate modifications.  Chapter four indicates the probable 
applications of these algebraic structures. The final chapter 
suggests about 80 innovative problems for the reader to solve. 
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The interesting feature of this book is that it has over 225 
illustrative examples, this is mainly provided to make the reader 
understand these new concepts. This book contains over 60 
theorems and has introduced over 100 new concepts.  
  
The authors deeply acknowledge Dr. Kandasamy for the proof 
reading and Meena and Kama  for the formatting and designing 
of the book.  
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 
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Chapter One 
 
 

 
INTRODUCTION TO BASIC CONCEPTS   
 
 
 
This chapter has two sections. In section one basic notions 
about bilinear algebras and n-linear algebras are recalled. In 
section two an introduction to indeterminacy and algebraic 
neutrosophic structures essential for this book are given.  
 
 
1.1 Introduction to Bilinear Algebras and their 
Generalizations 
 
In this section we just recall some necessary definitions about 
bilinear algebras.  
 
DEFINITION 1.1.1: Let (G, +, ) be a bigroup where G = G1 ∪ 
G2; bigroup G is said to be commutative if both (G1, +) and (G2, 
) are commutative. 

 
DEFINITION 1.1.2: Let V = V1 ∪ V2 where V1 and V2 are two 
proper subsets of V and V1 and V2 are vector spaces over the 
same field F that is V is a bigroup, then we say V is a bivector 
space over the field F. 

If one of V1 or V2 is of infinite dimension then so is V. If V1 
and V2 are of finite dimension so is V; to be more precise if V1 is 
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of dimension n and V2 is of dimension m then we define 
dimension of the bivector space V = V1 ∪ V2 to be of dimension 
m + n. Thus there exists only m + n elements which are linearly 
independent and has the capacity to generate V = V1 ∪ V2. 
 
The important fact is that same dimensional bivector spaces are 
in general not isomorphic.  
 
Example 1.1.1: Let V = V1 ∪ V2 where V1 and V2 are vector 
spaces of dimension 4 and 5 respectively defined over rationals 
where V1 = {(aij) | aij ∈ Q}, collection of all 2 × 2 matrices with 
entries from Q. V2 = {Polynomials of degree less than or equal 
to 4 with coefficients from Q}. Clearly V is a finite dimensional 
bivector space over Q of dimension 9. In order to avoid 
confusion we can follow the following convention whenever 
essential. If v ∈ V = V1 ∪ V2 then v ∈ V1 or v ∈ V2 if v ∈ V1 
then v has a representation of the form (x1, x2, x3, x4, 0, 0, 0, 0, 
0) where (x1, x2, x3, x4) ∈ V1 if v ∈ V2 then v = (0, 0, 0, 0, y1, y2, 
y3, y4, y5) where (y1, y2, y3, y4, y5) ∈ V2.  
 
DEFINITION 1.1.3: Let V = V1 ∪ V2 be a bigroup. If V1 and V2 
are linear algebras over the same field F then we say V is a 
linear bialgebra over the field F.  

If both V1 and V2 are of infinite dimensional linear algebras 
over F then we say V is an infinite dimensional linear bialgebra 
over F. Even if one of V1 or V2 is infinite dimension then we say 
V is an infinite dimensional linear bialgebra. If both V1 and V2 
are finite dimensional linear algebra over F then we say V = V1 
∪ V2 is a finite bidimensional linear bialgebra. 
 
Examples 1.1.2: Let V = V1 ∪ V2 where V1 = {set of all n × n 
matrices with entries from Q} and V2 be the polynomial ring 
Q[x]. V = V1 ∪ V2 is a linear bialgebra over Q and the linear 
bialgebra is an infinite dimensional linear bialgebra. 
 
Example 1.1.3: Let V = V1 ∪ V2 where V1 = Q × Q × Q abelian 
group under ‘+’, V2 = {set of all 3 × 3 matrices with entries 
from Q} then V = V1 ∪ V2 is a bigroup. Clearly V is a linear 
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bialgebra over Q. Further dimension of V is 12; V is a 12 
dimensional linear bialgebra over Q. 

The standard basis is {(0 1 0), (1 0 0), (0 0 1)} ∪  
 

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 , 0 0 0 , 0 0 0 , 1 0 0 , 0 1 0 ,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 , 0 0 0 , 0 0 0 , 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

 

 
DEFINITION 1.1.4: Let V = V1 ∪ V2 be a bigroup. Suppose V is 
a linear bialgebra over F. A non empty proper subset W of V is 
said to be a linear subbialgebra of V over F if  

i. W = W1 ∪ W2 is a subbigroup of V = V1 ∪ V2. 
ii. W1 is a linear subalgebra over F. 

iii. W2 is a linear subalgebra over F. 
 
For more refer [48, 51-2]. For n-linear algebra of type I and II, 
refer[54-5].  
 
 
1.2 Introduction to Neutrosophic Algebraic Structures  
 
In this section we just recall some basic neutrosophic algebraic 
structures essential to make this book a self contained one. For 
more refer [36-43, 53].  

In this section we assume fields to be of any desired 
characteristic and vector spaces are taken over any field. We 
denote the indeterminacy by ‘I’, as i will make a confusion, as it 
denotes the imaginary value, viz. i2 = –1 that is 1−  = i. The 
indeterminacy I is such that I . I = I 2 = I.  

Here we recall the notion of neutrosophic groups. 
Neutrosophic groups in general do not have group structure.  
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DEFINITION 1.2.1: Let (G, *) be any group, the neutrosophic 
group is generated by I and G under * denoted by N(G) = {〈G 
∪ I〉, *}. 
 
Example 1.2.1: Let Z7 = {0, 1, 2, …, 6} be a group under 
addition modulo 7. N(G) = {〈Z7 ∪ I〉, ‘+’ modulo 7} is a 
neutrosophic group which is in fact a group. For N(G) = {a + bI 
/ a, b ∈ Z7} is a group under ‘+’ modulo 7. Thus this 
neutrosophic group is also a group. 
 
Example 1.2.2: Consider the set G = Z5 \ {0}, G is a group 
under multiplication modulo 5. N(G) = {〈G ∪ I〉, under the 
binary operation, multiplication modulo 5}. N(G) is called the 
neutrosophic group generated by G ∪ I. Clearly N(G) is not a 
group, for I2 = I and I is not the identity but only an 
indeterminate, but N(G) is defined as the neutrosophic group.  
 
Thus based on this we have the following theorem: 
 
THEOREM 1.2.1: Let (G, *) be a group, N(G) = {〈G ∪ I〉, *} be 
the neutrosophic group. 

1. N(G) in general is not a group. 
2. N(G) always contains a group. 

 
Proof: To prove N(G) in general is not a group it is sufficient 
we give an example; consider 〈Z5 \ {0} ∪ I〉 = G = {1, 2, 4, 3, I, 
2 I, 4 I, 3 I}; G is not a group under multiplication modulo 5. In 
fact {1, 2, 3, 4} is a group under multiplication modulo 5.N(G) 
the neutrosophic group will always contain a group because we 
generate the neutrosophic group N(G) using the group G and I. 
So G 

≠
⊂  N(G); hence N(G) will always contain a group.  

Now we proceed onto define the notion of neutrosophic 
subgroup of a neutrosophic group. 
 
DEFINITION 1.2.2: Let N(G) = 〈G ∪ I〉 be a neutrosophic group 
generated by G and I. A proper subset P(G) is said to be a 
neutrosophic subgroup if P(G) is a neutrosophic group i.e. P(G) 
must contain a (sub) group of G. 
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Example 1.2.3: Let N(Z2) = 〈Z2 ∪ I〉 be a neutrosophic group 
under addition. N(Z2) = {0, 1, I, 1 + I}. Now we see {0, I} is a 
group under + in fact a neutrosophic group {0, 1 + I} is a group 
under ‘+’ but we call {0, I} or {0, 1 + I} only as pseudo 
neutrosophic groups for they do not have a proper subset which 
is a group. So {0, I} and {0, 1 + I} will be only called as pseudo 
neutrosophic groups (subgroups).  

We can thus define a pseudo neutrosophic group as a 
neutrosophic group, which does not contain a proper subset 
which is a group. Pseudo neutrosophic subgroups can be found 
as a substructure of neutrosophic groups. Thus a pseudo 
neutrosophic group though has a group structure is not a 
neutrosophic group and a neutrosophic group cannot be a 
pseudo neutrosophic group. Both the concepts are different. 

Now we see a neutrosophic group can have substructures 
which are pseudo neutrosophic groups which is evident from 
the following example. 
 
Example 1.2.4: Let N(Z4) = 〈Z4 ∪ I〉 be a neutrosophic group 
under addition modulo 4. 〈Z4 ∪ I〉 = {0, 1, 2, 3, I, 1 + I, 2I, 3I, 1 
+ 2I, 1 + 3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I}. o(〈Z4 ∪ 
I〉) = 42. 

Thus neutrosophic group has both neutrosophic subgroups 
and pseudo neutrosophic subgroups. For T = {0, 2, 2 + 2I, 2I} is 
a neutrosophic subgroup as {0 2} is a subgroup of Z4 under 
addition modulo 4. P = {0, 2I} is a pseudo neutrosophic group 
under ‘+’ modulo 4.  
 
DEFINITION 1.2.3: Let K be the field of reals. We call the field 
generated by K ∪ I to be the neutrosophic field for it involves 
the indeterminacy factor in it. We define I 2 = I, I + I = 2I i.e., I 
+…+ I = nI, and if k ∈ K then k.I = kI, 0I = 0. We denote the 
neutrosophic field by K(I) which is generated by K ∪ I that is 
K(I) = 〈K ∪ I〉.  〈K ∪ I〉 denotes the field generated by K and I.  
 
Example 1.2.5: Let R be the field of reals. The neutrosophic 
field of reals is generated by R and I denoted by 〈R ∪ I〉 i.e. R(I) 
clearly R ⊂ 〈R ∪ I〉. 



 14

 
Example 1.2.6: Let Q be the field of rationals. The neutrosophic 
field of rationals is generated by Q and I denoted by Q(I). 
 
DEFINITION 1.2.4: Let K(I) be a neutrosophic field we say K(I) 
is a prime neutrosophic field if K(I) has no proper subfield, 
which is a neutrosophic field. 
 
Example 1.2.7: Q(I) is a prime neutrosophic field where as R(I) 
is not a prime neutrosophic field for Q(I) ⊂ R(I). 
 
DEFINITION 1.2.5: Let K(I) be a neutrosophic field, P ⊂ K(I) is 
a neutrosophic subfield of P if P itself is a neutrosophic field. 
K(I) will also be called as the extension neutrosophic field of 
the neutrosophic field P.  
 
We can also define neutrosophic fields of prime characteristic p 
(p is a prime).  
 
DEFINITION 1.2.6: Let Zp = {0,1, 2, …, p – 1} be the prime field 
of characteristic p. 〈Zp ∪ I〉 is defined to be the neutrosophic 
field of characteristic p. Infact 〈Zp ∪ I〉 is generated by Zp and I 
and 〈Zp ∪ I〉 is a prime neutrosophic field of characteristic p.  
 
Example 1.2.8: Z7 = {0, 1, 2, 3, …, 6} be the prime field of 
characteristic 7. 〈Z7 ∪ I〉 = {0, 1, 2, …, 6, I, 2I, …, 6I, 1 + I, 1 + 
2I,  …, 6 + 6I } is the prime field of characteristic 7. 
 
DEFINITION 1.2.7: Let G(I) by an additive abelian neutrosophic 
group and K any field. If G(I) is a vector space over K then we 
call G(I) a neutrosophic vector space over K. 
 

Elements of these neutrosophic fields will also be known as 
neutrosophic numbers. For more about neutrosophy please refer 
[36-43]. We see ZnI = {aI | a ∈ Zn} is a neutrosophic field called 
pure neutrosophic field. Likewise QI, RI and ZpI are 
neutrosophic fields where p is a prime. Thus Z5I = {0, I, 2I, 3I, 
4I} is a pure neutrosophic field. For more about neutrosophic 
vector spaces please refer [53]. 
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Chapter Two  
 
 
 
 
 

 
NEUTROSOPHIC LINEAR BIALGEBRA  
 
 
 
 
 
 
 
 
In this chapter we introduce the notion of neutrosophic linear 
bialgebras and describe a few properties about them. Strong 
neutrosophic linear bialgebra are also introduced. This chapter 
has four sections. In section one, we introduce the new notion of 
neutrosophic bivector space. Strong neutrosophic bivector 
spaces are introduced in section two. Section three introduces 
the notion of neutrosophic bivector space of type III. Section 
four studies the biinner product in strong neutrosophic bivector 
space. 
 
 
2.1 Neutrosophic Bivector Spaces 
 
In this section we introduce the notion of neutrosophic bivector 
spaces and study their properties. 
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DEFINITION 2.1.1: Let V = V1 ∪ V2 where each Vi is a 
neutrosophic vector space over the same field F and Vi ≠ Vj, Vi 
⊆  Vj and Vj ⊆  Vi; 1 ≤ i, j ≤ 2, then we define V to be a 

neutrosophic bivector space over the real field F.  
 
Note: We assume here F is just a real field that is F is Q or Zn or 
R or C. (n a prime n < ∞). 
 
We will illustrate this by some simple examples. 
 
Example 2.1.1: Let V1 = 〈Q ∪ I 〉 = N(Q) = {a + bI | a, b ∈ Q} 
be a neutrosophic vector space over Q. Take  
 

V2 = 
a b

a,b,c,d N(Q)
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
a neutrosophic vector space over Q. V = V1 ∪ V2 is a 
neutrosophic bivector space over Q. 
 
Example 2.1.2: Let V = V1 ∪ V2 = {N(Q)[x]} ∪ {(a, b, c) | a, b, 
c ∈ N(Q)}. V is a neutrosophic bivector space over Q.  
 
Now we will define a quasi neutrosophic bivector space. 
 
DEFINITION 2.1.2: Let V = V1 ∪ V2 be such that V1 is a vector 
space over the real field F and V2 is a neutrosophic vector 
space over F. We define V =V1 ∪ V2 to be a quasi- neutrosophic 
bivector space over F. 
 
We will give some examples of quasi neutrosophic bivector 
spaces. 
 
Example 2.1.3: Let V = V1 ∪ V2 where V1 = {Z7[x] | all 
polynomials in the variable x with coefficients from Z7} is a 
vector space over Z7 and V2 = {(Z7 I × Z7 I × Z7 I × Z7 I) = {(a, 
b, c, d) | a, b, c, d ∈ Z7 I}} is a neutrosophic vector space over 
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Z7. Then V = V1 ∪ V2 is a quasi neutrosophic bivector space 
over Z7.  
 
Example 2.1.4: Let V = V1 ∪ V2 where V1 = {Q × Q × Q × Q × 
R} = {(a, b, c, d, e) | a, b, c, d ∈ Q and e ∈ R} is a vector space 
over Q and V2 = {QI × Q × QI × Q × QI} = {(a, b, c, d, e) | a, c, 
e ∈ QI and b, d ∈ Q} is a neutrosophic vector space over Q. 
Thus V = V1 ∪ V2 is a quasi neutrosophic bivector space over 
Q. 
 
Now we define substructures of these structures. 
 
DEFINITION 2.1.3: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the field F. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be such that 
W is a neutrosophic bivector space over F, then we define W to 
be a neutrosophic bivector subspace of V over F. 
 
We will illustrate this by some examples. 
 
Example 2.1.5: Let V = V1 ∪ V2  
 

= {Z3I × Z3I × Z3I × Z3I} ∪ 3

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the field Z3. Let W = W1 
∪ W2  

= {(a, b, 0, 0) | a, b ∈ Z3I} ∪ 3

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a neutrosophic bivector subspace of V over the 
field Z3.  
 
Example 2.1.6: Let V = V1 ∪ V2  
 

= N (Q) [x] ∪ 
a b e g

a,b,c,d,e,f ,g,h QI
c d f h

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a neutrosophic bivector space over the field Q. Let W = W1 
∪ W2  
 

= QI [x] ∪ 
a b e g

a,b,e,g QI
0 0 0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2, W is a neutrosophic bivector subspace of V over the 
field Q.  
 
DEFINITION 2.1.4: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the field F. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be such that 
W is only a quasi neutrosophic bivector space over F; that is 
one of W1 or W2 is only a neutrosophic vector space over F and 
other is just a vector space over the field F; then we call W to be 
a pseudo quasi neutrosophic bivector subspace of V over the 
field F. 
 
Example 2.1.7: Let V = V1 ∪ V2 where V1 = (Z5 I × Z5 I × Z5 I) 
a neutrosophic vector space over Z5 and V2 = N(Z5)[x] a 
neutrosophic bivector space over Z5. V = V1 ∪ V2 is a 
neutrosophic bivector space over the field Z5. 

Take W = W1 ∪ W2 = {Z5I × {0} × {0}} ∪ {Z5I [x]} ⊆ V1 
∪ V2; W is a pseudo quasi neutrosophic bivector subspace of V 
over Z5.  
 
Example 2.1.8: Let V = V1 ∪ V2  

 

= 
a b c
d e f a,b,c,d,e,f ,g,h,i RI
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5
i i

1 2 3 4 5

a a a a a
a ,b N(Q);1 i 5

b b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a neutrosophic bivector space over the field Q.  

Take W = W1 ∪ W2  
 

= 
a b c
0 d e a,b,c,d,e,f QI
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5
i

a a a a a
a Q;1 i 5

0 0 0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a pseudo quasi neutrosophic bivector subspace 
of V over the field Q. 
 
DEFINITION 2.1.5: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the field F. Suppose W = W1 ∪ W2 ⊆ V1 ∪ V2 is such 
that W is just a bivector space over the field F then we define W 
to be a pseudo bivector subspace of V over the field F. 
 
We will give some examples of this notion. 
 
Example 2.1.9: Let V = V1 ∪ V2 =  

 

11

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ ({N(Z11) × N(Z11) × N(Z11) × N(Z11)) be a neutrosophic 
bivector space over the field Z11. Let W = W1 ∪ W2 =  
 

11

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, b, c, d) | a, b, c, d ∈ Z11} ⊆ V1 ∪ V2 be a bivector space 
over Z11. Thus W is a pseudo bivector subspace of V over the 
field Z11. 
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Example 2.1.10: Let V = V1 ∪ V2 =  
 

1 2 3
i

4 5 6

a a a
a N(Q);1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {N(Q) × N(Q) × N(Q) × N(Q)} be a neutrosophic bivector 
spaces over the field Q.  
Take W = W1 ∪ W2 = 
 

1 2 3
i

4 5 6

a a a
a Q;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ (Q × Q × {0} × {0})} ⊆ V1 ∪ V2; W is a pseudo bivector 
subspace of V over the field Q. 
 
DEFINITION 2.1.6: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the field F. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be such that 
W is a neutrosophic bivector space over the subfield K ⊆ F. 
Then we call W to be a neutrosophic special bivector subspace 
of V over the subfield K of F. 
 
We will give some examples. 
 
Example 2.1.11: Let V = V1 ∪ V2 = {RI[x]} ∪  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the field R. Take W = W1 
∪ W2 = {QI [x]} ∪  

a b
a,b,d RI

0 d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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 ⊆ V1 ∪ V2 ; W is a neutrosophic special bivector subspace of V 
over the subfield Q of R. 
 
Example 2.1.12: Let V = V1 ∪ V2 = (RI × RI × RI) ∪  
 

1 2 3 4
i

5 6 7 8

a a a a
a RI;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the field Q ( 2 ). Take W 
= W1 ∪ W2 = {(QI × QI × QI)} ∪  
 

1 2 3 4
i

a a a a
a RI;1 i 4

0 0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2, W is a neutrosophic special bivector subspace of V 
over the subfield Q ⊆ Q ( 2 ). 
 
DEFINITION 2.1.7: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the field F. If V has no neutrosophic special bivector 
subspace then we call V to be a neutrosophic special simple 
bivector space over F. 
 
Example 2.1.13: Let V = V1 ∪ V2 = {QI × QI} ∪ {QI[x]} be a 
neutrosophic bivector space over the field F = Q. V is a 
neutrosophic special simple bivector space over Q as Q has no 
proper subfield. 
  
Example 2.1.14: Let V = V1 ∪ V2 = Z23I × Z23I × Z23I × Z23I} ∪  

 

23

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the field Z23. V is a 
neutrosophic special simple bivector space over Z23 as Z23 is a 
prime field. 
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In view of these examples we have the following interesting 
theorem. 
 
THEOREM 2.1.1: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the field F. If F is a prime field of characteristic zero 
or a prime p then V is a neutrosophic special simple bivector 
space over F. 
 
Proof: Given F is a prime field of characteristic zero or a prime 
p, so F has no subfields. Thus for no W = W1 ∪ W2 ⊆ V1 ∪ V2 
can be neutrosophic special bivector subspace of V = V1 ∪ V2 
as F has no subfield. Hence the claim. 
 
Now we proceed onto define the notion of neutrosophic bilinear 
algebra. 
 
DEFINITION 2.1.8: Let V = V1 ∪ V2 where both V1 and V2 are 
neutrosophic linear algebras over the field F, then we define V 
to be a neutrosophic bilinear algebra over F.  
 
We will illustrate this by some simple examples. 
 
Example 2.1.15: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ (QI × QI × QI × QI × QI)} be a neutrosophic bilinear algebra 
over Q. 
 
Example 2.1.16:  Let V = V1 ∪ V2 = 

 

29

a 0
a,b,c Z I

b c
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z29I [x]},  

 
V is a neutrosophic bilinear algebra over the field Z29.  
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Now as in case of neutrosophic bivector spaces we can define 
the following substructures. 
 
DEFINITION 2.1.9: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over the field F. If W = W1 ∪ W2 ⊆ V1 ∪ V2 is a 
neutrosophic bilinear algebra over the field F then we call W to 
be a neutrosophic bilinear subalgebra of V over the field F. 
 
We give an example. 
 
Example 2.1.17: Let V = V1 ∪ V2 =  
 

a b c
0 d e a,b,c,d,e,f QI
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
∪ {QI × QI × QI × QI} be a neutrosophic bilinear algebra over 
the field Q.  

Choose  

W = 
a 0 0
0 b 0 a,b,c QI
0 0 c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
∪ {QI × {0} × {0} × QI} = W1 ∪ W2 ⊆ V1 ∪ V2; W is a 
neutrosophic bilinear subalgebra of V over Q.  
 
DEFINITION 2.1.10: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over the field F. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be a 
neutrosophic bilinear algebra over a subfield K ⊆ F; then we 
define W to be a neutrosophic special bilinear subalgebra of V 
over the subfield K of F. If V has no special neutrosophic 
bilinear subalgebra’s then we call V to be a special 
neutrosophic simple bilinear algebra or neutrosophic special 
simple bilinear algebra. 
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We will illustrate this by some simple examples. 
 
Example 2.1.18: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {RI[x] be a neutrosophic bilinear algebra over the field R. 
Take W = W1 ∪ W2 =  

 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {QI[x]} ⊆ V1 ∪ V2 ; W is a neutrosophic special bilinear 
algebra over the subfield Q of the field R. 
 
Example 2.1.19: Let V = V1 ∪ V2  
 

=
1 2 3

4 5 6 i

7 8 9

a a a
a a a a QI;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
∪ {RI [x]} be a neutrosophic bilinear algebra over Q. Clearly V 
is a neutrosophic special simple bilinear algebra. 
 
Example 2.1.20: Let V = V1 ∪ V2 = {Z7I [x]} ∪ {Z7I × Z7I × 
Z7I} be a neutrosophic bilinear algebra over the field Z7. V is a 
neutrosophic simple bilinear algebra.  
 

In view of these examples we have the following theorem, 
the proof of which is left as an exercise for the reader. 
 
THEOREM 2.1.2: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over the field F, where F is a prime field (i.e., F has no 
subfields other than itself). V is a neutrosophic special simple 
bilinear algebra.  
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DEFINITION 2.1.11: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over a field F. Suppose W = W1 ∪ W2 ⊆ V1 ∪ V2 and if 
W is only a bilinear algebra over the field F, then we call W to 
be a pseudo bilinear subalgebra of V over the field F. 
 
Example 2.1.21: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 ∪ {Q × QI × QI × Q} be a neutrosophic bilinear algebra over 
Q, where W = W1 ∪ W2 =  
 

a b
a,b,c,d Q

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {Q × {0} × {0} × {0}} ⊆ V1 ∪ V2; W is a pseudo bilinear 
subalgebra of V over the field F. 
 
Example 2.1.22: Let V = V1 ∪ V2 =  
 

a b c
d e f a,b,c,d,e,f ,g,h,k N(R)
g h k

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
∪ {(a, b, c, d) | a, b, c, d ∈ N(Q)} be a neutrosophic bilinear 
algebra over the field Q. Take W = W1 ∪ W2 =  
 

a b c
0 d e a,b,c,d,e,f R
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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∪ {(a, b, 0, d) | a, b, d ∈ Q} ⊆ V1 ∪ V2; W is a pseudo bilinear 
subalgebra of V over Q. 
 
DEFINITION 2.1.12: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over the field F. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be a 
proper bisubset of V which is just a neutrosophic bivector space 
over the field F. We define W to be a pseudo neutrosophic 
bivector subspace of V over F. 
   
We will illustrate this by some simple examples. 
 
Example 2.1.23: Let V = V1 ∪ V2 =  
 

n
i

i i
i 0

a x a QI,i 0,1,2, ,n
=

⎧ ⎫
∈ = ≤ ∞⎨ ⎬

⎩ ⎭
∑ …  ∪  

 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bilinear algebra over the field Q. Let W = W1 
∪ W2 =  
 

5
i

i i
i 0

a x a QI,i 0,1,2, ,5
=

⎧ ⎫
∈ =⎨ ⎬

⎩ ⎭
∑ …  ∪ 

0 a
a,b QI

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2, W is a pseudo neutrosophic bivector subspace of V 
over Q.  
 
Example 2.1.24: Let V = V1 ∪ V2 =  
 

11

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 



 27

∪ 
n

i
i i 11

i 0

a x a Z I,i 0,1,2,...,n;n
=

⎧ ⎫
∈ = ≤ ∞⎨ ⎬

⎩ ⎭
∑  

 
be a neutrosophic bilinear algebra over the field Z11. Let W = 
W1 ∪ W2 =  

 

11

a b c
d 0 0 a,b,c,d Z I
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
6

i
i 110

i 1

a Z I,1 i 6a x
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2, W is only a pseudo neutrosophic bivector subspace 
of V as we see  
 

a b c a b c
d 0 0 d 0 0
0 0 0 0 0 0

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 

2a bd ab ac
ad bd cd
0 0 0

⎛ ⎞+
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∉ W1. 

 
Similarly if we take a = 2x6 + 3x + 1 and b = (2Ix6 + 3Ix + I) 
(3x4 + 2x2 + I) = 6Ix10 + 4Ix8 + 2Ix6 + 9Ix5 + 6Ix3 + 3Ix + 3Ix4 + 
2Ix2 + I ∉ W2 but a, b ∈ W2. Thus W is only a neutrosophic 
bivector subspace of V and not a neutrosophic bilinear 
subalgebra of V over Z11. 
 
We have the following interesting theorem, the proof of which 
is left as an exercise for the reader. 
 
THEOREM 2.1.3: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over the field F. V is clearly a neutrosophic bivector 
space over the field F. If V is a neutrosophic bivector space over 
the field F then in general V is not a neutrosophic bilinear 
algebra over the field F. 
 
DEFINITION 2.1.13: Let V = V1 ∪ V2 where V1 is only a 
neutrosophic linear algebra over the field F and V2 is just a 
linear algebra over F then we define V = V1 ∪ V2 to be a quasi 
neutrosophic bilinear algebra over the field F. 
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We illustrate this by some examples. 
 
Example 2.1.25: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d R

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a b c d e f) | a, b, c, d, e, f ∈ QI} 

 
 be a quasi neutrosophic bilinear algebra over the field Q. 
 
Example 2.1.26: Let V = V1 ∪ V2 = 
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
n

i
i i

i 0

a x a Q
=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑ ; 

 
V is a quasi neutrosophic bilinear algebra over the field Q. 
 
DEFINITION 2.1.14: Let V = V1 ∪ V2 where V1 is a neutrosophic 
vector space over the field F and V2 is a neutrosophic linear 
algebra over the field F. V = V1 ∪ V2 is defined to be a pseudo 
neutrosophic quasi bilinear algebra over F.  
 
We will illustrate this by some simple examples. 
 
Example 2.1.27: Let V = V1 ∪ V2 =  
 

a b e
a,b,c,d,e,f QI

c d f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

∪ 
a b

a,b,c,d N(Q)
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a pseudo neutrosophic quasi bilinear algebra over the field 
Q. 
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Example 2.1.28: Let V = V1 ∪ V2 = 
 

8
i

i i
i 0

a x a QI;0 i 8
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 

 

 
a b c
d e f a,b,c,d,e,f ,g,h,i RI
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

; 

 
V is a pseudo neutrosophic quasi bilinear algebra over the field 
Q. 

We can have for any neutrosophic bilinear algebra V a 
substructure which is a pseudo neutrosophic quasi bilinear 
subalgebra of V. 
 
DEFINITION 2.1.15: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over a field F. Suppose W = W1 ∪ W2 ⊆ V1 ∪ V2 such 
that W1 is a neutrosophic vector space over F and W2 is a 
neutrosophic linear algebra over F then we define W to be a 
pseudo neutrosophic quasi bilinear subalgebra of V over the 
field F. 
 
We will illustrate this by some simple examples. 
 
Example 2.1.29: Let V = V1 ∪ V2 = 
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, b, c, d, e, f) | a, b, c, d, e, f ∈ QI} be a neutrosophic 
bilinear algebra over the field Q. Take W = W1 ∪ W2 =  
 

0 a
a,b QI

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a 0 c 0 e 0) | a, c, e ∈ QI} 
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⊆ V1 ∪ V2 W is a pseudo neutrosophic quasi bilinear 
subalgebra of V over the field Q. 
 
Example 2.1.30: Let V = V1 ∪ V2 =  
 

n
i

i i 17
i 0

a x a Z I;0 i n
=

⎧ ⎫
∈ ≤ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

17

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bilinear algebra over the field Z17. Choose W 
= W1 ∪ W2 =  
 

n
2i

i i 17
i 0

a x a Z I;0 i n
=

⎧ ⎫
∈ ≤ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

17

a 0 0
b 0 0 a,b,c,e Z I
c e 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is only a pseudo neutrosophic quasi bilinear 
subalgebra of V over the field Z17. 
We see  

a 0 0
b 0 0
c e 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∈ W2 

 But  
a 0 0
b 0 0
c e 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
a 0 0
b 0 0
c e 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∉ W2. 
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Now we proceed onto define linear bitransformation of a 

neutrosophic bivector space and neutrosophic bilinear algebra 
over the field F. 
 
DEFINITION 2.1.16: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over a field F and W = W1 ∪ W2 be another neutrosophic 
bivector space over the same field F. 

Define T = T1 ∪ T2 : V = V1 ∪ V2 → W = W1 ∪ W2 as 
follows Ti: Vi → Wi, i = 1, 2 is just a neutrosophic linear 
transformation from Vi to Wi. This T = T1 ∪ T2 is a neutrosophic 
linear bitransformation of V into W. If W = V then we call the 
neutrosophic linear bitransformation as neutrosophic linear 
bioperator. We denote it by BNF(V,W) = {set of all neutrosophic 
linear bitransformations of V = V1 ∪ V2 to W = W1 ∪ W2}; 
BNF(V,W) = BNF(V1, W1) ∪ BNF (V2, W2). BNF(V,V) = {set of 
all neutrosophic linear bioperators of V to V and BNF(V1, V1) ∪ 
BNF(V2, V2) = BNF (V,V). 
 

Interested reader can study the algebraic structures of 
BNF(V,W) and BNF(V,V). However we give an example of 
each. 
 
Example 2.1.31: Let V = V1 ∪ V2 =  
 

a b
a,b,c QI

c 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a b c

a,b,c,d,e,f QI
d e f

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 and W = W1 ∪ W2 = {QI × QI × QI} ∪  
 

5
i

i i
i 0

a x a QI;1 i 5
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
be neutrosophic bivector spaces over the field Q. Define T = T1 
∪ T2 : V = V1 ∪ V2 → W = W1 ∪ W2 where T1 : V1 → W1 and 
T2 : V2 → W2 as follows: 
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T1 
a b
c 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = (a, b, c) 

 and  

T2 
a b c
d e f

⎛ ⎞
⎜ ⎟
⎝ ⎠

= {a + bx + cx2 + dx3  

+ ex4 + fx5 | a, b, c, d, e, f ∈ QI}. 
 
Clearly T = T1 ∪ T2 is a neutrosophic linear bitransformation of 
V to W. 
 
Example 2.1.32: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {Z7I × Z7I × Z7I × Z7I} be a neutrosophic bivector space over 
the field Z7. T = T1 ∪ T2: V = V1 ∪ V2 → V = V1 ∪ V2, where  

T1: V1 → V1 
and  

T2 : V2 → V2 
is as follows. 
 

T1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
c d
a b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  
T2 (a, b, c, d) = (a, b + c, d, a + d). 

 
It is easily verified. T is a neutrosophic linear bioperator on V. 
 
 
2.2 Strong Neutrosophic Bivector Spaces 
 
In this section we for the first time introduce the notion of 
strong neutrosophic bivector spaces and study them. 
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DEFINITION 2.2.1: Let V = V1 ∪ V2 where V1 and V2 are 
neutrosophic additive abelian groups. Suppose V = V1 ∪ V2 is a 
neutrosophic bivector space over a neutrosophic field F then we 
call V to be a strong neutrosophic bivector space. 
 
We will give some examples. 
 
Example 2.2.1: Let V = V1 ∪ V2 = {Z5I [x]} ∪ {Z5I × Z5I × 
Z5I} be a strong neutrosophic bivector space over the 
neutrosophic field Z5I. 
 
Example 2.2.2: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a b c d e f

a,b,c,d,e,f ,g,h,i, j,k, l QI
g h i j k l

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
field QI. 
 
DEFINITION 2.2.2: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic field K. If W = W1 ∪ W2 ⊆ 
V1 ∪ V2; and if W is a strong neutrosophic bivector space over 
the neutrosophic field K, then we call W to be a strong 
neutrosophic bivector subspace of V over the neutrosophic field 
F. 
 
We will illustrate this by some simple examples. 
 
Example 2.2.3: Let V = V1 ∪ V2 =  
 

1 2 3
i

4 5 6

a a a
a QI;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪ 

1 2

3 4
i

5 6

7 8

a a
a a

a QI;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
field QI. Take W = W1 ∪ W2  

 

= 1 3
1 3 4

4

a 0 a
a ,a ,a QI

0 a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

1 2 5 6
5 6

a a
0 0

a ,a ,a ,a QI
a a
0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 ⊆ V1 ∪ V2; W is a strong neutrosophic bivector subspace of V 
over the field QI. 
 
Example 2.2.4: Let V = V1 ∪ V2 = {QI × QI × QI} ∪ {QI [x]} 
be a strong neutrosophic bivector space over the neutrosophic 
field QI. Take W = W1 ∪ W2 = {(QI × {0} × QI} ∪  

8
i

i i
i 0

a x a QI;0 i 8
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2, W is a strong neutrosophic bivector subspace of V 
over QI. 
Let us define the notion of strong neutrosophic bilinear algebra. 
 
DEFINITION 2.2.3: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over the neutrosophic field K, we define V to be strong 
neutrosophic bilinear algebra over K. 
 
We will illustrate this by examples. 
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Example 2.2.5: Let V = V1 ∪ V2 = {QI [x]} ∪  
 

a b
a,b,d QI

0 d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the strong neutrosophic bilinear algebra over the 
neutrosophic field QI. 
 
Example 2.2.6: Let V = V1 ∪ V2 = {QI × QI × QI × QI × QI} ∪  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 be a strong neutrosophic bilinear algebra over the neutrosophic 
field QI. 
  
Example 2.2.7: Let V = V1 ∪ V2 = {Z11I × Z11I × Z11I} ∪  
 

11

a b c
d e f a,b,c,d,e,f ,g,h,i N(Z )
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
field Z11I. 
 
DEFINITION 2.2.4: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic field K. If W = W1 ∪ W2 
⊆ V1 ∪ V2 be a strong neutrosophic bilinear algebra over K 
then we define W to be a strong neutrosophic bilinear 
subalgebra of V over the neutrosophic field K. 
 
Example 2.2.8: Let V = V1 ∪ V2 = 
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪ {(a, b, c, d, e, f) | a, b, c, d, e, f ∈ QI} be a strong 
neutrosophic bilinear algebra over the neutrosophic field K = 
QI. Take W = W1 ∪ W2 =  
 

a 0
a,d QI

0 d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, 0, 0, d, 0, f) | a, d, f ∈ QI} ⊆ V1 ∪ V2; W is a strong 
neutrosophic bilinear subalgebra of V over K = QI. 
 
Example 2.2.9: Let V = V1 ∪ V2 = {Z7I [x]} ∪  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
be a strong neutrosophic bilinear algebra over the neutrosophic 
field Z7I.  
Take W = W1 ∪ W2 =  
 

n
2i

i i 7
i 0

a x a Z I; i 0,1,2,...,
=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  ∪ 7

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a strong neutrosophic bilinear subalgebra of V 
over the neutrosophic field Z7I.  
 
DEFINITION 2.2.5: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic field K. Let W = W1 ∪ 
W2 ⊆ V1 ∪ V2 where W1 is just a neutrosophic vector space over 
the neutrosophic field K and W2 is a neutrosophic linear 
subalgebra over the neutrosophic field K. W = W1 ∪ W2 is 
defined to be a pseudo strong neutrosophic linear subalgebra of 
V over K. 
 
We will illustrate this situation by some examples. 
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Example 2.2.10: Let V = V1 ∪ V2 =  
 

1 2 3

4 5 6 i 7

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
∪ {Z7I [x]} be a neutrosophic bilinear algebra over the 
neutrosophic field Z7I. 
 Take W = W1 ∪ W2 =  
 

7

a 0 0
0 0 b a,b,c Z I
0 c 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

2

0
0 ; 0,1, 2,...,

=

⎧ ⎫
≤ ≤ = ∞⎨ ⎬

⎩ ⎭
∑

n
i

i
i

a x i n i  

 
 ⊆ V1 ∪ V2; W is a pseudo strong neutrosophic bilinear 
subalgebra of V over the field Z7I. 
 
Example 2.2.11: Let V = V1 ∪ V2 =  
 

23

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {Z23I × Z23I × Z23I × Z23I} be a strong neutrosophic bilinear 
algebra over the neutrosophic field Z23I. Take W = W1 ∪ W2 = 
 

23

0 d
a,d Z I

a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(0 0 0 b) | a, b ∈ Z23I} ⊆ V1 ∪ V2, W is a pseudo strong 
neutrosophic bilinear subalgebra of V over Z23I. 
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Example 2.2.12: Let V = V1 ∪ V2 = {QI [x]} ∪  
 

a b c
d e f a,b,c,d,e,f ,g,h,i QI
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
field QI. Take W = W1 ∪ W2 =  
 

n

i i
i 0

a x a QI
=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

a 0 0
0 b 0 a,b,d QI
0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a pseudo strong neutrosophic bilinear 
subalgebra of V over the field QI. 
 
DEFINITION 2.2.6: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic field K. Let W = W1 ∪ 
W2 ⊆ V1 ∪ V2 be a strong neutrosophic bivector space over the 
neutrosophic field K. W is defined as the strong pseudo 
neutrosophic bivector subspace of V over the field K. 
 
We illustrate this by some examples. 
 
Example 2.2.13: Let V = V1 ∪ V2 = 
 

13

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i 13
i 0

a x a Z I; i 1,2,...,
∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  
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be a strong neutrosophic bilinear algebra over the neutrosophic 
field Z23I. Take W = W1 ∪ W2 =  
 

23

a b c
d e f a,b,c,d,e,f Z I
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
9

i
i i 23

i 0
a x a Z I;0 i 9

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
 ⊆ V1 ∪ V2, W is a strong pseudo neutrosophic bivector 
subspace of V over the field Z23I. 
 
Example 2.2.14: Let V = V1 ∪ V2 =  
 

1 2 3 4

5 6 7 8
i 23

9 10 11 12

13 14 15 16

a a a a
a a a a

a Z I;1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 

∪ i
i i 11

i 0
a x a Z I; i 1,2,...,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
field Z11I. Take W = W1 ∪ W2 =  
 

1 2 3 4

5 6 7 8
i 11

a a a a
a a a a

a Z I;1 i 8
0 0 0 0
0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  
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6
i

i i 11
i 0

a x a Z I; i 1,2,...,6
=

⎧ ⎫
∈ =⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2, W is pseudo strong neutrosophic bivector subspace 
of V over Z11I. 
 
DEFINITION 2.2.7: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic field K. Take W = W1 ∪ 
W2 ⊆ V1 ∪ V2 and F ⊆ K (F a field and is not a neutrosophic 
subfield of K). If W is a neutrosophic bilinear algebra over the 
field F then we define W to be a pseudo strong neutrosophic 
bilinear subalgebra of V over the subfield F of the neutrosophic 
field K. 
 
We will illustrate this by some examples. 
 
Example 2.2.15: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
n

i
i i

i 0
a x a N(Q);0 i

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic bilinear subalgebra of V over the 
neutrosophic field QI. Take W = W1 ∪ W2 =  
 

a a
a QI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i
i i

i 0
a x a QI;i 0,1,...,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2, W is a pseudo strong neutrosophic bilinear 
subalgebra of V over the subfield Q of N(Q). 
 
DEFINITION 2.2.8: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic field K. Let W = W1 ∪ 
W2 ⊆ V be a bivector space over the real field F ⊆ K. We call W 
= W1 ∪ W2 ⊆ V1 ∪ V2 as a pseudo bivector subspace of V over 
the real subfield F of K. 
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We will illustrate this by some simple examples. 
 
Example 2.2.16: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i
i i

i 0
a x a N(Q);i 0, ,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑ …  

 
be a neutrosophic bilinear algebra over the neutrosophic field 
N(Q). Take W = W1 ∪ W2 =  
 

a b
a,b Q

0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
8

i
i i

i 0
a x a Q;i 0,1,2,...,8

=

⎧ ⎫
∈ =⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2, W is a pseudo bivector space over the field Q. 
 
Example 2.2.17: Let V = V1 ∪ V2 =  
 

29

a 0 0
0 b 0 a,b,c Z I
0 0 c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
∪ {(N(Z29) × N(Z29) × N(Z29) × N(Z29))} be a strong 
neutrosophic bilinear algebra over the neutrosophic field N(Z29). 
Take W = W1 ∪ W2 = 
 

29

a 0 0
0 b 0 a,b,c Z
0 0 c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ {(Z29 × Z29 × {0} × {0})} 

 
⊆ V1 ∪ V2; W is a pseudo bivector subspace of V over the field 
Z29. 
 
DEFINITION 2.2.9: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic field K. Let W = W1 ∪ 
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W2 ⊆ V1 ∪ V2 be a bilinear algebra over a real subfield F of K. 
We define W to be a pseudo bilinear subalgebra of V over the 
field F.  
 
We will illustrate this by some simple examples. 
 
Example 2.2.18: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

 i
i i

i 0
a x a N(Q);i 0, 1, ,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑ …  

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
field N(Q). Take W = W1 ∪ W2 =  
 

a b
a,b,c,d Q

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i
i i

i 0
a x a Q;i 0, 1, ,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑ …  

 
 ⊆ V1 ∪ V2 ; W is a pseudo bilinear subalgebra of V over Q. 
 
Example 2.2.19: Let V = V1 ∪ V2 =  
 

17

a b c d
0 d e f

a,b,c,d,e,f ,g,h,i N(Z )
0 0 g h
0 0 0 i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
∪ {(N(Z17) × N(Z17) × N(Z17) × N(Z17) × N(Z17))} be a strong 
neutrosophic bilinear algebra over the neutrosophic field N(Z17). 
Take W = W1 ∪ W2 =  
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17

a 0 0 0
0 b 0 0

a,b,c,d Z
0 0 c 0
0 0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
∪ {Z17 × {0} × Z17 × {0} × Z17} ⊆ V1 ∪ V2; W is a pseudo 
bilinear subalgebra of V over the field Z17 ⊆ N(Z17). 
 
DEFINITION 2.2.10: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic field K. Let W = W1 ∪ W2 
be a strong neutrosophic bivector space over the same 
neutrosophic field K. Let T : V → W i.e., T = T1 ∪ T2 : V1 ∪ V2 

→ W1 ∪ W2 be a bimap such that Ti : Vi → Wi is a strong 
neutrosophic linear transformation from Vi to Wi; i = 1,2. We 
define T = T1 ∪ T2 to be a strong neutrosophic linear 
bitransformation from V to W. If W = V then we call T to be a 
strong neutrosophic linear bioperator on V. 

SNHomK (V, W) denotes the set of all strong neutrosophic 
linear bitransformations from V to W. 

SNHomK (V, V) denotes the set of all strong neutrosophic 
linear bioperator from V to V.  
 
Interested reader is requested to give examples. 

Also the study of substructure preserving strong 
neutrosophic linear bitransformations (bioperators) is an 
interesting field of research. 
 
Now we proceed onto define bilinearly independent bivectors 
and other related properties. 
 
DEFINITION 2.2.11: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic field K. A proper bisubset 
S = S1 ∪ S2 ⊆ V1 ∪ V2 is said to be a bibasis of V if S is a 
bilinearly independent biset and each Si ⊆ Vi generates Vi; that 
is Si is a basis of Vi true for i = 1, 2. 
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DEFINITION 2.2.12: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic field K. Let X = X1 ∪ X2 ⊆ 
V1 ∪ V2 be a biset of V, we say X is a linearly biindependent 
bisubset of V over K if each of the subsets Xi contained in Vi is a 
linearly independent subset of Vi over the K; i = 1, 2. 
 
The reader is expected to prove the following: 
 
THEOREM 2.2.1: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic field K. Let B = B1 ∪ B2 be 
a bibasis of V over K then B is a linearly biindependent subset 
of V over K. If X = X1 ∪ X2 be a bisubset of V which is bilinearly 
independent bisubset of V then X in general need not be a 
bibasis of V over K.  
 
We will explain this by some examples.  
 
Example 2.2.20: Let V = V1 ∪ V2 = {(QI × QI × QI)} ∪  
 

i
i i

i 0
a x 0 i n ;a QI

∞

=

⎧ ⎫
≤ ≤ ≤ ∞ ∈⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic bivector space over the neutrosophic 
field QI. Let B =B1 ∪ B2 = {(I, 0, 0), (0, I, 0), (0, 0, I)} ∪ {I, Ix, 
Ix2, …, Ixn, …, Ix∞} ⊆ V1 ∪ V2 be a bibasis of V over the 
neutrosophic field QI. Take X = X1 ∪ X2 = {I, 0, 2I), (0, 3I, I)} 
∪ {I, Ix, Ix2, Ix3, Ix7} ⊆ V1 ∪ V2 ; X is a linearly independent 
bisubset of V but is not a bibasis of V over QI. 
 
Example 2.2.21: Let V = V1 ∪ V2 =  
 

13

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 1 2 3
i 13

4 5 6

a a a
a Z I;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
field Z13I. Let B = B1 ∪ B2 =  
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I 0 0 I 0 0 0 0
, , ,

0 0 0 0 I 0 0 I
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

 
I 0 0 0 I 0 0 0 I

, , ,
0 0 0 0 0 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 0 0 0 0 0 0 0 0

, ,
I 0 0 0 I 0 0 0 I

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

 

  
⊆ V1 ∪ V2, B is a bibasis of V over Z13I. Take X =  
 

I I 0 0
,

0 0 I I
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

 
3I 0 I 0 I 4I 0 I 0

, ,
0 0 0 I I 0 2I 0 4I

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
= X1 ∪ X2 ⊆ V1 ∪ V2, X is only a linearly independent biset of 
V but is not a bibasis of V over Z13I. 
 
DEFINITION 2.2.13: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic field K. Let X = X1 ∪ X2 ⊆ 
V1 ∪ V2, if X is not a bilinearly independent bisubset of V then 
we say X is a bilinearly dependent bisubset of V. 
 
Example 2.2.22: Let V = V1 ∪ V2 = {QI × QI × QI × QI} ∪  
 

5
i

i i
i 0

a x a QI;0 i 5
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic bivector space over the neutrosophic 
field QI. Let X = X1 ∪ X2 = {(I, I, 0, 0), (0, I, I, 0), (0, 0, I, I), (I, 
I, I, I), (3I, 2I, I, 0)} ∪{I, Ix2, 1 + 3Ix3, 5Ix3 + 3Ix2, Ix5 + 3Ix + 
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5Ix2 + 3Ix4} ⊆ V1 ∪ V2 . It is easily verified X is a linearly 
dependent bisubset of V over QI.  
 
Example 2.2.23: Let V = V1 ∪ V2 = 
 

2

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ i
i i 2

i 0
a x 0 i ;a Z I

∞

=

⎧ ⎫
≤ ≤ ∞ ∈⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
field Z2I. B = B1 ∪ B2 =  
 

I 0 0 I 0 0 0 0
, , ,

0 0 0 0 I 0 0 I
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {I, Ix, Ix2, …, Ixn, …} 

 
is a bibasis of B. 

I I I 0 I I I I 0 I
, , , ,

0 I 0 0 I I I I 0 0
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
∪ {I + Ix2 + Ix3 + Ix2, Ix2, I, Ix, I + Ix2} is a linearly dependent 
bisubset of V over Z2I. The number of bielements in the bibasis 
B = B1 ∪ B2 is the bidimension of V = V1 ∪ V2, denoted by | B | 
= (|B1|, |B2|).  

If | B | = (|B1|, |B2|) = (n, m) and if n < ∞ and m < ∞ then we 
say V is a finite bidimensional strong neutrosophic bilinear 
algebra (bivector space) over the neutrosophic field K. Even if 
one of m or n is ∞ or both m and n is infinite then we say the 
bidimension of V is infinite. 

 
Example 2.2.24: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {QI × QI × QI}  

 
be a strong neutrosophic bivector space over the neutrosophic 
field QI. B = B1 ∪ B2 =  
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I 0 0 I 0 0 0 0

, , ,
0 0 0 0 I 0 0 I

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
∪ {(I 0 0), (0, I, 0) (0, 0, I)} ⊆ V1 ∪ V2; B is a bibasis of V over 
QI and the bidimension of V is finite (4, 3).  
 
Example 2.2.25: Let V = V1 ∪ V2 =  
 

i
i i 2

i 0
a x a Z I

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ {(Z2I × Z2I)} 

 
be a strong neutrosophic bivector space over Z2I. B = B1 ∪ B2 = 
{I, Ix, Ix2, …, Ixn, … ∞} ∪ {(I, 0), (0, I)} ⊆ V1 ∪ V2 is a bibasis 
of V over Z2I. The bidimension of V is (∞, 2).  
 
Example 2.2.26: Let V = V1 ∪ V2 =  
 

i
i i

i 0
a x a QI;i 1,2,...,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
a b

a,b,c,d RI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
field QI. B = B1 ∪ B2 = {I, Ix, Ix2, …, Ixn, …} ∪ {an infinite 
basis for V2} is a bibasis of V over QI. Thus the bidimension of 
V is infinite and |B| = (∞, ∞). 
 
Example 2.2.27: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {RI × RI} 
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be a strong neutrosophic bivector space over the neutrosophic 
field QI. Take B = B1 ∪ B2 =  
 

I 0 0 I 0 0 0 0
, , ,

0 0 0 0 I 0 0 I
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
∪ {An infinite set}, B is a bibasis of V over QI. The 
bidimension of V is (4, ∞); thus the bidimension of V is infinite. 
 It is interesting to note that if V and W are strong neutrosophic 
bivector spaces over the neutrosophic field K. Suppose 
bidimension of V is (n1, n2) then we say the bidimension of V 
and W are the same if and only if W is just of bidimension (n1, 
n2) or (n2, n1).  
 
DEFINITION 2.2.14: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
strong neutrosophic bivector spaces over the neutrosophic field 
K. Let T = T1 ∪ T2 be a bilinear transformation (linear 
bitransformation) from V to W defined by Ti : Vi → Wj, i = 1, 2, 
j = 1, 2, such that T1 : V1 → W1 and T2 : V2 → W2 or T1 : V1 → 
W2 and T2 : V2 → W1. The bikernel of T denoted by kerT = kerT1 
∪ kerT2 where ker Ti ={νi ∈ Vi | T(νi) = 0; i =1, 2}. Thus biker 
T = {(ν1, ν2) ∈ V1 ∪ V2 / T(ν1, ν2) = T1(ν1) ∪ T(ν2) = 0 ∪ 0}.  
 
It is easily verified ker T is a proper neutrosophic bisubgroup of 
V. Further ker T is a strong neutrosophic bisubspace of V. 
 
Example 2.2.28: Let V = V1 ∪ V2 =  
 

1 2 3
i

4 5 6

a a a
a QI,1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

1 2

3 4
i

5 6

7 8

a a
a a

a QI,1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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be a strong neutrosophic bivector space over QI. W = W1 ∪ W2 
=  
 

7
i

i i
i 0

a x a QI;0 i 7
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 

1 2 3

4 5 i

6

a a a
0 a a a QI,0 i 6
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over QI. Define a bimap 
T = T1 ∪ T2 : V1 ∪ V2 → W1 ∪ W2 by T1 : V1 → W2 and T2 : 
V2 → W1 such that 

T1
1 2 3

4 5 6

a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 2 3

4 5

6

a a a
0 a a
0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and  

T2

1 2

3 4

5 6

7 8

a a
a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= 
7

i
i

i 0
a x

=
∑  

 
where a1 → a0, a2 → a1, a3 → a2, a4 → a3, a5 → a4, a6 → a5, a7 → 
a6 and a8 → a7. 

T = T1 ∪ T2 is a linear bimap. 
 

biker T = 
0 0 0
0 0 0
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

0 0
0 0
0 0
0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

. 

 
Interested reader can construct more examples in which 

biker T is a proper non zero neutrosophic bisubspace of V. We 
will prove results when we define strong neutrosophic n-vector 
spaces n > 2, for n = 2 gives the strong neutrosophic bivector 
space. Further neutrosophic bivector spaces (bilinear algebras) 
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and the strong neutrosophic bivector spaces (bilinear algebras) 
which we have defined in sections 2.1 and 2.2 are type I 
neutrosophic bivector spaces and strong neutrosophic bivector 
spaces respectively. In the following section we define type II 
neutrosophic bivector spaces (bilinear algebras). 
 
 
2.3 Neutrosophic Bivector Spaces of Type II 
 
In this section we proceed onto define neutrosophic bivector 
spaces of type II and neutrosophic linear bialgebras (or bilinear 
algebras) of type II. We discuss several interesting properties 
about them. We also give the difference between type I and type 
II neutrosophic bivector spaces. 
 
DEFINITION 2.3.1: Let V = V1 ∪ V2 where V1 is a neutrosophic 
vector space over the real field F1 and V2 is a neutrosophic 
vector space over the real field F2 such that F1 ≠ F2, F1 ⊄ F2, F2 
⊄ F1 and V1 ≠ V2, V1 ⊄ V2 and V2 ⊄ V1. 

We call V to be a neutrosophic bivector space over the 
bifield F = F1 ∪ F2 of type II. 

 
We will illustrate this by some simple examples.  
 
Example 2.3.1: Let V = V1 ∪ V2 where  
 

V1 = 7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic vector space over the field Z7 and  
 

V2 = 
1 2

3 4 i

5 6

a a
a a a N(Q),1 i 6
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

is a neutrosophic vector space over the field Q. V = V1 ∪ V2 is a 
neutrosophic bivector space over the bifield F = Z7 ∪ Q of type 
II. 
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Example 2.3.2: Let V = V1 ∪ V2 where V1 = {QI [x]} a 
neutrosophic vector space over the field Q and V2 =  
 

11

a b 0
0 d e a,b,c,d,e,f Z
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic vector space over the field Z11. V = V1 ∪ V2 
is a neutrosophic bivector space over the bifield F = Q ∪ Z11 of 
type II. 
 
Example 2.3.3: Let V = V1 ∪ V2 where V1 = {Z13I × Z13I × Z13I 
× Z13I} is a neutrosophic vector space over the field Z13 and  
 

V2 = 1 2 3 4
i 23

5 6 7 8

a a a a
a Z ,1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic vector space over the field Z23. V = V1 ∪ V2 
is a neutrosophic bivector space over the bifield F = Z13 ∪ Z23 of 
type II. 
 
DEFINITION 2.3.2: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2 of type II. Let W = W1 ∪ W2 
⊆ V1 ∪ V2, if W is a neutrosophic bivector space over the bifield 
F = F1 ∪ F2 of type II, then we call W to be a neutrosophic 
bivector subspace of V over the bifield F = F1 ∪ F2 of type II. 
 
We will illustrate this by examples. 
 
Example 2.3.4: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1 2 3 4
i 11

5 6 7 8

a a a a
a Z I,1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space of V over the bifield F = Z7 ∪ 
Z11 of type II. Take W = W1 ∪ W2 =  
 

7

a b
a,b Z I

0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3 4
i 11

5 6

a a a a
a Z I,i 1, 2,4, 5,6,3

a a 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a neutrosophic bivector subspace of V over the 
bifield Z7 ∪ Z11 of type II. 
 
Example 2.3.5: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {Z13I × Z13I × Z13I × Z13I × Z13I} be a neutrosophic bivector 
space over the bifield F = Q ∪ Z13 of type II. Take W = W1 ∪ 
W2 =  
 

a a
a QI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a a) | a ∈ Z13I} 

 
⊆ V1 ∪ V2; W is a neutrosophic bivector subspace of V over the 
bifield F = Q ∪ Z13. 

Now we define a substructures on these neutrosophic 
bivector spaces over the bifield. It is pertinent to mention here 
that the term type II will be suppressed as one can easily 
understand by the very definition it is distinct from type I. 
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DEFINITION 2.3.3: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the real bifield F = F1 ∪ F2. Let W = W1 ∪ W2 ⊆ V1 
∪ V2 and K = K1 ∪ K2 ⊆ F1 ∪ F2 = F. If W is a neutrosophic 
bivector space over the bifield K = K1 ∪ K2 then we call W to be 
a special subneutrosophic bivector subspace of V over the 
bisubfield K of F. 
 
We will give an example of this definition. 
 
Example 2.3.6: Let V = V1 ∪ V2 = {Q( 2, 3)I Q( 2, 3)I}× ∪   
 

a b
a,b,c,d Q( 5, 7)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield F = Q( 2, 3)   

Q( 5, 7)∪  = F. Take W {Q( 2)I Q( 2)I}= × ∪  
 

a a
a Q( 5)

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 = W1 ∪ W2 ⊆ V1 ∪ V2, W is a special subneutrosophic bivector 
subspace of V over the subfield Q( 2) Q( 5)∪ = K1 ∪ K2 ⊆ 
Q( 2, 3) Q( 5, 7)∪  = F. 

Now we define the neutrosophic bivector space V to be 
bisimple if V has no proper special subneutrosophic bivector 
subspace over a bisubfield. 
 

We will illustrate this by some examples.  
 
Example 2.3.7: Let V = V1 ∪ V2 = 
 

 7

a b
{RI} a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∪ ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a neutrosophic bivector space over the real bifield F = 
Q ∪ Z7. We see the real bifield is bisimple; i.e., it has no 
subbifields or bisubfields. So V is a bisimple neutrosophic 
bivector space over F. 
 
Example 2.3.8: Let V = V1 ∪ V2 = {Z2I × Z2I × Z2I × Z2I} ∪  
 

3

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the real bifield F = 
Z2 ∪ Z3. V is a bisimple neutrosophic bivector space over F. We 
see both Z2 and Z3 are prime fields of characteristic two and 
three respectively.  

In view of this we have the following theorem.  
 
THEOREM 2.3.1: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over a bifield F = F1 ∪ F2. If both F1 and F2 are prime 
fields then V is a bisimple neutrosophic bivector space over the 
real bifield F = F1 ∪ F2. 
 
The proof of the above theorem is left as an exercise to the 
reader. A natural question arise; if one of the fields F1 and F2 
alone is a prime field can we have some special type of 
substructures. In view of this we have the following definition. 

 
DEFINITION 2.3.4: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the real bifield F = F1 ∪ F2 where one of F1 or F2 is 
a prime field. Let W = W1 ∪ W2 be such that W1 is a neutrosophic vector 

subspace of V1 over K1 ⊆ F1 (F2 is a prime field ) and W2 is a 
neutrosophic vector subspace of V2 over F2; then we call W = 
W1 ∪ W2 to be a quasi special neutrosophic bivector subspace 
of V over the quasi bisubfield K1 ∪ F2.  
 
(If F = F1 ∪ F2 is a bifield, K1 ⊆ F1 is a proper subfield of F1 

then K1 ∪ F2 is called the quasi bisubfield of the bifield F = F1 
∪ F2). We will illustrate this by some examples. 
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Example 2.3.9: Let V = V1 ∪ V2 =  
 

17

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 ∪ {RI × RI × RI} be a neutrosophic bivector space over the 
bifield F = Z17 ∪ Q( 2, 3, 5, 7, 11 ). Take W = W1 ∪ W2  

 

 = 17

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
{RI × {0} × RI} ⊆ V1 ∪ V2, W is a quasi special neutrosophic 
bivector subspace of V over the quasi bisubfield Z17 ∪ Q( 2 ) 
of the bifield F. 
 
Example 2.3.10: Let V = V1 ∪ V2 = {Z7I [x]} ∪ {RI × RI × RI} 
be a neutrosophic bivector space over the real bifield Z7 ∪ R. 
Let W = W1 ∪ W2 =  
 

9
i

i
i 0

a x
=

⎧
⎨
⎩
∑  0 ≤ i ≤ 9; ai ∈ Z7I} ∪ {QI × QI × QI} 

 
 ⊆ V1 ∪ V2; W is a quasi special neutrosophic bivector subspace 
of V over the real quasi bifield Z7 ∪ Q ⊆ Z7 ∪ R. 
 
Now we proceed on to define the notion of bibasis of the 
neutrosophic bivector space of type II. 
 
DEFINITION 2.3.5: Let V = V1 ∪ V2 be a neutrosophic bivector 
space of type II over the bifield F = F1 ∪ F2. Let B = B1 ∪ B2 ⊆ 
V1 ∪ V2 be a bisubset of V such that Bi is a linearly independent 
bisubset of Vi; and generates Vi for i = 1, 2, then we call B to be 
bibasis of V over the bifield F1 ∪ F2 = F. 
 
We will illustrate this by some simple examples. 
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Example 2.3.11: Let V = V1 ∪ V2 =  
 

1 2 3
i 7

4 5 6

a a a
a Z I; 0 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

1 2

3 4
i 5

5 6

7 8

a a
a a

a Z I; 1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bivector space of type II over the bifield F = 
Z7 ∪ Z5.  

Take B = B1 ∪ B2  
 

 = 
I 0 0 0 I 0 0 0 I

, , ,
0 0 0 0 0 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 0 0 0 0 0 0 0 0

, ,
I 0 0 0 I 0 0 0 I

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

 

 

∪ 

I 0 0 I 0 0 0 0
0 0 0 0 I 0 0 I

, , , ,
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

, , ,
I 0 0 I 0 0 0 0
0 0 0 0 I 0 0 I

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

 

 
⊆ V1 ∪ V2, B is a bibasis of V over the bifield. 
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Example 2.3.12: Let V = V1 ∪ V2 =  
 

a a
a QI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 37

a a
a a

a Z I
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

  
be a neutrosophic bivector space over the bifield F = F1 ∪ F2 = 
Q ∪ Z37. Take B = B1 ∪ B2 =  

 

I I
I I

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

I I
I I
I I
I I

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2, B is a bibasis of V over the bifield F = Q ∪ Z37. 
 
DEFINITION 2.3.6: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2. Let P = P1 ∪ P2 ⊆ V1 ∪ V2 
be a proper bisubset of V such that each Pi is a linearly 
independent subset of Vi over Fi; i = 1, 2; then we define P = P1 
∪ P2 to be a bilinearly independent bisubset of V over the 
bifield F = F1 ∪ F2 or P is defined to be the linearly 
biindependent bisubset of V over the bifield F = F1 ∪ F2. 
 
It is interesting and important to note that every bibasis is a 
linearly biindependent bisubset, but a linearly biindependent 
bisubset need not in general to be a bibasis of V over the bifield 
F. 

We will illustrate this situation by an example. 
 
Example 2.3.13: Let V = V1 ∪ V2 =  
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a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

1 2 3
i i 7

1 2 3

a a a
a ,b Z I;1 i 3

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space of type II over the bifield F = 
Q ∪ Z7. Take B = B1 ∪ B2 =  
 

I 0 0 I 0 0 0 0
, , , ,

0 0 0 0 I 0 0 I
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ 

 
I I 0 0 0 I I I I

, ,
0 0 0 I 0 0 0 I I

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊆ V1 ∪ V2. 

 
Clearly B is a linearly biindependent bisubset of V but is not a 
bibasis of V. Thus in general every linearly biindependent 
bisubset of V need not be a bibasis of V. 
 
DEFINITION 2.3.7: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2, and W = W1 ∪ W2 be 
another neutrosophic bivector space over the same bifield F = 
F1 ∪ F2 that is Vi and Wi are vector spaces over the field Fi, i = 
1, 2. Let T = T1 ∪ T2 be a bimap from V to W; where Ti : Vi → 
Wi is a linear transformation from Vi to Wi, i = 1, 2. We define T 
= T1 ∪ T2: V = V1 ∪ V2 → W = W1 ∪ W2 to be a neutrosophic 
linear bitransformation of V to W of type II. 
 
We will illustrate this by a simple example. 
 
Example 2.3.14: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1 2 3 4
i 13

5 6 7 8

a a a a
a Z I;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space of type II over the bifield F = 
F1 ∪ F2 = Z7 ∪ Z13. Let W = W1 ∪ W2 = {Z7I × Z7I × Z7I × Z7I}   
 

∪ 

1 2

3 4

5 6 i 13

7 8

9 10

a a
a a
a a a Z I;1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bivector space of type II over the bifield F = 
F1 ∪ F2 = Z7 ∪ Z13.  

Define T = T1 ∪ T2: V = V1 ∪ V2 → W = W1 ∪ W2 where 
T1: V1 → W1 and T2: V2 → W2 is defined by  

T1
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = (a, b, c, d) 

and  

T2

1 2

3 4
1 2 3 4

5 6
5 6 7 8

7 8

a a
a a

a a a a
a a

a a a a
a a
0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟
⎜ ⎟⎝ ⎠
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
It is easily verified T is a linear bitransformation of V to W. 
 
Note: If we take in the definition 2.3.7; W = V then we call T to 
be a linear bioperator on V of type II. We will denote by 

1 2F F
N Hom(V,W)

∪
, the collection of all neutrosophic linear 

bitransformations of V to W. 
1 2F F

N Hom(V,V)
∪

 denotes the 

collection of all neutrosophic linear bioperators of V to V. 
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Example 2.3.15: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

1 2 3 4 5
i 19

6 7 8 9 10

a a a a a
a Z I;1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
be a neutrosophic bivector space over the bifield F = Q ∪ Z19. 

Define T = T1 ∪ T2: V = V1 ∪ V2 → V = V1 ∪ V2 where T1: 
V1 → V1 and T2: V2 → V2 such that,  
 

T1
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  

T2
1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a a a a a
b b b b b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where a, b ∈ Z19I. 
 

It is easily verified T is a neutrosophic bilinear operator on 
V of type II. 

 
DEFINITION 2.3.8: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
neutrosopic bivector spaces over the bifield F = F1 ∪ F2.  

Let T = T1 ∪ T2: V1 ∪ V2 = V → W1 ∪ W2 = W be a linear 
bitransformation of V to W. The bikernel of T denoted by ker T 
= ker T1 ∪ ker T2 where ker Ti = ∈ =i i

i i{ v V |T ( v ) 0 } ; i = 1, 2. 
Thus ker T = {(v1, v2) ∈ V1 ∪ V2 / T(v1, v2)} = {T1(v1) ∪ T2(v2) = 
0 ∪ 0}. 
 

It is easily verified that ker T is a proper neutrosophic 
bisubgroup of V. Futher ker T is a neutrosophic bisubspace of 
V. 

The reader is expected to give some examples. 
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THEOREM 2.3.2: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
neutrosophic bivector spaces over the bifield F = F1 ∪ F2 of 
type II and suppose V is finite bidimensional. Let T = T1 ∪ T2 be 
a neutrosophic bilinear transformation (linear 
bitransformation) of V into W. (Ti: Vi → Wi; i = 1, 2).  

Then  
birank T + binullity T  =  (n1, n2) dim V  

=  bidimension V;  
that is (birank T =) rank T1 ∪ rank T2 + (binullity T =) nullity 
T1 ∪ nullity T2 = (bidimension V = ) dimV1 ∪ dim V2 = (n1, n2). 
(Here dim Vi = ni; i = 1, 2).  
 

The proof is left as an exercise to the reader. Further the 
following theorem is also left as an exercise to the reader. 

 
THEOREM 2.3.3: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
neutrosophic bivector spaces over the bifield F = F1 ∪ F2. Let T 
= T1 ∪ T2 and S = S1 ∪ S2 be neutrosophic bilinear 
transformations from V into W. The bifunction  
 
(T + S)   =   (T1 ∪ T2 + S1 ∪ S2)  

=  (T1 + S1) ∪ (T2 + S2)  
is defined by  
(T + S)(α)  =  (T1 + S1) ∪ (T2 + S2) (α1 ∪ α2)  

=  (T1 + S1) α1 ∪ (T2 + S2)α2  
=  (T1 α1 + S1α1) ∪ (T2α2 + S2α2)  

 
is a neutrosophic linear bitransformation from V = V1 ∪ V2 to 
W1 ∪ W2. (α = α1 ∪ α2 ∈ V1 ∪ V2). If C = C1 ∪ C2 is a biscalar 
from the bifield then the bifunction  
 
(CT)α   =  (C1 ∪ C2) (T1 ∪ T2) (α1 ∪ α2)  

=  C1T1 α1 ∪ C2 T2 α2  
 
is a bilinear transformation (linear bitransformation ) from V 
into W. Thus the set of all linear bitransfomations defined by 
biaddition and scalar bimultiplication is a neutrosophic 
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bivector space (vector bispace) over the same bifield F = F1 ∪ 
F2. 

Let NL(V, W) = NL1(V1, W1) ∪ NL2(V2, W2) be a 
neutrosophic bivector space over the bifield F = F1 ∪ F2. 

Further if V = V1 ∪ V2 is a neutrosophic bivector space 
over the bifield F = F1 ∪ F2 of finite bidimension (n1, n2) and W 
= W1 ∪ W2 is a neutrosophic bivector space of finite dimension 
(m1, m2) over the same bifield F = F1 ∪ F2. Then NL(V, W) is of 
finite bidimension and has (m1n1, m2n2) bidimension over the 
same bifield F = F1 ∪ F2. 

 
Further we have another interesting property about these 
neutrosophic bivector spaces. 

Let V = V1 ∪ V2, W = W1 ∪ W2 and Z = Z1 ∪ Z2 be three 
neutrosophic bivector spaces over the same bifield F = F1 ∪ F2. 
Let T be a neutrosophic bilinear transformation from V into W 
and S be a neutrosophic linear bitransformation from W into Z. 
Then the bicomposed bifunction S o T = ST defined by ST(α) = 
S(T(α)) is a neutrosophic bilinear transformation from V into Z. 
The reader is expected to prove the above claim. 
 
Now we proceed on to define the notion of neutrosophic 
bilinear algebra or neutrosophic linear bialgebra of type II over 
the bifield F = F1 ∪ F2. 
 
DEFINITION 2.3.9: Let V = V1 ∪ V2 be a neutrosophic bivector 
space of type II over the bifield F = F1 ∪ F2. If each Vi is a 
neutrosophic linear algebra over Fi, i = 1, 2, then we call V to 
be a neutrosophic bilinear algebra over the bifield F = F1 ∪ F2 
of type II. 
 
We will illustrate this by some simple examples.  
 
Example 2.3.16: Let  

 

V = 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪ {(a, b, c, d, e) | a, b, c, d, e ∈ Z7I} be a neutrosophic bivector 
space over the bifield F = Q ∪ Z7. V is clearly a neutrosophic 
bilinear algebra over F. 
 
Example 2.3.17: Let V = V1 ∪ V2  
 

 = 
1 2 3

4 5 6 i 11

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
{Z13I[x]; all polynomials in the variable x with coefficients from 
Z13I}; V is a neutrosophic bilinear algebra over the bifield F = 
Z11 ∪ Z13. 
 
Example 2.3.18: Let V = V1 ∪ V2 =  
 

1 2

3 4 i 17

5 6

a a
a a a Z I;1 i 6
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
V is only a neutrosophic bivector space over the bifield Z17 ∪ 
Q. Clearly V is not a neutrosophic bilinear algebra over the 
bifield of type II as V1 is not a neutrosophic linear algebra over 
the field Z17. 
 
Thus we have the following interesting result, the proof of 
which is left as an exercise for the reader. 
 
THEOREM 2.3.4: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over a bifield F = F1 ∪ F2 of type II. Clearly V is a 
neutrosophic bivector space over the bifield F. However a 
neutrosophic bivector space of type II need not in general be a 
neutrosophic bilinear algebra of type II.  
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Now we proceed on to define the new notion of neutrosophic 
linear bisubalgebra or neutrosophic bilinear sub algebra of type 
II 
 
DEFINITION 2.3.10: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over a bifield F = F1 ∪ F2 of type II. Take W = W1 ∪ 
W2 ⊆ V1 ∪ V2; W is a neutrosophic sub bilinear algebra or 
neutrosophic bilinear subalgebra of V if W is itself a 
neutrosophic linear bialgebra of type II over the bifield F = F1 
∪ F2. 
 
We will illustrate this situation by some examples. 
 
Example 2.3.19: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a1 a2 a3 a4 a5 a6) | ai ∈ Z2I; 1 ≤ i ≤ 6} be a neutrosophic 
bilinear algebra of type II over the bifield F = Q ∪ Z2.  

Take W = W1 ∪ W2 =  
 

a a
a QI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a a a) | a ∈ Z2I} 

 
 ⊆ V1 ∪ V2, W is a neutrosophic bilinear subalgebra of V over 
the bifield F = Q ∪ Z2 of type II. 
 
Example 2.3.20: Let V = V1 ∪ V2 =  
 

1 2 3

4 5 6 i 3

7 8 9

a a a
a a a a Z I; 1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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∪ {QI[x]; all polynomials in the variable x with coefficients 
from QI} be a neutrosophic bilinear algebra of type II over the 
bifield F = Z3 ∪ Q.  

Take W = W1 ∪ W2 =  
 

1 2 3

4 5 i 3

6

a a a
0 a a a Z I;1 i 6
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
 ∪ {All polynomials of even degree with coefficients from the 
field QI} ⊆ V1 ∪ V2; W is a neutrosophic bilinear subalgebra of 
V of type II over the bifield Z3 ∪ Q. 
 
DEFINITION 2.3.11: Let V = V1 ∪ V2 be a neutrosophic bilinear 
algebra over a bifield F = F1 ∪ F2 of type II. Let W = W1 ∪ W2 
⊆ V1 ∪ V2, suppose W is only a neutrosophic bivector space of 
type II over the bifield F = F1 ∪ F2 and is not a neutrosophic 
bilinear subalgebra of V of type II over the bifield F then we say 
W is a pseudo neutrosophic bivector subspace of V over the 
bifield F = F1 ∪ F2 of type II.  
 
We will illustrate this by some examples. 
 
Example 2.3.21: Let  

 

V = 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {Z7I[x]; all polynomials in the variable x with coefficients 
from Z7I} be a neutrosophic bilinear algebra over the bifield F = 
F1 ∪ F2 = Q ∪ Z7. Take W = W1 ∪ W2 =  
 

0 a
a,b QI

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
20

i
i i 7

i 0
a x a Z I;1 i 20

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  
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⊆ V1 ∪ V2. Clearly W is only a bivector space over the bifield F 
= Q ∪ Z7. For product of two elements is not defined in both W1 
and W2. Thus W is a pseudo neutrosophic bivector subspace of 
V over the bifield F = Q ∪ Z7.  
 
Example 2.3.22: Let V = V1 ∪ V2 =  
 

11

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
 ∪ {(a, b, c) | a, b, c ∈ Z29I} be a neutrosophic bilinear algebra 
over the bifield F = Z11 ∪ Z29. Take W = W1 ∪ W2 =  

 

11

a 0 b
0 c 0 a,b,c,d Z I
d 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ {(a a a) | a ∈ Z29I} 

 
⊆ V1 ∪ V2; W is a pseudo neutrosophic bivector subspace of V 
as W1 is only a neutrosophic vector space over Z11 which is not 
a neutrosophic linear algebra over Z11, but W2 is neutrosophic 
linear algebra over Z29. Thus W is only a pseudo neutrosophic 
bivector subspace of V. 
 
Let V = V1 ∪ V2 be a bivector space over the bifield F = F1 ∪ 
F2. A linear bitransformation f = f1 ∪ f2 from V = V1 ∪ V2 into 
the bifield F = F1 ∪ F2 of biscalars is called as a linear 
bifunctional or bilinear functional. 

However when the bivector space which are neutrosophic 
bivector spaces are defined over a real bifield F = F1 ∪ F2 we 
see the notion of linear bifunctional is not possible. Hence to 
have the concept of linear bifunctional we need the bivector 
spaces to be defined over neutrosophic bifields. 

However we can define neutrosophic hyper bispace of a 
neutrosophic bivector space. 
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DEFINITION 2.3.12: Let V = V1 ∪ V2 be a finite dimensional 
neutrosophic bivector space of type II over the bifield F = F1 ∪ 
F2 of dimension (n1, n2). Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be a 
neutrosophic bivector subspace of V of dimension ((n1 – 1), (n2 
– 1)) over the bifield F = F1 ∪ F2. Then we call W to be a 
neutrosophic hyper bispace of V.  
 
We will illustrate this situation by some examples. 
 
Example 2.3.23: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a b c) | a, b, c ∈ Z17I} be a neutrosophic bivector space of 
finite bidimension over the bifield F = Q ∪ Z17. Take W = W1 ∪ 
W2 =  
 

a b
a,b,d QI

0 d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, b, 0) | a, b ∈ Z17I} ⊆ V1 ∪ V2; W is a neutrosophic hyper 
bisubspace of V over the bifield F = Q ∪ Z17. 
 
Example 2.3.24: Let V = V1 ∪ V2 =  
 

12
i

i i 2
i 0

a x a Z I
=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

1 2

3 4 i 3

5 6

a a
a a a Z I
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield F = Z2 ∪ Z3. 
Take W =  
 

11
i

i i 2
i 0

a x a Z I
=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 
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1 2

3 i 3

5 6

a a
a 0 a Z I;i 1,2,3,5,6
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ =⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is neutrosophic hyper bispace of V over the 
bifield Z2 ∪ Z3. Clearly the bidimension of V is (13, 6) where 
the bidimension of W is (12, 5). 
 
The notion of biannihilator of a biset S of a neutrosophic 
bivector space over a real bifield cannot be defined as the notion 
of linear functional is undefined for these bispaces. 

We can define neutrosophic bipolynomial ring over the 
bifield F. Let F[x] = F1[x] ∪ F2[x] be such that Fi[x] is a 
polynomial ring over Fi then we cannot call F[x] = F1[x] ∪ F2[x] 
to be a neutrosophic bipolynomial biring over F1 ∪ F2 as F1 and 
F2 are not neutrosophic fields they are only real fields. 
 
Now we can define yet another new substructure. 
 
DEFINITION 2.3.13: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 
be such that W is just a bivector space over the real bifield F = 
F1 ∪ F2; i.e., W is not a neutrosophic bivector space over the 
bifield F; then we call W to be a pseudo bivector subspace of V 
over the bifield F. 
 
We will illustrate this by the following examples. 
 
Example 2.3.25: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, b, c, d, e, f) | a, b, c, d, e, f ∈ N(Z2)} be a neutrosophic 
bivector space over the bifield F = Q ∪ Z2. Take W = W1 ∪ W2  
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 = 
a b

a,b,c,d Q
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, b, c, d, e, f) | a, b, c, d, e, f ∈ Z2} ⊆ V1 ∪ V2. Clearly W 
is only a bivector space over the bifield F. Thus W is a pseudo 
bivector subspace of V over the bifield F = Q ∪ Z2. 
 
Example 2.3.26: Let V = V1 ∪ V2 = {Z17 I[x]; all polynomials 
in the variable x with coefficients from Z17I} ∪  
 

1 2 3
i 13

4 5 6

a a a
a N(Z )

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield F = Z17 ∪ Z13. 
We see there does not exist a W = W1 ∪ W2 ⊆ V1 ∪ V2 such 
that W is a bivector space over the bifield F = Z17 ∪ Z13.  

Thus we see from this example that all neutrosophic 
bivector spaces need not in general contain pseudo bivector 
subspaces. 
 
In view of this we have the following result which proves the 
existence of a class of neutrosophic bivector spaces which do 
not contain pseudo bivector subspaces. 

 
THEOREM 2.3.5: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the real bifield F = F1 ∪ F2. Even if one of V1 (or V2) 
has its entries from the neutrosophic field F1I (or F2I) then we 
see V has no pseudo bivector subspaces. 
 
Proof: We see in V = V1 ∪ V2 the entries are in one of V1 or V2 
or in both V1 and V2, the entries are taken from F1I (F2I) or from 
F1I and F2I. Since Fi ⊄ FiI; i = 1, 2 we see Vi can never be a 
vector space over Fi but only a neutrosophic vector space over 
Fi, i = 1, 2. Hence the claim. 
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We say a neutrosophic bivector space V = V1 ∪ V2 is a pseudo 
simple neutrosophic bivector space if V has no proper pseudo 
bivector subspace. 
 
Example 2.3.27: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

1

2
i

3

4

a
a

a QI;1 i 4
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield F = Z7 ∪ Q. V 
is a pseudo simple neutrosophic bivector space. 
 
Example 2.3.28: Let V = V1 ∪ V2 = {Z11I[x]; all polynomials in 
the variable x with coefficients from the field Z11I} ∪ {(a1, a2, 
a3, a4, a5, a6, a7) | ai ∈ N(Q); 1 ≤ i ≤ 7} be a neutrosophic 
bivector space over the bifield F = Z11 ∪ Q. V is a pseudo 
simple neutrosophic bivector space over the bifield F. 
 
Now we proceed onto define the notion of quasi pseudo 
bivector subspace of a neutrosophic bivector space. 
 
DEFINITION 2.3.14: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 
where only one of W1 or W2 is a vector space over F1 or F2 and 
the other is a neutrosophic vector space over F1 or F2 then we 
call W to be a quasi pseudo bivector subspace of V over the 
bifield F = F1 ∪ F2.  
 
We will illustrate this situation by some examples. 
 
Example 2.3.29: Let V = V1 ∪ V2 = {(a, b, c, d) | a, b, c, d ∈ 
Z13I} ∪  
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1 2 3

4 5 6 i 5

7 8 9

a a a
a a a a N(Z );1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield F = Z13 ∪ Z5. 
Take W = W1 ∪ W2 = {(a, a, a, a) | a ∈ Z13I} ∪  
 

1 2 3

4 5 6 i 5

7 8 9

a a a
a a a a Z ;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W1 is a neutrosophic vector subspace of V1 over Z13 
and W2 is just vector space of V2 over Z5. We see W2 is not a 
neutrosophic vector subspace of V2 over Z5. Thus W = W1 ∪ 
W2 is a quasi pseudo bivector subspace of V over the bifield F = 
Z13 ∪ Z5. 
 
Example 2.3.30: Let V = V1 ∪ V2 = {N(Z19)[x]; all polynomials 
in the variable x with coefficients from the field N(Z19)} ∪  
 

43

a b c
a,b,c,d,e,f Z I

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield F = Z19 ∪ Z43. 
Take W = W1 ∪ W2 = {Z19[x]; the set of all polynomials in the 
variable x with coefficients from Z19} ∪  
 

43

a a a
a Z I

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a quasi pseudo bivector subspace of V over the 
bifield F = Z19 ∪ Z43. 
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Now it may so happen we can have for some neutrosophic 
bivector subspace both pseudo bivector subspace as well as 
quasi pseudo bivector subspaces.  

We will illustrate this situation by an example. 
 
Example 2.3.31: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {N(Z47)[x]; all polynomials in the variable x with coefficients 
from the neutrosophic field N(Z47)}be a neutrosophic bivector 
space over the bifield F = Q ∪ Z47. Take W = W1 ∪ W2 =  
 

a a
a Q

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ [Z47[x]; all polynomials in the variable x with coefficients 
from the field Z47} ⊆ V1 ∪ V2; clearly W is a pseudo bivector 
subspace of V over the bifield F = Q ∪ Z47.  

Let S = S1 ∪ S2 =  
 

a a
a QI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {Z47I[x]; all polynomials in the variable x with coefficients 
from Z47I} ⊆ V1 ∪ V2. S is a quasi pseudo bivector subspace of 
V. Thus V can have both types of bivector subspaces. 
 
Finally we define subneutrosophic bivector subspace. 
 
DEFINITION 2.3.15: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 
be a neutrosophic bivector space over the bisubfield K = K1 ∪ 
K2 ⊆ F1 ∪ F2; Ki ⊆ Fi; Ki is a proper subfield of Fi; i = 1, 2. We 
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then call W to be a subneutrosophic bivector subspace of V over 
the subbifield K of the bifield F. If V = V1 ∪ V2 has no 
subneutrosophic bivector subspace then we call V to be a sub 
bisimple neutrosophic bivector space. 
 
We will illustrate this situation by some examples. 
 
Example 2.3.32: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(a, b, c, d, e) | a, b, c, d, e ∈ RI} 

 
be a neutrosophic bivector space over the bifield,  
 

F = Q( 2, 3, 7, 11, 17 ) ∪ Q( 19, 23, 43, 41, 7 ). 
 
Take W = W1 ∪ W2 =  
 

a a
a RI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(a, a, a, a, a) | a ∈ RI} ⊆ V1 ∪ V2, 

 
W = W1 ∪ W2 is a neutrosophic bivector space over the 
subbifield  
K   =   Q( 2, 11, 17 ) ∪ Q( 19, 41 )  

 =   K1 ∪ K2 ⊆ F1 ∪ F2.  
 
Thus W is a subneutrosophic bivector subspace of V over the 
subbifield K = K1 ∪ K2. 
 
Example 2.3.33: Let V = V1 ∪ V2 =  
 

1 2 3 4 5
i

6 7 8 9 10

a a a a a
a RI

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1 2
2

3 4 i 2

5 6

a a
Z [x]a a a  I

x x 1a a

⎧ ⎫⎛ ⎞
⎡ ⎤⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎢ ⎥⎜ ⎟ + +⎣ ⎦⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 

 
be a neutrosophic bivector space over the bifield R ∪ 

2
2

Z [x]
x x 1+ +

. Take W = W1 ∪ W2 =  

 

i

a a a a a
a QI

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i 2

a a
a a a Z I
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a subneutrosophic bivector subspace of V over 

the subbifield K = K1 ∪ K2 = Q ∪ Z2 ⊆ R ∪ 2
2

Z [x]
x x 1+ +

. 

 
Now we proceed onto define the notion of strong neutrosophic 
bivector space and discuss a few important properties about 
them. 
 
DEFINITION 2.3.16: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the neutrosophic bifield F = F1 ∪ F2, then we call V 
to be a strong neutrosophic bivector space of type II.  
 
We will illustrate this by some examples. 
 
Examples 2.3.34: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a, b, c, d, e, f, g) | a, b, c, d, e, f, g ∈ Z7 I} be a strong 
neutrosophic bivector space over the neutrosophic bifield F = F1 
∪ F2 = QI ∪ Z7I. 
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Example 2.3.35: Let V = V1 ∪ V2 =  
 

1 2 3 4
i

5 6 7 8

a a a a
a N(Q);1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

1 2 3

4 5 6 i 11

7 8 9

a a a
a a a a N( Z );1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield F = QI ∪ Z11I.  

We see strong neutrosophic bivector spaces are defined over 
neutrosophic bifields but neutrosophic bivector spaces are 
defined over real bifields. We see only incase of strong 
neutrosophic bispaces we can define neutrosophic bifunctionals 
but incase of neutrosophic bivector spaces we cannot define 
neutrosophic bifunctionals.  
 
Now we will proceed onto define substructures in strong 
neutrosophic bivector spaces. 
 
DEFINITION 2.3.17: Let V = V1 ∪ V2 be strong a neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2. Let W 
= W1 ∪ W2 ⊆ V1 ∪ V2, if W is a strong neutrosophic bivector 
space over the neutrosophic bifield F = F1 ∪ F2, then we call W 
to be a strong neutrosophic bivector subspace of V over the 
neutrosophic bifield F = F1 ∪ F2. 
 
We will illustrate this by the following examples. 
 
Example 2.3.36: Let V = V1 ∪ V2 =  
 

7

a b c
a,b,c,d,e,f N( Z )

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1

2

3 i 11

4

5

a
a
a a N( Z );1 i 5
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield Z7I ∪ Z11I. Take W = W1 ∪ W2 =  
 

7

a a a
a Z I

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 11

a
a

a Z Ia
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a strong neutrosophic bivector subspace of V 
over the neutrosophic bifield Z7 I ∪ Z11I. 
 
Example 2.3.37: Let V = V1 ∪ V2 =  
 

1 2 3 4

5 6 7
i 23

8 9

10

a a a a
0 a a a

a Z I;1 i 10
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  ∪  

 

1 2 3 4
i 17

5 6 7

a 0 a 0 a 0 a
a Z I;1 i 7

0 a 0 a 0 a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2 = Z23 I ∪ Z17 I.  

Let W = W1 ∪ W2 =  
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23

a a a a
0 a a a

a Z I
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  

 

17

a 0 a 0 a 0 a
a Z I

0 0 0 0 0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a strong neutrosophic bivector subspace of V 
over the neutrosophic bifield F = F1 ∪ F2. 
 
DEFINITION 2.3.18: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2. Let W 
= W1 ∪ W2 ⊆ V1 ∪ V2; is defined to be a pseudo strong 
neutrosophic bivector subspace of V if W is a neutrosophic 
bivector space over the real bifield K = K1 ∪ K2 ⊆ F1 ∪ F2. 
 
We will illustrate this by some examples. 
 
Example 2.3.38: Let V = V1 ∪ V2 =  
 

11

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6, a7) | ai ∈ N(Z11); 1 ≤ i ≤ 7} be a strong 
neutrosophic bivector space over the neutrosophic bifield F = 
N(Z11) ∪ N(Z17) = F1 ∪ F2. Choose W = W1 ∪ W2 =  
 

11

a b
a,b,c Z I

c c
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1 0 a3 0 a5 0 a7) | a1, a3, a5, a7 ∈ N(Z11)} ⊆ V1 ∪ V2. W is a 
pseudo strong neutrosophic bivector subspace of V over the real 
bifield Z11 ∪ Z17 ⊆ F1 ∪ F2. 
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Example 2.3.39: Let V = V1 ∪ V2 = {N(Z19)[x]; all polynomials 
in the variable x with coefficients from N(Z19)} ∪ {(x1, x2, x3, 
x4, x5) | xi ∈ N(Z23); 1 ≤ i ≤ 5} be strong neutrosophic space 
over the neutrosophic bifield F = N(Z19) ∪ Z23I. 

Take W = W1 ∪ W2 = {Z19I[x]; all polynomials in the 
variable x with coefficients from Z19I} ∪ {(a a a a b) | a, b ∈ 
Z23I} ⊆ V1 ∪ V2; W is a pseudo strong neutrosophic bivector 
subspace of V over the real bifield K = K1 ∪ K2 = Z19 ∪ Z23 ⊆ 
F1 ∪ F2 = N(Z19) ∪ Z23I. 

Recall a bifield F = F1 ∪ F2 is said to be a quasi 
neutrosophic bifield if one of F1 or F2 is a neutrosophic field and 
the other is just a real field. F = QI ∪ Z17 is a quasi neutrosophic 
bifield. F = Q ∪ Z11I is a quasi neutrosophic bifield. F = N(Z2) 
∪ Z3 is a quasi neutrosophic bifield. 
 
DEFINITION 2.3.19: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2. If F = F1 ∪ F2 is only a 
quasi neutrosophic bifield then we call V to be a quasi strong 
neutrosophic bivector space over the quasi neutrosophic bifield.  
 
We will illustrate this situation by some simple examples. 
 
Example 2.3.40: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

17

a 0 0 0
b c 0 0

a,b,c,d,e,f Z I
0 d 0 0
0 0 e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a quasi strong neutrosophic bivector space over the quasi 
neutrosophic bifield F = Q ∪ Z17I. 
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Example 2.3.41: Let V = V1 ∪ V2 =  
 

1 2 3 4

5 6 7 8 i 23

9 10 11 12

a a a a
a a a a a N(Z );1 i 12
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 

 
{Z11I[x]; all polynomials in the variable x with coefficients from 
the field Z11I} be a quasi strong neutrosophic bivector space 
over the quasi neutrosophic bifield F = Z23 ∪ Z11I. 
 
DEFINITION 2.3.20: Let V = V1 ∪ V2 be a neutrosophic bivector 
space over the bifield F = F1 ∪ F2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 
be a strong neutrosophic bivector space over the neutrosophic 
subbifield K = K1 ∪ K2 ⊆ F1 ∪ F2; then we call W to be a 
strong neutrosophic bivector subspace of V over the 
neutrosophic bisubfield K = K1 ∪ K2 ⊆ F1 ∪ F2. 
 
We will illustrate this situation by some examples. 
 
Example 2.3.42: Let V = V1 ∪ V2 =  

 

1 2 3 4 5

6 7

8 9 i

10 11 12

13 14 15

a a a a a
0 a 0 a 0
a 0 0 0 a a N(Q);1 i 15
0 a a a 0

a 0 a 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

1 2

3

4

5 i 11

6

7

8 9

a a
0 a
a 0
0 a a N(Z );1 i 9
a 0
0 a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 



 80

be a strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2 = N(Q) ∪ N(Z11). Take W = W1 ∪ W2 =  
 

a a a a a
0 a 0 a 0

a N(Q)a 0 0 0 a
0 a a a 0
a 0 a 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪   11

a a
0 a
a 0

a Z I0 a
a 0
0 a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a strong subneutrosophic bivector subspace of 
V over the neutrosophic bisubfield K = K1 ∪ K2 = QI ∪ Z11I ⊆ 
N(Q) ∪ N(Z11). 
 
Example 2.3.43: Let V = V1 ∪ V2 =  
 

1 2 3

4 5 6

7 8 9 i 47

10 11 12

13 14 15

a a a
a a a
a a a a N(Z );1 i 15
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5 6 7

8 9 10 11 12 13 14 i 3

15 16 17 18 19 20 21

a a a a a a a
a a a a a a a a N(Z );1 i 21
a a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2 = N(Z47) ∪ N(Z3).  

Take W = W1 ∪ W2 =  
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47

a a a
a a a

a Z Ia a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 3

a a a a a a a
a Z I0 0 0 0 0 0 0

a 0 a 0 a 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a strong subneutrosophic bivector subspace of 
V over the neutrosophic bisubfield K = K1 ∪ K2 = Z47I ∪ Z3I ⊆ 
N(Z47) ∪ N(Z3) = F1 ∪ F2. 
 
Now we state a result which will prove the existence of strong 
subneutrosophic bivector subspaces. 
 
THEOREM 2.3.6: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over a neutrosophic field F = F1 ∪ F2 where 
both F1 and F2 are of the form Fi = N(Ki) where Ki is a real 
field; i = 1, 2 then V has a strong subneutrosophic bivector 
subspace provided V has neutrosophic bivector subspaces. 
 
The proof of this theorem is left as an exercise for the reader.  
 
DEFINITION 2.3.21: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2. If V 
has no strong sub neutrosophic bivector subspaces then we call 
V to be a bisimple strong neutrosophic bivector space. 
 
We will illustrate this by some simple examples. 
 
Example 2.3.44: Let V = V1 ∪ V2 =  
 

1 2 3 4 5 6
i 13

7 8 9 10 11 12

x x x x x x
x Z I;1 i 12

x x x x x x
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
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5

a b a
b a b
a a a
b b b

a,b Z I
a a b
b b a
a b b
b a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong space over a neutrosophic bivector space over the 
neutrosophic bifield F = F1 ∪ F2 = Z13I ∪ Z5I. We see there 
exists no strong neutrosophic bivector subspace for V. This is 
true as F = F1 ∪ F2 = Z13I ∪ Z5I has no neutrosophic subbifield. 
Hence the claim that V is a bisimple strong subneutronsophic 
bivector space. 
 
Example 2.3.45: Let V = V1 ∪ V2 = {N(Z19)[x]; all polynomial 
in the variable x with coefficients from N(Z19)} ∪  
 

1

2

3
i 23

4

5

6

a
a
a

a N(Z );1 i 6
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield Z19I ∪ Z23I. Take any W = W1 ∪ W2 ⊆ V1 ∪ V2; we see 
as F has no subbifield which is neutrosophic, V has no strong 
subneutrosophic bivector spaces; so V is a bisimple strong 
subneutrosophic bivector space. 
 
Now we give a theorem which guarantees the existence of 
bisimple strong subneutrosophic bivector spaces. 



 83

THEOREM 2.3.7: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2, where 
F1 and F2 are of the form KI where K is the prime real field of 
characteristic zero or a prime p. Then V is a bisimple strong 
subneutrosophic bivector space over the neutrosophic bifield F 
= F1 ∪ F2. 
 
Proof: Given V = V1 ∪ V2 is a strong neutrosophic bivector 
space over the neutrosophic bifield F = F1 ∪ F2 and Fi = KiI 
where Ki is a prime field, i = 1, 2. So Fi has no proper 
neutrosophic subfield for i = 1, 2. Hence V cannot have a strong 
subneutrosophic bivector space over any subfield of the bifield 
F. Hence V = V1 ∪ V2 is a bisimple strong subneutrosophic 
bivector space over F. 

Thus we have proved the existence of bisimple strong 
subneutrosophic bivector spaces. 
 
Now we proceed on to define the concept of linearly 
independent bisubset and the basis for the strong neutrosophic 
bivector spaces. 
 
DEFINITION 2.3.22: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space defined over the neutrosophic bifield F = F1 ∪ 
F2. A bisubset S = S1 ∪ S2 ⊆ V1 ∪ V2 is said to be a linearly 
biindependent or bilinearly independent over F if each Si is a 
linearly independent subset of Vi over Fi; i = 1, 2. If S = S1 ∪ S2 
be a linearly biindependent bisubset of V and if each Si 
generates Vi over Fi for i = 1, 2 then we say S is a bibasis of V = 
V1 ∪ V2 over F = F1 ∪ F2. 
 
We will illustrate this situation by some examples. 
 
Example 2.3.46: Let V = V1 ∪ V2 =  
 

11

a a
a a a N(Z )
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ {(a a a) | a ∈ N(Z17)} 



 84

be a strong neutrosophic bivector space over the neutrosophic 
bifield F = N(Z11) ∪ N(Z17). Take S = S1 ∪ S2 =  

 
1 1
1 1
1 1

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ {(1 1 1)} ⊆ V1 ∪ V2. 

 
S is a bibasis of V we say the bidimension of V is the (number 
of elements in S1) ∪ (number of elements in S2) where S = S1 ∪ 
S2 is a bibasis of V over the neutrosophic bifield F = F1 ∪ F2 
and it is denoted by (|S1|, |S2|) or |S1| ∪ |S2|. We see the 
bidimension of V = V1 ∪ V2 in example 2.3.46 is (1, 1). 
 
Example 2.3.47: Let V = V1 ∪ V2 = {Z17I[x]; all polynomials in 
the variable x with coefficients from the neutrosophic field 
Z17I} ∪ {(N(Q) × N(Q) × N(Q))} be a strong neutrosophic 
bivector space over the neutrosophic bifield F = Z17I ∪ N(Q). 

Take S = S1 ∪ S2 = {I, Ix, Ix2, …, Ixn, …} ∪ {(100), (010), 
(001)} ⊆ V1 ∪ V2; S is a bibasis of V over the bifield F = Z17I ∪  
N(Q) and bidimension of V over F is (∞, 3). 

We say the bidimension is bifinite if both |S1| and |S2| are 
finite; even if one of |S1| or |S2| is not finite we say the 
bidimension of V is biinfinite over F. We see the bidimension of 
V given in example 2.3.47 is biinfinite. 

Next we will prove that in general every linearly 
biindependent bisubset of a strong neutrosophic bisubset of a 
strong neutrosophic bivector space need not form a bibasis of V 
= V1 ∪ V2 over F = F1 ∪ F2.  

We will illustrate this by some examples. 
 
Examples 2.3.48: Let V = V1 ∪ V2 =  

 

1 2

3 4
i 19

5 6

7 8

a a
a a

a Z I;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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{(a1, a2, a3, a4, a5) | ai ∈ N(Z11); 1 ≤ i ≤ 5} be a strong 
neutrosophic bivector space over the bifield F = F1 ∪ F2 = Z19I 
∪ N(Z11). Take S = S1 ∪ S2 =  
 

I I
0 0
0 0
0 0

⎧⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟⎨⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎩

, 

0 0
I 0
0 I
0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

0 0
0 I
0 0
I 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

0 0
0 0
I 0
0 I

⎫⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟⎬⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎭

 ∪ 

 
{(I, 0, 0, 0, 0), (0, I, I, 0, 0), (0, 0, I, 0, I)} ⊆ V1 ∪ V2; S is a 
linearly biindependent bisubset of V over the bifield F = Z19I ∪ 
N(Z11). Clearly S is not a bibasis of V = V1 ∪ V2 over F = Z19I 
∪ N(Z11). 
 
Example 2.3.49: Let V = V1 ∪ V2 =  
 

1 2 3 4
i

5 6 7 8

a a a a
a QI;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

7

a b
b a
a a

a,b,c Z I
b b
c c
c a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the bifield F = F1 
∪ F2 = QI ∪ Z7I. Take S = S1 ∪ S2 =  
 

I I 0 0
0 0 0 0

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, 
0 0 3I I
0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
0 0 0 0
3I I 0 0

⎛ ⎞
⎜ ⎟−⎝ ⎠

, 
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0 0 0 0
0 0 7I 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
0 0 0 0
0 0 0 2I

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪ 

 
I I
0 0
0 0
0 0
0 0
I I

⎧⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥⎪

⎢ ⎥⎨
⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪⎣ ⎦⎩

, 

0 0
0 I
0 I
0 0
I I
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0 0
0 0
I 0
I 0
0 0
I 0

⎫⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥⎪

⎢ ⎥⎬
⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪⎣ ⎦⎭

 

 
⊆ V1 ∪ V2; S is a linearly biindependent bisubset of V = V1 ∪ 
V2 over F = F1 ∪ F2 = QI ∪ Z7I. 
 
Now we will proceed on to define the notion of strong 
neutrosophic bilinear algebra or strong neutrosophic linear 
bialgebra. 
 
DEFINITION 2.3.23: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2. If 
each Vi is a neutrosophic linear algebra over the field Fi, i = 1, 
2 then we call V = V1 ∪ V2 to be a strong neutrosophic bilinear 
algebra over the neutrosophic bifield F = F1 ∪ F2. 
 
We will illustrate this by some simple examples. 
 
Example 2.3.50: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, b, c, d, e, f, g, h, i) | a, b, c, d, e, f, g, h, i ∈ Z11I} be a strong 
neutrosophic bilinear algebra over the bifield F = QI ∪ Z11I. 
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Example 2.3.51: Let V = V1 ∪ V2 = {Z13I[x]; all polynomials in 
the variable x with coefficients from Z13I} ∪  
 

23

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = F1 ∪ F2 = Z13I ∪ Z23I.  

We see in general all strong neutrosophic bivector spaces 
are not strong neutrosophic bilinear algebras. But all strong 
neutrosophic bilinear algebras are strong neutrosophic bivector 
spaces.  

We will illustrate the former one by an example as the latter 
claim simply follows from the very definition of strong 
neutrosophic bilinear algebra.  
 
Example 2.3.52: Let V = V1 ∪ V2 =  
 

13

a
b

a,b,c,d,e Z Ic
d
e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ 

 

1 2 3 4 5
i 7

6 7 8 9 10

a a a a a
a Z I;1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield F = Z13I ∪ Z7I. We see V = V1 ∪ V2 is not a strong 
neutrosophic bilinear algebra over the bifield F = F1 ∪ F2 = Z13I 
∪ Z7I as we see multiplication of elements within Vi are not 
defined for i = 1, 2. 
 
Now we define yet a new concept called quasi strong 
neutrosophic bilinear algebra. 
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DEFINITION 2.3.24: Let V = V1 ∪ V2 where V1 is a strong 
neutrosophic vector space over the neutrosophic field F1 (V1 is 
only a vector space and V2 is a strong neutrosophic linear 
algebra) over the neutrosophic field F2 then we call V = V1 ∪ 
V2 to be a quasi strong neutrosophic bilinear algebra over the 
neutrosophic bifield F = F1 ∪ F2.  
 
We will illustrate this by the following examples. 
 
Example 2.3.53: Let V = V1 ∪ V2 =  
 

1 2 3 4

5 6 7 8 i 29

9 10 11 12

a a a a
a a a a a Z I;1 i 12
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{QI[x]; all polynomials in the variable x with coefficients from 
QI} be a quasi strong neutrosophic bilinear algebra over the 
neutrosophic bifield F = Z29I ∪ QI. 
 
Example 2.3.54 : Let V = V1 ∪ V2 =  
 

1 2 3 4 5 6 7
i 5

8 9 10 11 12 13 14

a a a a a a a
a Z I;1 i 14

a a a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

2

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a quasi strong neutrosophic bilinear algebra over the 
neutrosophic bifield F = Z5I ∪ Z2I.  
 
DEFINITION 2.3.25: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2.  
Suppose W = W1 ∪ W2 ⊆ V1 ∪ V2 is such that W is a strong 
neutrosophic bilinear algebra over the neutrosophic field F = 
F1 ∪ F2 then we call W to be a pseudo strong neutrosophic 
bilinear subalgebra of V over F = F1 ∪ F2. 
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Example 2.3.55: Let V = V1 ∪ V2 =  
 

7

0 x
x, y Z I

y 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 1 2 3 4 5 5

4 5

a 0 a
0 a 0 a ,a ,a ,a ,a Z I
a a 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the bifield F = F1 
∪ F2 = Z7I ∪ Z5I. Take W = W1 ∪ W2 =  
 

7

0 x
x Z I

0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
1 2

1 2 5

a 0 a
a ,a Z I0 0 0

0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

  

 
to be a strong neutrosophic bilinear algebra over the 
neutrosophic bifield F = Z7I ∪ Z5I, both W1 and W2 is closed 
under matrix multiplication. Thus W = W1 ∪ W2 ⊆ V1 ∪ V2 is a 
pseudo strong neutrosophic bilinear subalgebra of V over the 
neutrosophic bifield F.  
 
Example 2.3.56 : Let V = V1 ∪ V2 =  
 

19

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

41

a a a
a,b,c,d Z I0 0 b

c 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2 = Z19I ∪ Z41I. Take W = W1 ∪ W2 =  
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19

0 0
d Z I

d 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 41

a 0 0
a,d Z I0 0 0

0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2. W is a pseudo strong neutrosophic bilinear sub 
algebra of V over the bifield F = Z19I ∪ Z41I. 
 
DEFINITION 2.3.26: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. Let 
W = W1 ∪ W2 ⊆ V1 ∪ V2, if W is a strong neutrosophic bivector 
space over F then we call W to be pseudo strong neutrosophic 
bivector subspace of V over F provided W is not a strong 
neutrosophic bilinear subalgebra of V over F. 
 
We will illustrate this situation by some Examples. 
 
Example 2.3.57: Let V = V1 ∪ V2 =  
 

a b c
a,b,c,d,e,f ,g,h,i N(Q)d e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = F1 ∪ F2 = N (Q) ∪ Z7I. 
Take W = W1 ∪ W2 =  
 

0 0 a
a,b,c QI0 b 0

c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 7

0 a
a,b Z I

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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⊆ V1 ∪ V2; W is a pseudo strong neutrosophic bivector 
subspace of V over F. 
 
Example 2.3.58: Let V = V1 ∪ V2 =  
 

i i i 2
i 0

a x | a Z I
∞

=

⎧
∈⎨

⎩
∑ ; x is a variable or indeterminate} ∪ 

 

3

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = Z2I ∪ Z3I. Take W = W1 ∪ W2 =  
 

9
i

i i 2
i 0

a x a Z I;0 i 9
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 3

0 b
b,c Z I

c 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a pseudo strong neutrosophic bivector 
subspace of V over the bifield F. 
 
DEFINITION 2.3.27: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. Let 
W = W1 ∪ W2 ⊆ V1 ∪ V2, where one of W1 or W2 is alone a 
strong neutrosophic linear subalgebra and the other is just a 
strong neutrosophic vector subspace; then we call W to be a 
quasi strong neutrosophic bilinear subalgebra of V over the 
neutrosophic bifield F = F1 ∪ F2. 
 
We will illustrate this situation by some examples. 
 
Example 2.3.59: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i
i i 2

i 0
a x | a Z I;0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑   
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be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = F1 ∪ F2 = Z7I ∪ Z2I. Take W = W1 ∪ W2 =  
 

7

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
8

i
i i 2

i 0
a x a Z I;0 i 8

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑   

 
⊆ V1 ∪ V2; W is a quasi strong neutrosophic bilinear subalgebra 
of V over F = Z7I ∪ Z2I.  
 
Example 2.3.60: Let V = V1 ∪ V2 =  
 

7

a b c
a,b,c,d,e,f ,g,h,i Z Id e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Q)[x]; all polynomials in the variable x with coefficients 
from N(Q)} be a strong neutrosophic bilinear algebra over the 
bifield F = Z7I ∪ QI. Take W = W1 ∪ W2 =  
 

7

0 0 a
a,b,c Z I0 b 0

c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{QI[x]; all polynomials in the variable x with coefficients from 
QI} ⊆ V1 ∪ V2; W is a quasi strong neutrosophic bilinear 
subalgebra of V over F. 
 
Now we proceed onto define the notion of strong neutrosophic 
bilinear subalgebra.  
 
DEFINITION 2.3.28: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. Let 
W = W1 ∪ W2 ⊂ V1 ∪ V2 be a proper bisubset of V; if W is a 
strong neutrosophic bilinear algebra over the bifield F = F1 ∪ 
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F2; then we call W = W1 ∪ W2 to be a strong neutrosophic 
bilinear subalgebra of V over the bifield F = F1 ∪ F2. 
 
We will illustrate this situation by some examples. 
 
Example 2.3.61: Let V = V1 ∪ V2 =  
 

41

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{N(Z11)[x]; all polynomials in the variable x with coefficients 
from N (Z11)} be a strong neutrosophic bilinear algebra over the 
neutrosophic bifield F = Z41I ∪ Z11I. Take W = W1 ∪ W2 =  
 

41

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{Z11I[x]; all polynomials in the variable x with coefficients from 
the neutrosophic field Z11I} ⊆ V1 ∪ V2; W is a strong 
neutrosophic bilinear subalgebra of V over the bifield F = Z41I 
∪ Z11I.  
 
Example 2.3.62: Let V = V1 ∪ V2 =  
 

29

a b c
a,b,c,d,e,f ,g,h,i Z Id e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

∪ 

 
{(a b c d e f) | a, b, c, d, e, f ∈ Z53I} be a strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = Z29I ∪ Z53I. 
Let W = W1 ∪ W2 =  
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29

a b c
a,b,c,d,e,f Z I0 d e

0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{(a 0 b 0 d 0) | a, b, d ∈ Z53I} ⊆ V1 ∪ V2; W is a strong 
neutrosophic bilinear subalgebra of V over the neutrosophic 
bifield F = Z29I ∪ Z53I.  
 
DEFINITION 2.3.29:  Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. Let 
W = W1 ∪ W2 ⊆ V1 ∪ V2; be such that W is a strong 
neutrosophic bilinear algebra over the proper neutrosophic 
bisubfield K = K1 ∪ K2 ⊆ F1 ∪ F2; Ki is a proper neutrosophic 
subfield of Fi, i = 1, 2. We call W = W1 ∪ W2 to be a strong 
subneutrosophic bilinear subalgebra of V over the neutrosophic 
subbifield K = K1 ∪ K2 ⊆ F1 ∪ F2. 
 
We will illustrate this by some examples. 
 
Example 2.3.63: Let V = V1 ∪ V2 =  
 

a b c
a,b,c,d,e,f ,g,h,i N(Q)d e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Z47)[x]; all polynomials in the variable the x with 
coefficients from the neutrosophic field N(Z47)} be a strong 
neutrosophic bilinear algebra over the neutrosophic bifield F = 
N(Q) ∪ N(Z47). Take W = W1 ∪ W2 =  
 

a a a
a QIa a a

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 
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{Z47I[x]; all polynomials in the variable x with coefficients from 
the neutrosophic field Z47I} ⊆ V1 ∪ V2; W is a strong 
subneutrosophic bilinear subalgebra of V over the neutrosophic 
subbifield K = K1 ∪ K2 = QI ∪ Z47I ⊆ N(Q) ∪ N(Z47). 
 
Example 2.3.64: Let V = V1 ∪ V2 =  
 

11

a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j N(Z )
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

a 0 0
a,b,c,d,e,f N(Z )b c 0

d e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = F1 ∪ F2 = N (Z11) ∪ N (Z17). 
 Take W = W1 ∪ W2 =  
 

11

a a a a
0 a a a

a Z I
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

a 0 0
a,b,c,d,e,f Z Ib c 0

d e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2; W is a strong subneutrosophic bilinear subalgebra 
of V over the neutrosophic subbifield K = K1 ∪ K2 = Z11I ∪ Z17I 
⊆ N(Z11) ∪ N(Z17). 
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 A neutrosophic bifield F = F1 ∪ F2 is said to be 
neutrosophic biprime if both F1 and F2 have no proper 
neutrosophic subbifields contained in them. F = Z11I ∪ Z2I is 
neutrosophic biprime. F = QI ∪ Z3I is neutrosophic biprime. 
 We see if F1 is a neutrosophic prime field then it is of the 
form QI or ZpI; p a prime. 
 
Now we will define bisimple strong subneutrosophic linear 
bialgebra. 
 
DEFINITION 2.3.30: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. If V 
has no proper strong subneutrosophic bilinear subalgebra then 
we define V to be a bisimple strong subneutrosophic linear 
bialgebra. 
 
We will illustrate this by some simple examples. 
 
Example 2.3.65: Let V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(x1, x2, x3, x4, x5, x6) | xi ∈ Z7I, 1 ≤ i ≤ 6} be a strong 
neutrosophic linear bialgebra over the neutrosophic bifield F = 
F1 ∪ F2 = QI ∪ Z7I. Since F has no neutrosophic subbifield V is 
a bisimple strong subneutrosophic linear bialgebra over F. 
 
Example 2.3.66: Let V = V1 ∪ V2 =  
 

17

a b c
a,b,c,d,e,f ,g,h,i Z Id e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Z11)[x]; all polynomials in the variable x with coefficients 
from N(Z11)} be a strong neutrosophic linear bialgebra over the 
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neutrosophic bifield F = F1 ∪ F2 = Z17I ∪ Z11I. Clearly V is a 
bisimple strong subneutrosophic bilinear algebra over F.  
 
In view of this we have the following theorem. 
 
THEOREM 2.3.8: Let V = V1 ∪ V2 be a strong neutrosophic 
bilinear algebra over the bifield F = F1 ∪ F2 if each Fi is of the 
form KiI where Ki is a prime field i = 1, 2 then V is a bisimple 
strong subneutrosophic bilinear algebra over F. 
 
Proof: Follows from the fact that F = F1 ∪ F2, the neutrosophic 
bifield has no proper neutrosophic subbifield.  
 Now as in case of strong neutrosophic bivector spaces we 
can define the bibasis of a strong neutrosophic bilinear algebra 
and linearly biindependent bisubset. This task is left as an 
exercise for the interested reader. 
 
We define linear bitransformation of a strong neutrosophic 
bilinear algebra into a strong neutrosophic bilinear algebra 
which we choose to call as strong neutrosophic linear 
bitransformation or when the context of reference is clear we 
just call it as strong bilinear transformation or in short just 
bilinear transformation or linear bitransformation. 
 
DEFINITION 2.3.31: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
strong neutrosophic bilinear algebras over the same 
neutrosophic bifield F = F1 ∪ F2. A bimap T = T1 ∪ T2 : V = V1 
∪ V2 → W = W1 ∪W2 is defined to be a strong neutrosophic 
bilinear transformation or strong bilinear transformation or 
just bilinear transformation if each Ti : Vi → Wi is a linear 
transformation of Vi to Wi over Fi for i = 1, 2. 
 
We will first illustrate this by some examples. 
 
Example 2.3.67: Let V = V1 ∪ V2 =  
 

17

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
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11

a b c
a,b,c,d,e,f ,g,h,i Z Id e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = F1 ∪ F2 = Z17I ∪ Z11I. Take W = W1 ∪ W2 = {(a, b, 
c, d) | a, b, c, d ∈ Z17I} ∪ {(a1, a2, a3, a4, a5, a6, a7, a8, a9) | ai ∈ 
Z11I; 1 ≤ i ≤ 9} to be a strong neutrosophic bilinear algebra over 
the same neutrosophic bifield F = Z17I ∪ Z11I. The bimap T = T1 
∪ T2: V = V1 ∪ V2 → W1 ∪ W2 = W where T1: V1 → W1 and 
T2: V2 → W2 defined by 
 

T1
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = (a, b, c, d) 

and  

T2

a b c
d e f
g h i

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a, b, c, d, e, f, g, h, i) 

 
is a strong neutrosophic bilinear transformation of V to W.  
 
Example 2.3.68: Let V = V1 ∪ V2 = {N(Q)[x], all polynomials 
in the variable x with coefficients from N(Q)} ∪  
 

2

a b c
a,b,c,d,e,f ,g,h,i Z Id e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = QI ∪ Z2I. Let W = W1 ∪ W2 =  
 

2i
i i

i 0
a x | a N(Q);0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪  
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{(a1, a2, a3, a4, a5, a6) | ai ∈ Z2I; 1 ≤ i ≤ 6} be a strong 
neutrosophic bilinear space over the same neutrosophic bifield F 
= QI ∪ Z2I. Define the bimap  

T = T1 ∪ T2 : V = V1 ∪ V2 → W = W1 ∪ W2 
where T1: V1 → W1 and T2: V2 → W2 are defined by  
 

T1
i

i
i 0

a x
∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 2i

i
i 0

a x
∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  that is x → x2 

and  

T2

a b c
g d e
h i f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 → (a, b, c, d, e, f) 

 
T = T1 ∪ T2 is a strong neutrosophic bilinear transformation of 
V into W.  

If in the definition of a bilinear transformation we put W = 
V i.e., W = W1 ∪ W2 = V1 ∪ V2 i.e., Vi = Wi; i = 1, 2. That is 
the range bispace W is the same as the domain bispace then we 
call the strong neutrosophic bilinear transformation as the strong 
neutrosophic bilinear operator or strong neutrosophic linear 
bioperator on V.  
 
We will illustrate this by some examples. 
 
Example 2.3.69: Let V = V1 ∪ V2 =  
 

5

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i
i i

i 0
a x | a N(Q);0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = Z5I ∪ QI. Define T = T1 ∪ T2 a bimap from V = V1 
∪ V2 into V = V1 ∪ V2 where T1: V1 → V1 and T2: V2 → V2 is 
given by 
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T1
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
d c
b a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  

T2 i
i

i 0
a x

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 2i

i
i 0

a x
∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

 
i.e., x → x2. T is a strong neutrosophic linear bioperator on V. 
 
Example 2.3.70: Let V = V1 ∪ V2 =  
 

1 2 3

4 5 i

6

a a a
0 a a a N(Q);1 i 6
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ Z11I; 1 ≤ i ≤ 5} be a strong neutrosophic 
bilinear algebra over the bifield F = QI ∪ Z11I. Define T = T1 ∪ 
T2 : V = V1 ∪ V2 → V = V1 ∪ V2 and T1 : V1 → V1 and T2 : V2 
→ V2 given by  
 

T1 
1 2 3

4 5

6

a a a
0 a a
0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
6 5 3

4 2

1

a a a
0 a a
0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and  
T2 (a1, a2, a3, a4, a5) = (a5, a3, a4, a2, a1) 

 
T = T1 ∪ T2 is a strong neutrosophic bilinear operator on V.  
 
It is interesting to study the collection of all strong neutrosophic 
linear transformation of strong neutrosophic bilinear algebra V 
= V1 ∪ V2 into a strong neutrosophic bilinear algebra W = W1 
∪ W2 defined over the bifield F = F1 ∪ F2. 

We will denote this collection by  
 

1` 2F F FSNH (V,W)= ∪  = 
1`F 1 1SNH (V ,W )  ∪ 

2`F 2 2SNH (V ,W )  
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 =  {Collection of all bilinear transformation of V1 ∪ V2 into 
W1 ∪ W2}  

 =  {Collection of all linear transformation of V1 into W1} ∪ 
{Collection of all linear transformation of V2 into W2}.  

 
Interested reader can study and analyse the algebraic structure 
of 

1` 2F FSNH (V,W)∪ . On similar lines the set of all strong 
neutrosophic bilinear operators (linear bioperators) of a strong 
neutrosophic linear bialgebra over the neutrosophic bifield F = 
F1 ∪ F2 is denoted by  
 

1 2F FSNH (V,V)∪   =  
1`F 1 1SNH (V ,V )  ∪

2F 2 2SNH (V ,V )   

 =  
1 2F F 1 2 1 2SNH (V V ,V V )∪ ∪ ∪   

 =  {Collection of all strong neutrosophic linear bioperators of 
V = V1 ∪ V2 into V = V1 ∪ V2}. 

 =  {Collection of all strong neutrosophic linear operators of V1 
into V1} ∪ {Collection of all strong neutrosophic linear 
operators on V2 into V2}. 

 
Interested reader is requested to study the algebraic structure of 

1` 2F FSNH (V,V)∪ .We will prove the following interesting 
property about strong neutrosophic linear bitransformation. 
 
THEOREM 2.3.9: Let V = V1 ∪ V2 be a (n1, n2) bidimensional 
finite strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2. Let …

i

1 1
1 n{ }α α  ∪ …

2

2 2
1 n{ }α α  be a bibasis 

of V over F = F1 ∪ F2. Let W = W1 ∪ W2 be a strong 
neutrosophic bivector space over the same neutrosophic bifield 
F = F1 ∪ F2.  
 Let …

i

1 1
1 n{ }β β  ∪ …

2

2 2
1 n{ }β β  be any bivector in W. Then 

there is precisely a bilinear transformation T = T1 ∪ T2 from V 
= V1 ∪ V2 into W = W1 ∪ W2 such that Ti

i
j( )α  = i

j( )β  for j = 
1, 2, …, ni and i = 1, 2. 
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Proof: Given V = V1 ∪ V2 and W = W1 ∪ W2 are two strong 
neutrosophic bivector spaces defined over the neutrosophic 
bifield F = F1 ∪ F2. Let T = T1 ∪ T2 : V = V1 ∪ V2 → W = W1 
∪ W2. 
 Let 

i

1 1 1
1 2 n{ , , , }α α α…  ∪ 

2

2 2 2
1 2 n{ , , , }α α α…  be a bibasis of V. 

Given 
i

1 1 1
1 2 n{ , , , }β β β…  ∪ 

2

2 2 2
1 2 n{ , , , }β β β…  is a bivector in W = W1 

∪ W2. To prove there is a bilinear transformation T = T1 ∪ T2 
with Ti

i
j( )α  = i

j( )β  for each j = 1, 2, …, ni and i = 1, 2. For 
every α = α1 ∪ α2 in V = V1 ∪ V2 we have for every αi ∈ Vi (i 
= 1, 2) a unique 

i

i i i
1 2 nx ,x ,..., x  such that  

αi = 
i i

i i i i i i
1 1 2 2 n nx x ... xα + α + + α . 

This is true for every i; i = 1, 2. For this vector αi define  
Ti (αi) = 

i i

i i i i i i
1 1 2 2 n nx x ... xβ + β + + β  

true for i = 1, 2. Thus Ti is well defined for associating with 
each vector αi in Vi a vector Tiαi in Wi (i = 1, 2). This rule for T 
= T1 ∪ T2 is a well defined rule for each Ti : Vi → Wi; i = 1, 2.  
 From the definition it is clear that Ti

i i
j jα = β  for each j. To 

see T is bilinear. Let  
βi = 

i i

i i i i i i
1 1 2 2 n ny y ... yα + α + + α  

be in V and let Ci be any scalar from Fi. Now  
Ciαi + βi = ( ) ( )i i i

i i i i i i i i
1 1 1 n n nC x y ... C x y+ β + + + β ; 

i = 1, 2. 
 On the other hand 

Ti(Ciαi + βi) = 
1 2n n

i i i i i
j j j j

j 1 j 1
C x y

= =

β + β∑ ∑  

true for each i = 1, 2; i.e., true for every linear transformation Ti 
in T.  

Ti(Ciαi + βi) = Ci Ti (αi) + Ti (βi) 
true for every i. 

Thus  
T (Cα + β) = T1 (C1α1 + β1) + T2 (C2α2 + β2). 

If S = S1 ∪ S2 is a bilinear transformation from V = V1 ∪ V2 

into W = W1 ∪ W2 with Si
i i
j jα = β ; j = 1, 2, …, ni, i = 1, 2 then 
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for any bivector α = α1 ∪ α2 we have for every αi in α (i = 1, 
2); 

αi = 
in

i i
j j

j 1
x

=

α∑  

We have  

Siαi  =  
in

i i
i j j

j 1
S y

=

α∑  

=  ( )
in

i i
j i j

j 1
x S

=

α∑  

=  
in

i i
j j

j 1
x

=

β∑  

 
so that S is exactly the rule T which we have defined. The prove 
Tα = β; i.e., if α  = α1 ∪ α2 and β  = β1 ∪ β2 then Ti

i i
j jα = β ; 1 ≤ 

j ≤ ni; i = 1, 2. 
 The reader is requested to make the bimatrix analogue of 
the linear bitransformation from a strong neutrosophic bivector 
space V into a strong neutrosophic bivector space defined over 
the same neutrosophic bifield F = F1 ∪ F2. 
 
Now we proceed onto define the notion of binull space or null 
bispace and birank of a bilinear transformation T. 
 
DEFINITION 2.3.32: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
strong neutrosophic bivector spaces defined over the 
neutrosophic bifield F = F1 ∪ F2 of bidimensions (n1, n2) and 
(m1, m2) respectively. Let T = T1 ∪ T2 : V = V1 ∪ V2 → W = W1 
∪ W2 be a bilinear transformation. The binull space or null 
bispace of T = T1 ∪ T2 is the set of all bivectors a = α1 ∪ α2 in 
V such that Ti αi = 0; i = 1, 2.  
 If V is finite dimensional the birank of T is the dimension of 
the birange of T = T1 ∪ T2 and binullity of T is the dimension of 
the null bispace of T.  
 
We have the following interesting relation between the birank of 
T and binullity of T. 
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THEOREM 2.3.10: Let V = V1 ∪ V2 and W = W1 ∪ W2 be strong 
neutrosophic bivector space defined over the neutrosophic 
bifield F = F1 ∪ F2 and suppose V is finite say (n1, n2) 
dimensional T is a linear bitransformation from V into W. Then 
birank T + binullity T = bidimension V = (n1, n2). Thus (rank T1 
∪ rank T2) + (nullity T1 ∪ nullity T2) = (n1, n2).  
 
The proof is left as an exercise to the reader.  

Now as in case of usual neutrosophic bivector spaces we 
have in case of strong neutrosophic bivector spaces the 
following result to be true.  

Suppose V = V1 ∪ V2 and W = W1 ∪ W2 be any two strong 
neutrosophic bivector spaces over the bifield F = F1 ∪ F2. 
 Let T and S be strong neutrosophic linear bitransformations 
from V into W. The bifunction  

(T + S) = (T1 ∪ T2 + S1 ∪ S2) = (T1 + S1) ∪ (T2 + S) 
is defined by  

(T + S)α = Tα + Sα; 
i.e.,  
(T1 ∪ T2 + S1 ∪ S2) (α1 ∪ α2) = (T1 + S1) (α1) ∪ (T2 + S2) (α2) 

= (T1α1 + S1α1) ∪ T2α2 + S2α2. 
 
 For any C ∈ F1 ∪ F2 = F the bifunction CT is defined by 
(CT)α = C(Tα) is a linear bitransformation from V into W. 
Further it can be proved that the set of all linear 
bitransformations from V = V1 ∪ V2 into W = W1 ∪ W2 
together with addition and scalar multiplication defined above is 
a strong neutrosophic bivector space over the same neutrosophic 
bifield F = F1 ∪ F2. Further it can be proved that if V = V1 ∪ V2 
be a finite bidimension (n1, n2) strong neutrosophic bivector 
space over the bifield F = F1 ∪ F2 and W = W1 ∪ W2 be a finite 
(m1, m2) bidimension strong neutrosophic bivector space over 
the same neutrosophic bifield F = F1 ∪ F2, then the bispace 

1 2F FSNH (V,W)∪  = SNL2 (V, W) is a finite bidimensional 
bispace of bidimension (m1n1, m2n2) over the same neutrosophic 
bifield F = F1 ∪ F2. These results hold good when the strong 
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neutrosophic bivector spaces are strong neutrosophic bilinear 
algebras. 
 

We now proceed onto define biinvertible bilinear 
transformation.  
 
DEFINITION 2.3.33: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
strong neutrosophic bivector spaces defined over the same 
neutrosophic bifield F = F1 ∪ F2 of type II. A bilinear 
transformation T = T1 ∪ T2 from V into W is biinvertible if and 
only if  
i. T = T1 ∪ T2 is one to one that is each Ti is one to one from 

Vi into Wi such that Tiαi = Ti βi implies αi = βi true for each 
i, i = 1, 2, …, n. 

ii. T is onto, that is birange of T is all of W = W1 ∪ W2 i.e., 
each Ti : Vi → Wi is onto and range Ti is all of Wi true for 
every i; i = 1, 2.  

 
We will first illustrate this situation by some examples. 
 
Example 2.3.71: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ Z11I; 1 ≤ i ≤ 5} be a strong neutrosophic 
bilinear algebra defined over the neutrosophic bifield F = Z7I ∪ 
Z11I. Define T = T1 ∪ T2: V = V1 ∪ V2 → V = V1 ∪ V2 where  

T1 : V1 → V1 and T2 : V2 → V2. 
such that  

T1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
b a
d c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  
T2 (a1, a2, a3, a4, a5) = (a5, a4, a3, a2, a1). 

 Clearly T = T1 ∪ T2 is a strong neutrosophic linear 
bioperator of V into V. 
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Take S = S1 ∪ S2 and define from V = V1 ∪ V2 to V = V1 ∪ 
V2 by   

S1
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
b a
d c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  
S2 (a1, a2, a3, a4, a5) = (a5, a4, a3, a2, a1). 

 
S = S1 ∪ S2 = T = T1 ∪ T2 such that S is a strong neutrosophic 
linear bioperator of Vinto V. 
 We see T1 ⋅ T1 = T1 ⋅ S1 = S1 ⋅ T1 is identity linear bioperator 
on V. We have S1 = T1. 
 For consider  

T1 ⋅ S1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

= S1 1

a b
T

c d
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  

 

= S1 
b a
d c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a b
d c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 . 

Thus  

S1 T1 
a b
d c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a b
d c

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

hence  
S1 ⋅ T1 = T1 ⋅ S1 = T1 ⋅ T1 = S1 ⋅ S1 

(as S1 = T1) is such that T1 = 1
1T− . 

 Now consider T2 : V2 → V2 we see T2 = S2 
 

T2 ⋅ S2 [(a1, a2, a3, a4, a5)] = T2 (a5, a4, a3, a2, a1) 
= (a1, a2, a3, a4, a5) 

= identity bioperator on V2. 
 
Thus T2 = 1

2T− . We see T = T1 ∪ T2 has the inverse bioperator 
T-1 = 1

1T−  ∪ 1
2T− . 

 
Now we can also give an example of a linear bitransformation 
of strong neutrosophic bivector spaces (or bilinear algebras). 
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Example 2.3.72: Let V = V1 ∪ V2 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3
i 11

4 5 6

a a a
a Z I;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a strong neutrosophic bivector space over the neutrosophic 
bifield F = Z7I ∪ Z11I.  
 Take W = W1 ∪ W2 =  
 

7

a 0 b
a,b,c,d Z I

0 c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4 i 11

5 6

a a
a a a Z I;1 i 6
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
to be a strong neutrosophic bivector space over the same 
neutrosophic bifield F = Z7I ∪ Z11I. Define T = T1 ∪ T2 : V = 
V1 ∪ V2 → W = W1 ∪ W2 where T1 : V1 → W1 and T2 : V2 → 
W2 such that  

T1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a 0 b
0 c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  

T2 1 2 3

4 5 6

a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
T = T1 ∪ T2 is a neutrosophic linear bitransformation of V = V1 
∪ V2 into W = W1 ∪ W2. 
Define a bimap S = S1 ∪ S2:  
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W = W1 ∪ W2 → V = V1 ∪ V2 
 where S1 : W1 → V1 and S2 : W2 → V2 such that  
 

S1 
a 0 b
0 c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  

S2 
1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 1 2 3

4 5 6

a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
S = S1 ∪ S2 is clearly a linear transformation from W = W1 ∪ 
W2 to V = V1 ∪ V2. 
Now we find T⋅ S and S ⋅ T.  
 

T ⋅ S = T1 ⋅ S1 ∪ T2 ⋅ S2 
Now  

T1 ⋅ S1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = S1 ⋅ T1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

= S1 
a 0 b
0 c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
That is T1⋅ S1 is the identity transformation of V1. 
 Now consider  
 

S1 ⋅ T1 
a 0 b
0 c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = T1 1

a 0 b
S

0 c d
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

= T1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a 0 b
0 c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus S1 ⋅ T1 is the identity transformation of W1.  
Now consider  
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T2 ⋅ S2 1 2 3

4 5 6

a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = S2 1 2 3
2

4 5 6

a a a
T

a a a
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

 

= S2 
1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= 1 2 3

4 5 6

a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus T2 ⋅ S2 is the identity linear transformation on V2. 
 Consider  

 

S2 ⋅ T2 
1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  = T2 S2 
1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

= T2 1 2 3

4 5 6

a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

  = 
1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
Thus S2 ⋅ T2 is the identity linear transformation on W2. Thus T ⋅ 
S = T1 ⋅ S1 ∪ T2 ⋅ S2 is the identity bilinear transformation on V1 
∪ V2 and S ⋅ T = S1 ⋅ T1 ∪ S2 ⋅ T2 is the identity linear 
bitransformation on W = W1 ∪ W2. 

In view of this example the reader is requested to prove the 
following result. 
 
Let V = V1 ∪ V2 and W = W1 ∪ W2 be two strong neutrosophic 
bivector spaces defined over the neutrosophic bifield F = F1 ∪ 
F2 of type II. Let T = T1 ∪ T2 be a strong linear bitransformation 
from V = V1 ∪ V2 into W = W1 ∪ W2. If T is biinvertible then 
the biinverse bifunction T-1 = 1

1T−  ∪ 1
2T−  is a bilinear 

transformation from W into V. 
 Suppose T = T1 ∪ T2 is a linear bitransformation from the 
strong neutrosophic bivector spaces V = V1 ∪ V2 into W = W1 
∪ W2 then T is binon singular if and only if T carries each 
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bilinearly independent bisubset of V = V1 ∪ V2 into a bilinearly 
independent bisubset of W = W1 ∪ W2. 
 
The following nice result is left as an exercise for the reader. 
 
THEOREM 2.3.11: Let V = V1 ∪ V2 and W = W1 ∪ W2 be a 
strong neutrosophic bivector spaces defined over the same 
neutrosophic bifield F = F1 ∪ F2 of type II. If T = T1 ∪ T2 is a 
bilinear transformation of V into W then the following are 
equivalent. 

i. T = T1 ∪ T2 is biinvertible 
ii. T = T1 ∪ T2 is binon singular  

iii. T = T1 ∪ T2 is onto that is the birange of T = T1 ∪ T2 is 
W = W1 ∪ W2. 

 
We prove an important result. 
 
THEOREM 2.3.12: Every (n1, n2) bidimensional strong 
neutrosophic bivector space V = V1 ∪ V2 defined over the 
neutrosophic bifield F = F1 ∪ F2 is biisomorphic to ∪1 2n n

1 2F F . 
 
Proof: Let V = V1 ∪ V2 be a (n1, n2) bidimensional strong 
neutrosophic bivector space over the neutrosophic bifield F = F1 
∪ F2 of type II. Let B = { }1

1 1 1
1 2 n, , ,α α α…  ∪ { }2

2 2 2
1 2 n, , ,α α α…  be 

a bibasis of V. We define a bifunction T = T1 ∪ T2 from V = V1 
∪ V2 into 1 2n n

1 2F F∪  is follows. 
 If α =  α1 ∪ α2 is in V = V1 ∪ V2, let Tα = T1(α1) ∪ T2(α2) 
be the (n1, n2) pair, ( ) ( )1 2

1 1 1 1 2 2
1 2 n 2 2 nx , x , , x x ,x , , x∪… …  of the 

bicoordinate of α =  α1 ∪ α2 relative to the biordered bibasis B; 
i.e., the (n1, n2) pair such that 

α  = 
1 1

1 1 1 1 1 1
1 1 2 2 n nx x xα + α + + α…  ∪ 

2 2

2 2 2 2 2 2
1 1 2 2 n nx x xα + α + + α… . 

Clearly T is a linear bitransformation; T is a one to one map 
of V = V1 ∪ V2 onto 1 2n n

1 2F F∪  or each Ti is linear and one to 
one and maps Vi to in

iF ; i = 1, 2 for every i. Thus as in case of 
vector space transformation by matrices give a representation of 
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bitransformation by bimatrices where the bimatrices are 
neutrosophic bimatrices. 

Let V = V1 ∪ V2 be a bivector space of (n1, n2) bidimension 
over F = F1 ∪ F2. Let W = W1 ∪ W be a bivector space over the 
same bifield F = F1 ∪ F2 of (m1, m2) dimension. Let  

B = { }1

1 1 1
1 2 n, , ,α α α…  ∪ { }2

2 2 2
1 2 n, , ,α α α…  

be a bibasis of V = V1 ∪ V2 and  
C = { }1

1 1 1
1 2 m, , ,β β β…  ∪{ }2

2 2 2
1 2 m, , ,β β β…  

be a bibasis for W. If T = T1 ∪ T2 is any bilinear transformation 
of type II from V = V1 ∪ V2 into W = W1 ∪ W2 then Ti is 
determined by its action on αi, i = 1, 2. Each of the (n1, n2) pair 
vector; Ti

i
jα  ; j = 1, 2, …, n. i = 1, 2 is uniquely expressible as a 

linear combination  

Ti
i
jα  =

i

i , j i

i

m
i i
k k

k 1

A
−

β∑ . 

This is true for every i, 1 ≤ j ≤ ni; i = 1, 2; of 
i

i
kβ ; the scalars 

being the coordinates of 
i

i i
ij m jA ,...,A . Ti

i
jα  in the basis 

i

i i
1 m, ,β β…  of C. True for each i; i = 1, 2. 

 
Accordingly the bitransformation T = T1 ∪ T2 is determined 

by the (m1n1, m2n2) scalars 
i

i
k jA . The mi × ni neutrosophic 

matrix Ai defined by 
i

i
k jA  is called the component neutrosophic 

matrix Ti of T relative to the component basis { }i

i i i
1 2 n, , ,α α α…  

and { }i

i i i
1 2 m, , ,β β β…  of B and C respectively. Since this is true 

for every i; i = 1, 2; We have A = 
1 2

1 2
k j k jA A∪  = A1 ∪ A2 the 

neutrosophic bimatrix associated with T = T1 ∪ T2. Each Ai 
determines the linear transformation Ti; for i = 1, 2. If αi = 

i i

i i i i i i
1 1 2 2 n nx x x .α + α + + α…  is a neutrosophic vector in Vi then  

Ti αi  = 
in

i i
i j j

j 1
T x

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑   = 

in
i i
j i j

j 1
x T

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  
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= 
i i

i i

n m
i i i
j k j k

j 1 k 1
x A

= =

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑ ∑  = ( )

i i

i i

m n
i i i
k j j k

k 1 j 1
A x

= =

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑∑ ; i = 1, 2. 

 
If Xi is the coordinate neutrosophic matrix of αi in the 
component bibasis of B then the above computation shows that 
Ai Xi is the coordinate neutrosophic matrix of the vector Tiαi; 
that is the component of the bibasis C because the scalar  
 

i

i i

n
i i
k j k

j 1
A x

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

 
is the kth row of the column neutrosophic matrix AiXi. This is 
true for every i; i = 1, 2. Let us also observe that if Ai is any mi 
× ni neutrosophic matrix over the neutrosophic field Fi, then  
 

Ti

in
i i
j j

j 1
x

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  = 

i i

i j i

m n
i i i
k j k k

k 1 j 1
A x

= =

⎛ ⎞⎛ ⎞
β⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑  

 
defines a linear transformation Ti from Vi into Wi, the 
neutrosophic matrix of which is Ai relative to { }i

i i i
1 2 n, , ,α α α…  

and { }i

i i i
1 2 m, , ,β β β… ; this is true for every i and i = 1, 2. Hence 

T = T1 ∪ T2 is a linear bitransformation from V = V1 ∪ V2 into 
W = W1 ∪ W2, the neutrosophic bimatrix which is A = A1 ∪ A2 
relative to the bibasis B = { }1

1 1 1
1 2 n, , ,α α α…  ∪ { }2

2 2 2
1 2 n, , ,α α α…  

and C = { }1

1 1 1
1 2 m, , ,β β β…  ∪ { }2

2 2 2
1 2 m, , ,β β β… . 

Now as in case of bivector spaces of type II we can in case 
of strong neutrosophic bivector spaces prove that we can 
construct a biisomorphism between the strong neutrosophic 
bispace NL2(V, W) and the neutrosophic bispace of all 
neutrosophic bimatrices of biorder (m1 × n1, m2 × n2) over the 
same neutrosophic bifield F = F1 ∪ F2 over which V = V1 ∪ V2 
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and W = W1 ∪ W2 are defined as strong neutrosophic bivector 
spaces of bidimensions (n1, n2) and (m1, m2) respectively. 
 
Now we will proceed onto define the notion of bilinear 
functionals or which we may call as linear bifunctionals. We 
know linear bifunctionals could not be defined for neutrosophic 
bivectors spaces of type I.  
 
Let V = V1 ∪ V2 be a strong neutrosophic bivector space over 
the neutrosophic bifield F = F1 ∪ F2 of type II. A bilinear 
transformation or linear bitransformation f = f1 ∪ f2 from V into 
the bifield F = F1 ∪ F2 is defined as the linear bifunctional or 
bilinear functional on V, i.e., f = f1 ∪ f2 is a bifunction from V = 
V1 ∪ V2 into F = F1 ∪ F2 such that  
f (cα + β)  =  f1 (c1α1 +  β1) + f2 (c2α2 + β2)  

=  {c1f1(α1) ∪ c2f2(α2)} + {f1(β1) ∪ f2(β2)}  
where c = c1 ∪ c2 and α = α1 ∪ α2 and β = β1 ∪ β2, βi αi ∈ Vi, i 
= 1, 2. That is f = f1 ∪ f2 where each fi is a linear functional on 
Vi; i = 1, 2. 
 
The following observations are both interesting and important. 
Let F = F1 ∪ F2 be a neutrosophic bifield and let 1 2n n

1 2F F∪  be a 
strong neutrosophic bivector space of type II over the bifield F1 
∪ F2. A bilinear functional f = f1 ∪ f2 from 1 2n n

1 2F F∪  to F1 ∪ F2 
given by 

f1 ( ) ( )1 2

1 1 1 1 2 2
1 2 n 2 2 2 nx , x ,..., x f x ,x ,..., x∪  

= 
1 1

1 1 1 1 1 1
1 1 2 2 n nx x x .α + α + + α…  ∪ 

2 2

2 2 2 2 2 2
1 1 2 2 n nx x x .α + α + + α…  

where i
jα ∈ Fi; 1 ≤ j ≤ ni and i = 1, 2; is a bilinear functional of 

1 2n n
1 2F F∪ . 

It is the bilinear functional which is represented by the 
neutrosophic bimatrix  

1

1 1 1
1 2 n, ,...,⎡ ⎤α α α⎣ ⎦  ∪ 

2

2 2 2
1 2 n, ,...,⎡ ⎤α α α⎣ ⎦  

relative to the standard bibasis for 1 2n n
1 2F F∪  on the bibasis {1} 

∪ {1} or {I} ∪ {I} for F = F1 ∪ F2 depending on Fi = N(Ki) or 
Fi = KiI respectively; Ki – real field; i = 1, 2. 
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i
jα  = fi( i

jE ) ; j = 1, 2, …, ni for every i = 1, 2. Every bilinear 

functional on 1 2n n
1 2F F∪  is of this form for some biscalar 

{ }1

1 1 1
1 2 n, , ,α α α…  ∪ { }2

2 2 2
1 2 n, , ,α α α… . This is immediate from the 

definition of bilinear functional of type II because we define i
jα  

= fi( i
jE ). Hence  

 
f1 ( ) ( )1 2

1 1 1 1 2 2
1 2 n 2 2 2 nx , x , , x f x ,x , , x∪… …  

 =  f1

1n
1 1
j j

j 1
x E

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  ∪ f2

2n
2 2
j j

j 1
x E

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

 =  ( )
1n

1 1
j 1 j

j 1
x f E

=
∑  ∪ ( )

2n
2 2
j 2 j

j 1
x f E

=
∑  

 =  
1n

1 1
j j

j 1
x

=

α∑  ∪ 
2n

2 2
j j

j 1
x

=

α∑ . 

  
Now we proceed onto define the new notion of strong 
neutrosophic bidual space or equivalently strong dual bispace of 
the strong neutrosophic bivector space V = V1 ∪ V2 defined 
over the neutrosophic bifield F = F1 ∪ F2 of type II. 
 Now as in case of SNL2(V, W)  = SNL(V1, W1) ∪ SNL(V2, 
W2) we in case of bilinear functional have SNL2(V, F) = 
SNL(V1, F1) ∪ SNL(V2, F2). We define V* = SNL2(V, F) = 

* *
1 2V V∪  = SNL (V1, F1) ∪ SNL (V2, F2) 

 That is each *
iV  is the strong neutrosophic dual space of Vi, 

Vi defined over Fi, i = 1, 2. We know if the strong neutrosophic 
vector space Vi, dim Vi = dim *

iV for every i, 1 ≤ i ≤ 2.  
Thus  
  dim V  =  dim V1 ∪ dim V2  

=  dim V*  
=  * *

1 2dim V dim V∪ . 
If B = { }1

1 1 1
1 2 n, , ,α α α…  ∪ { }2

2 2 2
1 2 n, , ,α α α…  is a bibasis for V = 

V1 ∪ V2, then we know for a bilinear function of type II, f = f1 
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∪ f2 we have fk on Vk is such that ( )k k
i jf α  = k

ijδ  true for k = 1, 

2. In this way we obtain from the biset B = B1 ∪ B2 a pair of ni 
sets of distinct bifunctionals (i = 1, 2); { }1

1 1 1
1 2 nf ,f ,..., f  ∪ 

{ }2

2 2 2
1 2 nf ,f ,..., f  on V = V1 ∪ V2. These bifunctionals are also 

bilinearly independent over the bifield F = F1 ∪ F2, i.e., 
{ }i

i i i
1 2 nf , f ,..., f  is linearly independent on Vi over the 

neutrosophic field Fi, for every i, 1 ≤ i ≤ 2. 
Thus  

fi = 
in

1 1
j j

j 1
c f

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ , i = 1, 2. 

That is  

f   =  
1n

1 1
j j

j 1
c f

=
∑  ∪ 

2n
2 2
j j

j 1
c f

=
∑ . 

( )i i
jf α  = ( )

in
i i k
k k j

k 1
c f

=

α∑  

= 
in

i
k ki

k 1
c

=

δ∑   

=  i
jc .  

This is true for i = 1, 2 and 1 ≤ j ≤ ni. 
In particular if each fi is a zero functional i 1

jf α  = 0 for each 

j and hence the scalar i
jc  are all zero. Thus { }i

i i i
1 2 nf , f ,..., f  are ni 

linearly independent linear functionals of Vi defined on Fi, true 
for each i; 1 ≤ i ≤ 2. Since *

iV  is of dimension ni; it must be that 

{ }i

i i i
1 2 nf , f ,..., f  is a basis of *

iV  which is the dual basis of B. Thus 

B* = * *
1 2B B∪  = { }1

1 1 1
1 2 nf ,f ,..., f  ∪ { }2

2 2 2
1 2 nf ,f ,..., f  is the bidual 

basis or dual bibasis of B = { }1

1 1 1
1 2 n, ,...,α α α  ∪ { }2

2 2 2
1 2 n, ,...,α α α . 

B* forms the bibasis of V* = * *
1 2V V∪ .  

 
Interested reader is left with the task of proving the following 
theorem. 
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THEOREM 2.3.13: Let V = V1 ∪ V2 be a finite (n1, n2) 
bidimension strong neutrosophic bivector space defined over 
the neutrosophic bifield F = F1 ∪ F2. Let B = { }…

1

1 1 1
1 2 n, , ,α α α  

∪ { }…
2

2 2 2
1 2 n, , ,α α α  = B1 ∪ B2 be a bibasis for V = V1 ∪ V2. 

There is a unique bidual basis (dual bibasis) B = ∪* *
1 2B B  = 

{ }…
1

1 1 1
1 2 nf , f , , f  ∪ { }…

2

2 2 2
1 2 nf , f , , f  for V* = ∪* *

1 2V V such that 

( )k
i jf α  = k

ijδ . For each bilinear functional f = f 1 ∪ f 2 we 

have  

f = 
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

in
i i i

k k
k 1

f ( ) fα . 

That is  

f = ( ) ( )
= =

⎛ ⎞ ⎛ ⎞
∪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

1 2n n
1 1 1 2 2 2

k k k k
k 1 k 1

f f f fα α  

 
and for each bivector α = α1 ∪ α2 in V = V1 ∪ V2 we have  

 

α = ( ) ( )
= =

⎛ ⎞ ⎛ ⎞
∪⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑

i 2n n
1 1 1 2 2 2

k k k k
k 1 k 1

f fα α α α . 

 
Now we proceed onto defined yet a new feature of the strong 
neutrosophic bivector space of type II.  

Let V = V1 ∪ V2 be a strong neutrosophic bivector space  
defined over the neutrosophic bifield F = F1 ∪ F2 of type II. Let 
S = S1 ∪ S2 be a bisubset of V = V1 ∪ V2 (that is Si ⊆ Vi; i = 1, 
2); the biannihilator of S is S° = 1 2S S° °∪  of bilinear functionals 
on V = V1 ∪ V2 such that f(α) = 0 ∪ 0 i.e., if f = f 1 ∪ f 2 for 
every α = α1 ∪ α2 ∈ S = S1 ∪ S2 (α1∈ S1, α2 ∈ S2); f i(αi) = 0 
for every αi ∈ Si; i = 1, 2.  

It is interesting to note that S° = 1 2S S° °∪  is a strong 
neutrosophic bisubspace of V* = * *

1 2V V∪  ; whether S = S1 ∪ S2 
is a bisubspace of V = V1 ∪ V2 or only just a bisubset of V = V1 
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∪ V2. If S = (0 ∪ 0) then S° = V* = * *
1 2V V∪ . If S = V, i.e., V1  

∪ V2 = S1 ∪ S2 then S° is just the zero bisubspace of V* = 
* *

1 2V V∪ . 
 
We leave the following theorem for the reader to prove.  

 
THEOREM 2.3.14: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space of (n1, n2) bidimension over the neutrosophic 
bifield F = F1 ∪ F2 of type II. Let W = W1 ∪ W2 be a strong 
neutrosophic bisubspace of V = V1 ∪ V2. Then dim W + dim W° 
= dim V that is (dim W1 ∪ dim W2) + dim °

1W  ∪ dim °
2W  = dim 

V1 ∪ dim V2 = (n1, n2). (That is if dim W = (k1, k2) = dim W1 ∪ 
dim W2 that is (k1, k2) + (n1 – k1, n2 – k2) = (n1, n2)). 
 

Now only in case of strong neutrosophic bivector spaces of 
finite (n1, n2) bidimension over the neutrosophic bifield F = F1 
∪ F2 we are in a position to define the strong neutrosophic 
bihyper subspaces of V = V1 ∪ V2.  
 Suppose V = V1 ∪ V2 be a strong neutrosophic bivector 
space over the neutrosophic bifield F = F1 ∪ F2 of (n1, n2) 
bidimension. f = f 1 ∪ f 2 be a bilinear functional on V. The 
binull space of f or the null bisubspace of f denoted by Nf = 

1 2
1 2
f f

N N∪ . 

 The bidimension of Nf = dim 1 2
1 2
f f

N N∪ ; but dim i
i
f

N  = dim 
Vi

– 1 = ni – 1 true for i = 1, 2. Thus bidimensin of Nf = dim (V1 – 
1) ∪ dim (V2 – 1) = 1 2

1 2
f f

dim N dim N∪ . 
 
We know in a vector space of dimension n a subspace of 
dimension n – 1 is called a hypersubspace likewise in a strong 
neutrosophic bivector space of bidimenion (n1, n2) over the 
neutrosophic bifield F = F1 ∪ F2 the bisubspace of bidimension 
(n1 – 1, n2 – 1), we call that bisubspace to be a strong 
neutrosophic bihypersubspace of V. 
Thus Nf = 1 2

1 2
f f

N N∪  is a strong neutrosophic bihyper subspace 
of the strong neutrosophic bivector space of V = V1 ∪ V2.  
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 One can prove as in case of bivector space in case of strong 
neutrosophic bivector spaces of type II if W1 = 1 2

1 1W W∪  and 
W2 = 1 2

2 2W W∪  be strong neutrosophic bivector subspaces of a 
strong neutrosophic bivector space V = V1 ∪ V2 over the 
neutrosophic bifield F = F1 ∪ F2 of bidimension (n1, n2) then W1 
= W2 if and only if 1 2W W° °=  that is if and only if 

( ) ( )i i
1 2W W

° °
=  for i = 1, 2.  

 Further as in case of bivector spaces of type II we can 
define the concept of dual space of a dual space V* = * *

1 2V V∪  = 
V1 ∪ V2. 
 Let V = V1 ∪ V2 be a strong neutrosophic bivector space 
over the neutrosophic bifield F = F1 ∪ F2 (i.e., each Vi is a 
strong neutrosophic vector space over Fi, i = 1, 2) Let V* = 

* *
1 2V V∪  be the bivector space which is the bidual of V over the 

same bifield F = F1 ∪ F2. The bidual of the bidual space V*, i.e., 
V** in terms of the bibasis and bidual basis is given in the 
following:  
 Let α =  α1 ∪ α2 be a strong neutrosophic bivector space V 
= V1 ∪ V2 then α induces bilinear function Lα = 1 2

1 2L L
α α

∪  
defined by  

Lα(f)  =  1 2
1 1 2 2L (f ) L (f )
α α

∪   
=  f (α)  
=  f1(α1) ∪ f2(α2)  

 
f ∈ * *

1 2V V∪  = V*; fi ∈ *
iV ; i = 1, 2. The fact each i

iL
α

 is linear is 

just a reformation of the definition of the linear operators on *
iV  

for each i = 1, 2. The fact that each i
iL
α

 is linear is just a 

reformation of the definition of linear operators in *
iV ; i = 1, 2. 

 
Lα(cf + g)  =  1

1L
α

(c1f1 + g1) + 2
2L
α

(c2f2 + g2) 
   =   (c1f1 + g1) (α1) ∪ (c2f2 + g2) (α2) 
    =  c1f1 (α1) + g1(α1) ∪ c2f2 (α2) + g2(α2)  
    =  c1 Lα(f) + Lα(g) 
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where f = f1 ∪ f2 and g = g1 ∪ g2 . If V = V1 ∪ V2 is a strong 
neutrosophic finite (n1, n2) bidimensional and α ≠ 0 = α1 ∪ α2 
then Lα = 1 2

2 2L L
α α

∪  ≠ 0 ∪ 0, in other words there exists a 
bilinear function f = f1 ∪ f2 such that f(α) ≠ 0; i.e., f(α) = f1(α1) 
∪ f2(α2) for each fi(αi) ≠ 0; i = 1, 2. Further the bimapping α  = 
α1 ∪ α2 → Lα = 1 2

2 2L L
α α

∪  is a biisomorphism of V = V1 ∪ V2 

on to V** = ** **
1 2V V∪ .  

Several properties in this direction can be analysed by any 
interested reader. 

It can be easily proved as in case of bivector spaces of type 
II; 

 “If S = S1 ∪ S2 is any biset of a (n1, n2) bifinite dimensional 
strong neutrosophic bivector space V = V1 ∪ V2 then (S°) ° = 

( ) ( )( )oo o
1 2S S∪  = ( ) ( )o oo o

1 2S S∪  is the bisubspace spanned by S 

= S1 ∪ S2. 
 Thus if V = V1 ∪ V2 is a strong neutrosophic bivector space 
of type II defined over the neutrosophic bifield F = F1 ∪ F2. We 
define the bihypersubspace or hyperbispace of V = V1 ∪ V2. 
Assume V = (V1 ∪ V2) is a (n1, n2) dimension over F = F1 ∪ F2. 
If N = N1 ∪ N2 is a bihyperspace of V that is N = N1 ∪ N2 is of 
(n1 – 1, n2 – 1) bidimensional over F = F1 ∪ F2 then we can 
define N = N1 ∪ N2 to be a hyper space of V if  
 
(1) N = N1 ∪ N2 is a proper strong neutrosophic bivector 

subspace of V. 
(2) If W is a strong neutrosophic bisubspace of V which 

contains N then either W = N or W = V.  
 
Condition (1) and (2) together say that N = N1 ∪ N2 is a proper 
strong neutrosophic bisubspace and there is no larger proper 
strong neutrosophic bisubspace; in short N = N1 ∪ N2 is a 
maximal proper strong neutrosophic bisubspace of V. Thus if V 
= V1 ∪ V2 is a strong neutrosophic bivctor space over the 
neutrosophic bifield F = F1 ∪ F2, a bihyper space in V = V1 ∪ 
V2 is a maximal proper strong neutrosophic bisubspace of V = 
V1 ∪ V2 over the neutrosophic bifield F = F1 ∪ F2. 
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The following property about bihyperspace of V can be 
easily proved. 

If f = f1 ∪ f2 is a nonzero bilinear functional on the strong 
neutrosophic bivector space V = V1 ∪ V2 over the neutrosophic 
bifield F = F1 ∪ F2 of (n1, n2) finite bidimension over F then the 
bihyperspace of V is the binull space of a non zero bilinear 
functional on V. It need not be unique. 
 
We just give another interesting property about strong 
neutrosophic bivector spaces over a bifield of type II. 
 
Let V = V1 ∪ V2 and W = W1 ∪ W2 be two strong neutrosophic 
bivector spaces over the same neutrosophic bifield F = F1 ∪ F2. 
For each bilinear transformation T = T1 ∪ T2 from V = V1 ∪ V2 
into W = W1 ∪ W2 there is a unique bilinear transformation Tt = 

t t
1 2T T∪  from W* = * *

1 2W W∪  into V* = * *
1 2V V∪  such that  

( )t
gT α    =   ( )1 2

t t
1g 2gT T∪  (α1 ∪ α2)  

 =   g1(T1α1) ∪ g2(T2 α2)  
 =   g(Tα)  

for every g = g1 ∪ g2 ∈ W* = * *
1 2W W∪  and α = α1 ∪ α2 in V = 

V1 ∪ V2. 
We call Tt = t t

1 2T T∪  as a bitranspose of T = T1 ∪ T2. This 
bitransformaiton Tt is also called as the biadjoint of T.  
 
We now prove an important property about Tt. 
 
THEOREM 2.3.15: Let V = V1 ∪ V2 and W = W1 ∪ W2 be any 
two strong neutrosophic bivector spaces over the neutrosophic 
bifield F = F1 ∪ F2 and let T = T1 ∪ T2 be a strong 
neutrosophic bilinear transformation from V = V1 ∪ V2 into W 
= W1 ∪ W2. The binull space of Tt = ∪t t

1 2T T  is the 
biannihilator of the birange of T = T1 ∪ T2. If V and W are 
finite bidimensional then  
i. birank (Tt) = birank T. 

ii. The birange of Tt = ∪t t
1 2T T  is the annihilator of the binull 

space of T = T1 ∪ T2. 
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Proof: Let g = g1 ∪ g2 be in W* = * *

1 2W W∪  the dual space of 
the strong neutrosophic bivector space W = W1 ∪ W2. By 
definition we have ( )t

gT α  = g (Tα) where for each α = α1 ∪ α2 

∈ V1 ∪ V2. T = T1 ∪ T2 : V1 ∪ V2 → W1 ∪ W2. The statement 
that g = g1 ∪ g2 is in the binull space of Tt = t t

1 2T T∪  means that 
g(Tα) = 0; i.e., g1T1α1 ∪ g2T2α2 = 0 ∪ 0 for every α = α1 ∪ α2 
∈ V = V1 ∪ V2.  
 Thus the binull space Tt = t t

1 2T T∪  is precisely the 
biannihilator of the birange of T = T1 ∪ T2. Suppose V = V1 ∪ 
V2 and W = W1 ∪ W2 are finite bidimensional, we say 
bidimension V = (n1, n2) and bidimension W = (m1, m2). 
 
Proof of (i): Let r = (r1, r2) be the birank of T = T1 ∪ T2, i.e., the 
bidimension of the birange of T is (r1, r2). 
 By earlier results the biannihilator of the birange of T = T1 
∪ T2 has bidimension (m1 – r1, m2 – r2). By the first statement of 
the theorem the binullity of Tt = t t

1 2T T∪  must be (m1 – r1, m2 – 
r2). Since Tt = t t

1 2T T∪  is bilinear transformation on an (m1, m2) 
bidimensional bispace the birank of Tt = t t

1 2T T∪  is (m1- (m1 – 
r1), m2 – (m2 – r2)) and so T and Tt have the same birank. 
 
Proof for (ii): Let N = N1 ∪ N2 be the binull space of T = T1 ∪ 
T2. Every bifunction in the birange of Tt = t t

1 2T T∪  is in the 
biannihilator of N = N1 ∪ N2, for suppose f = Ttg; i.e., f1 ∪ f2 = 

t 1 t 2
1 2T g T g∪  for some g = g1 ∪ g2 in W* = * *

1 2W W∪  then if α = 
α1 ∪ α2 is in N = N1 ∪ N2 ;  
f(α)   =   f1(α1) ∪ f2(α2)  

 =   ( )t
gT α  =  ( ) ( )t 1 1 t 2 2

1 2T g T gα ∪ α   

 =   g(Tα)  
 =   g1(T1α1) ∪ g2(T2α2)  
 =   g1(0) ∪ g2 (0)  
 =   0 ∪ 0. 
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 Now the birange of Tt = t t
1 2T T∪  is a bisubspace of the 

space No = o o
1 2N N∪  and  

dim No   =   (n1 – dim N1) ∪ (n2 – dim N2)  
 =   birank T  
 =   birank Tt  

so that birange of Tt must exactly be No. 
 
THEOREM 2.3.16: Let V = V1 ∪ V2 and W = W1 ∪ W2 be two 
(n1, n2) and (m1, m2) dimensional bivector spaces over the 
neutrosophic bifield F = F1 ∪ F2. Let B be a bibasis of V and 
B* the bidual basis of V*. Let C be a bibasis of W with dual 
bibasis C*. Let T = T1 ∪ T2 be a bilinear transformation from V 
into W; let A be the neutrosophic bimatrix of T = T1 ∪ T2 
relative to B and C and let B be a neutrosophic bimatrix of Tt 
relative to B*, C*. Then =k k

ij ijB A  for k = 1, 2. That is 

∪1 2
ij ijA A  = ∪1 2

ij ijB B . 
 
Proof: Given V = V1 ∪ V2 and W = W1 ∪ W2 are strong 
neutrosophic bivector spaces over the neutrosophic bifield F = 
F1 ∪ F2. Given V = V1 ∪ V2 is (n1, n2) bidimension and W = W1 
∪ W2 is of (m1, m2) bidimension over the bifield F = F1 ∪ F2. 
Let  

B = { } { }1 2

1 1 1 2 2 2
1 2 n 1 2 n, , , , , ,α α α ∪ α α α… …  

be a bibasis of V = V1 ∪ V2 and the dual bibasis of B,  
 

B* = * *
1 2B B∪  = { } { }1 2

1 1 1 2 2 2
1 2 n 1 2 nf ,f , , f f ,f , , f∪… … . 

Let  
C = C1 ∪ C2 = { } { }1 2

1 1 1 2 2 2
1 2 m 1 2 m, , , , , ,β β β ∪ β β β… …  

be a bibasis of W = W1 ∪ W2.  
The dual bibasis of C,  

C* = * *
1 2C C∪  = { } { }1 2

1 1 1 2 2 2
1 2 m 1 2 mg ,g , ,g g ,g , ,g∪… … . 

Now by definition for α = α1 ∪ α2;  

Tk
k
jα  = 

km
k k
ij i

i 1
A

=

β∑ ; j = 1, 2, …, nk; k = 1, 2. 
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t
kT k

jg  = 
kn

k k
ij i

i 1
B f

=
∑ ; j = 1, 2, …, mk and k = 1, 2. 

Further  
( t

kT k
jg ) ( k

iα )   =   k
jg  ( t

kT k
iα ) 

     =  k
jg  

km
k k
pi p

p 1
A

=

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑  

     =  ( )
km

k k k
pi j p

p 1
A g

=

β∑   

 =   
km

pi jp
p 1

A
=

δ∑  

     =   k
jiA . 

 
For any bilinear functional f = f1 ∪ f2 on V,  

fk = ( )
km

k k k
i i

i 1
f f

=

α∑  ; k = 1, 2. 

 
If we apply this formula to the functional fk = t k

k jT g  and use the 

fact ( )t k k k
k j i jiT g Aα = , we have  

( )t k
k jT g  = 

kn
k k
ji i

i 1
A f

=
∑  

from which it follows k k
ij ijB A= ; true for k = 1, 2. That is  

1 2
ij ijB B∪  = 1 2

ij ijA A∪ . 
If A = A1 ∪ A2 is a (m1 × n1, m2 × n2) neutrosophic bimatrix 
over the neutrosophic bifield F = F1 ∪ F2 then the bitranspose of 
A is the (n1 × m1, n2 × m2) neutrosophic bimatrix At defined by 

( ) ( )t t1 2
ij ijA A∪  = 1 2

ij ijA A∪ .  

We leave it as an exercise for the reader to prove the birow 
rank of A is equal to the bicolumn rank of A, that is for each 
neutrosophic matrix Ai we have the column rank of Ai to be 
equal to the row rank of Ai; i = 1, 2.  
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 We see all these results holds good for strong neutrosophic 
bilinear algebras defined over the neutrosophic bifield F1 ∪ F2 = 
F with appropriate modification if necessary. 
 
Now we proceed onto define the notion of neutrosophic 
bipolynomial over a neutrosophic bifield F = F1 ∪ F2. 
 
DEFINITION 2.3.34: Let F[x] = F1[x] ∪ F2[x] be such that each 
Fi[x] is a polynomial over Fi, Fi a neutrosophic field; i = 1, 2 
and F1 ≠ F2 i.e., F = F1 ∪ F2 is a neutrosophic bifield. We call 
F[x] the neutrosophic bipolynomial over the neutrosophic 
bifield F = F1 ∪ F2. Any element p(x) ∈ F[x] will be the form 
p(x) = p1(x) ∪ p2(x) where pi(x) is a neutrosophic polynomial in 
Fi[x]; i.e., pi(x) is a neutrosophic polynomial in the variable x 
with coefficients from the neutrosophic field Fi, i = 1, 2. The 
bidegree of p(x) is a pair given by (n1, n2) where ni is the degree 
of the polynomial pi(x); i = 1, 2. 
 
We will illustrate this situation by some simple examples. 
 
Example 2.3.73: Let F = F1 ∪ F2 = Z3 I ∪ QI be a neutrosophic 
bifield. F[x] = F1[x] ∪ F2[x] = Z3I[x] ∪ QI[x] = {all 
polynomials in the variable x with coefficients from the 
neutrosophic field Z3I} ∪ {all polynomials in the variable x 
with coefficients from the neutrosophic field QI}is a 
bipolynomial strong neutrosophic bivector space over the 
neutrosophic bifield F = F1 ∪ F2 = Z3I ∪ QI. 
 Let p(x) = 2I + Ix + 2Ix3 + Ix7 ∪ 3I + 7Ix + 270I x7 – 5762I 
x9 + 3006I x29; p(x) ∈ F[x]. 
 
Example 2.3.74: Let F = F1 ∪ F2 = N(Q) ∪ N(Z11) be a 
neutrosophic bifield. F[x] = F1[x] ∪ F2[x] = N(Q)[x] ∪ 
N(Z11)[x] = {all polynomials in the variable x with coefficients 
from the neutrosophic field N(Q)} ∪ {all polynomials in the 
variable x with coefficients from the neutrosophic field N(Z11)} 
is a bipolynomial strong neutrosophic bivector space over the 
neutrosophic bifield F = N(Q) ∪ N(Z11). 
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 Take p(x) = p1(x) ∪ p2(x) = 3 + 17x2 – 245 x5 + 346 x7 – 
93/2 x8 + 47I x9 – 5009 x11 ∪ 3I + 8 + 4Ix + 5x2 + 10I x7 + 2x11 
+ 9x20 ∈ F[x] is a bipolynomials with coefficients from the 
bifield N(Q) ∪ N(Z11) 
 
DEFINITION 2.3.35: Let F[x] = F1[x] ∪ F2[x] be a 
bipolynomial over the neutrosophic bifield F = F1 ∪ F2. F[x] is 
a strong neutrosophic bilinear algebra over the bifield F. Infact 
F[x] is a bicommutative neutrosophic linear bialgebra over the 
bifield F. F[x] the strong neutrosophic bilinear algebra may or 
may not have the biidentity I2 = 1 ∪ I or I ∪ I or I ∪ 1 or 1 ∪ 1 
depending on the neutrosophic bifield F = F1 ∪ F2. We call a 
neutrosophic bipolynomial p(x) = p1(x) ∪ p2(x) to be bimonic 
polynomial if each pi(x) is a monic neutrosophic polynomial in x 
for i = 1, 2. We will call a neutrosophic bipolynomial to be a 
neutrosophic monic bipolynomial if for each pi(x) ∈ Fi[x] the 
coefficient associated with the highest degree is I for i = 1, 2. 
 
We will first illustrate these situations before we proceed on to 
prove further results.  
 
Example 2.3.75: Let F = F1 ∪ F2 = Z7I ∪ Z13I be a neutrosophic 
bifield. F[x] = F1[x] ∪ F2[x] = Z7I[x] ∪ Z13[x] = {all 
polynomials in the variable x with coefficients from the 
neutrosophic field Z7I} ∪ {all polynomials in the variable x 
with coefficients from the neutrosophic field Z13I} is a 
bipolynomial strong neutrosophic bilinear algebra over the 
bifield F = F1 ∪ F2 = Z7I ∪ Z13I.  
 It is easily verified that F[x] has no monic bipolynomial 
however F[x] has neutrosophic monic bipolynomials. For take  
 p(x) = Ix29 + 2I x8 + 4Ix3 + 5I ∪ Ix47 + 12Ix25 + 10I x12 + 7I 
x4 + 5Ix + 3I ∈ F1[x] ∪ F2[x]. Clearly p(x) is a neutrosophic 
monic bipolynomial in F(x). 
 
Example 2.3.76: Let F = F1 ∪ F2 = N(Z23) ∪ N(Z47) be a 
neutrosophic bifield. F[x] = F1[x] ∪ F2[x] = N(Z23)[x] ∪ 
N(Z47)[x] = {all polynomials in the variable x with coefficients 
from the neutrosophic field N(Z23)} ∪ {all polynomials in the 
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variable x with coefficients from the neutrosophic field N(Z47)}. 
F[x] is a bipolynomial strong neutrosophic bilinear algebra over 
the neutrosophic bifield F = N(Z23) ∪ N(Z47). Take p(x) = p1(x) 
∪ p2(x) ∈ N(Z23)[x] ∪ N(Z47)[x]; p(x) = {x48 + 3I x20 + 15x12 + 
4Ix26 + 13I x7 + 5x3 + 20I + 4} ∪ {x104 + 46I x100 + 45Ix79 + 
27x68 + 40x27 + 37x5 + Ix2 + 7I + 4} is a monic bipolynomial in 
F[x]. 
 
It is interesting to note that in case of these bipolynomial strong 
neutrosophic bilinear algebra the conditions under which the 
bilinear algebra will have monic bipolynomials and when it will 
never have monic bipolynomials. 
 
THEOREM 2.3.17: Let F = F1 ∪ F2 be a neutrosophic bifield 
F[x] = F1[x] ∪ F2[x] be a bipolynomial strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2.  
 If both F1 and F2 are of the form K1 I and K2 I where K1 and 
K2 are real fields then the bipolynomials strong neutrosophic 
bilinear algebra F[x] will not contain monic bipolynomial. 
 
Proof: Given F = F1 ∪ F2 is a neutrosophic bifield where F1 = 
K1 I and F2 = K2 I with K1 and K2 real fields. 
 F[x] = F1[x] ∪ F2[x] = K1I[x] ∪ K2I[x] is the bipolynomial 
strong neutrosophic bilinear algebra over the neutrosophic 
bifield F = F1 ∪ F2. We see clearly F = F1 ∪ F2 = K1I ∪ K2I 
does not contain any real element; every bipair in K1I ∪ K2I is 
neutrosophic. Hence 1 ∉ KiI for i = 1, 2. Thus no bipolynomials 
in the variable x has real coefficients i.e., no polynomial p(x) in 
the variable x in KiI[x] has real coefficients; for i = 1, 2.  
 Thus F[x] = K1I[x] ∪ K2I[x] has no monic bipolynomial.  
 Hence the claim. 
 
THEOREM 2.3.18: Let F = F1 ∪ F2 be a neutrosophic bifield. 
F[x] = F1[x] ∪ F2[x] be a bipolynomials strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. If 
each Fi is of the form N(Ki) where Ki is a real field for i = 1, 2 
then the bipolynomial strong neutrosophic linear bialgebra has 
monic bipolynomials. 
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Proof: Given F = F1 ∪ F2 = N(K1) ∪ N(K2) (where K1 and K2 
are real fields) is a neutrosophic bifield. F[x] = F1[x] ∪ F2[x] = 
N(K1)[x] ∪ N(K2)[x] is a bipolynomial strong neutrosophic 
bilinear algebra over the neutrosophic bifield F = F1 ∪ F2. 
 Now clearly Ki ⊆ N (Ki) for i = 1, 2; that is the neutrosophic 
field N (Ki) contains the real field Ki as a proper subfield, true 
for i = 1, 2. Thus 1 ∈ N (Ki) for i = 1, 2. Now we can take p(x) 
= p1(x) ∪ p2(x) where both p1(x) is a monic polynomial of the 
form say x219 + 7I x200 + 14I x14 + 27x10 + 205 in F1[x] and p2(x) 
to be a monic polynomial of the form x3 + 7x + 21I in F2[x] we 
see p(x) is a monic bipolynomial in F[x]. 
 Hence the claim 
 Thus we see when both the neutrosophic fields Fi; i = 1, 2, 
are not pure neutrosophic fields then certainly the bipolynomial 
strong neutrosophic bilinear algebra has monic bipolynomials.  
 Further even if one of the neutrosophic field Fi is a pure 
neutrosophic field that is Fi = Ki I where Ki is a real field i = 1, 
2; then F[x] = F1[x] ∪ F2[x] has no bipolynomial which is a 
monic bipolynomial. 
 The reader is expected to prove the following results. 
 
THEOREM 2.3.19: Let F[x] = F1[x] ∪ F2[x] be a strong 
neutrosophic bilinear algebra of bipolynomials over the 
neutrosophic bifield F = F1 ∪ F2 then 

i. If f(x) = f1(x) ∪ f2(x) and g(x) = g1(x) ∪ g2(x) are two non 
zero bipolynomials in F[x], the bipolynomial f(x) g(x) = 
f1(x) g1(x) ∪ f2(x) g2(x) is a non zero bipolynomial in F[x]. 

ii. The bidegree of (f(x) g(x)) = bidegree of f(x) + bidegree 
of g(x) where bidegree of f = (n1, n2) and bidegree of g = 
(m1, m2). 

iii. f(x) g(x) is monic bipolynomial if both f(x) and g(x) are 
monic polynomials and F = F1 ∪ F2 is neutrosophic 
bifield of the form F = N(K1) ∪ N(K2) where K1 and K2 
are real fields. 

iv. f(x) g(x) is a monic neutrosophic bipolynomial if both f(x) 
and g(x) are monic neutrosophic bipolynomials. (F = K1I 
∪ K2I). 
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v. If f + g  =  f1 ∪ f2 + g1 ∪ g2  
     =  (f1 + g1) ∪ (f2 + g2) 
    ≠  0 ∪ 0  
    =  max (bideg f, bideg g). 

vi. If f, g, h are bipolynomials over the neutrosophic bifield F 
= F1 ∪ F2. f(x) = f1(x) ∪ f2(x), g(x) = g1(x) ∪ g2(x) and 
h(x) = h1(x) ∪ h2(x); g(x) ≠ 0 ∪ 0, f(x) ≠ 0 ∪ 0 and h(x) ≠ 
0 ∪ 0 and if fg = fh then g = h. 

 
As in case of polynomials we can derive most of the results in 
case of neutrosophic bipolynomial. 
 Let A = A1 ∪ A2 be a strong neutrosophic bilinear algebra 
with biidentity 1 = 1 ∪ 1 over the neutrosophic bifield F = F1 ∪ 
F2 where we make the convention for any real α = α1 ∪ α2 (α1 
and α2 are both real). 

α0 = 0 0
1 2α ∪ α  = l ∪ l = l2. 

 We cannot derive the properties enjoyed by usual 
bipolynomials. 
 Thus to get the analogue of the Lagrange biinterpolation 
formula in case of bipolynomial strong neutrosophic spaces we 
have to make more assumptions. We can derive several results 
analogous to bipolynomial bilinear algebra. 

Suppose f = f1 ∪ f2 and d = d1 ∪ d2 be any two non zero 
neutrosophic bipolynomials over the neutrosophic bifield F = F1 
∪ F2 such that bideg d ≤ bideg f (i.e., bideg d = (n1, n2) and 
bideg f = (m1, m2) and ni ≤ mi for i = 1, 2 (then we say bideg d ≤ 
bideg f) then there exists a bipolynomial g = g1 ∪ g2 in F[x] = 
F1[x] ∪ F2[x] such that either f – dg = 0 that is (f1 – d1g1) ∪ (f2 – 
d2g2) = 0 ∪ 0 or bideg (f – dg) < bideg f. 
 
We have also the following interesting result in case of 
neutrosophic bipolynomials. 
 
THEOREM 2.3.20: Let f = f1 ∪ f2 and d = d1 ∪ d2 be 
bipolynomials over the neutrosophic bifield F = F1 ∪ F2 and d 
= d1 ∪ d2 is different from 0 ∪ 0 then there exists bipolynomials 
q = q1 ∪ q2 and r = r1 ∪ r2 in F[x] = F1[x] ∪ F2[x] such that f 
= dq + r; i.e., f = f1 ∪ f2 = (d1 q1 + r1) ∪ (d2 q2 + r2). 
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(2) Either r = r1 ∪ r2 = (0 ∪ 0) or bideg r < bideg d. The 
bipolynomials q = q1 ∪ q2 and r = r1 ∪ r2 satisfying the 
conditions (1) and (2) are unique. 
 
The proof is direct hence left as an exercise for the reader. 
 
DEFINITION 2.3.36: Let d = d1 ∪ d2 be a non zero bipolynomial 
over the neutrosophic bifield F = F1 ∪ F2. If f = f1 ∪ f2 is in 
F[x] = F1[x] ∪ F2[x], the proceeding theorem show there exists 
atmost one bipolynomial q = q1 ∪ q2 in F[x] such that f = dq 
i.e., f = f1 ∪ f2 = d1q1 ∪ d2q2. If such a q = q1 ∪ q2 exists we say 
that d = d1 ∪ d2 bidivides f = f1 ∪ f2 and f is bidivisible by d = 
d1 ∪ d2 and f = f1 ∪ f2 is a bimultiple of d = d1 ∪ d2 and we call 
q = q1 ∪ q2 to be the biquotient of f and d = d1 ∪ d2 and write q 
= f / d that is q = q1 ∪ q2 = f1 / d1 ∪ f2 / d2. 
 
The following result is direct. If f = f1 ∪ f2 is a bipolynomial 
over the neutrosophic bifield F = F1 ∪ F2 and c = c1 ∪ c2 be an 
element of F. f is bidivisible by x – c = (x – c1) ∪ (x – c2) if and 
only if f(c) = f1(c1) ∪ f2(c2) = 0 ∪ 0.  
 
We can prove the fundamental theorem of algebra namely that 
every polynomial of degree n has atmost n roots can be proved 
in case of neutrosophic bipolynomials. A bipolynomial f = f1 ∪ 
f2 of degree (n1, n2) over a neutrosophic bifield F = F1 ∪ F2 has 
atmost (n1, n2) biroots in F = F1 ∪ F2. Now we will prove 
Taylors formula for bipolynomials over the neutrosophic bifield 
F = F1 ∪ F2.  
 
THEOREM 2.3.21: Let F = F1 ∪ F2 be a neutrosophic bifield of 
bicharacteristic (0, 0). c = c1 ∪ c2 be an element in F = F1 ∪ F2 
and (n1, n2) be a pair of positive integers. If f = f1 ∪ f2 is a 
neutrosophic bipolynomial over the bifield F = F1 ∪ F2 with 
bideg f ≤ (n1, n2) then  

f = 
= =

− −
∪∑ ∑

1 1 2 21 2

1 2

k k k kn n
1 1 1 2 2 2

k 0 k 01 2

D f c ( x c ) D f c ( x c )
k k

.  
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Proof: We know Taylors theorem is a consequence of the 
binomial theorem and the linearity of the operators D1, D2, …, 
Dn. We know the binomial theorem  
 

(a + b)m = 
m

m k k

k 0

m
a b

k
−

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑  

 

where 
m m! m(m 1)...(m k 1)
k k!(m k)! 1.2...k k

⎛ ⎞ − − +
= =⎜ ⎟ − =⎝ ⎠

 is the familiar 

binomial coefficient giving the number of combinations of m 
objects taken k at a time.  
 
Now we apply the binomial theorem to the pair of neutrosophic 
polynomials  
 

1 2m mx x∪   =  (c1 + (x – c1) 1m)  ∪(c2 + (x – c2) 2m)   

=  
1

1 1 1

m
1 m k k

1 1
0 1

m
c (x c )

c
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑  ∪
2

2 2 2

m
2 m k k

2 2
0 2

m
c (x c )

c
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑   

=  { }1 1 1m m 1 m
1 1 1 1 1c m c (x c ) ... (x c )−+ − + + −  ∪  

{ }2 2 2m m 1 m
2 2 2 2 2c m c (x c ) ... (x c )−+ − + + −   

 
and this is the statement of Taylor’s biformula for the case  

f = 1 2m mx x∪ . 
If  

f = 
1

1

1

1

n
m1

m
m 0

a x
=

∑ ∪ 
2

2

2

2

n
m2

m
m 0

a x
=

∑ , 

k
fD (c) = 

1
1 1

1

1

n
k m1

m 1
m 0

a D x (c )
=

∑  ∪
2

2 2

2

2

n
k m2

m 2
m 0

a D x (c )
=

∑  

and  
1 11

1

k km
1 1 1

k 0 1

D f (c )(x c )
k=

−∑  ∪ 
2 22

2

k km
2 2 2

k 0 2

D f (c )(x c )
k=

−∑  



 131

=
1 1 1

1

1 1

k m k
1 1 1
m

k m 1

D x (c )(x c )a
k

−∑∑  ∪ 

2 2 2

2

2 2

k m k
2 2 2
m

k m 2

D x (c )(x c )a
k

−∑∑  

 

= 
1 1 1

1

1 1

k m k
1 1 1
m

m k 1

D x (c )(x c )a
k

−∑ ∑  ∪ 

2 2 2

2

2 2

k m k
2 2 2
m

m k 2

D x (c )(x c )a
k

−∑ ∑ . 

 
 If c = c1 ∪ c2 is a biroot of the neutrosophic bipolynomial f 
= f1 ∪ f2 with bimultiplicity c = c1 ∪ c2 as a biroot of f = f1 ∪ f2 
is the largest bipositive integer (r1, r2) such that (x – c1

1r)  ∪ (x –
c2

2r)  bidivides f = f1 ∪ f2.  
 
Now we have still an interesting result on these neutrosophic 
bipolynomials and their bimultiplicity. 
 
THEOREM 2.3.22: If F = F1 ∪ F2 is a neutrosophic bifield of (0, 
0) bicharacteristic (i.e., each Fi is of characteristic zero for i = 
1, 2) and f = f1 ∪ f2 be a neutrosophic bipolynomial over the 
bifield F = F1 ∪ F2 with bideg f ≤ (n1, n2). Then the biscalar c = 
c1 ∪ c2 is a biroot of f = f1 ∪ f2 of multiplicity (r1, r2) if and only 
if ( 1kD f1)(c1) ∪ ( 2kD f2)(c2) = 0 ∪ 0; 0 ≤ ki ≤ ri – 1; i = 1, 2. 

irD fi (ci) ≠ 0 for every i = 1, 2.  
 
Proof: Suppose that (r1, r2) is the bimultiplicity of c = c1 ∪ c2 as 
a biroot of f = f1 ∪ f2.  

Then there exists a neutrosophic bipolynomial g = g1 ∪ g2 
such that f = (x – c1

1r) g1 ∪ (x – c2
2r)  g2 and g(c) = g1(c1) ∪ 

g2(c2) ≠ 0 ∪ 0.  
 For otherwise f = f1 ∪ f2 would be bidivisible by (x – c1

1r 1) +  
∪(x – c2

2r 1) + . By Taylors biformula applied to g = g1 ∪ g2,  
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f  =  (x – c1
1r)

1 11 1

1

m mn r
1 1 1

m 0 1

(D g )(c )(x c )
m

−

=

−∑  ∪  

(x – c1
2r)

2 22 2

2

m mn r
2 2 2

m 0 2

(D g )(c )(x c )
m

−

=

−∑   

=  
1 1 11 1

1

m r mn r
1 1

m 0 1

D g (x c )
m

+−

=

−∑  ∪ 
2 2 22 2

2

m r mn r
2 2

m 0 2

(D g )(x c )
m

+−

=

−∑ . 

 
Since there is only one way to write f = f1 ∪ f2 (i.e., only one 
way to write each component fi of f; i = 1, 2) as a bilinear 
combination of bipowers of (x – c1

1k)  ∪ (x – c2
2k) ; 0 ≤ ki ≤ ni, i 

= 1, 2 it follows that  
 

( )i

i i

k i i
i i k r

i i
i i ii

i i

0 if 0 k r 1
D f (c )

D g (c ) if r k n .k
(k r )!

−

≤ ≤ −⎧
⎪= ⎨ ≤ ≤⎪ −⎩

 

 
This is true for every i, i = 1, 2. Therefore ikD fi(ci) = 0 for 0 ≤ ki 
≤ ri – 1; i = 1, 2 and irD fi(ci) ≠ gi(ci) ≠ 0 for every i, i = 1, 2. 
 Conversely if these conditions are satisfied, it follows at 
once from Taylor’s biformula that there is a neutrosophic 
bipolynomial g = g1 ∪ g2 such that f = f1 ∪ f2 = (x – c1

1r) g1 ∪ 
(x – c2

2r)  g2 and g1(c1) ∪ g2(c2) = g(c) ≠ 0 ∪ 0. 
 Now suppose that (r1, r2) is not the largest positive biinteger 
pair such that (x – c1

1r)  ∪ (x – c2
2r)  bidivides f1 ∪ f2; i.e., each 

(x – ci
ir)  divides fi; i = 1, 2. then there is a bipolynomial h = h1 

∪ h2 such that f = (x – c1
1r 1) + h1 ∪ (x – c2

2r 1) + h2. But this implies 
g = g1 ∪ g2 = (x – c1)h1 ∪ (x – c2)h2; hence g(c) = g1(c1) ∪ g2(c2) 
= 0 ∪ 0 a contradiction; hence the claim.  
 
Now we proceed onto define principal biideal generated by the 
neutrosophic bipolynomial d = d1 ∪ d2. 
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DEFINITION 2.3.37: Let F = F1 ∪ F2 be a neutrosophic bifield. 
A biideal in F[x] = F1[x] ∪ F2[x] is a strong neutrosophic 
bisubspace m = m1 ∪ m2 of F[x] = F1[x] ∪ F2[x] such that 
when f = f1 ∪ f2 and g = g1 ∪ g2 then fg = f1 g1 ∪ f2 g2 belongs 
to m = m1 ∪ m2; i.e., each figi ∈ mi whenever f is in F[x] and g 
∈ m (i = 1, 2). 
 
If in particular the biideal m = d F[x] for some bipolynomial d = 
d1 ∪ d2 in F[x] = F1[x] ∪ F2[x], i.e., the biset of all bimultiple df 
= d1f1 ∪ d2f2 of d = d1 ∪ d2 by arbitrary f = f1 ∪ f2 in F[x] = 
F1[x] ∪ F2[x] is a biideal; for m is non empty; m infact contains 
d. If f, g ∈ F[x] = F1[x] ∪ F2[x] and c = c1 ∪ c2 is a biscalar then 
c (df) – dg = (c1d1f1 – d1g1) ∪ (c2d2f2 – d2g2) = d1(c1f1 – g1) ∪ 
d2(c2f2 – g2) belongs to m = m1 ∪ m2, that is di(cifi – gi) ∈ mi; i = 
1, 2; so that m is strong neutrosophic bivector subspace. Finally 
m contains  
(df)g  =  d(fg)  

=  (d1f1)g1 ∪ (d2f2)g2  
=  d1(f1g1) ∪ d2(f2g2)  

as well m = m1 ∪ m2 is called the principal biideal generated by 
d = d1 ∪ d2. 
 
We will prove the following biprincipal ideal or principal 
biideal of F[x] = F1[x] ∪ F2[x]. 
 
THEOREM 2.3.23: Let F = F1 ∪ F2 be a bifield which is a 
neutrosophic bifield and m = m1 ∪ m2 a non zero biideal in 
F[x] = F1[x] ∪ F2[x]. Then there is a unique monic 
bipolynomial d = d1 ∪ d2 in F[x] where each di is a monic 
polynomial in Fi[x]; i = 1, 2 such that m is the principal biideal 
generated by d. 
 
Proof: Given F = F1 ∪ F2 is a neutrosophic bifield and F[x] = 
F1[x] ∪ F2[x] be the bipolynomial strong neutrosophic bivector 
space over the neutrosophic bifield F = F1 ∪ F2. Let m = m1 ∪ 
m2 be a non zero biideal of F[x] = F1[x] ∪ F2[x], we call a 
bipolynomial p(x) to be bimonic, i.e. if in p(x) = p1(x) ∪ p2(x) 
every pi(x) is a monic polynomial for i = 1, 2. Similarly we call 
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a bipolynomial to be biminimal if in p(x) = p1(x) ∪ p2(x) each 
polynomial pi(x) is of minimal degree. Now m = m1 ∪ m2 
contains a non zero bipolynomial p(x) = p1(x) ∪ p2(x) where 
each pi(x) ≠ 0 for i = 1, 2. Among all the non zero 
bipolynomials in m there is a bipolynomial d = d1 ∪ d2 of 
minimal bidegree. Without loss in generality we may assume 
that minimal bipolynomial is monic, i.e., d is monic. Suppose f 
= f1 ∪ f2 is any bipolynomial in m then we know f = dq + r = f1 
∪ f2 = d1q1 + r1 ∪ d2q2 + r2 where r = (r1, r2) = (0, 0) or bidegree 
r < bidegree d; i.e., f = f1 ∪ f2 = (d1q1 + r1) ∪ (d2q2 + r2). Since d 
is in m, dq = d1q1 ∪ d2q2 ∈ m and f ∈ m so f – dg = r = r1 ∪ r2 ∈ 
m. But since d is a bipolynomial in m of minmal bidegree we 
cannot have bidegree r < bidegree d so r = 0 ∪ 0. 
 Thus m = dF[x] = d1F1[x] ∪ d2F2[x]. If g is any other 
bimonic polynomial such that gF[x] = m = g1F1[x] ∪ g2F2[x] 
then there exists non zero bipolynomial p = p1 ∪ p2 and q = q1 
∪ q2 such that d = gp and g = dq. i.e., d = d1 ∪ d2 = g1p1 ∪ g2p2 
and g1 ∪ g2 = d1q1 ∪ d2q2. Thus  
d  =  dpq  

=  d1p1q1 ∪ d2p2q2  
= (d1 ∪ d2)pq 

and bidegree d = bidegree d + bidegree d + bidegree p + bideg 
q. Hence bidegree p = bidegree q = (0, 0) and as d and g are 
bimonic p = q = 1. Thus d = g.  

Hence the claim. 
If in the biideal m we have f = pq + r where p, f ∈ m; i.e., p 

= p1 ∪ p2 ∈ m and f = f1 ∪ f2 ∈ m ; f = f1 ∪ f2 = (p1q1 + r1) ∪ (p2 
q2 + r2) where the biremainder r = r1 ∪ r2 ∈ m and is different 
from 0 ∪ 0 and has smaller bidegree than p.  
 
The interested reader is requested to prove the following results. 
 
COROLLARY 2.3.1: If p1, p2 are bipolynomials over a 
neutrosophic bifield F = F1 ∪ F2 not all of which are zero; i.e., 
0 ∪ 0, then there is a unique bimonic polynomial d = d1 ∪ d2 in 
F[x] = F1[x] ∪ F2[x] such that  
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i.  d = d1 ∪ d2 is the biideal generated by p1, p2 where p1 = 
∪1 1

1 2p p  and p2 = ∪2 2
1 2p p . 

ii.  d = d1 ∪ d2 bidivides each of the bipolynomials pi = 
∪i i

1 2p p  that is i
j jd p  , j = 1, 2 and i = 1, 2. 

iii. d is bidivisible by every bipolynomial which bidivides each 
of the bipolynimial p1 and p2.  

 
Any bipolynomial satisfying (i) and (ii) necessarily satisfies (iii). 
 
Next we proceed on to define greatest common bidivisor or 
bigreatest common divisor. 

 
DEFINITION 2.3.38: If p1, p2 (where p1 = ∪1 1

1 2p p  and p2 = 
2
1p ∪ 2

2p ) are neutrosophic bipoynomials over the neutrosophic 
bifield F = F1 ∪ F2 such that both the bipolynomials are not 0 
∪ 0. Then the monic generator d = d1 ∪ d2 of the biideal 
{ 1

1p F1[x]} + 2
1p F1[x]} ∪ { 1

2p F2[x]} + 2
2p F2[x]} is called the 

greatest common bidivisor or bigreatest common divisor of p1 
and p2. This terminology is justified by the proceeding 
statement. We say the neutrosophic bipolynomials p1 = ∪1 1

1 2p p  
and p2 = ∪2 2

1 2p p  are birelatively prime if their bigreatest 
common divisor is (1, 1) or (I, I) or equivalently if the biideal 
they generate is all of F[x] = F1[x] ∪ F2[x]. 
 
This result and definition 2.3.38 can be extended to any 
arbitrary number of bipolynomials p1, p2, …, pn, n > 2. We will 
now proceed onto define bifactorization, biprime, biirreducible 
of neutrosophic bipolynomials over the neutrosophic bifield F = 
F1 ∪ F2. 
 
DEFINITION 2.3.39: Let F = F1 ∪ F2 be a neutrosophic bifield. 
A bipolynomial f = f1 ∪ f2 in F[x] = F1[x] ∪ F2[x] is said to be 
bireducible over the bifield F = F1 ∪ F2 if there exists 
bipolynomials g, h ∈ F[x], g = g1 ∪ g2 and h = h1 ∪ h2 in F[x] 
= F1[x] ∪ F2[x] of bidegree ≥ (1, 1) or (I, I) such that f = gh = 
g1h1 ∪ g2 h2 = f1 ∪ f2 and if such g and h does not exist f = f1 ∪ 
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f2 is said to be biirreducible over the bifield F = F1 ∪ F2. A non 
biscalar, bi-irreducible neutrosophic bipolynomial over the 
neutrosophic bifield F = F1 ∪ F2 is called the biprime 
polynomial over the bifield F = F1 ∪ F2 and some times we say 
it is biprime in F[x] = F1[x] ∪ F2[x].  
 
The following results can be proved by any interested reader. 
 
THEOREM 2.3.24: Let p = p1 ∪ p2, f = f1 ∪ f2 and g = g1 ∪ g2 
be neutrosophic bipolynomials over the neutrosophic bifield F 
= F1 ∪ F2. Suppose that p is a biprime bipolynomial and that p 
bidivides the product fg = f1 g1 ∪ f2 g2 then either p bidivides f 
or p bidivides g. 
 
THEOREM 2.3.25: If p = p1 ∪ p2 is a biprime bipolynomial that 
bidivides a biproduct f1 and f2 that is f1f2 then p bidivides one of 
the bipolynomial f1 or f2. 
 
THEOREM 2.3.26: If F = F1 ∪ F2 be a neutrosophic bifield a 
non zero biscalar monic neutrosophic bipolynomial in F[x] = 
F1[x] ∪ F2[x] can be bifactored as a biproduct of bimonic 
primes in F[x] = F1[x] ∪ F2[x] in one and only one way except 
for the order. 
 
THEOREM 2.3.27: Let f = f1 ∪ f2 be a non scalar neutrosophic 
monic bipolynomial over the neutrosophic bifield F = F1 ∪ F2 
and let f = …

11
k1 1

1

nn
1 kp p  ∪ …

22
k1 2

2

nn
2 kp p  be the prime bifactorization 

of f. For each jt; 1≤ jt ≤ kt; t = 1, 2, let t
jf  = 

t
jnt

jf p  = 
≠

∏
t
kin

i
i j

p , 

then …
t

t t
1 kf , , f  are relatively prime for t = 1, 2. 

 
THEOREM 2.3.28: If f = f1 ∪ f2 is a neutrosophic bipolynomial 
over the bifield F = F1 ∪ F2 with derivative f′ = ′ ′∪1 2f f . Then f 
is a biproduct of distinct irreducible bipolynomials over the 
bifield F = F1 ∪ F2 if and only if f and f ′ are relatively biprime, 
that is each fi and ′if  are relatively prime for i = 1, 2. 
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Now we proceed onto define bicharacteristics values of a strong 
neutrosophic bilinear operator on a strong neutrosophic bivector 
space V = V1 ∪ V2 over a neutrosophic bifield F = F1 ∪ F2.  
 
DEFINITION 2.3.40: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2 and let 
T = T1 ∪ T2 be a bilinear operator on V; i.e., T = T1 ∪ T2; V = 
V1 ∪ V2 → V = V1 ∪ V2 and Ti : Vi → Vi, i = 1, 2. This is the 
only way bilinear operator can be defined on V. A 
bicharacteristic value of T is a biscalar c = c1 ∪ c2 (ci ∈ Fi, i = 
1, 2) in F = F1 ∪ F2 such that there is a non zero bivector α = 
α1 ∪ α2 in V = V1 ∪ V2 with Tα = cα ; i.e., Tα = T1α1 ∪ T2α2 = 
c1α1 ∪ c2α2; i.e., Tiαi = ciαi i = 1, 2. If c = c1 ∪ c2 is a 
bicharacteristic value of T = T1 ∪ T2 then 
 
i. any α = α1 ∪ α2 such that Tα = cα is called the 

bicharacteristic bivector of T = T1 ∪ T2 associated with the 
bicharacteristic value c = c1 ∪ c2. 

ii. The collection of all α  = α1 ∪ α2 such that Tα = cα is 
called the bicharacteristic space associated with c. 

 
If T = T1 ∪ T2 is any bilinear operator on the bivector space V 
= V1 ∪ V2. We call the bicharacteristic values associated with T 
to be bicharacteristic roots, bilatent roots bieigen values, 
biproper values or bispectral values. 

These can be neutrosophic or real; will always be 
neutrosophic if F = F1 ∪ F2 = K1 I ∪ K2 I where K1 and K2 are 
real fields.  

These can be real or neutrosophic if F = F1 ∪ F2 = N (K1) 
∪ N (K2), K1 and K2 are real fields. 
 
If T is any bilinear operator and c = c1 ∪ c2 in any biscalar the 
set of bivector α  = α1 ∪ α2 such that Tα = cα is a strong 
neutrosophic bivector subspace of V. It is infact the binull space 
of the bilinear transformation (T – cId) = (T1 – c1 1dI ) ∪ (T2 – 

c2 2dI ) where 
jdI denotes the unit neutrosophic matrix for j = 1, 
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2. We call c = c1 ∪ c2 the bicharacteristic value of T = T1 ∪ T2 
if this bispace is different from the bizero space 0 = 0 ∪ 0; that 
is (T – c Id) = (T1 – c1 1dI ) ∪ (T2 – c2 2dI ) fails to be one to one 
bilinear transformation that is when the bideterminant of T – cId  
= det(T1 – c1 1dI ) ∪ det(T2 – c2 2dI ) = 0 ∪ 0. 
 
We have the following theorem. 
 
THEOREM 2.3.29: Let T = T1 ∪ T2 be a bilinear operator on a 
finite (n1, n2) bidimensional strong neutrosophic bivector space 
V = V1 ∪ V2 defined over the neutrosophic bifield F = F1 ∪ F2 
and let c = c1 ∪ c2 be a biscalar in F. The following are 
equivalent.  
i. c = c1 ∪ c2 is a bicharacteristic value of T = T1 ∪ T2. 

ii. The bioperator (T1 – c1 1dI ) ∪ (T2 – c2 2dI ) = (T – c Id) is 
bisingular or (nor biinvertible. 

iii. Det(T – cId) = 0 ∪ 0; i.e., det (T1 – c1 1dI ) ∪ det (T2 – c2 2dI ) 

= 0 ∪ 0. 
 
This theorem is direct and the interested reader is expected to 
prove it. 

Now we define the bicharacteristic value of a neutrosophic 
bimatrix A = A1 ∪ A2 where each Ai is a ni × ni neutrosophic 
matrix with entries from the neutrosophic field Fi, i = 1, 2, so 
that A is a neutrosophic bimatrix defined over the bifield F = F1 
∪ F2. A bicharacteristic value of A in the bifield F = F1 ∪ F2 is a 
biscalar c = c1 ∪ c2 in F = F1 ∪ F2 such that the bimatrix A – cId 
= (A1 – c1 1dI ) ∪ (A2 – c2 2dI ) is bisingular or not biinvertible. 

c = c1 ∪ c2 is a bicharacteristic value of A = A1 ∪ A2 a (n1 × 
n1, n2 × n2) neutrosophic bimatrix over the neutrosophic bifield 
F = F1 ∪ F2 if and only if bidet (A – cId) = 0 ∪ 0; i.e., det (A1 – 
c1 1dI ) ∪ det(A2 – c2 2dI ) = 0 ∪ 0; we form the bimatrix (xId – A) 
= (x

1dI – A1) ∪ (x
2dI – A2). Clearly the bicharacteristic values of 

A in F = F1 ∪ F2 are just biscalars c = c1 ∪ c2 in F1 ∪ F2 such 
that f(c) = f1(c1) ∪ f2(c2) = 0 ∪ 0. For this reason f = f1 ∪ f2 is 
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called the bicharacteristic polynomial of A. Clearly f is a 
neutrosophic bipolynomial of differ degrees in x over different 
neutrosophic fields. It is important to note that f = f1 ∪ f2 is a 
bimonic bipolynomial which has bidegree exactly (n1, n2). The 
bimonic neutrosophic bipolynomial is also a neutrosophic 
bipolynomial over F = F1 ∪ F2. 

We will illustrate this situation by some examples. 
 
Example 2.3.77: Let  

A = A1 ∪ A2 = 
I 0 1
0 1 0
I 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ 

2 I 0 I
I I 0 0
0 2 2I 1
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
be a neutrosophic bimatrix of order (3 × 3, 4 × 4) over the 
neutrosophic bifield F = F1 ∪ F2 = N(Z2) ∪ N(Z3). The 
bicharacteristic neutrosophic bipolynomial associated with the 
neutrosophic bimatrix A is given by  
 

(xId – A) = (xI3×3 – A1) ∪ (xI4×4 – A2) 
 

= 
x I 0 1

0 x 1 0
I 0 x

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ 

x 1 2I 0 2I
2I x 2I 0 0
0 1 x I 2
0 0 0 x 2

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥+⎣ ⎦

 

 
is a neutrosophic bimatrix with neutrosophic polynomial entries.  
 
f  =  f1 ∪ f2  

=  det(xId – A)  
=  det(x I3×3 – A1) ∪ det (x I4×4 – A2)  
= {(x + I) (x + 1) x + I (x + 1)} ∪ (x + 1) (x + 2I) (x + I)  

(x + 2) + 2I (x + I) (x + 2)} 
=  {x3 + Ix2 + Ix + x2 + Ix + I} ∪ {(x2 + 2Ix + x + 2I)  

(x2 + 2I + Ix + 2I) + 2Ix2 + I 
= {x3 + (I + 1) x2 + I} ∪ {x4 + 2I + Ix2 + 2x2}. 
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Thus the bipolynomial is a monic neutrosophic polynomial 

of degree (3, 4) over the bifield F = N(Z2) ∪ N(Z3). 
 
Example 2.3.78: Let  

A = A1 ∪ A2 = 
I 0
2 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 
I 0 1
0 1 I
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
be a neutrosophic bimatrix with entries from the neutrosophic 
bifield F = F1 ∪ F2 = N(Z3) ∪ N(Z2). The bicharacteristic 
neutrosophic bipolynomial associated with the neutrosophic 
bimatrix A is given by 
 

(xId – A) = (x I2×2 – A1) ∪ (x I3×3 – A2) 
 

= 
x 0 I 0
0 x 2 2

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪−⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 ∪ 
x 0 0 I 0 1
0 x 0 0 1 I
0 0 x 0 0 I

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥−⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 

= 
x 2I 0

1 x 1
+⎡ ⎤

⎢ ⎥+⎣ ⎦
 ∪ 

x I 0 1
0 x 1 I
0 0 x I

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎣ ⎦

. 

 
Let f = f1 ∪ f2 = det(xId – A) = det(xI2×2 – A1) ∪ det(xI3×3 – A2)  
 

= 
x 2I 0

1 x 1
+

+
 ∪ 

x I 0 1
0 x 1 I
0 0 x I

+
+

+
 

 
  =  {(x + 2I) (x + 1)} ∪ {(x + I)2 (x + 1)} 
  =  {x2 + 2Ix + x + 2I} ∪ {(x2 + 2I + I) (x + 1)  
  =  (x2 + 2Ix + x + 2I) ∪ (x2 + I) (x + 1)} 
  =  {x2 + (2I + 1) x + 2I} ∪ {x3 + Ix + x2 + I}. 
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We see det(xId – A) is a neutrosophic bipolynomial which is 
monic neutrosophic bipolynomial of bidegree (2, 3) over the 
bifield F = N(Z3) ∪ N(Z2). 
 
We now proceed onto define similar neutrosophic bimatries 
when the entries of these neutrosophic bimatrices are from the 
neutrosophic bifield F = F1 ∪ F2. 
 
DEFINITION 2.3.41: Let A = A1 ∪ A2 be a (n1 × n1, n2 × n2) 
neutrosophic bimatrix over the neutrosophic bifield F = F1 ∪ 
F2, that is each Ai takes its entries from the neutrosophic field 
Fi, i = 1, 2. We say two neutrosophic bimatrices A and B of 
same order are similar if there exists a neutrosophic non 
invertible bimatrix P = P1 ∪ P2 of (n1 × n1, n2 × n2) order such 
that B = P-1 AP where P-1 = − −∪1 1

1 2P P , B = B1 ∪ B2 and  
B = −1

1P  A1 P1 ∪ −1
2P  A2P2. 

Clearly  
det (xId – B)  =  det (xId – P–1 AP) 
     =  det (P–1 (xId – A) P) 
    =  det P–1. det (xId – A) det P 
    =  det (xId – A) 
    =  det (x

1dI – A1) ∪ det (x
2dI  –  A2). 

Thus  
det(x

1dI –B1) ∪ det (x
2dI – B2) = det(x

1dI – A1) ∪  det(x
2dI – A2). 

 
DEFINITION 2.3.42: Let T = T1 ∪ T2 be a linear bioperator on a 
strong neutrosophic bivector space V = V1 ∪ V2 over the 
neutrosophic bifield F = F1 ∪ F2 . We say T = T1 ∪ T2 is 
bidiagonalizable if there is a bibasis for V = V1 ∪ V2 and for 
each bivector of which is a bicharacteristic bivecor of T = T1 ∪ 
T2. Suppose T = T1 ∪ T2 is a bidiagonalizable bilinear operator. 
Let  

…
1

1 1
1 k{ C , ,C }  ∪ …

2

2 2
1 k{ C , , C }  

be the bidistinct bicharacteristic values of T = T1 ∪ T2. Then 
there is a bibasis B = B1 ∪ B2 in which T is represented by a 
bidiagonal matrix which has for its bidiagonal entries the  
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scalars t
iC  each repeated a certain number of times t = 1, 2. If 

t
iC  is repeated t

id  times then the neutrosophic bimatrix has the 
biblock form 

[ ] [ ] [ ]= ∪
1 2

B 1 2B B
T TT  

 

 = 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦1 1

1 1
1 1

1 1
2 2

1 1
k k

C I 0 0
0 C I 0

0 0 C I

 ∪ 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦2 2

2 2
1 1

2 2
2 2

2 2
k k

C I 0 0
0 C I 0

0 0 C I

. 

 
t
jI  is the t

jd  × t
jd  identity matrix t = 1, 2. 

 
From this neutrosophic bimatrix we make the following 
observations. 

First the bicharacteristic neutrosophic bipolynomial for T = 
T1 ∪ T2 is the biproduct of bilinear factors f = f1 ∪ f2 = (x – 

1
1d1

1C )  … (x – 
1
k1

1

d1
kC )  ∪ (x – 

2
1d2

1C )  … (x – 
2
k2

2

d2
kC ) . 

If the biscalar neutrosophic bifield F = F1 ∪ F2 is 
bialgebraically closed, if each Fi is algebraically closed for i = 1, 
2; then every bipolynomial over F = F1 ∪ F2 can be bifactored; 
however if F = F1 ∪ F2 is not algebraically biclosed 
(bialgebraically closed) we are citing a special property of T = 
T1 ∪ T2, when we say that its bicharacteristic polynomial does 
not have such a factorization. 

The second thing to be noted is that t
id  is the number of 

times t
iC  is repeated as a root of ft which is equal to the 

dimension of the space in Vt of characteristic vectors associated 
with the characteristic value t

iC ; i = 1, 2, …, kt; t = 1, 2. This is 
because the binullity of a bidiagonal bimatrix is equal to the 
number of bizeros which has on its main bidiagonal and the 
neutrosophic bimatrix  

[T – CId]B = [T1 – 
1 1 1

1
l d BC I ]  ∪ [T2 – 

2 2 2

2
l d BC I ]  

has ( )1 2

1 2
l ld , d  bizeros on its main bidiagonal. 



 143

 
We give some results, the proof of which is direct and the 
interested reader can analyse them. 

 
THEOREM 2.3.30: Suppose that Tα = Cα that is (T1 ∪ T2)(α1 ∪ 
α2) = C1α1 ∪ C2α2 i.e., T1α1 ∪ T2α2 = C1α1 ∪ C2α2; T = T1 ∪ 
T2 be a bilinear operator when the biscalar C = C1 ∪ C2 ∈ F = 
F1 ∪ F2 (F = F1 ∪ F2 a neutrosophic bifield) and α = α1 ∪ α2 
is a bivector from a strong neutrosophic bivector spaceV = V1 
∪ V2 over F = F1 ∪ F2. If f = f1 ∪ f2 is any bipolynomial then 
f(T)α = f(C)α; i.e., 

f1(T1) α1 ∪ f2(T2) α2 = f1(C1) α1 ∪ f2(C2) α2. 
 
THEOREM 2.3.31: Let T = T1 ∪ T2 be a linear bioperator on the 
finite (n1, n2) bidimensional strong neutrosophic bivector space 
V = V1 ∪ V2 over the bifield F = F1 ∪ F2. If …

1

1 1 1
1 2 k{ C ,C , ,C }  ∪ 

…
2

2 2 2
1 2 k{ C ,C , ,C }  be distinct bicharacteristic values of T = T1 ∪ 

T2. Let Wi = ∪
1 2

1 2
i iW W  be the strong neutrosophic bisubspace of 

bicharacteristic bivectors associated with the bicharacteristic 
values Ci = ∪

1 2

1 2
i iC C . If W = { }+ +…

1

1 1
1 kW W  ∪ 

{ }+ +…
2

2 2
1 kW W  the bidimension  

W = { }+ +…
1

1 1
1 k(dimW dimW )  ∪ { }+ +…

2

2 2
1 k(dimW dimW )  

= dim W1 ∪ dim W2. 
Infact if 

t

t
iB  is the basis of 

t

t
iW ; 1 ≤ it ≤ kt, t = 1, 2, then B = 

{ }…
1

1 1
1 kB , ,B  ∪ { }…

2

2 2
1 kB , ,B  is a bibasis of W.  

 
THEOREM 2.3.32: Let T = T1 ∪ T2 be a bilinear operator 
(linear bioperator) of a finite (n1, n2) bidimension strong 
neutrosophic bivector space V = V1 ∪ V2 over the bifield F = F1 
∪ F2.  

Let { }…
1

1 1
1 kC , ,C  ∪ { }…

2

2 2
1 kC , , C  be the distinct 

bicharacteristic values of T = T1 ∪ T2 and let Wi = ∪
1 2

1 2
i iW W  be 
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the binull space of T – CiId = [T1 – 
1 1

1
l dC I ]  ∪ [T2 – 

2 2

2
l dC I ] . 

The following are equivalent 
i. T is bidiagonalizable 

ii. The bicharacteristic bipolynomial for T = T1 ∪ T2 is  
f  =  f1 ∪ f2  
=  (x – 

1
1)1

1
dC …(x – 

1
1

1
)1 kd

kC ∪ (x – 
2
1)2

1
dC … (x – 

2
2

2
)2 kd

kC . 
 

We will discuss more elaborately by giving proofs when V is a 
strong neutrosophic n-vector space over a neutrosophic n-field; 
n > 2. We define the notion of bipolynomial for the bioperator T 
: V → V. 
 
DEFINITION 2.3.43: Let T = T1 ∪ T2 be a bilinear operator on a 
finite (n1, n2) bidimensional strong neutrosophic bivector space 
V = V1 ∪ V2 over the neutrosophic bifield F = F1 ∪ F2. The 
biminimal neutrosophic bipolynomial for T is the unique monic 
bigenerator of the biideal of bipolynomials over the bifield F = 
F1 ∪ F2 which biannihilate T = T1 ∪ T2. 
 
The biminimal neutrosophic bipolyomial starts from the fact 
that the bigenerator of a neutrosophic bipolynomial biideal is 
characterized by being the bimonic bipolynomial of biminimum 
bidegree in the biideal that implies that the biminimal 
bipolynomial p = p1 ∪ p2 for the bilinear operator T = T1 ∪ T2 is 
uniquely determined by the following properties. 
 
i. p is a bimonic neutrosophic bipolynomial over the biscalar 

neutrosophic bifield F = F1 ∪ F2. 
ii. p(T) = p1(T1) ∪ p2(T2) = 0 ∪ 0. 

iii. No neutrosophic bipolynomial over the bifield F = F1 ∪ F2 
which biannihilates T = T1 ∪ T2 has smaller bidegree than p 
= p1 ∪ p2 has. (n1 × n1, n2 × n2) to be the order of the 
neutrosophic bimatrix A = A1 ∪ A2 over the neutrosophic 
bifield F = F1 ∪ F2 where each Ai has a ni × ni neutrosophic 
matrix with entries from the neutrosophic field Fi, which 
associated matrix of Ti; i = 1, 2. 
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The biminimal neutrosophic bipolynomial for A = A1 ∪ A2 is 
defined in an analogous way as the unique bimonic generator of 
the biideal of all neutrosophic bipolynomial over the bifield F = 
F1 ∪ F2 which biannihilate A. 

If the neutrosophic linear bioperator T = T1 ∪ T2 is 
represented by some bibasis by the neutrosophic bimatrix A = 
A1 ∪ A2 then T and A have the same neutrosophic biminimal 
bipolynomial because f(T) = f1(T1) ∪ f2(T2) is represented in the 
bibasis by the neutrosophic bimatrix f (A) = f1(A1) ∪ f2(A2), so 
f(T) = 0 ∪ 0 if and only if f(A) = f1(A1) ∪ f2(A2) = 0 ∪ 0, that is 
if and only if f(T) = f1(T1) ∪ f2(T2) = 0 ∪ 0.  

So  
f (P– 1AP)  =  f1( 1

1P− A1P1) ∪ f2( 1
2P− A2P2)  

=  1
1P− f1(A1)P1 ∪ 1

2P− f2(A2)P2  
=  P– 1f(A)P  

for every neutrosophic bipolynomial f = f1 ∪ f2. 
Another important feature about the neutrosophic biminimal 

polynomials of neutrosophic bimatrices is that suppose A = A1 
∪ A2 is a (n1 × n1, n2 × n2) neutrosophic bimatrix with entries 
from the bifield F = F1 ∪ F2. Suppose K = K1 ∪ K2 is a 
neutrosophic bifield which contains the neutrosophic bifield F = 
F1 ∪ F2; that is K ⊇ F and Ki ⊇ Fi for every i, i = 1, 2. A = A1 ∪ 
A2 is a (n1 × n1, n2 × n2) neutrosophic bimatrix over F = F1 ∪ F2 
or over K = K1 ∪ K2 but we do not obtain two neutrosophic 
biminimal polynomial but only one neutrosophic minimal 
bipolynomial.  
 
We now proceed on to prove one interesting theorem about the 
neutrosophic biminimal polynomials for T (or A). 
 
THEOREM 2.3.33: Let T = T1 ∪ T2 be a neutrosophic linear 
bioperator on a (n1, n2) bidimensional strong neutrosophic 
bivector space V = V1 ∪ V2 (or let A be a (n1 × n1, n2 × n2) 
neutrosophic bimatrix that is A = A1 ∪ A2 where each Ai is a ni 
× ni neutrosophic matrix with its entries from the neutrosophic 
field Fi of F = F1 ∪ F2 true for i = 1, 2). The bicharacteristic 
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and biminimal neutrosophic bipolynomial for T = T1 ∪ T2 (for A 
= A1 ∪ A2) have the same biroots except for bimultiplicities.  
 
Proof: Let p = p1 ∪ p2 be a neutrosophic biminimal 
bipolynomial for T = T1 ∪ T2. Let c = c1 ∪ c2 be a biscalar from 
the neutrosophic bifield F = F1 ∪ F2. To prove p(c) = p1(c1) ∪ 
p2(c2) = 0 ∪ 0 if and only if c = c1 ∪ c2 is the bicharacteristic 
value of T.  
 Suppose p(c) = p1(c1) ∪ p2(c2) = 0 ∪ 0 then p = (x – c1)q1 ∪ 
(x – c2)q2 where q = q1 ∪ q2 is the neutrosophic bipolynomial 
since bideg q < bideg p, the neutrosophic biminimal 
bipolynomial p = p1 ∪ p2 tells us q(T) = q1(T1) ∪ q2(T2) ≠ 0 ∪ 
0. Choose the bivector β = β1 ∪ β2 such that q(T) β = q1(T1) β1 
∪ q2(T2) β2 ≠ 0 ∪ 0. Let α = q(T) p that is α = α1 ∪ α2 = q1(T1) 
β1 ∪ q2(T2) β2. 
 Then  
0 ∪ 0  =  p(T)β  

=  p1(T1) β1 ∪ p2(T2) β2 
  =  (T – cI) q(T) β 
   = (T1 – c1 I1)q1(T1) β1 ∪ (T2 – c2 I2)q2(T2)β2 
  = (T1 – c1 I1)α1 ∪(T2 – c2 I2)α2 
and thus c = c1 ∪ c2 is a bicharacteristic value of T = T1 ∪ T2. 
 Suppose c = c1 ∪ c2 is the bicharacteristic value of the 
bilinear operator T = T1 ∪ T2 say Tα = cα; i.e., T1 α1 ∪ T2 α2 = 
c1 α1 ∪ c2 α2 with α ≠ 0 ∪ 0. 
From the earlier results we have p(T) α = p(c) α that is  

p1(T1)α1 ∪ p2(T2) α2 = p1(c1) α1 ∪ p2(c2) α2 . 
Since p(T) = p1(T1) ∪ p2(T2) = 0 ∪ 0 and α = α1 ∪ α2 ≠ 0 ∪ 0 
we have p1(c1) ∪ p2(c2) = p(c) ≠ 0 ∪ 0.  
 Let T = T1 ∪ T2 be a bidiagonalizable bilinear operator and 
let { }1

1 1
1 kc ,...,c  ∪ { }2

2 2
1 kc ,...,c  be the bidistinct bicharacteristic 

values of T. Then the biminimal neutrosophic bipolynomial for 
T = T1 ∪ T2 is the neutrosophic bipolynomial p = p1 ∪ p2 = (x – 

1
1c ) … (x – 

1

1
kc )  ∪ (x – 2

1c )  … (x – 
2

2
kc ) . 

 If α = α1 ∪ α2 is a bicharacteristic bivector then one of the 
bioperators {(T1 – 1

1c I1) , …, (T1 – 
1

1
kc I1)} ∪ {(T2 – 2

1c I2), …, 
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(T2 – 
2

2
kc I2)} send α = α1 ∪ α2 into 0 ∪ 0, thus resulting in {(T1 

– 1
1c I1) , …,(T1 – 

1

1
kc I1)} ∪ {(T2 – 2

1c I2), …,(T2 – 
2

2
kc I2)} = 0 ∪ 

0 for every bicharacteristic bivector α = α1 ∪ α2. 
 Hence there exists a bibasis for the underlying bispace 
which consists of bicharacteristic vectors of T = T1 ∪ T2. Hence 
p(T) = p1(T1) ∪ p2(T2) = {(T1 – 1

1c I1) , …, (T1 – 
1

1
kc I1)} ∪ {(T2 – 

2
1c I2), …, (T2 – 

2

2
kc I2)} = 0 ∪ 0. 

 Thus we conclude if T is bidiagonlizable bilinear operator 
then the neutrosophic biminimal bipolynomial for T = T1 ∪ T2 
is a product of bidistinct bilinear factors.  
 Now we proceed onto prove the Cayley Hamilton theorem 
for strong neutrosophic bivector spaces of finite bidimension 
defined over the neutrosophic bifield of Type II. 
 
THEOREM 2.3.34: (Cayley Hamilton): Let T = T1 ∪ T2 be a 
bilinear operator on a finite (n1, n2) bidimensional strong 
neutrosophic bivector space defined over a neutrosophic bifield 
F = F1 ∪ F2. If f = f1 ∪ f2 is the bicharacteristic neutrosophic 
bipolynomial for T then f(T) = f1(T1) ∪ f2(T2) = 0 ∪ 0, in other 
words the biminimal neutrosophic bipolynomial bidivides the 
bicharacteristic neutrosophic bipolynomial for T. 
 
Proof: Let K = K1 ∪ K2 be a bicommuting neutrosophic ring 
with biidentity I2 = (1, 1) consisting of all bipolynomial in T = 
T1 ∪ T2. K = K1 ∪ K2 is actually a bicommuting bialgebra with 
biidentity over the neutrosophic bifield F = F1 ∪ F2 (that is both 
F1 and F2 are not pure).  
 Let { }1

1 1
1 n,...,α α  ∪ { }2

2 2
1 n,...,α α  be a bibasis for V = V1 ∪ 

V2 and let A = A1 ∪ A2 be a bimatrix which represents T = T1 ∪ 
T2 in the given bibasis.  
 Then  
Tαi  =  T1 1

1
iα  ∪ T2 2

2
iα  

  =  
1

1 1 1

1

n
1 1
j i j

j 1

A
=

α∑  ∪ 
2

2 2 2

2

n
2 2
j i j

j 1

A
=

α∑ ; 
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1 ≤ ji ≤ 
ij

n ; i = 1, 2. These biequations may be equivalently 
written in the form  

( )
1

1 1 1 1 1 1

1

n
1 1

j i 1 j i i j
j 1

T A I
=

δ − α∑  ∪ ( )
2

2 2 2 2 2 2

2

n
2 2

j i 2 j i i j
j 1

T A I
=

δ − α∑  = 0 ∪ 0. 

 Let B = B1 ∪ B2 denote the element of 1 1 2 2n n n n
1 2K K× ×∪ ; i.e., 

Bi is an element of i in n
iK ×  with entries 

t t t t t t

t
i j i j t i j tB T A I= δ − ;. t = 

1, 2. When nt = 2, 1 ≤ jt , it ≤ nt; 
 

Bt = 
t t

t 11 t 21 t
t t
12 t t 22 t

T A I A I
A I T A I

⎡ ⎤−
⎢ ⎥− −⎣ ⎦

 

 
and det Bt = ( ) ( ) ( )t t t t

t 11 t t 22 t 12 21 tT A I T A I A A I− − −  = ft(It) where 

ft is the neutrosophic characteristic polynomial associated with 
Tt, t = 1, 2. ft = x2 – trace t

xA  + det At. For case nt > 2 it is clear 
that det Bt = ft(Tt) since ft is the determinant of the neutrosophic 
matrix xIt – At whose entries are neutrosophic polynomial; 

t t

t
t i j(xI A )−  = t t t t

x t
i j i jAδ − . 

We will shown ft(Tt) = 0. In order that ft(Tt) is a zero 
operator it is necessary and sufficient that 

(det t
kt

tB )
α

 = 0 for kt = 0, 1, …, nt. 

By definition of Bt the vectors 
t

t t
1 n...α ∪ ∪ α satisfy the 

equations;  
t

t t t

t

n
t t
i j j

j 1
B

=

α∑  = 0; 1 ≤ it ≤ nt. 

When nt = 2 we can write the above equation in the form  
 

t t t
t 11 t 21 t 1

t t t
12 t t 22 t 2

0T A I A I
0A I T A I

⎡ ⎤ ⎡ ⎤− − α ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − α ⎣ ⎦⎣ ⎦⎣ ⎦

. 

 
In this case the usual adjoint Bt is the neutrosophic matrix 
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tB  = 
t t

t 22 t 21 t
t t
12 t 22 t

T A I A I
A I T A I

⎡ ⎤−
⎢ ⎥−⎣ ⎦

 

and  

t tB B =
t

t

det B 0
0 det B

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Hence 

det Bt 
t
1
t
2

⎡ ⎤α
⎢ ⎥α⎣ ⎦

 = t tB B
t
1
t
2

⎡ ⎤α
⎢ ⎥α⎣ ⎦

 = 

 

t tB B
t
1
t
2

⎡ ⎤α
⎢ ⎥α⎣ ⎦

 = t tB B
t
1
t
2

⎡ ⎤α
⎢ ⎥α⎣ ⎦

 = ⎥
⎦

⎤
⎢
⎣

⎡
0
0

. 

 

 In the general case tB  = adj Bt.  Then 
t

t t t t t

t

n
t t t
k i i j j

j 1

B B
=

α∑  = 0 

for each pair kt, it and summing on it we have 
 

0 = 
t t

t t t t t

t t

n n
t t t
k i i j j

i 1 j 1

B B
= =

α∑∑  

 

= 
t t

t t t t t

t t

n n
t t t
k i i j j

i 1 j 1
B B

= =

⎛ ⎞
α⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ . 

 
Now t tB B  = (det Bt) It so that 

t

t t t t t t

t

n
t t t
k i i j k j

i 1
B B det B

=

= δ∑  

Therefore  

0 = ( )
t

t t t

t

n
t t

k j j
j 1

det B
=

δ α∑  = (det Bt)
t

t
kα ; 1 ≤ kt ≤ nt. 

 
Since this is true for each t; t = 1, 2; we have 0 ∪ 0 = (det B1) 

1

1
kα  ∪ (det B2)

2

2
kα ; 1 ≤ ki ≤ ni; i = 1, 2. 
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The Cayley-Hamilton theorem is very important for it is 
useful in narrowing down the search for the biminimal 
neutrosophic bipolynomials of various bioperators. 

If we know the neutrosophic bimatrix A = A1 ∪ A2 which 
represents T = T1 ∪ T2 in some ordered bibasis then we can 
compute the bicharacteristic neutrosophic bipolynomial f = f1 ∪ 
f2. We know the biminimal neutrosophic polynomial p = p1 ∪ p2 
bidivides f that is each pi / fi; for i = 1, 2 (which we call as 
bidivides f) and that the two neutrosophic bipolynomials have 
the same biroots. 

However we do not have a method of computing the roots 
even in case of polynomials so it is more difficult in case of 
finding the biroots of the neutrosophic bipolynomials. However 
if f = f1 ∪ f2 factors as f = (x – 

1
1d1

1c )  … (x – 
1
k1

1

d1
kc )  ∪ (x – 

2
1d2

1c )  

… (x – 
2
k2

2

d2
kc )  the distinct bisets 

t

t
id t≥ ; t = 1, 2, …, kt then p = 

p1 ∪ p2 = (x – 
1
1r1

1c )  … (x – 
1
k1

1

r1
kc )  ∪ (x – 

2
1r2

1c )  … (x – 
2
k2

2

r2
kc ) ; 1 

≤ t
jr  ≤ t

jd . 
 
We will illustrate this by a simple example. 
 
Example 2.3.79: Let  

A = A1 ∪ A2 = 
3 1 I
2 2I 1
2I 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ 
0 I
I 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
be a neutrosophic bimatrix with entries from the neutrosophic 
bifield F = F1 ∪ F2 = N(Z5) ∪ N(Z2). Clearly the bicharacteristic 
neutrosophic bipolynomial associated with the neutrosophic 
bimatrix A is given by  
f  =  f1 ∪ f2. 

 =  
x 2 4 4I

3 x 3I 4
3I 3 x

+
+  ∪ 

x I
I x 1+

 

=  (x3 + (3I + 1)x2 + (4I + 1)x + 3I + 1) ∪ (x (x + 1) + I) 



 151

 is the biminimal neutrosophic bipolynomial of the 
neutrosophic bimatrix A. 
 
Now we proceed onto define the notion of biinvariant subspaces 
or equivalently we may call them as invariant bisubspaces. 
 
DEFINITION 2.3.44: Let V = V1 ∪ V2 be the strong neutrosophic 
bivector space over the bifield F = F1 ∪ F2 of type II. Let T = T1 
∪ T2 be a bilinear operator on V. If W = W1 ∪ W2 is a strong 
neutrosophic bivector subspace of V we say W is biinvariant 
under T if each of the bivectors in W, i.e., for the bivector α = 
α1 ∪ α2 in W the bivector Tα = T1α1 ∪ T2α2 is in W; i.e., each 
Ti αi ∈ Wi for every αi ∈ Wi under the operator Ti for i = 1, 2, 
i.e., if T(W) is contained in W; that is Ti(Wi) ⊆ Wi for i = 1, 2. 
i.e., T(W) = T1(W1) ∪ T2(W2) ⊆ W1 ∪ W2. 
 
The simple examples are we can say V = V1 ∪ V2, the strong 
neutrosophic bivector space is invariant under a bilinear 
operator T on V. Similarly the zero subspace of a strong 
neutrosophic bivector space is invariant under T. 
 
Now we proceed onto give the biblock neutrosophic matrix 
associated with a bioperator T of V. 
 Let W = W1 ∪ W2 be a strong neutrosophic bivector 
subspace of the strong neutrosophic bivector space V = V1 ∪ 
V2. Let T = T1 ∪ T2 be a bioperator on V such that W = W1 ∪ 
W2 is biinvariant under the bioperator T then T = T1 ∪ T2 
induces a bilinear operator; Tw = 

1 2

1 2
W WT T∪  on the bisubspace 

W. This bilinear operator Tw defined by Tw(α) = T(α) for all α 
∈W; i.e., if α = α1 ∪ α2 then  
Tw(α)  =  Tw(α1 ∪ α2) 
  =  ( ) ( )

1 2

1 2
W 1 W 2T Tα ∪ α .  

Clearly Tw is different from T as bidomain is W and not V. 
When V = V1 ∪ V2 is a (n1, n2) finite bidimensional the 
biinvariance of W = W1 ∪ W2 under T = T1 ∪ T2 has a simple 
neutrosophic bimatrix interpretation. 
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 Let B = B1 ∪ B2 = { }1

1 1
1 r,...,α α  ∪ { }2

2 2
1 r,...,α α  be a bibasis 

for W. The bidimension of W is (r1, r2). 
 Let A = [T]B, that is if A = A1 ∪ A2 is the neutrosophic 
bimatrix such that A = A1 ∪ A2 = 

1

1

B
T⎡ ⎤⎣ ⎦  ∪ 

2

2

B
T⎡ ⎤⎣ ⎦  so that  

t

t t t tjt
t

n
t t t

i j i
i 1

T A
α

=

α∑  

for i = 1, 2. Thus  
 

Tαj = T1
1

1
jα  ∪ T2

2

2
jα  

= 
1

1 1 1

1

n
1 1
i j i

i 1
A

=

α∑  ∪ 
2

2 2 2

2

n
2 2
i j i

i 1
A

=

α∑ . 

 
Since W = W1 ∪ W2 is biinvariant under T the bivector Tαj 

belong to W for j1 < r1 and j2 < r2. 

Tαj = 
1

1 1 1

1

r
1 1
i j i

i 1

A
=

α∑  ∪ 
2

2 2 2

2

r
2 2
i j i

i 1

A
=

α∑  

that is 
k k

k
i jA = 0 if jk < rk and ik > rk for every k = 1, 2. 

Schematically A has the biblock 
 

A = 
B C
0 D

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 
1 1 2 2

1 2

B C B C
0 D 0 D

⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
where Bt is a rt × rt neutrosophic matrix, Ct is a rt × (nt – rt) 
neutrosophic matrix and Dt is a (nt – rt) × (nt – rt) neutrosophic 
matrix for t = 1, 2. B = B1 ∪ B2 is the neutrosophic bimatrix 
induced by the bioperator Tw on the bibasis B′ = 1 2B B′ ′∪ . In 
view of the above properties we have the following Lemma. 
 
LEMMA 2.3.1: Let W = W1 ∪ W2 be a biinvariant strong 
neutrosophic bisubspace of the bioperator T = T1 ∪ T2 on the 
strong neutrosophic bivector space V = V1 ∪ V2 over the 
neutrosophic bifield F = F1 ∪ F2 which is not pure. The 
bicharacteristic neutrosophic bipolynomial for the birestriction 
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operator Tw = 
11WT ∪

22WT  bidivides the neutrosophic 
bicharacteristic polynomial for T. The biminimal neutrosophic 
bipolynomial for Tw bidivides the biminimal neutrosophic 
polynomial for T. 
 
Proof: We know from the above results  
 

A = 
B C
0 D

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 
1 1 2 2

1 2

B C B C
0 D 0 D

⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
where  

A = [T]B = 
1 21B 2BT T∪  

and  
B = [ ]w B

T
′
 = B1 ∪ B2 = 

1
1

1w B
T

′
⎡ ⎤⎣ ⎦  ∪

2
2

2w B
T

′
⎡ ⎤⎣ ⎦ . 

Because of the biblock form of the neutrosophic bimatrix  
 
det (xI – A)   

= det (xI1 – A1) ∪ det (xI2 – A2) (where A = A1 ∪ A2) 
 =  det (xI – B) det (xI – D) 
 =  {det (xI1 – B1) det (xI1 – D1) ∪  

det (xI2 – B2) det (xI2 – D2)}. 
 
That proves the statement about bicharacteristic neutrosophic 
polynomials. Notice that we used I = I1 ∪ I2 to represent the 
biidentity matrix of the bituple of different sizes. The kth power 
of the neutrosophic bimatrix has the biblock form, 
 

Ak = (A1)k ∪ (A2)k 
 

Ak = 
1 k 1 k 2 k 2 k

1 k 2 k

(B ) (C ) (B ) (C )
0 (D ) 0 (D )

⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
where Ck = (C1)k ∪ (C2)k is {(r1 × n1–r1), (r2 × n2 – r2)} bimatrix. 
Therefore any neutrosophic bipolynomial which biannihilates A 
also biannihilates B (and D too). So the biminimal neutrosophic 
bipolynomial for B bidivides the biminimal polynomial for A. 
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 Let T = T1 ∪ T2 be any linear bioperator on a (n1, n2) finite 
dimensional space V = V1 ∪ V2 over the neutrosophic bifield F 
= F1 ∪ F2 (where both F1 and F2 are not pure neutrosophic 
fields). Let W = W1 ∪ W2 be a strong neutrosophic bivector 
subspace of V spanned by all bicharacteristic bivectors of T = 
T1 ∪ T2. Let { }1

1 1
1 kC , ,C…  ∪ { }2

2 2
1 kC , ,C…  be the bidistinct 

characteristic values of T. For each i let Wi = 
1 2

1 2
i iW W∪  be the 

strong neutrosophic bivector space associated with the 
bicharacteristic value Ci = 

1 2

1 2
i iC C∪  and let Bi = { }1 2

i iB B∪  be 

the ordered basis of Wi, i.e., t
iB  is a basis of t

iW . 
B′ = { }1

1 1
1 kB , ,B…  ∪ { }2

2 2
1 kB , ,B…  

is a biordered bibasis for  
W = { }1

1 1
1 kW W+ +…  ∪ { }2

2 2
1 kW W+ +…  = W1 ∪ W2. 

 In particular bidimension  
= { }1

1 1
1 kdim W ... dim W+ +  ∪ { }2

2 2
1 kdim W ... dim W+ + . 

 
We prove the result for one particular Wi = { }i

i i
1 kW ... W+ +  and 

since Wi is arbitrarily chosen the result is true for every i, i = 1, 
2. { }i

i i
i 1 rB ,...,′ = α α  so that the first few αi’s form a basis iB′ , the 

next 2B′ . Then Ti
t
jα  = i t

j jt α ; j = 1, 2, …, ri where { }i

i i
1 rt ,..., t  = 

{ }i

i i
1 kC ,...,C  where i

jC  is repeated dim i
jW  times j = 1, …, ri. 

Now Wi is invariant under Ti since for each αi in Wi, we have 
 

αi = 
i i

i i i i
1 1 r rx ... xα + + α  

Ti αi = 
i i i

i i i i i i
1 1 1 r r rt x ... t xα + + α . 

Choose any other vector 
i i

i i
r 1 n,...,+α α in Vi such that Bi = 

{ }i

i i
1 n,...,α α  is a basis for Vi. The matrix of Ti relative to Bi has 

the block form mentioned earlier and the neutrosophic matrix of 
the restriction operator relative to the basis iB′  is 
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Bi = 

1

i
1

i
2

i
r

t 0 0
0 t 0

0 0 t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
The characteristic neutrosophic polynomial of Bi; i.e., of 

iiwT  is 

gi = gi (x – 
i
1ei

1C )  … (x – 
i
ki

i

ei
kC ) where i

je  = dim i
jW ; j = 1, 2, …, 

ki. Further more gi divides fi, the characteristic neutrosophic 
polynomial for Ti. Therefore the multiplicity of i

jC  as a root of 

fi is atleast dim i
jW . Thus Ti is diagonalizable if and only if ri = 

ni, i.e., if and only { }i

i i
1 ke ... e+ +  = ni. Since what we proved for 

Ti is true for T = T1 ∪ T2. Hence true for every B1 ∪ B2. 
 
We now proceed onto define T biconductor of α into W = W1 ∪ 
W2 ⊆ V1 ∪ V2. 
 
DEFINITION 2.3.45: Let W = W1 ∪ W2 be a biinvariant strong 
neutrosophic bivector subspace for T = T1 ∪ T2 and let α = α1 
∪ α2 be a bivector in the strong neutrosophic bivector space V 
= V1 ∪ V2. The T-biconductor of α = α1 ∪ α2 into W = W1 ∪ 
W2 is the biset Sτ (α; W) = 

1
Sτ (α1 ; W1) ∪ 

2
Sτ (α2 ; W2) which 

consists of all neutrosophic bipolynomials g = g1 ∪ g2 over the 
neutrosophic bifield F = F1 ∪ F2 such that g(T)α is in W; that is 
g1(T1) α1 ∪ g2(T2) α2 ∈ W1 ∪ W2. 
 
Since the bioperator T will be fixed throughout the discussions 
we shall usually drop the subscript T and write S(α; W) = S(α1; 
W1) ∪ S(α2; W2). The authors usually call the collection of 
neutrosophic bipolynomials the bistuffer. We as in case of 
vector spaces prefer to call as biconductor that is the bioperator 
g(T) = g1(T1) ∪ g2(T2); slowly leads to the bivector α1 ∪ α2 into 
W = W1 ∪ W2. In the special case when W = {0} ∪ {0} the 
biconductor is called the T annihilator of α1 ∪ α2. 
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We prove the following interesting lemma. 
 
LEMMA 2.3.2: If W = W1 ∪ W2 is a strong neutrosophic 
biinvariant subspace for T = T1 ∪ T2 then W is biinvariant 
under every neutrosophic bipolynomial in T = T1 ∪ T2. Thus for 
each α = α1 ∪ α2 in V = V1 ∪ V2 the biconductor S(α; W) = 
S(α1; W1) ∪ S(α2; W2) is a biideal in the neutrosophic 
bipolynomial algebra F[x] = F1[x] ∪ F2[x] where F1 and F2 are 
neutrosophic fields and F1 and F2 are not pure neutrosophic 
fields. 
 
Proof: Given W = W1 ∪ W2 ⊆ V = V1 ∪ V2 is a strong 
neutrosophic bivector subspace over the neutrosophic bifield F 
= F1 ∪ F2 (Both F1 and F2 are not pure neutrosophic), of the 
strong neutrosophic bivector space V = V1 ∪ V2. If β = β1 ∪ β2 
is in W = W1 ∪ W2, then Tβ = T1 β1 ∪ T2 β2 is in W = W1 ∪ 
W2. Thus T(Tβ) = T2 β = 2

1T β1 ∪ 2
2T β2 is in W = W1 ∪ W2. By 

induction 1 2k kk
1 1 2 2T T Tβ = β ∪ β  is in W = W1 ∪ W2 for every 

neutrosophic bipolynomial f = f1 ∪ f2. 
 The definition S(α; W) = S(α1; W1) ∪ S(α2; W2) is 
meaningful if W = W1 ∪ W2 is any bisubset of W. If W is a 
strong neutrosophic bivector subspace then S(α; W) is a strong 
neutrosophic bisubspace of F[x] = F1[x] ∪ F2[x] because (cf + 
g)T = cf(T) + g(T); i.e.,(c1f1 + g1)T1 ∪ (c2f2 + g2)T2 = c1f1(T1) + 
g1(T1) ∪ c2f2(T2) + g2(T2). If W = W1 ∪ W2 is also biinvariant 
under T = T1 ∪ T2 and let g = g1 ∪ g2 be a neutrosophic 
bipolynomial in S(α; W) = S(α1; W1) ∪ S(α2; W2); i.e., let 
g(T)α = g1(T1)α1 ∪ g2(T2)α2 be in W = W1 ∪ W2 is any 
neutrosophic bipolynomial then f(T) g(T) α is in W = W1 ∪ W2 
that is f(T)[g(T)α] = f1(T1)[g1(T1) α1] ∪ f2(T2)[g2(T2) α2] will be 
in W = W1 ∪ W2. Since (fg)T = f(T)g(T) we have  

(f1g1)T1 ∪ (f2g2)T2 = f1(T1)g1(T1) ∪ f2(T2) g2(T2); 
 
(fg) ∈ S(α; W); that is (figi) ∈ S (αi;Wi); i = 1, 2. Hence the 
claim. 
 The unique bimonic generator of the neutrosophic biideal 
S(α; W) is also called the T biconductor of α  = α1 ∪ α2 in W 
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(the T biannihilator in case W = {0} ∪ {0}). The T biconductor 
of α into W is the bimonic neutrosophic bipolynomial g of least 
bidegree such that g(T)α = g1(T1)α1 ∪ g2(T2)α2 is in W = W1 ∪ 
W2. 
 A neutrosophic bipolynomial f = f1 ∪ f2 is in S(α; W) = 
S(α1; W1) ∪ S(α2; W2) if and only if g bidivides f.  
 Note the biconductor S(α; W) always contains the 
bipolynomial for T, hence every T biconductor bidivides the 
biminimal polynomial for T = T1 ∪ T2.  
 We prove the following lemma. 
 
LEMMA 2.3.3: Let V = V1 ∪ V2 be a strong neutrosophic (n1, n2) 
bidimensional bivector space over the neutrosophic bifield F = 
F1 ∪ F2 (both F1 and F2 are not pure neutrosophic fields). Let T 
= T1 ∪ T2 be a bilinear operator on V such that the 
neutrosophic biminimal polynomial for T is a product of 
bilinear factors p = p1 ∪ p2 = (x – 

1
1r1

1c )  … (x – 
1
k1

1

r1
kc )  ∪ (x – 

2
1r2

1c )  … (x – 
2
k2

2

r2
kc ) ; 

i

i
tc ∈ Fi; 1≤  ti ≤ ki. i = 1, 2. 

Let W = W1 ∪ W2 be a strong neutrosophic proper bivector 
subspace of V (V≠ W) which is biinvariant under T. There exists 
a bivector α  = α1 ∪ α2 in V = V1 ∪ V2 such that 
i. α is not in W = W1 ∪ W2 

ii. (T – cI) α =(T1 – c1I1) α1 ∪ (T2 – c2I2) α2 
 
is in W = W1 ∪ W2 for some bicharacteristic value of the 
bioperator T. 
 
Proof: (1) and (2) express that T biconductor of α  = α1 ∪ α2 
into W = W1 ∪ W2 is a neutrosophic bilinear bipolynomial. 
Suppose β = β1 ∪ β2 is any bivector in V = V1 ∪ V2 which is 
not in W = W1 ∪ W2. Let g = g1 ∪ g2 be the T biconductor of β 
in W = W1 ∪ W2. Then g bidivides p = p1 ∪ p2 the neutrosophic 
biminimal bipolynomial for T = T1 ∪ T2. Since β = β1 ∪ β2 is 
not in W = W1 ∪ W2, the neutrosophic bipolynomial g is not 
constant. Therefore g = g1 ∪ g2 = (x – 

1
1e1

1c )  … (x – 
1
k1

1

e1
kc )  ∪ (x 
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– 
2
1e2

1c )  … (x – 
2
k2

2

e2
kc ) ; where atleast one of the bipair of 

integers 1 2
i ie e∪  is positive. Choose jt so that 

t

t
je 0> , t = 1, 2, 

then (x – cj) = (x –
1

1
jc )  ∪ (x –

2

2
jc )  bidivides g. g = (x – cj)h; i.e., 

g = g1 ∪ g2 = (x – 
1

1
jc ) h1 ∪ (x – 

2

2
jc ) h2. By the definition of g 

the bivector α  = α1 ∪ α2 = h1(T1)β1 ∪ h2(T2)β2 = h(T)β cannot 
be in W. But (T – cjI) α =(T – cjI)h(T)β = g(T)β is in W 
 
(T1 – 

1

1
jc I1) α1 ∪(T2 – 

2

2
jc I2)  

  = (T1 – 
1

1
jc )h1(T1)β1 ∪ (T2 – 

2

2
jc )h2(T2)β2  

  =  g1(T1) β1 ∪ g2(T2) β2 
 
with gi(Ti)βi ∈ Wi for i = 1, 2. 
 
Next we obtain the condition for T to be bitriangulable.  
 
THEOREM 2.3.35: Let V = V1 ∪ V2 be a (n1, n2) finite 
bidimensional strong neutrosophic bivector space over the 
bifield F = F1 ∪ F2 (F1 and F2 are neutrosophic fields and they 
are not pure neutrosophic fields) and let T = T1 ∪ T2 be a 
bilinear operator on V = V1 ∪ V2. Then T is bitriangulable if 
and only if the biminimal neutrosophic bipolynomial for T is a 
biproduct of bilinear neutrosophic bipolynomials over the 
neutrosophic bifield F = F1 ∪ F2. 
 
Proof: Suppose the biminimal neutrosophic bipolynomial p = p1 

∪ p2, bifactors as p = (x – 
1
1r1

1c )  … (x – 
1
k1

1

r1
kc )  ∪ (x – 

2
1r2

1c )  … (x 

– 
2
k2

2

r2
kc ) . By the repeated application of the lemma 2.3.3 we 

arrive at a bibasis B = { }1

1 1
1 n,...,α α  ∪ { }2

2 2
1 n,...,α α  = B1 ∪ B2 in 

which the neutrosophic bimatrix representing T = T1 ∪ T2 is 
upper bitriangular 
  

[T]B = [ ] [ ]
1 2

1 2B B
T T∪  
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 = 

1

1

1 1

1 1 1
11 12 1n

1 1
22 2n

1
1n n

a a a

0 a a

0 0 a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ 

2

2

2 2

2 2 2
11 12 1n

2 2
22 2n

2
1n n

a a a

0 a a

0 0 a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Merely [T]B = neutrosophic bitriangular bimatrix of (n1 × n1, n2 
× n2) order shows  
 
Tαj  =  T1 1

1
jα  ∪ T2 2

2
jα  

=  
1 1 1 1

1 1 1 1
1j 1 j j ja ... aα + + α  ∪ 

2 2 2 2

2 2 2 2
1j 1 j j ja ... aα + + α  ….  (a) 

 
1 ≤ ji ≤ ni, i = 1, 2 that is Tαj is in the strong neutrosophic 
bisubspace spanned by { }1

1 1
1 j, ,α α…  ∪ { }2

2 2
1 j,...,α α . To find 

{ }1

1 1
1 j,...,α α  ∪ { }2

2 2
1 j,...,α α  we start by applying the lemma to 

the bisubspace W = W1 ∪W2 = {0} ∪ {0} to obtain the bivector 
1 2
1 1α ∪ α . Then apply lemma to 1 2

1 1W W∪  the bistrong 
neutrosophic bispace spanned by α1 = 1 2

1 1α ∪ α  and obtain α2 = 
1 2
2 2α ∪ α . Next apply lemma to W2 = 1 2

2 2W W∪ . We have now 
obtained using the relation (a) the strong neutrosophic bivector 
space spanned by α1 and α2 and is biinvariant under T. 

If T is bitriangulable then it is evident that the 
bicharacteristic neutrosophic bipolynomial for T has the form  
 
f  =  f1 ∪ f2  

= (x –
1
1d1

1c ) …(x – 
1
k1

1

d1
kc )  ∪ (x – 

2
1d2

1c ) … (x – 
2
k2

2

d2
kc ) . 

 
The bidiagonal entries ( ) ( )1 2

1 1 2 2
11 1n 11 1na ,...,a a ,...,a∪  are the 

bicharacteristic values with t
jc  repeated t

jtd  times. But if f can 
be bifactored so also is the biminimal bipolynomial p because p 
bidivides f.  
 
The reader is expected prove the following corollary. 
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COROLLARY 2.3.2: If F = F1 ∪ F2 is a bialgebraically closed 
bifield. Every (n1 × n1, n2 × n2) neutrosophic bimatrix over F is 
similar over the bifield F to a neutrosophic bitriangular 
bimatrix. 
 
THEOREM 2.3.36: Let V = V1 ∪ V2 be a (n1, n2) bidimensional 
strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2 (F1 and F2 are not pure neutrosophic fields) 
and let T = T1 ∪ T2 be a bilinear operator on V = V1 ∪ V2. Then 
T is bidiagonalizable if and only if the neutrosophic biminimal 
bipolynomial for T has the form 

p = p1 ∪ p2 
= (x – 1

1c )  … (x – 
1

1
kc )  ∪ (x – 2

1c )  … (x – 
2

2
kc ) . 

where { }1

1 1
1 kc , ,c…  ∪ { }2

2 2
1 kc , ,c…  are bidistinct element of F = 

F1 ∪ F2. 
 
Proof: We know if T = T1 ∪ T2 is bidiagonalizable its 
biminimal neutrosophic bipolynomial is a byproduct of 
bidistinct linear factors. Hence one way of the proof is clear. 
 To prove the converse let W = W1 ∪ W2 be a strong 
neutrosophic bisubspace spanned by all the bicharacteritic 
bivectors of T and suppose W ≠ V. Then we know by the 
properties of bilinear operator that there exists a bivector α = α1 
∪ α2 in V = V1 ∪ V2 and not in W = W1 ∪ W2 and the 
bicharacteristic value cj = 

1 2

1 2
j jc c∪  of T = T1 ∪ T2 such that the 

bivector  
β  = (T – cjI) α 

= (T1 – 
1

1
jc I1) α1 ∪ (T2 – 

2

2
jc I2) α2 

 =  β1 ∪ β2  
lies in W = W1 ∪ W2 where each βi ∈ Wi , i = 1, 2. Since β = β1 
∪ β2 is in W; βi = ik1

i iβ + + β… ; i = 1, 2 with Ti t
iβ  = t t

i ic β , t = 1, 
2, …, ki and this is true for every i = 1, 2 and hence the bivector 
h(T) β = {h1 1 1

1 1(c )β  + … + h1
1 1

1 1
k k(c )β } ∪ {h2 2 2

1 1(c )β  + … + 

h2
2 2

2 2
k k(c )β } for every neutrosophic bipolyomial h. Now  
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p  =  (x – cj)q 
=  p1 ∪ p2 
=  (x – 

1

1
jc )q1 ∪ (x – 

2

2
jc )q2 

 
for some neutrosophic bipolynomial q = q1 ∪ q2, Also q – q(cj) 
= (x – cj)h that is  

q1 – q1 ( 1

1
jc ) ∪ q2 – q2 ( 2

2
jc ) = (x – 

1

1
jc )

1

1
jh  ∪ (x – 

2

2
jc ) 

2

2
jh . 

We have  
q(t)α – q(cj) α  =  h(T)(T – cjI) α 
    =  h(T) β. 
But h(T) β is in W = W1 ∪ W2 and since  
0  =  p(T) α 
 = (T – cjI) q(T) α 

=  p1(T1) α1 ∪ p2(T2) α2  
= (T1 – 

1

1
jc I1) q1(T1) α1 ∪(T2 – 

2

2
jc I2) q2(T2) α2 

 
and the bivector q(T)α is in W, that is q1(T1)α1 ∪ q2(T2)α2 is in 
W = W1 ∪ W2. Therefore q(cj)α = q1( 1

1
jc )α1 ∪ q2( 2

2
jc )α2 is in W 

= W1 ∪ W2. 
Since α = α1 ∪ α2 is not in W = W1 ∪ W2, we have q(cj) = 

q1(
1

1
jc ) ∪ q2(

2

2
jc ) = 0 ∪ 0. This contradicts the fact that p has 

distinct roots. 
 Hence the claim. 
 
We can now describe this more in terms of how the values are 
determined and its relation to Cayley Hamilton Theorem for 
strong neutrosophic bivector spaces of type II. 

Suppose T = T1 ∪ T2 is a bilinear operator of a strong 
neutrosophic bivector space of type II which is represented by 
the neutrosophic bimatrix A = A1 ∪ A2 in some bibasis for 
which we wish to find out whether T = T1 ∪ T2 is 
bidiagonalizable. We compute the bicharacteristic neutrosophic 
bipolynomial f = f1 ∪ f2. If we can bifactor f = f1 ∪ f2 as (x – 

1
1d1

1c )  … (x – 
1
k1

1

d1
kc )  ∪ (x – 

2
1d2

1c )  … (x – 
2
k2

2

d2
kc ) , we have two 

different methods for finding whether or not T is 
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bidiagonlaizable. One method is to see whether for each i(t) (i(t) 
means i is independent on t) we can find a t

id  (t = 1, 2); 1 ≤ i ≤ 
kt independent characteristic vectors associated with the 
characteristic value t

ic . The other method is to check whether or 
not  

(T – c1I) ∪(T – c2I)  = 
(T1 – 1

1c I1) …(T1 – 
1

1
kc I1) ∪ (x – 2

1c I2) … (x – 
2

2
kc I2) 

is the bizero operator. 
 
LEMMA 2.3.4: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space of (n1, n2) bidimensional over the neutrosophic 
bifield F = F1 ∪ F2 (F1 and F2 are not neutrosophic pure) of 
type II.  

Let { }1

1 1
1 kW , ,W…  ∪ { }2

2 2
1 kW , ,W…  be strong neutrosophic 

bivector subspace of V and let W = W1 ∪ W2 = { }1

1 1
1 kW ... W+ +  

∪ { }2

2 2
1 kW ... W+ + . Then the following are equivalent.  

i. { }1

1 1
1 kW , ,W…  ∪ { }2

2 2
1 kW , ,W…  are biindependent, that is 

{ }t

t t
1 kW , ,W…  are independent for t = 1, 2. 

ii. For each jt, 2 ≤ jt ≤ kt; t = 1, 2, we have 
{ }t 1

t t t
j 1 j 1W W W −+ +…  = {0} for t = 1, 2. 

iii. If t
iB  is a bibasis for t

iW , 1≤ i ≤ kt, t = 1, 2; then the 
bisequences { }1

1 1
1 kB , , B…  ∪ { }2

2 2
1 kB , , B…  is a bibasis for 

the strong neutrosophic bisubspace W = W1 ∪ W2 = 
{ }1

1 1
1 kW W+ +…  ∪ { }2

2 2
1 kW W+ +… . 

 
Proof: Assume (i) let αt ∈ 

t

t
jW  ∩ { }t 1

t t
1 jW W

−
+ +…  then there 

are vectors ( )t 1

1 1
1 j, ,

−
α α…  with t t

i iWα ∈  such that 
t

t t
1 j 1( −α + + α…  

+ αt) + αt = 0 + … + 0 = 0 and since { }t

t t
1 kW ,...,W  are 

independent it must be that 
t 1

t t t
1 2 j... 0

−
α = α = = α = . This is true 
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for each t; t = 1, 2. Now let us observe that (ii) implies (i). 
Suppose 0 = ( )t

t t
1 k...α + + α ; t t

i iWα ∈ , i = 1, 2, …, kt (we 

denote both the zero vector and zero scalar by 0). Let jt be the 
largest integer it such that t

iα  ≠ 0. Then 0 = 
t

t t
i j...α + + α ; 

t

t
jα  ≠ 

0 thus 
t

t
jα  = – 

t 1

t t
i j...

−
α − − α  is a non zero vector in 

t

t
jW  ∩ 

{ }t 1

t t
1 jW W

−
+ +… . 

 Now that we know (i) and (ii) are the same let us see why 
(i) is equivalent to (iii). Assume (i). Let t

iB  be a basis for t
iW ; 1 

≤ i ≤ kt and let Bt = { }t

t t
1 kB , ,B…  true for each t, t = 1, 2. 

 Any linear relation between the vector in Bt will have the 
form ( )t

t t
1 k...β + + β  = 0 where t

iβ  is some linear combination of 

vectors in t
iB . Since { }t

t t t
1 2 kW ,W ,...,W  are independent each of 

t
iβ  is 0. Since each t

iB  is an independent relation.  
 The relation between vectors in Bt is trivial. This is true for 
every t; t = 1, 2; so in B = B1 ∪ B2 = { }1

1 1
1 kB , ,B…  ∪ 

{ }2

2 2
1 kB , , B…  every birelation in bivector in B is a trivial 

birelation. It is left for the reader to prove(c) implies (a). 
 If any of the conditions of the above lemma hold we say the 
bisum W = { }1

1 1
1 kW ... W+ +  ∪ { }2

2 2
1 kW ... W+ + ; bidirect or that 

W is the bidirect sum of { }1

1 1
1 kW ,...,W  ∪ { }2

2 2
1 kW W…  and we 

write W = { }1

1 1
1 kW ... W⊕ ⊕  ∪ { }2

2 2
1 kW ... W⊕ ⊕ . This bidirect 

sum will also be known as the biindependent sum or the 
biinterior direct sum of { }1

1 1
1 kW , , W…  ∪ { }2

2 2
1 kW , ,W… . Let V = 

V1 ∪ V2 be a strong neutrosophic bivector space over the 
neutrosophic bifield F = F1 ∪ F2. A biprojection of V is a 
bilinear operator E = E1 ∪ E2 on V such that E2 = 2 2

1 2E E∪  = E1 
∪  E2 = E. 
 Since E is a biprojetion. Let R = R1 ∪ R2 be the birange of 
E and let N = N1 ∪ N2 be the null bispace E = E1 ∪ E2. 
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1. The bivector β = β1 ∪ β2 is the birange R if and only if E β 
= β that is E1 β1 ∪ E2 β2 = β1 ∪ β2. If β = Eα then Eβ = E2α 
= Eα = β. Conversely if β = E β then of course β is in the 
birange of E = E1 ∪ E2. 

2. V = R ⊕ N; that is V = V1 ∪ V2 = R1 ⊕ N1 ∪ R2 ⊕ N2; that 
is each Vi = Ri ⊕ Ni ; i = 1, 2. 

3. The unique expression for α as a sum of bivector in R and 
N is α = E α + (α – Eα) that is α = α1 ∪ α2 = E1 α1 + (α1 – 
E1 α1) ∪ E2 α2 + (α2 – E2 α2).  

 
From (1), (2) and (3) it is easy to verify, if R = R1 ∪ R2 and N = 
N1 ∪ N2 are strong neutrosophic bivector subspace of V such 
that V = R ⊕ N = R1 ⊕ N1 ∪ R2 ⊕ N2, there is one and only one 
biprojection operator E = E1 ∪ E2 which has birange R and 
binull space N. That operator is called the biprojection on R 
along N. 
 Any biprojeciton E = E1 ∪ E2 is trivially bidiagonalizable. If 
{ }1

1 1
1 r,...,α α  ∪ { }2

2 2
1 r,...,α α  a bibasis of R and { }1 1

1 1
r 1 n,...,+α α  ∪ 

{ }2 2

2 2
r 1 n,...,+α α  a bibasis for N then the bibasis B = { }1

1 1
1 n,...,α α  

∪ { }2

2 2
1 n,...,α α  = B1 ∪ B2, bidiagonalizes E = E1 ∪ E2. 

[E]B = [ ] [ ]
1 2

1 2B B
E E∪  = 1 2I 0 I 0

0 0 0 0
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
where I1 is a r1 × r1 identity matrix and I2 is a r2 × r2 identity 
matrix.  

Projections can be used to describe the bidirect sum 
decomposition of the strong neutrosophic bivector space V = V1 
∪ V2. For suppose V = { }1

1 1
1 kW W⊕ ⊕…  ∪ { }2

2 2
1 kW W⊕ ⊕…  

for each j(t) we define t
jE  on Vt. (t = 1, 2). Let α = α1 ∪ α2 be 

in V = V1 ∪ V2 say α = { }1

1 1
1 kα + + α…  ∪ { }2

2 2
1 kα + + α…  with 

t
iα  in t

iW , 1 ≤ i ≤ kt for t = 1, 2. Define i
jE αt = t

jα  then t
jE  is a 

well defined rule. It is easy to see that t
iE  is linear and that 

range of t
jE  is t

jW  and ( t
jE )2 = t

jE  . The null space of t
jE  is the 
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strong neutrosophic subspace 
t

t t t t
1 j 1 j 1 kW ... W W ... W− ++ + + + +  

for the statement t
jE αt = 0 simply means t

jα  = 0 that is α is 

actually a sum of vectors from the spaces t
iW  with i ≠ j. Interms 

of the projections t
jE  we have αt = t

1E αt + … + t
kE αt for each 

α in V. The above equation implies It = { }t

t t
1 kE ... E+ + . Note 

also that if i ≠ j then t
iE t

jE  = 0 because the range of t
jE  is the 

strong neutrosophic subspace t
jW  which is contained in the null 

space of t
iE . This is true for each t, t = 1, 2. Hence true on the 

strong neutrosophic bivector space  
V = { }1

1 1
1 kW ... W⊕ ⊕  ∪ { }2

2 2
1 kW ... W⊕ ⊕  

 
Now we prove an interesting result. 
 
THEOREM 2.3.37: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2 (both 
F1 and F2 are not pure neutrosophic) of type II and suppose V = 
{ }1

1 1
1 kW ... W⊕ ⊕  ∪ { }2

2 2
1 kW ... W⊕ ⊕  then there exists (k1, k2) 

bilinear operators { }1

1 1
1 kE ,...,E  ∪ { }2

2 2
1 kE ,...,E  on V such that  

i. Each t
iE  is a projection, that is ( t

iE )2 = t
iE for t = 1, 2; 1 

≤ i ≤ kt. 
ii. t

iE t
jE  = 0 if i ≠ j; 1 ≤ i, j ≤ kt. and t = 1, 2. 

iii. I = I1 ∪ I2 = { }1

1 1
1 kE E+ +…  ∪ { }2

2 2
1 kE E+ +… . 

iv. The range of t
iE  is t

iW , for i = 1, 2, …, kt and t = 1, 2. 
 
Proof: We are primarily interested in the bidirect sum 
bidecomposition V = { }1

1 1
1 kW W⊕ ⊕…  ∪ { }2

2 2
1 kW W⊕ ⊕…  = 

W1 ∪ W2 where each of the strong neutrosophic bivector 
bisubspaces Wt is invariant under some given bilinear operator 
T = T1 ∪ T2. 
 Given such a decomposition of V, T induces bilinear 
operators T = T1 ∪ T2. 
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 Given such a bidecomposition of V = V1 ∪ V2, T = T1 ∪ T2 
induces bilinear operators ( )1 2

i iT T∪  on ( )1 2
i iW W∪  by 

restriction, the action of T is α, is a bivector in V we have 
unique bivectors { }1

1 1
1 k,...,α α  ∪ { }2

2 2
1 k,...,α α  with t

iα  in t
iW  

such that α = { }1

1 1
1 kα + + α…  ∪ { }2

2 2
1 kα + + α…  and then 

Tα  = { }1 1

1 1 1 1
1 1 k kT Tα + + α…  ∪{ }2 2

2 2 2 2
1 1 k kT Tα + + α… . 

 
We shall describe this situation by saying that T = T1 ∪ T2 is the 
bidirect sum of the operators { }1

1 1
1 kT ,...,T  ∪{ }2

2 2
1 kT ,...,T . 

 It must be remembered in using this terminology that the t
iT  

are not bilinear operators on the strong neutrosophic bivector 
space V = V1 ∪ V2 but on the various strong neutrosophic 
bivector subspaces  

W = W1 ∪ W2. 
= { }1

1 1
1 kW ... W⊕ ⊕  ∪ { }2

2 2
1 kW ... W⊕ ⊕  

 
which enables us to associate with each α = α1 ∪ α2 in V a 
unique pair of k-tuple { }1

1 1
1 k,...,α α  ∪ { }2

2 2
1 k,...,α α  of vectors t

iα  

∈ t
iW , i = 1, 2, …, kt. t = 1, 2. 

 
α = { }1

1 1
1 k...α + + α  ∪ { }2

2 2
1 k...α + + α  is in such a way that we 

can carry out the bilinear operators on V by working in the 
individual strong  neutrosophic bivector subspaces Wi = 

1 2
i iW W+ . The fact that each Wi is biinvariant under T enable us 

to view the action of T as the independent action of the 
operators t

iT  on the bisubspaces t
iW ; i = 1, 2, …, kt, t = 1, 2. 

Our purpose is to study T by finding biinvariant bidirect sum 
decompositions in which the t

iT  operators of an elementary 
nature.  
 
The following theorem is left as an exercise for the reader to 
prove. 
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THEOREM 2.3.38: Let T = T1 ∪ T2 be a bilinear operator on a 
strong neutrosophic bivector space V = V1 ∪ V2 of type II over 
the neutronsophic bifield F = F1 ∪ F2 (F1 and F2 are not pure 
neutrosophic fields). Let 

1

1 1
1 k(W , ,W )…  ∪ 

2

2 2
1 k(W , ,W )…  and 

1

1 1
1 k( E , ,E )…  ∪ 

2

2 2
1 k( E , ,E )…  be as before. Then a necessary 

and sufficient condition that each strong neutrosophic bivector 
subspace t

iW  to be biinvariant under Ti for 1≤ i≤ kt; t = 1, 2 is 
that t

iE Tt = Tt
t
iE  or ET = TE for every 1 ≤ i ≤ kt and t = 1, 2. 

 
Now we proceed on to define the notion of biprimary 
decomposition of strong neutrosophic bivector space V = V1 ∪ 
V2 of (n1, n2) dimension over the neutrosophic bifield F = F1 ∪ 
F 2 where F1 and F2 are not pure neutrosophic fields. 
 
THEOREM 2.3.39: (Primary bidecomposition theorem): Let T = 
T1 ∪ T2 be a bilinear operator on a finite (n1, n2) dimension 
strong neutrosophic bivector space V = V1 ∪ V2 over the 
neutroscophic bifield F = F1 ∪ F2 (F1 and F2 are not pure 
neutrosophic fields). Let p = p1 ∪ p2 be the biminimal 
neutrosophic polynomial for T = T1 ∪ T2.  

11
k1 1

1

rr
11 1kp p p= …  ∪ 

11
k1 1

1

rr
21 2kp p p= …  where t

tip  are distinct 
irreducible monic neutrosophic polynomials over Ft; i = 1, 2, 
…, kt; t = 1, 2 and t

ir  are positive integers. Let 1 2
i i iW W W= ∪  

be the null bispace of 
1 2
i ir r1 2

1i i 2i ip(T ) p (T ) p (T )= ∪ ; i = 1, 2; 
then,  

i. W= W1 ∪ W2  = 1

1 1
1 k(W W )⊕ ⊕…  ∪ 

2

2 2
1 k(W W )⊕ ⊕…  

ii. each Wi = 1 2
i iW W+  is biinvariant under Ti; i = 1, 2. 

iii. If r
iT  is the operator induced on r

iW  by Ti then the 
minimal neutrosophic polynomial for r

iT  is r
ip ; r = 1, 2, 

…, ki , i = 1, 2. 
 
We prove the corollary to this theorem. 
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COROLLARY 2.3.3: If 
1

1 1
1 k{ E , ,E }…  ∪ 

2

2 2
1 k{ E , ,E }…  are 

biprojections associated with the biprimary decomposition of T 
= T1 ∪ T2 then each t

iE  is a neutrosophic polynomial in T; 1 ≤ i 
≤ kt; t = 1, 2 and accordingly if a linear operator S commutes 
with T then S commutes with each of the Ei; that is each strong 
neutrosophic subspace Wi is invariant under S. 
 
Proof: For any bilinear operator defined on a strong 
neutrosophic bivector space defined over the neutrosophic 
bifield F = F1 ∪ F2 (F1 and F2 pure neutrosophic fields) of type 
II , we can associate the notion of bidiagonal part of T and 
binilpotent part of T. 

Consider the neutrosophic biminimal polynomial for T = T1 
∪ T2 which is decomposed into first degree polynomials that is 
the case in which each pi is of the form t t

i 1p x c= − . Now the 

range of t
iE  is the null space of t

iW  of 
t
irt

t i t(T c I )− ; we know by 
earlier results D is a bidiagonalizable part of T. 

Let us look at the bioperator  
N = T – D 

N1 ∪ N2 = (T1 – D1) ∪ (T2 – D2) 
T = 

1

1 1
1 1 1 k(T E ... T E )+ +  ∪ 

2

2 2
2 1 2 k(T E ... T E )+ +  

and 
D = D1 ∪ D2 = 

1 1

1 1 1
1 1 k k(c E ... c E )+ +  ∪ 

2 2

2 2 2
2 1 k k(c E ... c E )+ +  

so  
N = N1 ∪ N2 

= 
1 1

1 1 1 1
1 1 1 1 1 k 1 k{(T c I )E ... (T c I )E }− + + −  ∪ 

2 2

2 2 2 2
2 1 2 1 2 k 2 k{(T c I )E ... (T c I )E }− + + − . 

Now  
2 2 2

1 2N N N= ∪  
= 

1 1

1 2 1 1 2 1
1 1 1 1 1 k 1 k(T c I ) E ... (T c I ) E− + + −  ∪ 

2 2

2 2 2 2 2 2
2 1 2 1 2 k 2 k(T c I ) E ... (T c I ) E− + + − . 

and in general 
 Nr = k1 1

1 1

rr1 1 1 1
1 1 1 1 1 k 1 k{(T c I ) E ... (T c I ) E }− + + −  ∪  
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k2 2

2 2

rr2 2 2 2
2 1 2 1 2 k 2 k{(T c I ) E ... (T c I ) E }− + + − . 

 
When r ≥ ri for each i we have Nr = 0 i.e., r r

1 2N N∪  = 0 ∪ 0; 
that is each of the bioperator trt

t 1 t(T c I ) 0− =  on the range t
iE ; 1 

≤ t ≤ ki and i = 1, 2. Thus (T – cI)r = 0 for a suitable r. 
Let N = N1 ∪ N2 be a bilinear operator on a bivector space 

V = V1 ∪ V2. We say N is binilpotent if there is some pair of 
integers (r1, r2) such that ir

iN 0=  for i = 1, 2. We choose r > ri; i 
= 1, 2 then Nr = 0, where N = N1 ∪ N2. 
 
In view of this we have the following theorem for strong 
neutrosophic bivector spaces of type II defined over the 
neutrosophic bifield F = F1 ∪ F2 (F1 and F2 not pure 
neutrosophic). 
 
THEOREM 2.3.40: Let T = T1 ∪ T2 be a bilinear operator on the 
(n1, n2) finite bidimensional strong neutrosophic bivector space 
V = V1 ∪ V2 over the neutrosophic bifield F = F1 ∪ F2 (both F1 
and F2 are not pure). Suppose that the biminimal neutrosophic 
polynomial for T = T1 ∪ T2 decomposes over F = F1 ∪ F2 into a 
biproduct of bilinear neutrosophic polynomials. Then there is a 
bi diagonalizable operator N = N1 ∪ N2 on V = V1 ∪ V2 such 
that,  

i. T = D + N ; i.e.; 
T1 ∪ T2  =  D1 ∪ D2 + N1 ∪ N2  

=  D1 + N1 ∪ D2 + N2. 
ii. DN = ND that is 

(D1 ∪ D2) (N1 ∪ N2) =  D1N1 ∪ D2N2  

=  N1D1 ∪ N2D2. 
The bidiagonalizable operator D = D1 ∪ D2 and the binilpotent 
operator N = N1 ∪ N2 are uniquely determined by (i) and (ii) 
and each of them is a bipolynomial in T1 and T2. 
 
Consequent of the above theorem the following corollary is 
direct. 
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COROLLARY 2.3.4: Let V be a finite bidimension strong 
neutrosophic bivector space over the special algebraically 
closed neutrosophic bifield F = F1 ∪ F2. Then every bilinear 
operator T = T1 ∪ T2 on V = V1 ∪ V2 can be written as the sum 
of a bidiagonalizable operator D = D1 ∪ D2 and a binilpotent 
operator N = N1 ∪ N2 which commute. These bioperators D and 
N are unique and each is a bipolynomial in (T1, T2). 

Let V = V1 ∪ V2 be a finite bidimensional strong 
neutrosophic bivector space over the neutrosophic bifield F = 
F1 ∪ F2 and T = T1 ∪ T2 be an aribitary and fixed bilinear 
operator on V= V1 ∪ V2. If α = α1 ∪ α2 is a bivector in V then 
there is a smallest bisubspace of V = V1 ∪ V2 which is 
biinvarient under T = T1 ∪ T2 and contains α. This strong 
neutrosophic bispace can be defined as the biintersection of all 
T-invariant strong neutrosophic bisubspaces which contain α. 
 
If W = W1 ∪ W2 be any strong neutrosophic bivector supspace 
of W = W1 ∪ W2 of a strong neutrosophic bivector space V = 
V1 ∪ V2 which is biinvariant under α = α1 ∪ α2; that is each Ti 
in T is such that the strong neutrosophic subspace Wi on Vi is 
invariant under Ti and contains αi; true for i = 1, 2. 

Then W = W1 ∪ W2 must also contain Tα; that is Tiαi is in 
Wi for each i = 1, 2; hence T(Tα) is in W; that is Ti(Tiαi) = 

2
i iT α  is in W and so on; that is im

iT (αi) is in Wi, for each i so 
that Tm(α) ∈ W; i = 1, 2. W must contain g(T)α for every 
neutrosophic bipolynomial g = g1 ∪ g2 over the neutrosophic 
bifield F = F1 ∪ F2. The set of all bivectors of the form g(T)α = 
g1(T1)α1 ∪ g2(T2)α2 with g = g1 ∪ g2 ∈ F[x] = F1[x] ∪ F2[x], is 
clearly biinvariant and is thus the smallest bi T-invariant (T-
biinvariant) strong neutrosophic bisubspace which contains α = 
α1 ∪ α2. 
 
In view of this we have the following definition. 
 
DEFINITION 2.3.46: Let α = α1 ∪α2 be any bivector in a strong 
neutrosophic bivector space V= V1 ∪ V2 over the neutrosophic 
bifield F = F1 ∪ F2 (F1 and F2 are not pure neutrosophic). The 
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T-bicyclic strong neutrosophic bisubspace generated by α = α1 
∪ α2 is a strong neutrosophic bisubspace Z(α; T) = Z(α1; T1) ∪ 
Z(α2; T2) of all bivectors g(T)α = g1(T1)α1 ∪ g2(T2)α2; g = g1 ∪ 
g2 in F[x] = F1[x] ∪ F2[x] is a neutrosophic bipolynomial. If 
Z(α; T) = V then α is a bicyclic vector for T. 
 
Another way of describing this strong neutrosophic bisubspace 
Z(α; T) is that Z(α; T) is the strong neutrosophic bisubspace 
spanned by the bivectors kTα ; k ≥ 0 and α is a bicyclic bivector 
for T = T1 ∪ T2 if and only if these bivectors span V; that is 
each i

i

k
iTα  span Vi, ki ≥ 0 and thus αi is a cyclic vector for Ti if 

and only if these vectors span Vi, true for i = 1, 2. 
We just caution the reader that the general bioperator T = T1 

∪ T2 has no bicyclic bivector. 
For any T the T bicyclic strong neutrosophic bisubspace 

generated by the bizero vector is the bizero strong neutrosophic 
bisubspace of V. The bispace Z(α;T) = Z(α1;T1) ∪ Z(α2;T2) is 
(1, 1) dimensional if and only if α is a bicharacteristic vector for 
T. For the biidentity operator, every nonzero bivector generates 
a (1, 1) dimensional bicyclic strong neutrosophic bisubspace 
thus if bidimV > (1, 1) the biidentity operator has non cyclic 
vector. 

For any T and α we shall be interested in the bilinear 
relation c0α + c1Tα + … + ckTαk = 0 where α = α1 ∪ α2 so that 

1

1

k1 1 1
0 1 1 1 1 k 1 1c c T ... c T 0α + α + + α =  

and  
2

2

k2 2 2
0 2 1 2 2 k 2 2c c T ... c T 0α + α + + α =  

between the bivectors Tαj, we shall be interested in the 
neutrosophic bipolynomial g = g1 ∪ g2 where  

i

i

ki i i
i 0 1 kg c c x ... c x= + + +  

true for i = 1, 2, which has the property that g(T)α = 0. 
The set of all g in F[x] = F1[x] ∪ F2[x] such that g(T)α = 0 

is clearly a neutrosophic biideal in F[x]. It is also a non zero 
neutrosophic biideal in F[x] because it contains biminimal 
bipolynomial p = p1 ∪ p2 of the bioperator T. p(T)α = p1(T1)α1 
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∪ p2(T2)α2 = 0 ∪ 0; that is p(T1)α1 ∪ p2(T2)α2 = 0 ∪ 0 for every 
α = α1 ∪ α2 in V = V1 ∪ V2. 
 
DEFINITION 2.3.47: If α = α1 ∪ α2 is any bivector in strong 
neutrosophic bivector space V = V1 ∪ V2 of type II defined over 
the neutrosophic bifield F = F1 ∪ F2 (F1 and F2 are not pure 
neutrosophic). The T-annihilator (T = T1 ∪ T2) of α = α1 ∪ α2 
is the neutrosophic biideal M(α; T) = M(α1; T1) ∪ M(α2; T2) in 
F[x]=F1[x]∪F2[x] consisting of all neutrosophic bipolynomials 
g = g1 ∪ g2 over F = F1 ∪ F2 such that g(T) = g1(T1) ∪ g2(T2) = 
0 ∪ 0.  

The unique neutrosophic monic bipolynomial pα = p1α1 ∪ 
p2α2 which bigenerates this biideal will also be called the bi T-
annihilator of α or T bi annihilator of α. The bi T-annihilator 
pα bidivides the neutrosophic biminimal bipolynomial of the 
bioperator T = T1 ∪ T2. Clearly bidegree (pα) > (0, 0) unless α 
= α1 ∪ α2 is the zero bivector. 

 
THEOREM 2.3.41: Let α = α1 ∪ α2 be any non zero bivector in 
V = V1 ∪ V2; V a strong neutrosophic bivector space over the 
neutrosophic bifield F = F1 ∪ F2 (both F2 and F2 are not pure 
neutrosophic). 

Let = ∪
1 21 2p p pα α α  be the bi T annihilator of α = α1 ∪ α2. 

i. The bidegree of pα is equal to the bidimension of the 
bicyclic strong neutrosophic bisubspace Z(α;T) = 
Z(α1;T1) ∪ Z(α2;T2). 

ii. If the bidegree of = ∪
1 21 2p p pα α α  is (k1, k2) then the 

bivectors α = α1 ∪ α2, Tα = T1α1 ∪ T2α2, …, −1

1

k 1Tα  = 
− −∪1 2k 1 k 1

1 1 2 2T Tα α  form a bibasis for Z(α;T). That is 
−1k 12

1 1 1 1 1 1 1{ ,T ,T ,...,T }α α α α  ∪ −2k 12
2 2 2 2 2 2 2{ ,T ,T ,...,T }α α α α  

form a bibasis for Z(α;T) = Z(α1;T1) ∪ Z(α2;T2); that is 
Z(αi, Ti) has {αi, Tiαi, …, −ik 1

i iT α } as its basis; true for 
every i = 1, 2. 
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iii. If S = S1 ∪ S2 is a bilinear operator on Z(α;T) induced by 
T, then by the biminimal neutrosophic polynomial for S is 
pα. 

 
Proof: Let g = g1 ∪ g2 be a neutrosophic bipolynomial over the 
neutrosophic bifield F = F1 ∪ F2, write g = pαq + r, that is g1 ∪ 
g2 = 

11p α q1 + r1 ∪ 
22p α q2 + r2; where pα = 

11p α  ∪ 
22p α  for α = 

α1 ∪ α2, q = q1 ∪ q2 and r = r1 ∪ r2 so gi = 
iip α qi + ri true for i = 

1, 2. Here either r = 0 ∪ 0 or bidegree r < bidegree pα = (k1, k2). 
The neutrosophic bipolynomial pαq = 

11p α q1 ∪ 
22p α q2 is in the 

T biannihilator of α = α1 ∪ α2 and so g(T)α = r(T)α, that is 
g(T1)α1 ∪ g2(T2)α2 = r1(t1)α1 ∪ r2(T2)α2. 

Since r = r1 ∪ r2 = 0 ∪ 0 or bidegree r < (k1, k2) the bivector 
r(T)α = r1T1(α1) ∪ r2T2(α2) is a bilinear combination of the 
bivectors α, k 1T , ,T −α α… ; that is a bilinear combination of 
bivectors α = α1 ∪ α2 

Tα = T1α1 ∪ T2α2, 
2 2 2

1 1 2 2T T Tα = α ∪ α , 
3 3 3

1 1 2 2T T Tα = α ∪ α , …, 
1 2k 1 k 1k 1

1 1 2 2T T T− −− α = α ∪ α  
 
and since g(T)α = g1(T1)α1 ∪ g2(T2)α2 is a typical bivector in 
Z(α; T); i.e., each gi(Ti)αi is a typical vector in Z(αi; Ti) for each 
gi(Ti)αi is a typical vector in Z(αI; Ti); i = 1, 2. This shows that 
these (k1, k2) bivectors span Z(α; T). 

These bivectors are certainly bilinearly independent because 
any non trivial bilinear relation between them would give us a 
non zero neutrosophic bipolynomial g = g1 ∪ g2 such that 
g(T)(α) = g1(T1)(α1) ∪ g2(T2)α2 = 0 ∪ 0 and bidegree g < 
bidegree pα, which is absurd. 

This proves (i) and (ii). 
Let S = S1 ∪ S2 be a bilinear operator on (Zα; T) obtained 

by restricting T to that strong neutrosophic bivector subspace. If 
g = g1 ∪ g2 is any neutrosophic bifield F = F1 ∪ F2 then 
pα(S)g(T)α = pα(T)g(T)α 
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that is  
1 21 1 1 1 1 2 2 2 2 2p (S )g (T ) p (S )g (T )α αα ∪ α  

1 21 1 1 1 1 2 2 2 2 2p (T )g (T ) p (T )g (T )α α= α ∪ α  
g(T)p (T)α= α  

1 21 1 1 1 1 2 2 2 2 2g (T )p (T ) g (T )p (T )α α= α ∪ α  

1 1 2 2g (T )(0) g (T )(0)= ∪  
= 0 ∪ 0. 

 
Thus the bioperator pαS = p1α1(S1) ∪ p2α2(S2) sends every 

bivector in Z(α;T) = Z(α1;T1) ∪ Z(α2; T2) into 0 ∪ 0 and is the 
bizero operator on Z(α;T). Further more if h = h1 ∪ h2 is a 
neutrosophic of bidegree less than (k1, k2) we cannot have h(S) 
= h1(S1) ∪ h2(S2) = 0 ∪ 0 for then h(S)α = h1(S1)α1 ∪ h2(S2)α2 
= 0 ∪ 0; contradicting the definition of pα. This shows that pα is 
the neutrosophic biminimal polynomial for S. 

A particular consequences of this interesting theorem is that 
if α = α1 ∪ α2 happens to be a bicyclic vector for T = T1 ∪ T2 
then the neutrosophic biminimal bipolynomial for T have 
bidegree equal to the bidimension of the strong neutrosophic 
bivector space V = V1 ∪ V2, hence by Cayley Hamilton theorem 
for the bivector spaces we have the neutrosophic biminimal 
polynomial for T is the bicharacteristic neutrosophic polynomial 
for T. We shall prove later that for any T there is a bivector α = 
α1 ∪ α2 in V = V1 ∪ V2 which has the neutrosophic biminimal 
polynomial for T = T1 ∪ T2 for its biannihilator. 

It will then follow that T = T1 ∪ T2 has a bicyclic vector if 
and only if the biminimal and the bicharacteristic neutrosophic 
polynomial for T are identical. We now study the general 
bioperator T = T1 ∪ T2 by using the bioperator vector. Let us 
consider a bilinear operator S = S1 ∪ S2 on the strong 
neutrosophic bivector space W = W1 ∪ W2 of bidimension (k1, 
k2) which is a cyclic bivector α = α1 ∪ α2. 

By the above theorem just proved the bivectors α, Sα, S2α, 
…, Sk–1α; that is  

 
1k 12

1 1 1 1 1 1 1{ ,S ,S ,...,S }−α α α α , 2k 12
2 2 2 2 2 2 2{ ,S ,S ,...,S }−α α α α  
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form a bibasis for the bispace W = W1 ∪ W2 and the annihilator 
1 21 2p p pα α α= ∪  of α = α1 ∪ α2 is the biminimal neutrosophic 

bipolynomial for S = S1 ∪ S2 (hence also the bicharacterstic 
neutrosophic bipolynomial for S). 

If we let αi = Si–1α; that is i
2

i
1

i α∪α=α  and αi = Si–1α 
implies 1i 1i

1 1 1S −α = α , 2i 1i
2 2 2S −α = α ; 1 ≤ i ≤ ki – 1 then the action 

of S on the bibasis 
1 2

1 1 2 2 2
1 k 1 2 k{ ,..., } { , ,..., }α α ∪ α α α  is Sαi = αi + 1 

for i = 1, 2, …, k–1 that is i i 1
t t tS +α = α  for i = 1, 2, …, ki–1 and t 

= 1, 2. Sαk = –c0α1 –…–ck–1αk that is 
t

k t 1 t k
t t 0 t k 1 tS c ... c −α = − α − − α  

for t = 1, 2; where 
1 1

1

k 1 k1 1 1
0 1 k 1p {c c x ... c x x }−

−α = + + + +  ∪ 
2 2

2

k 1 k2 2 2
0 2 k 1{c c x ... c x x }−

−+ + + + . 
The biexpression for Sαk follows from the fact pα(S)α = 0 

∪ 0; that is k k 1
k 1 1 0S c S ... c S c−

−α + α + + α + α  = 0 ∪ 0 that is 
1 1

1

k k 11 1 1
1 1 k 1 1 1 1 1 0 1{S c S ... c S c }−

−α + α + + α + α  ∪ 
2 2

2

k k 12 2 2
2 2 k 1 2 1 2 2 0 2{S c S ... c S c }−

−α + α + + α + α  = 0 ∪ 0. 
 
This is given by the neutrosophic bimatrix S = S1 ∪ S2 in 

the bibasis  
B = B1 ∪ B2 

1 2

1 1 2 2
1 k 1 k{ ,..., } { ,..., }= α α ∪ α α  

 

1 2

1 2
0 0
1 2
1 1
1 2
2 2

1 2
k 1 k 1

0 0 0 ... 0 c 0 0 0 ... 0 c
1 0 0 ... 0 c 1 0 0 ... 0 c
0 1 0 ... 0 c 0 1 0 ... 0 c

0 0 0 ... 1 c 0 0 0 ... 0 c− −

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −= ∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. 

 
The neutrosophic bimatrix is defined as the bicompanion 
bimatrix of the monic neutrosophic polynomial 

1 21 2p p pα α α= ∪  



 176

or can also be represented with some flaw in notation as 

1 2

1 2p pα α∪  where p = p1 ∪ p2. 
 
Now we prove yet another interesting theorem. 
 
THEOREM 2.3.42: If S = S1 ∪ S2 is a bilinear operator on a 
finite (n1, n2) dimensional strong neutrosophic bivector space W 
= W1 ∪ W2 then S has a bicyclic bivector if and only if there is 
some bibasis for W in which S is represented by the 
bicompanion neutrosophic bimatrix of the neutrosophic 
biminimal polynomial for S. 
 
Proof: We just have noted that if S = S1 ∪ S2 has a bycyclic 
bivector then there is such an ordered bibasis for W = W1 ∪ W2. 
Conversely if there is some bibasis 

1 2

1 1 2 2
1 k 1 k{ ,..., } { ,..., }α α ∪ α α  

for W in which S is represented by the bicompanion 
neutrosophic biminimal polynomial, it is obvious that 1 2

1 1α ∪ α  
is a bycyclic vector for S. 
 
We give yet another interesting corollary. 
 
COROLLARY 2.3.5: If A = A1 ∪ A2 be a bicompanion 
neutrosophic bimatrix of a bimonic neutrosophic bipolynomial 
p = p1 ∪ p2 (each pi is monic) then p is both the biminimal 
neutrosophic polynomial and the bicharacteristic neutrosophic 
bipolynomial of A. 
 
Proof: One way to see this is to let S = S1 ∪ S2 a linear 
bioperator on 1 2k k

1 2F F∪ , which is represented by A = A1 ∪ A2 
in the bibasis. By applying the earlier theorem and the Cayley 
Hamilton theorem for bivector spaces. We give another method 
which is by direct calculation. 
 
Now we proceed on to define the notion of bicyclic 
decomoposition or we can call it as cyclic bidecomposition and 
its birational form or equivalently rational biform. 
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Our aim is to show that any bilinear operator T = T1 ∪ T2 of 
finite (n1, n2) dimensional strong neutrosophic bivector space V 
= V1 ∪ V2, there exists a biset of bivectors 

1 2

1 1 2 2
1 r 1 r{ ,..., },{ ,..., }α α α α  in V such that  

V = V1 ∪ V2 = 

1 2

1 1 2 2
1 1 r 1 1 2 r 2Z( ;T ) ... Z( ;T ) Z( ;T ) ... Z( ;T )α ⊕ ⊕ α ∪ α ⊕ ⊕ α . 

In other words, we want to prove that V is a bidirect sum of 
bi T cyclic strong neutrosophic bivector subspaces. This will 
show that T is a bidirect sum of a bifinite number of bilinear 
operators each of which has a bicyclic bivector. The effect of 
this will be to reduce many problems about the general bilinear 
operator to similar problems about a linear bioperator which has 
a bicyclic bivector. 

The bicyclic bidecomposition theorem is closely related to 
the problem in which T biinvariant bisubspaces W = W1 ∪ W2 
have the property that there exists a T biinvariant bisubspaces 
W1 such that 1V W W= ⊕ ; that is  

V = V1 ∪ V2
1 1

1 1 2 2W W W W= ⊕ ∪ ⊕ . 
If W = W1 ∪ W2 is any strong neutrosophic bisubspace of 

finite (n1, n2) dimensional strong neutrosophic bivector space 
then there exists a strong neutrosophic bisubspace 

1 1 1
1 2W W W= +  such that 1V W W= ⊕  that is,  

V = V1 ∪ V2 1 1
1 1 2 2W W W W= ⊕ ∪ ⊕  

for each Vi is a direct sum of Wi and 1
iW , for i = 1, 2; that is 

1
i i iV W W= ⊕ .Usually, there are many such strong neutrosophic 

bivector spaces W1 and each of this is called the 
bicomplementary to W. 
 
We study the problem when a T biinvariant strong neutrosophic 
bisubspace has a complementary strong neutrosophic 
bisubspace which is also biinvariant under the same T. 

Let us suppose that 1V W W= ⊕  that is V = V1 ∪ V2 
1 1

1 1 2 2W W W W= ⊕ ∪ ⊕  where both W and W1 are strong 
neutrosophic biinvariant under T, then we study what special 
property is enjoyed by the strong neutrosophic bisubspace W. 
Each bivector β = β1 ∪ β2 in V = V1 ∪ V2 is of the form β = γ + 
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γ1 where γ is in W and γ1 is in W1 where γ = γ1 ∪ γ2 and 
1 1 1

1 2γ = γ ∪ γ . 
If f = f1 ∪ f2 any neutrosophic bipolynomial over the scalar 

neutroscophic bipolynomial over the scalar neutrosophic bifield 
F = F1 ∪ F2 then 

f(T)β = f(T)γ + f(T)γ1 

= f1(T1)β1 ∪ f2(T2)β2 = f(T)γ + f(T)γ1 

= 1 1
1 1 1 1 1 1 2 2 2 2 2 2f (T ) f (T ) f (T ) f (T )γ + γ ∪ γ + γ . 

 
Since W and W1 are biinvariant under T = T1 ∪ T2 the 

bivector f(T)γ = f1(T1)γ1 ∪ f2(T2)γ2 is in W = W1 ∪ W2 and 
1 1 1

1 1 1 2 2 2f (T) f (T ) f (T )γ = γ ∪ γ  is in 1 1 1
1 2W W W= ∪ . Therefore 

f(T)β = f1(T1)β1 ∪ f2(T2)β2 is in W if and only if f(T)γ1 = 0 ∪ 0; 
that is 1 1

1 1 1 2 2 2f (T ) f (T )γ ∪ γ  = 0 ∪ 0. So if f(T)β is in W then 
f(T)β = f(T)γ.  
 
Now we define yet another new notion for bilinear operators on 
strong neutrosophic bivector spaces. 
 
DEFINITION 2.3.48: Let T = T1 ∪ T2 be a bilinear operator on a 
strong neutrosophic bivector space V = V1 ∪ V2 and W = W1 ∪ 
W2 be a strong neutrosophic bivector subspace of V. We say W 
is bi T-admissable, if 

i. W is biinvariant under T,  
ii. f(T)β is in W  

for each β ∈ V i.e., f1(T1)β1 ∪ f2(T2)β2 is in W = W1 ∪ W2 for 
every β = β1 ∪ β2 in V = V1 ∪ V2, there exists a bivector γ = γ1 
∪ γ2 in W1 ∪ W2 = W such that f(T)β = f(T)γ that is if W is 
biinvariant and has a bicomplementary biinvarient bisubspace 
then W is biadmissible. 
 
The biadmissibility characterizes those biinvariant bisubspaces 
which have bicomplementary biinvariant bisubspaces. 

We see the biadmissibility property is involved in the 
bidecomposition of the bivector space 1V Z( ;T) ...= α ⊕ ⊕ 

1 2

1 1 2 2
r 1 1 r 1 1 2 r 2Z( ,T) Z( ;T ) ... Z( ;T ) Z( ;T ) ... Z( ;T )α = α ⊕ ⊕ α ∪ α ⊕ ⊕ α
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 We arrive by some method or another we have selected 
bivectors 

1 2

1 1 1 2 2 2
1 2 r 1 2 r{ , ,..., } { , ,..., }α α α ∪ α α α  and strong 

neutrosophic bisubspaces which is proper say  
 

1 2
j j jW W W= ∪  

1 2

1 1 2 2
1 1 j 1 1 2 j 2{Z( ;T ) ... Z( ;T )} {Z( ;T ) ... Z( ;T )}= α + + α ∪ α + + α . 

 
We find the nonzero bivector 

1 2

1 2
j 1 j 1( )+ +α ∪ α  such that Wj ∩ 

(Zj+1; T) = 0 ∪ 0 that is 
1 2

1 1 2 2
j j 1 1 j j 1 2W Z( ;T ) (W ) Z( ;T )+ +∩ α ∪ ∩ α  

= 0 ∪ 0 because the strong neutrosophic bivector subspace Wj+1 
= Wj ⊕ Z(αj+1, T) that is  

1 2

1 2
j 1 j 1 j 1W W W+ + += ∪ = 

1 1 2 2

1 2
j j 1 1 j j 1 2W Z( ;T ) W Z( ;T )+ +⊕ α ∪ ⊕ α  

would be atleast one bidimensional nearer to exhausting V . But 
are we guaranteed of the existence of such 

1 2

1 2
j 1 j 1 j 1+ + +α = α ∪ α . 

If 
1 2

1 1 2 2
1 j 2 j{( ,..., ) ( ,..., )}α α ∪ α α  have been choosen so that Wj 

is T biadmissible strong neutrosophic bisubspace then it is 
rather easy to find a suitable 

1 2

1 2
j 1 j 1+ +α ∪ α . 

Let W = W1 ∪ W2 be a proper T biinvariant strong 
neutrosophic bisubspace. Let us find a non zero bivector α = α1 
∪ α2 such that W ∩ Z(α;T) = {0} ∪ {0}; that is W1 ∩ Z(α1;T1) 
∪ W2 ∩ Z(α2;T2) = {0} ∪ {0}. We can choose some bivector β 
= β1 ∪ β2 which is not in W = W1 ∪ W2; that is each βi is not in 
Wi, i=1, 2. Consider the T biconductor S(β; W) = S(β1; W1) ∪ 
S(β2; W2) which consists of all neutrosophic bipolynomials g = 
g1 ∪ g2 such that g(T)β = g1(T1)β1 ∪ g2(T2)β2 is in W = W1 ∪ 
W2. 

Recall that the neutrosophic bimonic polynomial f = f1 ∪ f2 

= S(β; W); i.e., f = f1 ∪ f2 = S(β1; W1) ∪ S(β2; W2) which 
bigenerate the neutrosophic biideals S(β; W) = S(β1; W1) ∪ 
S(β2; W2); that is each fi = S(βi; Wi) generate the ideal S(βi; Wi) 
for i = 1, 2; that is S(β; W) is also the T biconductor of β into 
W. The bivector f(T)β = f1(T1)β1 ∪ f2(T2)β2 is in W = W1 ∪ W2. 
Now if W is T biadmissible there is a γ = γ1 ∪ γ2 in W with 
f(T)β = f(T)γ. Let α = β − γ and let g be any neutrosophic 
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bipolynomial since β − γ is in W, g(T)β will be in W if and only 
if g(T)α is in W; in other words S(α; W) = S(β; W). Thus the 
neutrosophic bipolynomial f is also the T biconductor of α into 
W. 

But f(T)α = 0 ∪ 0. That tells us f1(T1)α1 ∪ f2(T2)α2 = 0 ∪ 0; 
that is g(T)α is in W if and only if g(T)α = g1(T1)α1 ∪ g2(T2)α2 
= 0 ∪ 0. The strong neutrosophic bisubspaces Z(α; T) = Z(α1; 
T1) ∪ Z(α2; T2) and W = W1 ∪ W2 are biindependent and f is 
the T biannihilator of α.  
 
Now we prove the cyclic decomposition theorem for fi linear 
operators on strong neutrosophic bivector spaces defined over 
the neutrosophic bifield F = F1 ∪ F2 (F1, F2 are not pure 
neutrosophic fields) of type II. 
 
THEOREM 2.3.42: (Bicyclic decomposition theorem): Let T = T1 
∪ T2 be a bilinear operator on a finite bidimensional (n1, n2) 
strong neutrosophic bivector space V = V1 ∪ V2 and let 

= ∪1 2
0 0 0W W W  be a proper T biadmissible strong neutrosophic 

bivector subspace of V. There exists non zero bivectors 
∪

1 2

1 1 2 2
1 r 1 r{ ,..., } { ,..., }α α α α  in V with respective T biannihilators 

∪
1 2

1 1 2 2
1 r 1 r{ p ,..., p } { p ,..., p }  such that,  

i. = ⊕ ⊕ ⊕0 1 rV W Z( ;T ) ... Z( ;T )α α
= ⊕ ⊕ ⊕ ∪

1

1 1 1
0 1 1 r 1W Z( ;T ) ... Z( ;T )α α

⊕ ⊕ ⊕
2

2 2 2
0 1 2 r 2W Z( ;T ) ... Z( ;T )α α  

ii. 
r

t
kp divides 

r

t
k 1p − ; k=1, 2, …, r and t = 1, 2. 

Further more the integer r and the biannihilators 

1 2

1 1 2 2
1 r 1 r{ p ,..., p } { p ,..., p }∪  are uniquely determined by (i) and 

(ii) and infact that no 
r

t
kα  is zero for t = 1, 2. 

 
Proof: The proof is given under four steps. 

Take W0 = {0} ∪ {0} = 1 2
0 0W W∪ ; that is each i

0W 0=  for 
i = 1, 2, although W does not produce any substantial 
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simplification. Throughout the proof we shall abbreviate f(T)β 
to fβ that is f1(T1)β1 ∪ f2(T2)β2 to f1β1 ∪ f2β2. 

 
Step 1: There exists nonzero bivectors 

1 2

1 1 2 2
1 r 1 r{ ,..., } { ,..., }β β ∪ β β  

in the strong neutrosophic bivector space V = V1 ∪ V2 such that 
(i) 0 1 rV W Z( ;T) ... Z( ;T)= + β + + β  
 

1

1 1 1
0 1 1 r 1W Z( ;T ) ... Z( ;T )= + β + + β ∪  

2

2 2 2
0 1 2 r 2W Z( ;T ) ... Z( ;T )+ β + + β . 

(ii) If 1 ≤ ki ≤ ri; i = 1, 2 and 
1 2

1 2
k k kW W W= +  

 
1

1 1 1
0 1 1 k 1{W Z( ;T ) ... Z( ;T )}= + β + + β  

2

2 2 2
0 1 2 k 2{W Z( ;T ) ... Z( ;T )}∪ + β + + β  

then the biconductor  

1 2

1 2
k k kp p p= ∪   

1 1 2 2

1 1 2 2
k k 1 k k 1S( ;W ) S( ;W )− −= β ∪ β  

has the maximum bidegree among all T biconductors into the 
strong neutrosophic bivector subspace  

1 2

1 2
k 1 k 1 k 1W (W W )− − −= ∪  

that is for every (k1, k2);   
bidegree

1 21 2
1 2

1 1 2 2
k k 1 k 1

in V in V
p max deg{S( ;W )} max deg{S( ;W )}− −

α α
= α ∪ α . 

 
This step depends upon only the fact that W0 = 1 2

0 0W W∪  is a 
biinvariant strong neutrosophic bivector subspace. If W = W1 ∪ 
W2 is a proper neutrosophic bi T-invariant bivector subspace  

0 < max
α

bidegree (S(α; W)) ≤ bidim V 

that is  
0 ∪ 0 ∪ < 

1

max
α

bidegree(S(α1; W1)) ∪ 

2

max
α

bidegree (S(α2; W2)) ≤ (n1, n2) 

and we can choose a bivector β = β1 ∪ β2 so that bidegree S(β; 
W) = deg(S(β1; W1)) ∪ deg(S(β2; W2)) attains the maximum. 
The strong neutrosophic bivector subspace W + Z(β;T) = (W1 + 
Z(β1;T1)) ∪ (W2 + Z(β2;T2)) is then T biinvariant and has 
bidimension larger than bidimension W. 
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Apply this process to W = W0 to obtain 1 1
1 1 2β = β ∪ β . If W1 

= W0 + Z(β1; T) that is  
1 1 1 1 2 1
1 2 0 1 1 0 2 2W W W Z( ;T ) W Z( ;T )∪ = + β ∪ + β  

is still proper then apply the process to W1 to obtain 
2 2

2 1 2β = β ∪β . 
Continue in that manner. Since bidim Wk > bidim Wk – 1 

that is  

1 2 1 2

1 2 1 2
k k k 1 k 1bidim W bidim W bidim W bidim W− −∪ > ∪  

we must reach Wr = V that is 
1 2

1 2
r r 1 2W W V V∪ = ∪  in not more 

than bidim V steps. 
 
Step 2: Let 

1 2

1 1 2 2
1 r 1 r{ ,..., } { ,..., }β β ∪ β β  be a biset of nonzero 

bivectors which satisfy the conditions (i) and (ii) of step 1. Fix 
(k1, k2); 1 ≤ ki ≤ ri; i = 1, 2. 

Let β = β1 ∪ β2 be any bivector in the strong neutrosophic 
bivector space V = V1 ∪ V2 and let f = S(β; Wk–1) that is f1 ∪ f2 
= )W;(S)W;(S 2

1k2
1

1k1 21 −− β∪β .If  

0 i i
1 i k

f g
≤ ≤

β = β + β∑  

that is  

1 1

1 1

1 1 1
1 1 2 2 0 i i

1 i k

f f ( g )
≤ ≤

β ∪ β = β + β∑  ∪ 
2 2

2 2

2 2 2
0 i i

1 i k

( g )
≤ ≤

β + β∑  

t t

t
i iWβ ∈ ; t = 1, 2, then f = f1 ∪ f2 bidivides each neutrosophic 

bipolynomial 1 2
i i ig g g= ∪  and β0 = fγ0 that is 

1 2 1 2
0 0 1 0 2 0f fβ ∪ β = γ ∪ γ  where 1 2 1 2

0 0 0 0 0 0W W Wγ = γ ∪ γ ∈ = ∪ . If 
each ki = 1 for i = 1, 2; this is just the statement that W0 is T 
biadmissible. In order to prove this assertion for (k1, k2) > (1, 1) 
apply the bidivision algorithms for the neutrosophic 
bipolynomials that is gi = fhi + ri; ri = 0 if bideg ri < bideg f that 
is 

1 2 1 1 2 2

1 2 1 1 2 2
i i 1 i i 2 i ig g (f h r ) (f h r )∪ = + ∪ + . If bideg ri < bideg f. We 

wish to show that ri = 0 ∪ 0 for each i = (i1, i2). 
Let,    

k 1

i i
i 1

h
−

=

γ = β − β∑  
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that is  
1 2

1 1 2 2

1 2

k 1 k 1
1 1 2 2

1 2 1 i i 2 i i
i 1 i 1

( h ) ( h )
− −

= =

γ ∪ γ = β − β ∪ β − β∑ ∑ . 

 
Since γ – β is in Wk–1 that is (γ1 – β1) ∪ (γ2 – β2) is in 

1 2

1 2
k 1 k 1W W− −∪ . 

i i

i i
i k 1 i k 1S( ;W ) S( ;W )− −γ = β  = fi ; 1 ≤ i ≤ 2  

that is  

1 2

1 2
1 k 1 2 k 1S( ;W ) S( ;W )− −γ ∪ γ =

1 2

1 2
1 k 1 2 k 1S( ;W ) S( ;W )− −β ∪ β  

= f1 ∪ f2. 

S(γ; Wk–1) = S(β; Wk–1) = f. 
Also  

k 1

0 i i
i 1

f r
−

−

γ = β + β∑  

that is 
1 2

1 1 2 2

1 2

k 1 k 1
1 1 1 2 2 2

1 1 2 2 0 i i 0 i i
i 1 i 1

f f ( r ) ( r )
− −

= =

γ ∪ γ = β + β ∪ β + β∑ ∑ . 

 
If 

1 2

1 2
j j jr (r , r ) (0,0)= ≠ we arrive at a contradiction. Let j = (j1, j2) 

be the largest index i = (i1, i2) for which ri = 1 2
i i(r , r ) (0,0)≠  then 

j

0 i i
1

f rγ = β + β∑ ; rj ≠ (0, 0) and bideg rj < bideg f. Let p = S(γ; 

Wj–1);  
p1 ∪ p2 = 

1 2

1 2
1 j 1 2 j 1S( ;W ) S( ;W )− −γ ∪ γ . 

Since 
1 2

1 2
k 1 k 1 k 1W W W− − −= ∪ contains 

1 2

1 2
j 1 j 1 j 1W W W− − −= ∪  the 

biconductor S(γ; Wk–1) that is  
f = f1 ∪ f2 = 

1 2

1 2
1 k 1 2 k 1S( ;W ) S( ;W )− −γ ∪ γ  

must bidivide p. p = fg that is p1 ∪ p2 = f1g1 ∪ f2g2. Apply g(T) 
= g1(T1) ∪ g2(T2) to both sides; that is  
 

pγ = gfγ = j j 0 i i
1 i j

gr g gr
≤ ≤

β + β + β∑  

that is, 
1 1 2 2 1 1 1 2 2 2p p (g f g f )γ ∪ γ = γ ∪ γ  



 184

1 1 1 1 2 2 2 2

1 1 2 2

1 1 1 1 1 2 2 2 2 2
1 j j 1 0 1 i i 2 j j 2 0 2 i i

1 i j 1 i j
g r g g r g r g g r

≤ ≤ ≤ ≤

= β + β + β ∪ β + β + β∑ ∑ . 

 
By definition, pγ is in Wj–1 and the last two terms on the right 
side of the above equation are in 

1 1 2

1 2
j 1 j 1 j 1W W W− − −= ∪ . 

Therefore  

1 1 2 2

1 1 2 2
j j 1 j j 2 j jgr g r g rβ = β ∪ β  

is in 
1 1 2

1 2
j 1 j 1 j 1W W W− − −= ∪ . Now using condition (ii) of step 1 

bideg (grj) ≥ bideg(S(βj; Wj-1)); that is  
 
deg(g1, 1j

r ) ∪ deg (g2, 2j
r )  

≥  deg S(
1 1

1
j j 1;W −β ) ∪ deg S(

2 2

2
j j 1;W −β ) 

 =  bidegpj 
 =  deg

1

1
jp  ∪ degp

2

2
jp  ≥ bidegree (S(γ; Wj-1) 

 =  deg S(γ1; 1j 1W − ) ∪ deg S(γ2; 2j 1W − ) 
 =  bidegree p 
 =  degp1 ∪ degp2 
 =  bideg fg 
 =  degf1g1 ∪ degf2g2. 

 
Thus bideg rj > bideg f; i.e., deg

1j
r  ∪ deg

2j
r  > degf1 ∪ degf2 

and that contradicts the choice of j = (j1, j2). We now know that 
f = f1 ∪ f2 bidivides each gi = 

1 2

1 2
i ig g∪  that is 

ti
f  divides 

t

t
ig ;t 

=1, 2 and hence β0 = fγ that is 1 2
0 0 1 1 2 2f fβ ∪ β = γ ∪ γ . Since 

1 2
0 0 0W W W= ∪  is T biadmissible (i.e., each k

0W  is Tk 
admissible for k = 1, 2); we have β0 = fγ0 where  

1 2 1 2
0 0 0 0 0 0W W Wγ = γ ∪ γ ∈ = ∪  

that is 1 2 1 2
0 0 1 0 2 0f fβ ∪ β = γ ∪ γ  where γ0 = W0. We make a mention 

that step 2 is a stronger form of the assertion that each of the 
strong neutrosophic vector bisubspaces 1 2

1 1 1W W W= ∪ , 
1 2

2 2 2W W W= ∪ , …, 1 2
r r rW W W= ∪  is T biadmissible. 
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Step 3: There exists non zero bivectors  

1 2

1 1 2 2
1 r 1 r( ,..., ) ( ,..., )α α ∪ α α  

in V = V1 ∪ V2 which satisfy condition (i) and (ii) of the 
theorem. Start with bivectors  

1 2

1 1 1 2 2 2
1 2 r 1 2 r{ , ,..., } { , ,..., }β β β ∪ β β β  

as in step 1. Fix k = (k1, k2) as 1 ≤ ki ≤ ri; i = 1, 2.We apply step 
2 to the bivector β = β1 ∪ β2 = 

1 2

1 2
k k kβ ∪ β = β  and T biconductor 

f = f1 ∪ f2 =
1 2

1 2
k kp p∪  = pk. We obtain  

k k k 0 k i i
1 i k

p p p h
≤ ≤

β = γ + β∑ ; 

 
 that is,  

1 1 2 2

1 1 2 2
k k k kp pβ ∪ β  

1 1 1 1 2 2 2 2

1 1 2 2

1 1 1 1 1 2 2 2 2 2
k 0 k i i k 0 k i i

1 i k 1 i k
(p p h ) (p p h )

≤ ≤ ≤ ≤

= γ + β ∪ γ + β∑ ∑ . 

 
where 1 2

0 0 0γ = γ ∪ γ  is in 1 2
0 0 0W W W= ∪  and 

1

1 1
1 k 1{h ,...,h }− ∪  

2

2 2
1 k 1{h ,...,h }−  are neutrosophic bipolynomials. Let  

k k 0 i i
1 i k

h
≤ ≤

α = β − γ − β∑ ; 

i.e., 

1 2 1 1 1 2 2 2

1 1 2 2

1 2 1 1 1 1 2 2 2 2
k k k 0 i i k 0 i i

1 i k 1 i k
{ } h h

≤ < ≤ <

⎛ ⎞ ⎛ ⎞
α ∪ α = β − γ − β ∪ β − γ − β⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . 

Since  

1 1 2 2

1 1 2 2
k k k k k k( ) ( )β − α = β − α ∪ β − α  

is in  

1 2

1 2
k 1 k 1 k 1W W W− − −= ∪ ; 

is in  
S(αk; Wk–1) = S(βk; Wk–1) = pk 

1 1 2 2

1 1 2 2
k k 1 k k 1S( ;W ) ( ;W )− −= α ∪ α  

1 2

1 2
k kp p= ∪  
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and since pkαk = 0 ∪ 0 that is 
1 1 2 2

1 1 2 2
k k k kp pα ∪ α  = 0 ∪ 0 we have,  

 

1 1 2 2

1 1 2 2
k 1 k 1 k 1 k 2W Z( ;T ) W Z( ;T )− −∩ α ∪ ∩ α  = {0} ∪ {0}. 

Because each 
1 2

1 2
k k kα = α ∪ α  satisfies the above two equations 

just mentioned, it follows that,  
k 0 1 kW W Z( ;T) ... Z( ;T)= ⊕ α ⊕ ⊕ α  

that is  

1 2 1

1 2 1 1 1
k k 0 1 1 k 1W W W Z( ;T ) ... Z( ;T )}∪ = ⊕ α ⊕ ⊕ α ∪  

2

2 2 2
0 1 2 k 2{W Z( ;T ) ... Z( ;T )}⊕ α ⊕ ⊕ α  

and that pk = 
1 2

1 2
k kp p∪  is the T biannihilator of αk = 

1 2

1 2
k kα ∪ α  

other words, bivectors 
1 2

1 1 2 2
1 r 1 r{ ,..., } { ,..., }α α ∪ α α  define the same 

bisequence of strong neutrosophic bisubspaces 1 2
1 1 1W W W= ∪ , 

1 2
2 2 2W W W= ∪ , …, as do the bivector 

1

1 1
1 r{ ... }β ∪ ∪ β , 

2

2 2
1 r{ ... }β ∪ ∪ β  and the T biconductors 

1k k k 1p S( ;W )−= α  that is 

1 2

1 2
k k(p p )∪  = 

1 1 2 2

1 1 2 2
k k 1 k k 1S( ;W ) S( ;W )− −α ∪ α  have the same 

maximality properties. The bivectors 
1 2

1 1 2 2
1 r 1 r{ ,..., } { ,..., }α α ∪ α α  

have the additional property that the strong neutrosophic 
bivector spaces 1 2

0 0 0W {W W }= ∪ ,  
1 2

1 1 1 1 2Z( ;T) Z( ;T ) Z( ;T )α = α ∪ α  
1 2

2 2 1 2 2Z( ;T) Z( ;T ) Z( ;T )α = α ∪ α  
are biindependent. It is therefore easy to verify condition (ii) of 
the theorem. Since 

1 1 2 2

1 1 2 2
i i i i(p ) (p )α ∪ α = 0 ∪ 0, we have the 

trivial relation  
pkαk = 

1 1 2 2

1 1 2 2
k k k kp pα ∪ α  

= 
1 1 2 2

1 1 1 1 2 2 2 2
1 1 k 1 k 1 1 1 k 1 k 1(0 p ... p ) (0 p ... p )− − − −+ α + + α ∪ + α + + α . 

Apply step 2 with 
1 2

1 1 2 2
1 k 1 k{ ,..., } { ,..., }β β ∪ β β  replaced by 

1 2

1 1 2 2
1 k 1 k{ ,..., } { ,..., }α α ∪ α α  and with β = β1 ∪ β2 = 

1 2

1 1
k kα ∪ α , pk 

bidivides each pi; i < k that is (i1, i2) < (k1, k2); i.e., 
1 2

1 2
k kp p∪  

bidivides each 
1 2

1 2
i ip p∪ , i.e., each 

t

t
kp  divides 

t

t
ip  for t = 1, 2. 
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Step 4: The number r = (r1, r2) and the neutrosophic 
bipolynomials (p1, …,

1r
p ), (p2, …, 

2r
p ) are uniquely determined 

by the condition of the theorem. Suppose that in addition to the 
bivectors 

1 2

1 1 2 2
1 r 1 r{ ,..., } { ,..., }α α ∪ α α  we have non zero bivectors  

1 2

1 1 2 2
1 s 1 s{ ,..., } { ,..., }γ γ ∪ γ γ  

 with respective T biannihilators  

1 2

1 1 2 2
1 s 1 s{g ,...,g } {g ,...,g }∪  

such that  
0 1 sV W Z( ;T) ... Z( ;T)= ⊕ γ ⊕ ⊕ γ  

 that is 
V = V1 ∪ V2 =

1

1 1 1
0 1 1 s 1W Z( ;T ) ... Z( ;T )}⊕ γ ⊕ ⊕ γ ∪  

2

2 2 2
0 1 2 s 2{W Z( ;T ) ... Z( ;T )}⊕ γ ⊕ ⊕ γ  

t

t
kg  divides 

t

t
k 1g −  for t = 1, 2 and kt = 1, 2, …, st. We shall show 

that r = s that is (r1, r2) = (s1, s2) and t t
i ip g= ; 1 ≤ t ≤ 2; that is 

1 2 1 2
i i i ip p g g∪ = ∪  for each i. We see that p1 = g1 = 
1 2 1 2
1 1 1 1p p g g∪ = ∪ . The neutrosophic bipolynomial 1 2

1 1 1g g g= ∪  
is determined by the above equation as the T biconductor of V 
into W0; that is V = V1 ∪ V2 into 1 2

0 0W W∪ . Let S(V; W0) = 
S(V1; 1

0W ) ∪ S(V2; 2
0W ) be the collection of all neutrosophic 

bipolynomials f = f1 ∪ f2 such that fβ = f1β1 ∪ f2β2 is in W0 for 
every β = β1 ∪ β2 in V that is neutrosophic polynomials f such 
that the birange of f(T) = range of f1(T1) ∪ range of f2(T2) is 
contained in 1 2

1 0 0W W W= ∪ ; i.e., range of fi(Ti) is in i
0W  for 

i=1, 2. Thus S(Vi, Wi) is a non zero neutrosophic zero ideal in 
the neutrosophic polynomial algebra so that we see S(V;W0) = 
S(V1; 1

0W ) ∪ S(V2; 2
0W ) is a non zero neutrosophic biideal in the 

neutrosophic bipolynomial algebra. 
The neutrosophic polynomial t

1g  is the monic generator of 
that neutrosophic ideal i.e., the bimonic neutrosophic 
polynomial 1 2

1 1 1g g g= ∪  is the neutrosophic monic bigenerator 
of that biideal. Each β = β1 ∪ β2 in V = V1 ∪ V2 has the form 
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)f...f()f...f( 2
s

2
s

2
1

2
1

2
0

1
s

1
s

1
1

1
1

1
0 2211

γ++γ+β∪γ++γ+β=β  
and so 

s

1 1 0 1 i i
1

g g g fβ = β + γ∑  

that is  

1 1 2 2

s s
1 2 1 1 1 1 1 2 2 2 2 2
1 1 1 2 1 0 1 i i 1 0 1 i i

1 1
g g g g f g g f⎡ ⎤ ⎡ ⎤

β ∪ β = β + γ ∪ β + γ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ . 

Since each t
ig  divides t

1g  for t = 1, 2 we have g1γi = 0 ∪ 0 that is 

1 2

1 1 2 2
1 i 1 ig gγ ∪ γ  = 0 ∪ 0 for all i = (i1, i2) and g0β = g1β0 is in 

1 2
0 0 0W W W= ∪ . Thus t

ig  is in S(Vt; t
0W ) for t = 1, 2; so 

1 2
1 1 1g g g= ∪  is in S(V; W0) = S(V1; 1

0W ) ∪ S(V2; 2
0W ). 

Since each t
ig  is monic, g1 is a monic neutrosophic 

bipolynomial of least bidegree which sends t
1γ  into t

0W  so that 
1 2

1 1 1γ = γ ∪ γ  into 1 2
0 0 0W W W= ∪ ; we see that 1 2

1 1 1g g g= ∪  is the 
neutrosophic monic bipolynomial of least bidegree in the 
neutrosophic biideal S(V; W0). By the same argument pi is the 
bigenerator of the neutrosophic ideal so p1 = g1; that is 

1 2 1 2
1 1 1 1p p g g∪ = ∪ . 

If f = f1 ∪ f2 is a neutrosophic bipolynomial and W = W1 ∪ 
W2 is a strong neutrosophic bisubspace of V = V1 ∪ V2 we shall 
employ the short hand fW for the set of all bivectors fα = f1α1 ∪ 
f2α2 with α = α1 ∪ α2 in W = W1 ∪ W2 . 

The three facts can be proved by the reader. 
(1) fZ(α;T) = Z(fα;T) that is  

f1(Z(α1;T1)) ∪ f2(Z(α2;T2)) = Z(f1α1; T1) ∪ Z(f2α2; T2). 
(2) V = V1 ⊕ … ⊕ Vk = 

1 2

1 1 2 2
1 k 1 kV ... V V ... V⊕ ⊕ ∪ ⊕ ⊕  where 

each Vt is a biinvariant under Ti; 1 ≤ i ≤ t; t = 1, 2, then fV = 
fV1 ⊕ fV2 that is  

f1V1 ∪ f2V2 = 
1 2

1 1 2 2
1 1 1 k 2 1 2 kf V ... f V f V ... f V⊕ ⊕ ∪ ⊕ ⊕ . 

(3) If α = α1 ∪ α2 and γ = γ1 ∪ γ2 have the same T biannihilator 
then fα and fγ have the same T biannihilator and hence 
bidim Z(fα;T) = bidim Z(fγ;T) that is fα = f1α1 ∪ f2α2 and 
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fγ = f1γ1 ∪ f2γ2 with dim Z(f1α1; T1) ∪ dim Z(f2α2; T2) = 
dim Z(f1γ1; T1) ∪ dim Z(f2γ2; T2). 

 
Since we know p1 = g1 we know that Z(α1 T) and Z(γ1; T) have 
the same bidimension. Therefore bidim W0 + bidim Z(Y1, T) < 
bidim V as before  

1 1 2 2
0 1 1 0 1 2dim W dim Z( ;T ) dim W dim Z( ;T )+ γ ∪ + γ   

≤ dimV1 ∪ dim V2. 
Now to check whether or not p2 = g2; 1 2 1 2

2 2 2 2p p g g∪ = ∪ . From 
the decomposition of V = V1 ∪ V2 we obtain the two 
decomposition of the strong neutrosophic bivector subspace 

1 2
2 2 1 2 2p V p V p V= ∪ . 

1
2 2 0 2 1p V p W Z(p ;T)= ⊕ α  

that is 
1 2 1 1 1 1 2 2 2 2
2 1 2 2 2 0 2 1 1 2 0 2 1 2p V p V p W Z(p ;T ) p W Z(p ;T )∪ = ⊕ α ∪ ⊕ α .

2 2 0 2 1 2 sp V p W Z(p ;T) ... Z(p ;T)= ⊕ γ ⊕ ⊕ γ  
that is 

1

1 2 1 1 1 1 1 1
2 1 2 2 2 0 2 1 1 2 s 1p V p V p W Z(p ;T ) ... Z(p ;T )∪ = ⊕ γ ⊕ ⊕ γ ∪  

2

2 2 2 2 2 2
2 0 2 1 2 2 s 2p W Z(p ;T ) ... Z(p ;T )⊕ γ ⊕ ⊕ γ . 

 
The proof follows from the fact if r = (r1, r2) ≥ (2, 2) then p2 = 

1 2
2 2p p∪  = g2 = 1 2

2 2g g∪ . We have made use of the facts (1) and 
(2) above and we have used the fact 

1 2

1 1 2 2
2 i 2 i 2 ip p pα = α ∪ α = 0 ∪ 

0; i = (i1, i2) > (2, 2). Since we know p1 = g1 fact (3) above tell 
us that,   1 1 2 2

2 i 2 1 1 2 1 2Z(p ;T) Z(p ;T ) Z(p ;T )α = α ∪ α  
and  

1 1 2 2
2 i 2 1 1 2 1 2Z(p ;T) Z(p ;T ) Z(p ;T )γ = γ ∪ γ  

have the same bidimension. Hence it is apparent from above 
equalities that 

bidim 2 iZ(p ;T)γ = 0 ∪ 0. 

1 2

1 1 2 2
2 i 1 2 i 2dim Z(p ;T ) dim Z(p ;T ) 0 0γ ∪ γ = ∪ ; i = (i1, i2) ≥ (2, 2). 

We conclude 1 1 2 2
2 2 2 2 2 2p (p ) (p ) 0 0γ = γ ∪ γ = ∪  and g2 bidivides p2; 

that is t
2g  divides t

2p  for t = 1, 2. The argument can be reserved 
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to show that p2 bidivides g2; i.e., t
2p  divides t

2g  for each t; t = 1, 
2. Hence p2 = g2. 
 
We leave the following corollaries for the reader to prove. 
 
COROLLARY 2.3.6: If T = T1 ∪ T2 is a bilinear operator on a 
finite (n1, n2) bidimensional strong neutrosophic bivector space 
V = V1 ∪ V2 then T-biadmissible strong neutrosophic vector 
bisubspace has a complementary strong neutrosophic bivector 
subspace which is also invariant under T. 
 
COROLLARY 2.3.7: Let T = T1 ∪ T2 be a bilinear operator on a 
finite (n1, n2) strong neutrosophic bivector space V = V1 ∪ V2. 
i. There exists bivectors α = α1 ∪ α2 in V = V1 ∪ V2 such that 

the T biannihilator of α is the neutrosophic biminimal 
polynomial for T. 

ii. T has a bicyclic bivector if and only if the bicharacterstic 
and neutrosophic biminimal polynomials for T are 
identical.  

 
Now we proceed on to prove the generalized Cayley Hamilton 
theorem. 
 
THEOREM 2.3.44: (Generalized Cayley Hamilton theorem). Let 
T = T1 ∪ T2 be a bilinear operator on a finite (n1, n2) finite 
bidimensional strong neutrosophic bivector space V = V1 ∪ V2 
over a neutrosophic bifield F = F1 ∪ F2 of type II (Both F1 and 
F2 are not pure neutrosophic). Let p and f be the biminimal 
bicharacterstic neutrosophic bipolynomials for T, respectively. 
i. p bidivides f i.e., p = p1 ∪ p2 and f = f1 ∪ f2 then pi divides  

f i; i = 1, 2. 
ii. p and f have the same prime factors except for 

multiplicities. 
iii. If k1 rr

1 kp f ... f=  is the prime factorization of p then 
k1 dd

1 kf f ... f=  where di is the bimultiplicity of ir
if (T )  

bidivided by the bidegree fi. That is if  
p = p1 ∪ p2 = 

1 21 2
k k1 1 1 2

1 2

r rr r1 1 2 2
1 k 1 k( f ) ( f ) ( f ) ( f )∪… …  
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then  
1 21 2
k k1 1 1 2

1 2

d dd d1 1 2 2
1 k 1 kf ( f ) ( f ) ( f ) ( f )= ∪… … ; 1( ,..., )

t

t t t
i kd d d=  

 is the nullity of 
t
irt

i tf (T )  which is bidivided by the bidegree 
t

if ; i.e., ; 1 ≤ i ≤ kt; this is true for each t, t = 1, 2. 
 
Proof: The trivial case V = {0} ∪ {0} is obvious. To prove (i) 
and (ii) consider a bicyclic decomposition 

1 rV Z( ;T) ... Z( ;T)= α ⊕ ⊕ α  

1 2

1 1 2 2
1 1 r 1 1 2 r 2Z( ;T ) ... Z( ;T ) Z( ;T ) ... Z( ;T )= α ⊕ ⊕ α ∪ α ⊕ ⊕ α . 

By the second corollary p1 = p. Let 1 2
i i iS S S= ∪  be the 

birestriction of T = T1 ∪ T2; i.e., each s
iS  is the restriction of Ts 

(for s = 1, 2, …, rs) to s
i sZ( ;T )α . Then Si has a bicyclic bivector 

so that 
1 2

1 1
i i ip p p= ∪  is both biminimal neutrosophic polynomial 

and the bicharacteristic neutrosophic polynomial for Si. 
Therefore the neutrosophic bicharacteristic polynomial f = f1 ∪ 
f2 is the byproduct 

1 2

1 1 2 2
1 r 1 rf p ...p p ...p= ∪ . That is evident from 

earlier results that the neutrosophic bimatrix of T assumes a 
suitable bibasis. 

Clearly p1 = p bidivides f; hence the claim (1). Obviously 
any prime bidivisor of p is a prime bidivisor of f. Conversely a 
prime bidivisor of 

1 2

1 1 2 2
1 r 1 rf p ...p p ...p= ∪  must bidivide one of the 

factor t
ip  which in turn bidivides p1.  

Let p =
1 21 2
k k1 1 1 2

1 2

r rr r1 1 2 2
1 k 1 k(f ) ...(f ) (f ) ...(f )∪  be the prime 

bifactorization of p. We employ the biprimary decomposition 
theorem which tells i i i

t 1 1V V V= ∪  is the binull space for 
t
irt

i tf (T ) then

1 2

1 1 2 2
1 k 1 k 1 kV V ... V (V ... V ) (V ... V )= ⊕ ⊕ = ⊕ ⊕ ∪ ⊕ ⊕  

and 
t
irt

i )f(  is the neutrosophic minimal polynomial of the 
operator i

tT  restricting Tt to the strong neutrosophic invariant 
subspace i

tV . This is true for each t; t = 1, 2. Apply part (ii) of 
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the present theorem to the bioperator i
tT . Since its neutrosophic 

minimal polynomial is a power of the prime t
if  the 

neutrosophic characteristic polynomial for i
tT  has the form 

t
irt

i(f )  where t t
i id r> ; t = 1, 2.  

We have  
i

t t
i t

i

dim Vd
degf

=  

for every t = 1, 2 and dim i
tV  = nullity 

t
irt

i tf (T )  for every t; t = 
1, 2. Since Tt is the direct sum of operator 1k1

t tT ,...,T  the 
neutrosophic characteristic polynomial ft is the product 

tt
kt1

t

ddt t t
1 kf (f ) ...(f )= . Hence the claim. 

 
The following corollary is left as an exercise for the reader. 
 
COROLLARY 2.3.8: Let T = T1 ∪ T2 be a binilpotent operator of 
the strong neutrosophic bivector space of (n1, n2) bidimension 
over the neutrosophic bifield F = F1 ∪ F2 (both F1 and F2 are 
not pure neutrosophic fields) of type II then the bicharacteristic 
bipolynomial for T is 1 2n nx x∪ . 
 
Let us observe that the neutrosophic bimatrix analogue of the 
bicyclic decomposition theorem. If we have the bioperator T = 
T1 ∪ T2 and the bidirect sum decomposition, let Bi be the 
bicyclic ordered bibasis 

1 2
r 1 r 11 2

1 1 1 1 2 2

k k1 1 1 2 2 2
i 1 i 1 i i 2 i 2 i{ ,T ,...,T } { ,T ,...,T }− −α α α ∪ α α α  

for 
1 2

1 2
i i 1 i 2Z( ;T) Z( ;T ) Z( ;T )α = α ∪ α . Here 

1 2

1 2
i i(k ,k )  denotes the 

bidimension of iZ( ;T)α  that is the bidegree of the biannihilator 

1 2

1 2
i i ip p p= ∪ .  

The neutrosophic bimatrix of the induced operator Ti in the 
bibasis Bi is the bicompanion neutrosophic bimatrix of the 
neutrosophic bipolynomial pi. Thus if we let B to be the bibasis 
for V. 
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which is the biunion of Bi arranged in order { }1

1 1
1 rB B ∪…  

{ }2

2 2
1 rB B… ; then the neutrosophic bimatrix of T in the bibasis B 

will be A = A1∪ A2. 
 

= 

1

1
1

1
2

1
r

A 0 0
0 A 0

0 0 A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦2

2
1

2
2

2
r

A 0 0
0 A 0

0 0 A

 

 
where t

iA  is the t t
i ik k×  companion neutrosophic matrix of t

ip  
for t = 1, 2. A (n1 × n1, n2 × n2) neutrosophic bimatrix A which is 
the bidirect sum of the neutrosophic bicompanion matrices of 
the non scalar monic neutrosophic bipolynomial 
{ } { }1 2

1 1 2 2
1 r 1 rp p p p∪… … such that 

t

t
i 1p +  divides 

t

t
ip  for it = 1, 2, 

…, rt – 1 and t = 1, 2 will be defined as the rational biform or 
equivalently birational form.  
 
THEOREM 2.3.45: Let F = F1∪ F2 be a neutrosophic bifield 
(Both F1 and F2 are not pure neutrosophic). Let B = B1 ∪ B2 be 
a (n1 × n1, n2 × n2) neutrosophic bimatrix over F. Then B is 
bisimilar over the bifield F to one and only one neutrosophic 
matrix in the rational form. 
 
Proof: We know from the usual neutrosophic square matrix 
every square matrix over a fixed neutrosophic field is similar to 
one and only one neutrosophic matrix which is in the rational 
form. 

So the neutrosophic bimatrix B = B1 ∪ B2 over the 
neutrosophic bifield F = F1 ∪ F2 is such that each Bi is a ni × ni 
neutrosophic square matrix over Fi; is similar to one and only 
one neutrosophic matrix which is in the rational form say Ci. 

This is true for every i; i = 1, 2 so B = B1 ∪ B2 is bisimilar 
over the field to one and only one bimatrix C which is in the 
rational biform. 
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The neutrosophic bipolynomials { } { }1 2

1 1 2 2
1 r 1 rp p p p∪… …  are 

called invariant bifactors or biinvariant factors for the 
neutrosophic bimatrix B = B1 ∪ B2. 
 
We shall just introduce the notion of biJordan form or Jordan 
biform for a strong neutrosophic bivector space of type II.  
 
Suppose that N = N1∪ N2 be a nilpotent bilinear operator on 
finite (n1 n2) bidimension strong neutrosophic bivector space V 
= V1 ∪ V2 over a neutrosophic bifield F = F1 ∪ F2 (F1 and F2 are 
not pure neutrosophic) of type II. Consider the bicyclic 
decomposition for N which we have described in the theorem. 
We have a pair of positive integers (r1, r2) and non zero bivector 
{ }i i

1 2,α α in V with biannihilators{ } { }1 2

1 1 2 2
1 r 1 rp p p p∪… … such that  

 
V = Z (α1; N) ⊕ … ⊕ Z (αr; N) 

= Z( 1
1 1, Nα ) ⊕ … ⊕ (

1

1
r 1, Nα ) ∪ Z ( 2

1 2, Nα ) ⊕ … ⊕ (
2

2
r 2, Nα ) 

and 
t

t
i 1p +  divides 

t

t
ip  for it = 1, 2, …,  rt – 1and t = 1, 2. Since N 

is binilpotent and the biminimal neutrosophic polynomial is 
1 2k kx x∪  with kt ≤ nt; t = 1, 2. Thus each 

t

t
ip  is of the form 

t
i

t

kt
ip x=  and the bidivisibility condition says 

t

t t t
1 2 rk k ... k≥ ≥ ≥ ; t 

= 1, 2. Of course t t
1k k= and t

rk 1.≥  

The bicompanion neutrosophic bimatrix of 
1 2
i i1 2k kx x∪ is the  

r ri ik k×  neutrosophic bimatrix.  A = 
1 2

1 2
i iA A∪ with  

 

t

t
iA  = 

0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

; 

 
t = 1, 2. Thus we from earlier results have a bibasis for V = V1 
∪ V2 in which the neutrosophic bimatrix of N is the bidirect 
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sum of the elementary nilpotent neutrosophic bimatrices of sizes 
of it which decreases as it increases. One sees from this that 
associated with a binilpotent (n1 × n1, n2 × n2) neutrosophic 
bimatrix is a positive pair of integers (r1, r2) that is 
{ } { }1 2

1 1 2 2
1 r 1 rk ,...,k k ,...,k∪ such that 

{ }1

1 1
1 r 1k ... k n+ + =  and { }2

2 2
1 r 2k ... k n+ + =  

and 
t t 1

t t
i ik k

+
≥  ; t = 1, 2 and 1 ≤ i, i + 1 ≤ rt and these bisets of 

positive integers determine the birational form of the 
neutrosophic bimatrix that is they determine the neutrosophic 
bimatrix up to similarity. 

Here is one thing, we like to mention about the binilpotent 
bioperator N. 

The positive biinteger (r1, r2) is precisely the binullity of N 
infact the strong neutrosophic binull space has a bibasis with (r1, 
r2) bivectors i i1 2

1 2

k 1 k 11 2
1 i 2 iN N− −α ∪ α . For let α = α1 ∪ α2 be in the 

strong neutrosophic binull space of N we write 
α = ( )1 1

1 1 1 1
1 1 r rf ... fα + + α  ∪ ( )2 2

2 2 2 2
1 1 r rf ... fα + + α  

where ( )1 2

1 2
i if , f is a neutrosophic bipolynomial the bidegree of 

which we may assume is less than 
1 2i ik ,k . Since Nα = 0 ∪ 0 for 

each ir we have  
0 ∪ 0  =  N(fi, αi)  

=  N1 ( )t ti if ,α  ∪ N2 ( )t ti if ,α  

=  N1 1i
f (N1) 1i

α  ∪ N2 2i
f (N2) 2i

α  

=  ( )1i
xf

1i
α  ∪ ( )2i

xf
2i

α . 

 
Thus ( )1i

xf  ∪ ( )2i
xf  is bidivisible by i i1 2k kx x∪  and some bi 

deg (
1i

f ,
2i

f ) > (
1i

k ,
2i

k ) this imply that  

1i
f  ∪ 

2i
f  = i 1 i 11 2

1 2

k k1 2
i iC x C x− −∪  

where 
1 2

1 2
i iC C∪  is some biscalar, but then α = α 1 ∪ α2.  
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( ) ( )i 1 i 11 1

1 1

k k1 1 1 1
1 1 r rC x ... C x− −α + + α  ∪ ( ) ( )i 1 i 12 2

2 2

k k2 2 2 2
1 1 r rC x ... C x− −α + + α  

 
which shows that all the bivectors form a bibasis for the strong 
neutrosophic binull space of N = N1 ∪ N2.  

Suppose T is a bilinear operator on V = V1 ∪ V2 and that T 
factors over the neutrosophic bifield F = F1 ∪ F2 as f = f1 ∪ f2 

= ( ) ( )
11
k1 1

1

dd1 1
1 kx C ... x C− −  ∪ ( ) ( )

22
k1 2

2

dd2 2
1 kx C ... x C− −   

where { } { }1 2

1 1 2 2
1 k 1 kC ...C C ...C∪  are bidistinct bielement of F = F1 

∪ F2 and 
t

t
id 1≥ ; t = 1,2. 

 Then the neutrosophic biminimal polynomial for T will be  

p = ( ) ( )
11
k1 1

1

rr1 1
1 kx C ... x C− −  ∪ ( ) ( )

22
k1 2

2

rr2 2
1 kx C ... x C− −  

where 
t t

t t
i i1 r d≤ ≤  ; t = 1, 2. 

If 
1 2

1 2
i iW W∪  is the strong neutrosophic binull space of  

( ) ( ) ( )
1 2
i i1 2i

r rr 1 2
1 1 1 1 2 1 2T C I T C I T C I− = − ∪ −   

then the biprimary decomposition theorem tells us that  
 

V = V1 ∪ V2 = { } { }1 2

1 1 2 2
1 k 1 kW ... W W ... W⊕ ⊕ ∪ ⊕ ⊕  

and that the operator 
t

t
iT  induced on 

t

t
iW  defined by ti

tT  has 

neutrosophic biminimal polynomial ( )
t
i

t

rt
ix C−  for t = 1, 2; 1 ≤ 

it ≤ kt. Let 
t

t
iN  be the bilinear operator on 

t

t
iW  defined by 

t

t
iN = 

t

t
iT –

t

t
iC It; 1≤ it ≤ kt then 

t

t
iN  is binilpotent and has neutrosophic 

biminimal polynomial 
t
it

t

r
ix . On 

t

t
iW , Tt acts like 

t

t
iN  plus the 

scalar 
t

t
iC  times the identity operator. Suppose we choose a 

bibasis for the strong neutrosophic bisubspace 
1 2

1 2
i iW W∪  

corresponding to the bicyclic decomposition for the binilpotent 

t

t
iN . Then the neutrosophic k matrix 

t

t
iT  in this bibasis will be 

the bidirect sum of neutrosophic bimatrices; 
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1 2

1 2

1 2

1 2

C 0 0 0 C 0 0 0
1 C 0 0 1 C 0 0

0 0 C 0 0 0 C 0
0 0 1 C 0 0 1 C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

… …
… …

… …
… …

 

 
each with C = 

t

t
iC  for t = 1, 2. Further more the sizes of these 

neutrosophic bimatrices will decrease as one reads from left to 
right. A neutrosophic bimatirx of the form described above is 
called a bielementary Jordan bimatrix with bicharacteristic 
values C1 ∪ C2. 
 Suppose we pull the bibasis for 

1 2

1 2
i iW W∪  together and 

obtain an biordered bibasis for V = V1 ∪ V2. Let us describe the 
neutrosophic bimatrix A of T in the bibasis. A neutrosophic 
bimatrix A is the bidirect sum 
 

A = 

1 2

1 2
1 1

1 2
2 2

1 2
k k

A 0 0 A 0 0
1 A 0 1 A 0

0 0 A 0 0 A

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

… …
… …

… …

 

 
of the ki sets of neutrosophic bimatrices  
 

{ } { }1 2

1 1 2 2
1 k 1 kA ...A A ...A∪ . 

Each  

1

t
iA  = 

t

1

t

2

t

n

i
t

i
t

i
t

J 0 0

0 J 0

0 0 J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

…

 

 
where each t

t

i
jJ  is an elementary Jordon neutrosophic matrix 

with characteristic value 
t

t
iC ; 1 ≤ it ≤ kt; t = 1 , 2. Also within  
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each 
t

t
iA  ; the sizes of the neutrosophic matrices t

t

i
jJ  decrease as 

jt increases 1 ≤ jt ≤ nt; t = 1, 2.  
 A (n1 × n1, n2 × n2) neutrosophic bimatrix A which satisfies 
all the conditions described so far for some bisets of distinct ki 
scalars { } { }1 2

1 1 2 2
1 k 1 kC ...C C ...C∪  will be said to be in Jordan 

biform or biJordan form. 
 
 
2.4 Neutrosophic Biinner Product Bivector Space  
 
Now we proceed onto define the new notion of biinner product 
strong neutrosophic bivector space of type II and derive a few 
interesting properties about them. 
 
DEFINITION 2.4.1: Let F = F1 ∪ F2 be a real neutrosophic 
bifield and V = V1 ∪ V2 be a strong neutrosophic bivector space 
over the bineutrosophic bifield. An biinner product on V is a 
bifunction which assigns to each biordered pair of bivectors α 
= α1 ∪ α2 and β = β1 ∪ β2 in V a biscalar (α/β) = (α1/β1) ∪ 
(α2 /β2) in F = F1 ∪ F2 that is (αi/βi) ∈ Fi, i=1, 2 in such a way 
that for all α = α1 ∪ α2, β = β1 ∪ β2, and γ = γ1∪ γ 2 in V = V1 
∪ V2 and for all biscalar c = c1 ∪ c2 in F1 ∪ F2 = F. 

i. (α+β/γ) = (α/γ) + (β/γ) 
(α1+β1/γ1) ∪ (α2+β2/γ2) 
= (α1/γ1) + (β1/γ1) ∪ (β2/γ2) + (β2/γ2) 

ii. (cα/β) = c(α/β) 
that is (c1 α1/β1) ∪ (c2 α2/β2) 
= c1 (α1/β1) ∪ c2 (α2/β2) 

iii. (α/β) = (β/α) 
iv. (α/α) = (α1/α1)∪ (α2/α2) > 0 ∪ 0 if αi ≠ 0 for i=1, 2. 

 
 A strong neutrosophic bivector space V = V1 ∪ V2 endowed 
with a biinner product is called the strong neutrosophic biinner 
product space over the real neutrosophic bifield F = F1 ∪ F2. 

Let F = F1 ∪ F2 and for V = ∪1 2n n
1 2F F  a strong 

neutrosophic bivector space over the real neutrosophic bifield F 
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= F1 ∪ F2, there is a biinner product called the bistandard 
inner product. It is defined for  

α = α1 ∪ α2 = { } { }∪… …
1 2

1 1 2 2
1 n 1 nx x x x  

and  
β = β1 ∪ β2 = { } { }∪… …

1 2

1 1 2 2
1 n 1 ny y y y by  

(α/β) = ∪∑ ∑1 1 2 2

1 2

1 1 2 2
j j j j

j j
x y x y . 

 If A = A1 ∪ A2 is a neutrosophic bimatrix over the bifield F 
= F1 ∪ F2 where Ai ∈ ×i in n

iF  for i = 1, 2. ×i in n
iF is a strong 

neutrosophic vector space over Fi; i = 1, 2. V = ×1 1n n
1F ∪ ×2 2n n

2F  
is a strong neutrosophic bivector space over the neutrosophic 
bifield F = F1 ∪ F2 and V is isomorphic to the strong 
neutrosophic bivector space ∪

2 2
1 2n n

1 2F F  in a natural way. It 
therefore follows; 

(A/B) = ∪∑ ∑1 1 1 1 2 2 2 2

1 1 2 2

1 1 2 2
j k j k j k j k

j k j k
A B A B  

defines a biinner product on V. A strong neutrosophic bivector 
space over the neutrosophic bifield F = F1 ∪ F2 (both F1 and F2 
not pure neutrosophic) is known as the biinner product 
neutrosophic space or neutrosophic biinner product space. 
 
We have the following interesting theorem. 
 
THEOREM 2.4.1: If V = V1 ∪ V2 be a real biinner product 
neutrosophic space, then for any bivectors α = α1 ∪ α2 and β = 
β1 ∪ β2 in V and any scalar c = c1 ∪ c2. 
  

i. || cα || = | c | || α ||  
that is || cα || = || c1 α1 || ∪|| c2 α2 ||  
= |c1| || α1|| ∪ |c2| || α2||; 

ii. ||α|| > (0 ∪ 0) for α ≠ 0  
that is || α1 || ∪ || α2 || > (0, 0) = 0 ∪ 0; 

iii. ||(α/β)||< || α || || β || 
that is ||(α1/β1)|| ∪ ||(α2/β2)|| 
= || α1|| || β1|| ∪ || α2|| || β2||. 
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 However as in case of usual bivector spaces we in case of 
strong neutrosophic bivector spaces define the concept of 
biorthogonal bivectors. 
 If α, β ∈ V = V1 ∪ V2 be bivectors of a biinner product 
space, we can define 

γ = β  –  2

( / )
|| ||
β α α
α

; 

γ1 ∪ γ2 = 
⎛ ⎞

−⎜ ⎟
⎝ ⎠

1 1
1 12

1

( / )
|| ||
β αβ α

α
 ∪ 

⎛ ⎞
−⎜ ⎟

⎝ ⎠
2 2

2 22
2

( / )
|| ||
β αβ α

α
. 

 
 As in case of usual vector spaces we can in case of strong 
neutrosophic biinner product spaces define biorthogonality or 
biorthogonal bivectors. 
 Let α= α1 ∪ α2 and β = β1 ∪ β2 be neutrosophic bivectors 
in a neutrosophic biinner product space V = V1 ∪ V2. 
 Then α = α1 ∪ α2 is biorthogonal to β = β1 ∪ β2 if (α/β) = 
α1 β1 ∪ α2 β2 = 0 ∪ 0 that is (α1/β1) ∪ (α2 / β2)  = 0 ∪ 0. Since 
this implies β = β1 ∪ β2 is biorthogonal to α = α 1 ∪ α 2.  
 
It is left as an exercise for the reader to prove, the following 
theorem.  
 
THEOREM 2.4.2: A biorthogonal biset of non zero bivectors is 
bilinearly independent. 
 
THEOREM 2.4.3: Let V = V1 ∪ V2 be a strong neutrosophic 
biinner product space and let { } { }∪… …

1 2

1 1 2 2
1 n 1 nβ β β β  be any 

biindependent vector in V. Then one way to construct 
biorthogonal vectors; 
 { } { }∪… …

1 2

1 1 2 2
1 n 1 nα α α α  in V = V1 ∪ V2 is such that for 

each ki, i=1, 2 the biset { } { }1 2

1 1 2 2
1 1∪… …k kα α α α  is the 

bibasis for the strong neutrosophic bisubspace spanned by 

{ } { }1 2

1 1 2 2
1 1∪… …k kβ β β β . 
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Proof: The bivectors { } { }1 2

1 1 2 2
1 n 1 nα α ∪ α α… …  can be obtained 

by means of a construction analogous to Gram-Schmidt 
orthogonalization process called or defined as Gram-Schmidt 
biorthogonalization process. 
 First let α = 1 2

1 1α ∪ α  and β1 = 1 2
1 1β ∪ β . The other bivector is 

calculated using the rule  
 

γ  = β – 2

( / )
|| ||
β α

α
α

 

 

γ = γ1 ∪ γ2  = 1 1
1 12

1

( / )
|| ||

⎛ ⎞β α
β − α⎜ ⎟α⎝ ⎠

 ∪ 2 2
2 22

2

( / )
|| ||

⎛ ⎞β α
β − α⎜ ⎟α⎝ ⎠

 

 
However we will indicate the proof of the result for any general 
n; n ≥ 3 in chapter 3 of this book. 

We cannot define orthonormality as i ∈ Fi as well as i ∈ Vi i 
= 1, 2. 

However we define just biapproximation in strong 
neutrosophic bivector spaces over neutrosophic bifields of type 
II. 
 
DEFINITION 2.4.2: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2 (Both 
F1 and F2 are not pure neutrosophic) of type II. Let W = W1 ∪ 
W2 be a strong neutrosophic bivector subspace of V over the 
neutrosophic bifield F = F1 ∪ F2.  

Let β  = β1 ∪ β2 be a bivector in V = V1 ∪ V2. To find the 
bibest approximation to β = β1 ∪ β2 (or the best 
biapproximation to β  = β 1 ∪ β 2) in W = W1 ∪ W2. This means 
to find a bivector α  = α1 ∪ α2 for which || β – α|| = || β1 – α1|| 
∪ ||β2 – α2|| is as small as possible subject to the restriction 
that α  = α1 ∪ α2 should belong to W = W1 ∪ W2; that is to be 
more precise. 
 A best biapproximation to β  = β1 ∪ β2 in W = W1 ∪ W2 is a 
bivector α  = α1 ∪ α2 in W such that ||β – α|| ≤ ||β – γ|| that is 
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||β1 – α1|| ∪ ||β2 – α2|| ≤ ||β1 – γ1|| ∪ ||β2 – γ2|| for every 
bivector γ  = γ1 ∪ γ 2 in W. 
 
THEOREM 2.4.4: Let W = W1 ∪ W2 be a strong neutrosophic 
subbispace of a strong neutrosophic biinner product space V = 
V1 ∪ V2 and β = β1 ∪ β2 be in V = V1 ∪ V2,  
 

i. The bivector α = α1 ∪ α2 in W is a best biapproximation 
to β = β1 ∪ β2 by bivectors in W = W1 ∪ W2 if and only if 
β – α = (β1 – α1) ∪ (β2 – α2) is biorthogonal to every 
vector in W. That is each βi – αi is orthogonal to every 
vector in Wi, true for i = 1, 2. 

ii. If a best biapproximation to β = β1 ∪ β2 by bivectors in W 
= W1 ∪ W2 exists, it is unique. 

 
However we cannot define the notions and properties related to 
biorthonormality. 
 We now proceed onto define biorthogonal complement of a 
biset of bivectors in V. 
 
DEFINITION 2.4.3: Let V = V1 ∪ V2 be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2 (Both 
F1 and F2 are not pure neutrosophic) of type II be a strong 
neutrosophic biinner product space.  

Let S = S1 ∪ S2 be any set of bivectors in V. The 
biorthogonal complement of S denoted by 

⊥⊥ ⊥ ⊥= ∪
( )

1 2S S S  is 
the set of all bivectors in V which are biorthogonal to every 
bivector in S.  
 
Properties related with the biorthogonal set is left as an exercise 
for the reader to derive.  

The following results are simple and hence are left for the 
reader to prove. 
 
THEOREM 2.4.5: Let V = V1 ∪ V2 be a strong neutrosophic 
biinner product space, W = W1 ∪ W2 a finite dimensional 
strong neutrosophic bisubspace and E = E1 ∪ E2 be the 
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biorthogonal projection of V on W. Then the bimapping β → 
β – Eβ; that is  

β1 ∪ β2 → (β1 – E1β1) ∪ (β2 – E2β2) 
 
is the biorthogonal projection of V on W. 
 
THEOREM 2.4.6: Let W = W1 ∪ W2 be a finite (n1, n2) 
bidimensional strong neutrosophic bisubspace of the strong 
neutrosophic biinner product space V = V1 ∪ V2 of type II and 
let E = E1 ∪ E2 be the biorthogonal projection of V on W.  

Then E = E1 ∪ E2 is an idempotent bilinear transformation 
of V onto W, W⊥ is the null bispace of E and V = W ⊕ W⊥ that is  

V  =  V1 ∪ V2  
=  W1 ⊕ ⊥

1W  ∪ W2 ⊕ ⊥
2W . 

 
THEOREM 2.4.7: Under the conditions of the above theorem I – 
E = I2 – E1 ∪ I2 – E2 is the biorthogonal biprojection of V on 
W⊥. It is a biidempotent bilinear transformation of V onto W⊥ = 

⊥
1W  ∪  ⊥

2W  with binull space W = W1 ∪ W2.  
 
THEOREM 2.4.8: Let{ } { }∪… …

1 2

1 1 2 2
1 n 1 nα α α α  be a biorthogonal 

set of non zero bivectors in a strong neutrosophic biinner 
product space V = V1 ∪ V2 over F1 ∪ F2 of type II.  

If β  = β1 ∪ β2 is any bivector in V = V1 ∪ V2 then  
 

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ 1

1 1

1 2
1 k

1 2
k k

|( / )|
|| ||
β α

α
 ∪ 

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ 2

2 2

2 2
2 k

2 2
k k

|( / )|
|| ||
β α

α
 ≤  || β1||2 ∪ || β2||2 

 
and equality holds if and only if 
 

β = 
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ 1

1

1 1

1
1 k 1

k1 2
k k

| / |
|| ||
β α

α
α

 ∪ 
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ 2

2

2 2

2
2 k 2

k2 2
k k

| / |
|| ||
β α

α
α

 = β1 ∪ β2. 
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Now we proceed onto define the notion of strong neutrosophic 
n-vector spaces of type II, n ≥ 3 and neutrosophic n-vector 
space n ≥ 3 in chapter three. 

Several problems are proposed in chapter four of this book 
for the interested reader.  
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Chapter Three   
 
 
 
 
 

 
NEUTROSOPHIC n-VECTOR SPACES  
 
 
 
 
 
 
 
In this chapter we for the first time introduce the notion of 
neutrosophic n-vector spaces of both type I and type II (n ≥ 3) 
and discuss some of the important properties about them. This 
chapter has three sections. Section one introduces the notion of 
neutrosophic n-vector spaces. Neutrosophic strong n-vector 
spaces are introduced in section two and neutrosophic n-vector 
spaces of type II is studied in section three.  
 
 
3.1 Neutrosophic n-Vector Spaces 
 
In this section we introduce strong neutrosophic n-vector spaces 
n ≥ 3 and illustrate it by some examples and discuss some of 
their properties. 
 
DEFINITION 3.1.1: Let V = V1 ∪ V2 ∪ … ∪ Vn (n ≥ 3) be such 
that each Vi is a neutrosophic set and is a vector space over the 
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real field F; 1 ≤ i ≤ n. We call V = V1 ∪ V2 ∪ … ∪ Vn to be a 
neutrosophic n-vector space over the field F.  
 
We illustrate this by some examples. 
 
Example 3.1.1: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

 

= 1 2 3
i

4 5 6

a a a
a QI;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a b

a,b,c,d QI
0 d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ N(Q); 1 ≤ i ≤ 5} ∪  

 

1 2

3 4
i

5 6

7 8

a a
a a

a N(Q);1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{QI[x]; all polynomial in the variable x with coefficients from 
the neutrosophic field QI}; V is a neutrosophic 5-vector space 
over the real field Q. 
 
Example 3.1.2:  Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

7

a
a,b,c Z Ib

c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ {[a, b, c, d, e] | a, b, c, d, e ∈ N(Z7)} 

 
∪ {N(Z7)[x]; all polynomials in the variable x with coefficients 
from the neutrosophic field N(Z7)} ∪  
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1 2 3

4 5 6 i 7

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

, 

 
V is a neutrosophic 4-vector space over the real field Z7. 
 
Example 3.1.3: Let V = V1 ∪ V2 ∪ V3 =  
 

13

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6) | ai ∈ N(Z13); 1 ≤ i ≤ 6} ∪ 

 

1 2

3 4
i 13

5 6

7 8

a a
a a

a Z I;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

, 

 
V is a neutrosophic 3-vector space over the real field Z13.  
 
Note: Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic n-vector 
space over the real field F (n ≥ 3). If n = 2 we get the 
neutrosophic bivector space. Having seen examples of 
neutrosophic n-vector spaces (n ≥ 3) we now proceed onto 
define some substructures related with them.  
 
DEFINITION 3.1.2: Let V = V1 ∪ V2 ∪ … ∪ Vn (n ≥ 3) be a 
neutrosophic n-vector space over the real field F. Let W = W1 ∪ 
W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn; if W is itself a 
neutrosophic n-vector space over the same real field F then we 
call W to be a neutrosophic n-vector subspace of V over the 
field F (each Wi ⊆ Vi is a proper subspace different {0} space 
and Vi), i = 1, 2, …, n. 
 
We will illustrate this definition by some examples. 
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Example 3.1.4: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

1 2 3 4

5 6 7 8 i 17

9 10 11 12

a a a a
a a a a a Z I;1 i 12
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2

3 4

5 6 i 17

7 8

9 10

a a
a a
a a a Z I;1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3

4 5 6 i 17

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{Z17I[x]; all polynomials the variable x with coefficients from 
Z17I} be a neutrosophic 4-vector space over the real field Z17. 
Take W = W1 ∪ W2 ∪ W3 ∪ W4 =  

17

a a a a
a Z Ia a a a

a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 17

a a
a a

a,b,c Z Ib b
b b
c c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

a b c
a,b,c,d,e,f Z I0 d e

0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪  

 
2i

i i 17
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  
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⊆ V1 ∪ V2 ∪ V3 ∪ V4. Clearly W is a neutrosophic 4-vector 
subspace of V over the real field Z17. 
 
Example 3.1.5: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

{N(Q)} ∪ 1 2 3 4 5 6
i

7 8 9 10 11 12

a a a a a a
a QI;1 i 12

a a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(x1, x2, x3, x4, x5, x6, x7) | xi ∈ QI; 1 ≤ i ≤ 7} ∪ 

 

1 2 3

4 5 6

7 8 9

10 11 12 i

13 14 15

16 17 18

19 20 21

a a a
a a a
a a a
a a a a N(Q);1 i 21
a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8
i

9 10 11 12

13 14 15 16

a a a a
a a a a

a N(Q);1 i 21
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Q)[x]; all polynomials in the variable x with coefficient 
from N(Q)} be a neutrosophic 6-vector space over the real field 
Q. Consider W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 = {{QI}}  
 

∪ 1 2 3 4 5 6
i

1 2 3 4 5 6

a a a a a a
a QI;1 i 6

a a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{x, x, x, x, x, x, x)| x ∈ QI} ∪ 
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a a a
b b b
a a a

a,b,c QIb b b
c c c
b b b
c c c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
a a a a
b b b b

a,b,c,d N(Q)
c c c c
d d d d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{QI[x] | all polynomials in the variable x with coefficients from 
QI} ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6; W is a neutrosophic 6-
vector subspace of V over the real field Q.  
 
Now having seen the examples of neutrosophic n-vector 
subspace of a neutrosophic n-vector spaces we proceed onto 
define the new notion of sub neutrosophic n-vector subspace. 
 
DEFINITION 3.1.3: Let V = V1 ∪ V2 ∪ … ∪ Vn (n ≥ 3) be a 
neutrosophic n-vector space over the real field F. Let W = W1 ∪ 
W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be such that W is a 
neutrosophic n-vector space over a proper subfield K of F then 
we define W to be a sub neutrosophic n-vector subspace of V 
over the subfield K of F.  
 
We will illustrate this situation by some examples. 
 
Example 3.1.6: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

1 2 3 4
i

5 6 7 8

a a a a
a RI;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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( )

1 2 3

4 5 6

7 8 9 i

10 11 12

13 14 15

16 17 18

a a a
a a a
a a a a Q 2, 3, 5, 7, 11, 13, 19 I;
a a a 1 i 18
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎪ ⎪
⎜ ⎟⎨ ⎬
⎜ ⎟ ≤ ≤⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 ∪ {RI[x] ; all polynomials in the variable x with coefficients 
from RI} ∪ {5 × 5 neutrosophic matrices with entries from RI} 
be a neutrosophic 4-vector space over the real field F = 
Q ( 2, 3, 5, 7, 11, 13, 19) .  

Take W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

1 2 3 4 i

5 6 7 8

a a a a a Q ( 2, 3, 5, 7, 11, 13,
a a a a 19, 23, 41, 43, 53)I; 1 i 8

⎧ ⎫∈⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟

≤ ≤⎝ ⎠⎪ ⎪⎩ ⎭
 ∪ 

 

( )

1 2 3

1 2 3

1 2 3
1 2 3

1 2 3

1 2 3

1 2 3

a a a
a a a
a a a

a , a , a Q 2, 3, 5, 7, 11, 13, 19 I
a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 

∪ 2i
i i

i 0
a x a RI[x];0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
{5 × 5 neutrosophic diagonal matrices with entries from RI} ⊆ 
V1 ∪ V2 ∪ V3 ∪ V4, W is a sub neutrosophic 4-vector subspace 
of V over the subfield K = Q ( 2, 3, 5)  ⊆ F = 
Q ( 2, 3, 5, 7, 11, 13, 19) . 
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Example 3.1.7: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 
be a neutrosophic 7-vector space over the real field R where  
 

V1 = 
a b c

a,b,c,d,e,f ,g,h,i N(R)d e f
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

, 

 
V2 = {N(R)[x]; all polynomials in the variable x with 
coefficients from N (R)},  
 

V3 = 
1 2 3 4 5 6

7 8 9 10 11 12 i

13 14 15 16 17 18

a a a a a a
a a a a a a a N(R);1 i 18
a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

, 

 

V4 = 
a b

a,b,c,d N(R)
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, V5 = {N(R)}, 

 

V6 = 

1 2

3 4

5 6

7 8 i

9 10

11 12

13 14

a a
a a
a a
a a a RI;1 i 14
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
and V7 = {all 9 × 9 neutrosophic matrices with entries from RI}. 
Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 =  

 
a b c

a,b,c,d,e,f ,g,h,i RId e f
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 
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{RI[x] all polynomials in the variable x with coefficients from 
RI} ∪  
 

a a a a a a
a,b,c RIb b b b b b

c c c c c c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {RI} ∪ 

 

1 2

3 4

5 6

7 8 i

9 10

11 12

13 14

a a
a a
a a
a a a QI;1 i 14
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{all 9 × 9 neutrosophic matrices with entries from N(Q)} ⊆ V1 
∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 is a sub neutrosophic 7-vector 
subspace of V over the subfield Q of the field R.  
 
We define a neutrosophic n-vector space which has no proper 
sub neutrosophic n-vector subspace to be a subsimple 
neutrosophic n-vector space. 
 
We will illustrate this by examples. 
 
Example 3.1.8: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {QI [x]} ∪ 
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1 2

3 4

5 6 i

7 8

9 10

a a
a a
a a a QI;1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{10 × 10 neutrosophic matrices with entries from QI} ∪ {(a1, 
a2, a3) | ai ∈ RI} be a neutrosophic 5-vector space over the real 
field Q. Clearly V has no sub neutrosophic 5-vector subspace as 
Q is a prime field that Q has no proper subfields. Hence V is a 
subsimple neutrosophic 5-vector space over Q.  
 
Example 3.1.9: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 = {Z2I 
× Z2I × Z2I × Z2I} ∪ {Z2I[x] all polynomials in the variable x 
with coefficients from Z2I} ∪  
 

0 0 I I
, I I 2I 0(mod 2)

0 0 I I
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ = ≡⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

 

2

a a a
a N(Z )a a a

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{all 3 × 7 neutrosophic matrices with entries from N(Z2)} ∪ {all 
9 × 4 neutrosophic matrices with entries from N(Z2)} be a 
neutrosophic 6-vector space over the real field Z2. Further it can 
be easily verified V has no proper neutrosophic 6-vector 
subspace over Z2. Since Z2 is a prime field of characteristic two 
it has no proper subfields. This V is a subsimple neutrosophic 6-
vector space over Z2. 
 
THEOREM 3.1.1: Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic 
n-vector space over a real field F. If F is a prime field that is F 
has no proper subfields then V is a subsimple neutrosophic n-
vector space over F. 
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Proof: Given V = V1 ∪ V2 ∪ … ∪ Vn is a neutrosophic n-
vector space over the real field F, such that F is a prime field; 
that is F has no proper subfields. By the definition of such 
neutrosophic n-vector subspaces we see V does not have a 
proper sub neutrosophic n-vector subspace hence V is a 
subsimple neutrosophic n-vector space over F. 
 
We define the notion of doubly simple neutrosophic n-vector 
space over a real field F.  
 Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic n-vector 
space over a field F. If V has no proper neutrosophic n-vector 
subspace over the field F then we all V to be a simple 
neutrosophic n-vector space over the field F. 
 
We will first illustrate this situation by some examples. 
 
Example 3.1.10: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

0 0 I I 2I 2I
, ,

0 0 I I 2I 2I
⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 elements of these matrices are from  

 

Z3I} ∪  
0 0 0 0 I I I I 2I 2I 2I 2I

, ,
0 0 0 0 I I I I 2I 2I 2I 2I

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

  
elements of these 2 × 4 matrices are from neutrosophic field 
Z3I} ∪ {5 × 5 neutrosophic matrices with entries from Z3I} × 
{(a1, a2, a3, a4, a5, a6, a7) | ai ∈ N(Z3); 1 ≤ i ≤ 7} be a 
neutrosophic 4-vector space over the field Z3. Clearly V has no 
neutrosophic 4-vector subspaces so V is a simple neutrosophic 
n-vector space. 
 
Example 3.1.11: Let V = {(a a a a) | a ∈ Z5I} ∪  
 

5

a a
a Z I

0 a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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5

a a a
a a a
a a a

a Z Ia a a
a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

5

a 0 0 0 0
a a 0 0 0

a Z Ia a a 0 0
a a a a 0
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
= V1 ∪ V2 ∪ V3 ∪ V4 be a neutrosophic 4-vector space over the 
real field Z5. V is a simple neutrosophic 4-vector space. 
 
We define doubly simple neutrosophic vector space.  
 
DEFINITION 3.1.4: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-vector space over the real field F. Suppose V is 
a simple neutrosophic n-vector space as well as simple 
subneutrosophic bivector space then we call V to be a doubly 
simple neutrosophic n-vector space. 
 
We will illustrate this situation by some simple examples. 
 
Example 3.1.12: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 
be neutrosophic 7-vector space over the real field Z7 where  
 

V1 = 7

a a a
a Z I

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 , 
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V2 = 7

a a a a
a a a a
a a a a
a a a a

a Z I
a a a a
a a a a
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

, V3 = 7

a 0 0 0
a a 0 0

a Z I
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 

V4 = {(a a a a a a a a} | a ∈ Z7I}, V5 = 7

a
a
a
a

a Z I
a
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

,  

 

V6 = 7

a 0
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

and  

V7 = 7

a a a a a a
a a a a a a

a Z I
a a a a a a
a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

. 

 
It is easily verified V is a simple neutrosophic 7-vector space as 
each Vi is a simple neutrosophic vector space for i = 1, 2, …, 7. 
Further Z7 is a prime field so V has no subneutrosophic 7 vector 
subspaces. Thus V is a doubly simple neutrosophic 7-vector 
space over Z7. 
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Example 3.1.13: Let V = V1 ∪ V2 ∪ V3 =  
 

17

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

17

a a a a a
a,b Z I

b b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 17

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 be a neutrosophic 3-vector space over the real field Z17. Clearly 
V is also a doubly simple neutrosophic bivector space over the 
field Z17.  

A neutrosophic n-vector space can have neutrosophic n-
vector subspace still it can be a simple sub neutrosophic n-
vector space. This is shown by some simple examples. 
 
Example 3.1.14: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 
neutrosophic 5-vector space over the real field F = Z11. Here  
 

V1 = 11

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

V2 = 11

a a a a a
a N(Z )

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

V3 = 11

a a
b b
c c

a,b,c,d,e,f N(Z )
d d
e e
f f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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V4 = 

1

2 3
i 11

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a N(Z );1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
and V5 = {Z17I[x]; all polynomials in the variable x with 
coefficients from Z17I.  
 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

11

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

11

a a a a a
a Z I

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

11

a a
a a
a a

a Z I
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2 3
i 11

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
2i

i i 11
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  
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⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5; W is a neutrosophic 5-vector 
subspace of V. So V is not a simple neutrosophic 5-vector 
space, however V has no subneutrosophic subvector space as 
Z11 is a prime field so V is a subsimple neutrosophic 5-vector 
space over Z11. 

Thus V is not a doubly simple neutrosophic 5-vector space 
over the field Z11. 
 
Now we proceed onto define the notion of neutrosophic n-linear 
algebra n ≥ 3. 
 
DEFINITION 3.1.5: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-vector space over the real field F. If each Vi is a neutrosophic 
linear algebra over the field F then we define V to be a 
neutrosophic n-linear algebra over the field F. 
 
We illustrate this situation by some simple examples. 
 
Example 3.1.15: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  

 

2

a b c
d e f a,b, ,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

… ∪ 2

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
∪ {(a1, a2, a3, a4) | ai ∈ Z2I, 1 ≤ i ≤ 4} ∪ {Z2I[x]; all polynomials 
in the variable x with coefficients from Z2I} be a neutrosophic 4 
linear algebra over the real field Z2 = {0, 1}.  
 
Example 3.1.16: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{N(Q)[x]; all polynomials in the variable x with coefficients 
from the neutrosophic field QI} ∪ {5 × 5 neutrosophic matrices 
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with entries from QI} ∪ {7 × 7 neutrosophic upper triangular 
matrices with entries from QI} ∪ 
 

a a a
a QIa a a

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Q)} is a neutrosophic 6-linear algebra over the real field Q. 
 
Now we will state the following theorem. The reader is 
expected to prove it. 
 
THEOREM 3.1.2: Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic 
n-linear algebra defined over the real field F. Every 
neutrosophic n-linear algebra is a neutrosophic n-vector space. 
But in general a neutrosophic n-vector space need not be a 
neutrosophic n-linear algebra. 
 
We give an example of a neutrosophic n-vector space which is 
not a neutrosophic n-linear algebra. 
 
Example 3.1.17: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a a a a a
a Z Ia a a a a

a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪  

 

7

a b
c d

a,b,c,d,e,f ,g,h Z Ie f
g h
a b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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7

a
b

a,b,c,d,e N(Z )c
d
e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

7

a 0 0
a,b,c,d,e,f ,g N(Z )0 b d

e f g

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 

7

0 x
x, y N(Z )

y 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic 5-vector space over the real field Z7. Clearly 
V is not a neutrosophic 5-linear algebra over the real field Z7. 
For we see in V1 we cannot define product so V1 is not a 
neutrosophic linear algebra over Z7.  
 

V2 = 7

a b
c d

a,b,c,d,e,f ,g,h Z Ie f
g h
a b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
is not a neutrosophic linear algebra over Z7 a product in V2 
cannot be defined only addition is valid. V4 is a neutrosophic 
linear algebra over Z7. However V5 and V3 are not neutrosophic 
linear algebras. Thus V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is not a 
neutrosophic 5-linear algebra over the field Z7. Hence the claim. 
 
We now proceed onto define the notion of neutrosophic n-linear 
subalgebra of a neutrosophic n-linear algebra. 
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DEFINITION 3.1.6: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n- linear algebra over the real field F. Let W = W1 ∪ W2 ∪ … 
∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic n-linear algebra 
over the field F then we call W to be neutrosophic n-linear 
subalgebra of V over the field F.  
 
We will illustrate this situation by some examples. 
 
Example 3.1.18: Let V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

11

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(x1, x2, x3, x4, x5) | xi ∈ N(Z11); 1 ≤ i ≤ 5} ∪ 

 

11

a 0 0
a,b,c,d,e,f ,g Z Ib c 0

d d f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{Z11I[x]; all polynomials in the variable x with coefficients from 
Z11I} ∪ {10 × 10 neutrosophic matrices with entries from Z11I} 
be a neutrosophic 5-linear algebra over the real field Z11. Take 
W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

11

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(x1, x2, x3, x4, x5) | xi ∈ Z11I; 1 ≤ i ≤ 5} ∪ 

 

11

a 0 0
a Z Ia a 0

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 2i
i i 11

i 0
a x a Z I;0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 
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{all 10 × 10 upper triangular matrices with entries from Z11I} ⊆ 
V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 W is a neutrosophic 5-linear 
subalgebra of V over the real field Z11. 
 
Example 3.1.19: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

17

a 0 0
a,b,c Z Ib b 0

c c c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

  ∪ 

 
i

i i 17
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

17

a b c
a,b,c,d,e,f Z I0 d e

0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8
i 17

9 10 11 12

13 14 15 16

a a a a
a a a a

a N(Z );1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-linear algebra over the real field Z17. Take 
W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

17

a 0 0
a Z Ia a 0

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
2i

i i 17
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 
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17

a a a
a Z I0 a a

0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 

17

a a a a
b b b b

a,b,c,d Z I
c c c c
d d d d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4; W is a neutrosophic 4-linear subalgerba 
of V over the real field Z17.  

We see in general all neutrosophic n-linear algebras need 
not have neutrosophic n-linear subalgebras.  
 Suppose we have a neutrosophic n-linear algebra V which 
no proper neutrosophic n-linear subalgebra then we call V to be 
a simple neutrosophic n-linear algebra.  
 
We will illustrate this situation by some examples. 
 
Example 3.1.20: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

19

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 19

a a a
a Z I0 a a

0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 

19

a a a a a
a a a a a

a Z Ia a a a a
a a a a a
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{(a a a a a a a a) | a ∈ Z19} ∪ 
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19

a 0 0 0
a a 0 0

a Z I
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-linear algebra over the real field Z19. We see 
V has no neutrosophic 5-linear subalgebra over the field Z19. 
Thus V is a simple neutrosophic 5-linear algebra over Z19.  
 
Example 3.1.21: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 
∪ V8 =  

7

a 0 0 0
a a 0 0

a Z I
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

i
i i 7

i 0
a x a Z I;0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 7

a a a
a N(Z I)a a a

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Z7I)} ∪ {all 9 × 9 upper triangular matrices with entries 
from Z7I} ∪  
 

7

a a a a a a
a a a a a a
a a a a a a

a Z I
a a a a a a
a a a a a a
a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{all 10 × 10 lower triangular neutrosophic matrices with entries 
with entries from Z7I} ∪  
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7

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a neutrosophic 8-linear algebra over the real field Z7. Clearly 
V is a simple neutrosophic 8-linear algebra as the neutrosophic 
linear algebras V1, V3, V6 and V8 are simple neutrosophic linear 
algebras over the real field Z7. 
 
Now we proceed onto define yet another new substructures in 
neutrosophic n-linear algebras. 
 
DEFINITION 3.1.7: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-linear algebra a real field F. Suppose W = W1 ∪ W2 ∪ … ∪ 
Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a proper n-subset of V such that W 
is a neutrosophic n-linear algebra over a proper subfield K of F 
then we define W to be subneutrosophic n-linear subalgebra of 
V over the subfield K of the field F.  
 
We will illustrate this by some examples. 
 
Example 3.1.22: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  {RI} ∪ 
a 0 0

a N(R)a a 0
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i
i 0

a x a RI;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
a a a a
b b b b

a,b,c,d RI
c c c c
d d d d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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{11 × 11 neutrosophic matrices with entries from the 
neutrosophic field RI} be a neutrosophic 6-linear algebra over 
the real field R, the field of reals. Take W = W1 ∪ W2 ∪ W3 ∪ 
W4 ∪ W5 ∪ W6 =  
 

a a
a RI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {QI} ∪ 

 

a 0 0
a RIa a 0

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

a a a a
a a a a

a RI
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
2i

i i
i 0

a x a QI;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑   ∪ 

 
{all 11 × 11 neutrosophic matrices with entries from QI} ⊆ V1 
∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6, W is a subneutrosophic 6 linear 
algebra over the real field Q ⊆ R.  
 
Example 3.1.23: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  ∪ 

 
a 0 0

a,b,c,d,e are in N(RI)b c 0
d e 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i
i 0

a x a RI;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  
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∪ {N(R)} ∪ {7 × 7 neutrosophic matrices with entries from RI} 
is a neutrosophic 5-linear algebra over the real field R.  

Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a 0 0
b c 0 a,b,c,d,e N(Q)
d e 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i
i 0

a x a QI;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
{N(Q)} ∪ {7 × 7 neutrosophic matrices with entries from QI} ⊆ 
V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is a subneutrosophic 5-linear 
subalgebra of V over the subfield Q of R,  
 Now if a neutrosophic n-linear algebra V has no proper 
subneutrosophic linear subalgebra over a subfield K of F (V is 
defined over F), then we call V to be subsimple. neutrosophic n-
linear algebra. 
 
We will illustrate this situation by some simple examples. 
 
Example 3.1.24: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i i 7
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

1

2 3
i 7

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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{N(Z7)} be a neutrosophic 4-linear algebra over the real field 
Z7. Since Z7 has no proper subfields that is as Z7 is a prime field 
we see V has no subneutrosophic 4-linear subalgebras. Hence V 
is a subsimple 4-linear algebra. 
 
Example 3.1.25: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

1 2 3

4 5 6 i

7 8 9

a a a
a a a a QI;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i
i 0

a x a QI;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ {N(R)} ∪ 

 

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a RI 0 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{All 10 × 10 neutrosophic matrices with entries from RI} is a 
neutrosophic 5-linear algebra over the field Q. Clearly Q is a 
prime field so V has no subneutrosophic 5-linear algebra, hence 
V is a subsimple neutrosophic 5-linear algebra. 
 
In view of this example we have nice theorem which gurantees 
the existence of subsimple neutrosophic n-linear algebras. 
 
THEOREM 3.1.3: Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic 
n-linear algebra over a real field F, where F is a prime field 
i.e., has no subfields then V is a subsimple neutrosophic n-
linear algebra. 
 
Proof: Follows from the fact that V = V1 ∪ … ∪ Vn is defined 
over the prime field F for a subneutrosophic n-linear algebra to 
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exist we need the existence of a subfield in F. Hence V is a 
subneutrosophic simple n-linear algebra.  

A simple neutrosophic n-linear algebra need not in general 
be a simple subneutrosophic n-linear algebra. 
 
Example 3.1.26: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

11

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1

2 3 i 11

4 5 6

a 0 0
a a 0 a Z I;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i 11
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

1 2 3 4

5 6 7
i 11

8 9

10

a a a a
0 a a a

a Z I;1 i 10
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{all 7 × 7 matrices with entries from Z11I} be a neutrosophic 5-
linear algebra over the real field Z11. 
 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

11

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

11

a 0 0
a a 0 a Z I
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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2i

i i 11
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

i 11

a a a a
0 a a a

a Z I
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

11

a 0 0 0 0 0 0
a a 0 0 0 0 0
a a a 0 0 0 0

a Z Ia a a a 0 0 0
a a a a a 0 0
a a a a a a 0
a a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5. 
W is a neutrosophic 5-linear subalgebra of V over the field Z11. 
But V has no subneutrosophic 5-sublinear algebra. 
 Hence the claim. 
 
Now we define yet another new substructures. 
 
DEFINITION 3.1.8: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-linear algebra over the real field F. Let W = W1 
∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn; be such that W is only a 
neutrosophic n-vector space over F and not a neutrosophic n-
linear subalgebra of V; then we call W to be a neutrosophic 
pseudo n-vector subspace of V or W is a pseudo neutrosophic n-
vector subspace of V.  
 
We will illustrate this situation by some simple examples. 
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Example 3.1.27: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a b c
d e f a,b,c,d,e,f ,g,h,i QI
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i
i 0

a x a N(Q);0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
{N(Q)} ∪ {5 × 5 neutrosophic upper triangular matrices with 
entries from N(Q)} be a neutrosophic 5-linear algebra over the 
real field Q. 
 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

0 b
b,c N(Q)

c 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
0 a b
0 0 c a,b,c,d QI
d 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
8

i
i i

i 0

a x a N(Q);0 i 8
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ {QI} ∪ 

 
0 0 0 0 a
0 0 0 b 0

a,b,c,d,e N(Q)0 0 c 0 0
0 d 0 0 0
e 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5; W is only a neutrosophic 5-vector 
space over the field Q; thus W is only a pseudo neutrosophic 5-
vector subspace of V over Q. 
 
Example 3.1.28: Let V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 = 
 

2

a b c
d e f a,b,c,d,e,f ,g,h,i N(Z )
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

i
i i 2

i 0

a x a N(Z )
∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 2

a b
a,b N(Z )

a b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{5 × 5 neutrosophic matrices with entries from Z2I} ∪ {7 × 7 
neutrosophic matrices with entries from Z2I} ∪ {4 × 4 
neutrosophic matrices with entries from Z2I} be a neutrosophic 
6-linear algebra over the real field Z2.  

Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 = 
 

2

0 0 a
0 b 0 a,b,c N(Z )
c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
29

i
i i 2

i 0

a x a N(Z );0 i 29
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 2

0 b
a,b N(Z )

a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

2

0 0 0 0 a
0 0 0 b 0

a,b,c,d,e Z I0 0 c 0 0
0 d 0 0 0
e 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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2

0 0 0 0 0 0 a
0 0 0 0 0 a a
0 0 0 0 a a a

a Z I0 0 0 a a a a
0 0 a a a a a
0 a a a a a a
a a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1

2 3
i 2

4 5 6

7 8 9 10

0 0 0 a
0 0 a a

a Z I;1 i 10
0 a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6. 
 It is easily verified that W is only a neutrosophic 6-vector 
space over Z2, so W is a pseudo neutrosophic 6-vector subspace 
of V over Z2. 
 
Now we proceed onto define pseudo subneutrosophic n-vector 
subspace of V. 
 
DEFINITION 3.1.9: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-linear algebra over a real field F. Suppose W = 
W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic n-
vector space over a subfield K of F then we call W to be a 
pseudo subneutrosophic n-vector subspace of V over the 
subfield K of F. 
 
We will illustrate this by some simple examples. 
 
Example 3.1.29: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  

 
a b

a,b,c,d N(R)
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {N(R)} ∪ 
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1 7 8

2 3 9 i

4 5 6

a a a
a a a a RI;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

11 5 6 7
i

12 13 8 9

14 15 16 10

a a a a
a a a a

a N(R);1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{N(R)[x]; all polynomials in the variable x with coefficients 
from N(R)} be a neutrosophic 5-linear algebra over the real 
field R. Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  
 

= 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Q(R)} ∪ 

 

1

2 3 i

4 5 6

a 0 0
a a 0 a QI;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7
i

8 9

10

a a a a
0 a a a

a N(Q);1 i 10
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{N(Q)[x]; all polynomials in the variable x with coefficients 
from N(Q)} ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is a subneutrosophic 5-
linear subalgebra of V. 
 
This will be different from pseudo subneutrosophic 5-vector 
subspace of V.  
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 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

0 b
b,c QI

c 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {QI} ∪ 
0 0 a
0 b 0 a,b,c QI
c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
0 0 0 a
0 0 b 0

a,b,c,d QI
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
41

i
i i

i 0

a x a QI;0 i 41
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5; W is only a neutrosophic 5-vector 
space over the field Q (Q a subfield R). 
 W is a pseudo subneutrosophic 5-vector subspace of V over 
the subfield Q of R. 
 
Example 3.1.30: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 = 
{N(R)} ∪ {N(R)[x]; all neutrosophic polynomials in the 
variable x with coefficients from N (R)} ∪  
 

1 2 3

4 5 6 i

7 8 9

a a a
a a a a N(R);1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8
i

9 10 11 12

13 14 15 16

a a a a
a a a a

a RI;1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{All 8 × 8 matrices with entries from the neutrosophic field RI} 
∪ {6 × 6 matrices with entries from the neutrosophic 6-linear 
algebra over the real field R} be a neutrosophic 6-linear algebra 
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over the real field R. Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ 
W6 = {QI} ∪  
 

50
i

i i
i 0

a x a QI;0 i 50
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑ ∪ 

 
0 0 a
0 b 0 a,b,c QI
c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
0 0 a b
0 0 c 0

a,b,c,d,a,e QI
0 d a 0
e 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
0 0 0 0 0 0 0 a
0 0 0 0 0 b c 0
0 0 0 0 0 d 0 0
0 0 0 0 e 0 0 0

a, b, c, d, e, g, h, p, r QI
0 0 0 g 0 0 0 0
0 0 h 0 0 0 0 0
0 p 0 0 0 0 0 0
r 0 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
0 0 0 a 0 b
0 0 0 0 d 0
0 0 e f 0 0

a,b,d,e,f ,g,h,p,a QI
0 0 g h 0 0
0 p 0 0 0 0
a 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6; W is a pseudo 
subneutrosophic 6-vector subspace of V over the real field Q.  

If a neutrosophic n-linear algebra V = V1 ∪ V2 ∪ … ∪ Vn 
does not contain any pseudo subneutrosophic n-vector subspace 
over a subfield K of F where V is defined over F; then we call V 
to be a pseudo simple subneutrosophic n-vector space over the 
field F.  
 
We will illustrate this by some simple examples. 
 
Example 3.1.31: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {N(Z7)} ∪ 

 

1 2 3 4

5 6 7 8
i 7

9 10 11 12

13 14 15 16

a a a a
a a a a

a Z I;1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i 7
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

7

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-linear algebra over the real field Z7. Since 
Z7 is a prime field it has no proper subfields. Hence V does not 
contain any pseudo subneutrosophic 5-vector subspace over Z7. 
Hence V is a pseudo simple subneutrosophic 5-vector space 
over the field Z7. 
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Now we proceed onto define linear transformation of 
neutrosophic n-vector space over the real field and discuss a few 
of its properties. 
 
DEFINITION 3.1.10: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-vector space over a real field F and W = W1 ∪ 
W2 ∪ …∪ Wn be a neutrosophic n-vector space over the same 
real field F. Define T : V → W. T = T1 ∪ T2 ∪ … ∪ Tn : V = V1 
∪ V2 ∪ … ∪ Vn → W = W1 ∪ W2 ∪ … ∪ Wn by T(Vi) = Wj such 
that no two distinct Vi’s are mapped on to the same Wj; 1 ≤ i, j ≤ 
n, where Ti is a neutrosophic linear transformation from Vi into 
Wj; 1≤ i, j ≤ n, for i=1, 2, 3, …, n. We call T = T1 ∪ T2 ∪ … ∪ 
Tn to be a neutrosophic n-linear transformation of V into W. 
 If W = V then we call T to be a neutrosophic n-linear 
operator on V. The set of all neutrosophic n-linear 
transformations of V into W, V and W defined over a real field F 
is denoted by 
 N HomF(V, W) = {all neutrosophic n-linear transformations 
of V into W}. NHomF (V, V) = {Collection of all neutrosophic n-
linear operators of V into V}.  
 
It is interesting and important to note that V = V1 ∪ … ∪ Vn 
and W = W1 ∪ … ∪ Wn are both defined over the same field F 
and both of them are only neutrosophic n-linear vector spaces. 
 
We will illustrate by an example the neutrosophic n-linear 
transformation of V into W. 
 
Example 3.1.32: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

5

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

5

a 0 0
b c 0 a,b,c,d,e,f (Z )
d e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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5

a 0 0 0
b c 0 0

a,b,c,d,e,f ,g,h,i, j Z I
d e f 0
g h i j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
6

i
i i 5

i 0
a x a Z I;0 i 6

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑ ∪ 

 

5

a 0 0 0 0
0 b 0 0 0

a,b,c,d,e Z I0 0 c 0 0
0 0 0 d 0
0 0 0 0 e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the real field Z5. W = W1 
∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

5

a b c
0 d e a,b,c,d,e,f Z I
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{(a, b, c, d) | a, b, c, e ∈ Z5I} ∪ 

 

5

a b c d
0 0 0 0

a,b,c,d,e,f ,g,h Z I
e f g h
0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
9

i
i i 5

i 0

a x a Z I;0 i 9
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 

 



 242

5

a 0 0 0 0 0 0
0 b 0 0 0 0 0
0 0 c 0 0 0 0

a,b,c,d,e,f ,h Z I0 0 0 d 0 0 0
0 0 0 0 e 0 0
0 0 0 0 0 f 0
0 0 0 0 0 0 h

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the field Z5.  
 Define T : V → W i.e., T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 : V = 
V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 → W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 
where  

T1 : V1 → W2, 
T2 : V2 → W1, 
T3 : V3 → W4, 
T4 : V4 → W5 

and  
T5 : V5 → W3. 

 

T1 
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

= (a, b, c, d); 

 

T2 
a 0 0 a b c
b c 0 0 d e
d e f 0 0 f

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

 

T3

a 0 0 0
b c 0 0
d e f 0
g h i j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = (a + bx + cx2 + dx3 + ex4 + fx5 + gx6 + hx7 + 

ix8 + jx9); 
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T4 
6

i
i

i 0

a x
=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑  = 

0

1

2

3

4

5

6

a 0 0 0 0 0 0
0 a 0 0 0 0 0
0 0 a 0 0 0 0
0 0 0 a 0 0 0
0 0 0 0 a 0 0
0 0 0 0 0 a 0
0 0 0 0 0 0 a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and  

T5

a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 d 0
0 0 0 0 e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

a b c d
0 0 0 0
e a b c
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
It is easily verified that T is a neutrosophic 6-linear 
transformation of V into W. 
 
Example 3.1.33: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, b, c, d) | a, b, c, d ∈ N(Q)} ∪ 

 
a 0 0
b c 0 a,b,c,d,e,f QI
d e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
5

i
i i

i 0

a x a QI;0 i 5
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪  
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a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j QI
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

 

a 0 0 0
b c 0 0

a,b,c,d,e,f ,g,h,i, j QI
d e f 0
g h i j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 6-vector space over the field Q. Define T = T1 
∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6 : V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 
→ V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5∪ V6 by  
 

T1 : V1 → V2, 
T2 : V2 → V1, 
T3 : V3 → V4, 
T4 : V4 → V3, 
T5 : V5 → V6 

and  
T6 : V6 → V5 

defined as follows: 
 

T1
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = (a, b, c, d), 

 

T2 (a, b, c, d) = 
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

 

T3 
a 0 0
b c 0
d e f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a + bx + cx2 + dx3 + ex4 + fx5), 
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T4 
5

i
i

i 0

a x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 

0

1 2

3 4 5

a 0 0
a a 0
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 

T5 

a b c d
0 e f g
0 0 h i
0 0 0 j

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

a 0 0 0
b c 0 0
d e f 0
g h i j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and  

T6 

a 0 0 0
b c 0 0
d e f 0
g h i j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = 

a b c d
0 e f g
0 0 h i
0 0 0 j

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
It is easily verified that T is a neutrosophic 6-linear operator on 
V.  
 
Now we proceed onto define other types of neutrosophic n-
linear operators which will be know as the usual or common 
neutrosophic n-linear operators. 
 
DEFINITION 3.1.11: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-vector space over a real field F.  

Let T: V → V be a n-map such that T = T1 ∪ T2 ∪ … ∪ Tn : 
V = V1 ∪ V2 ∪ … ∪ Vn → V1 ∪ V2 ∪ … ∪ Vn where Ti : Vi → 
Vi; i=1, 2, …, n if each Ti is a linear operator then we define T : 
V → V to be a neutrosophic common n-linear operator on V or 
common neutrosophic n-linear operator on V.  
 We will denote the collection of all common neutrosophic n-
linear operators on V by CN HomF (V, V); clearly CN HomF (V, 
V) is a neutrosophic n2-subvector space of NHomF (V, V). 

Further CN HomF (V, V) = HomF (V1, V1) ∪ HomF (V2, V2) 
∪ … ∪ HomF (Vn, Vn). 
 
We will illustrate this situation by an example. 
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Example 3.1.34: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7  
 

= 11

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, b, c, d) | a, b, c, d ∈ Z11I} ∪ 

 
12

i
i i 11

i 0

a x a Z I;0 i 12
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 

 

11

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

11

a 0 0 0 0
0 b 0 0 0

a,b,c,d,e Z I0 0 c 0 0
0 0 0 d 0
0 0 0 0 e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

 11

0 0 a b d
0 0 0 e f
0 0 0 0 g

a,b,e,f ,g,d Z I
a 0 0 0 0
b e 0 0 0
d f g 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8 i 11

9 10 11 12

a a a a
a a a a a Z I;1 i 12
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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be a neutrosophic 7-vector space over the field Z11. 
 Define T : V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 → V1 ∪ V2 
∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 where T : T1 ∪ T2 ∪ … ∪ T7 such 
that Ti : Vi → Vi; i = 1, 2, …, 7.  
 
T1 : V1 → V1 is a neutrosophic linear operator on Vi defined by  

 

T1
a b a b
c d 0 d

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

 
T2 is a neutrosophic linear operator on V2 defined by T2: V2 → 
V2 and T2(a, b, c, d) = (a, b, a, b). 
 
T3 is a neutrosophic linear operator on V3, T3: V3 → V3 is given 
by  

T3

12
i

i
i 0

a x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = (a0 + a2x2 + a4x4 + a6x6 + a8x8 + a10x10 + a12 x12). 

 
T4 : V4 → V4 is a neutrosophic linear operator given by 
 

T4 
a b c a b c
d e f 0 e f
g h i 0 0 i

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟= ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
and T5 : V5 → V5 is a neutrosophic linear operator given by 
 

T5

a 0 0 0 0 a 0 0 0 0
0 b 0 0 0 0 a b 0 0 0
0 0 c 0 0 0 0 b c 0 0
0 0 0 d 0 0 0 0 c d 0
0 0 0 0 e 0 0 0 0 d a

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥+⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥= +
⎜ ⎟ ⎢ ⎥+⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎣ ⎦

. 

 
T6 : V6 → V6 is a neutrosophic linear operator on V6 given by 
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T6

0 0 a b d 0 0 a b b d d e
0 0 0 e f 0 0 0 f e f g
0 0 0 0 g 0 0 0 0 g
a 0 0 0 0 a b 0 0 0 0
b e 0 0 0 b d f e 0 0 0
d f g 0 0 d e f g g 0 0

+ + +⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥+ +⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥

=⎜ ⎟ ⎢ ⎥+⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥+ +
⎜ ⎟ ⎢ ⎥⎜ ⎟ + +⎢ ⎥⎝ ⎠ ⎣ ⎦

 

and 
 
T7 : V7 → V7 is a neutrosophic linear operator on V7 given by 
 

T7 

1 2 3 4 4 3 2 1

5 6 7 8 6 5 8 7

9 10 11 12 12 11 10 9

a a a a a a a a
a a a a a a a a
a a a a a a a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
It is easily verified that T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6 ∪ T7 
is a neutrosophic 7-linear operator on V. 
 
Now we define two types of neutrosophic (m, n) linear 
transformation of a neutrosophic m-vector space into a 
neutrosophic n-vector space m ≠ n and m > n. 
 
DEFINITION 3.1.12: Let V = V1 ∪ V2 ∪ … ∪ Vm be a 
neutrosophic m-vector space over the real field F and W = W1 
∪ W2 ∪ …∪ Wn be a neutrosophic n-vector space over the same 
field F; (m ≠ n) and m > n). 
 Let T = T1 ∪ T2 ∪ … ∪ Tm be a m-map from V into W such 
that T1 ∪ T2 ∪ …∪ Tm : V1 ∪ V2 ∪ … ∪ Vm → W1 ∪ W2 ∪ … ∪ 
Wn given by Ti : Vi → Wj, it is sure to happen that more than 
one Vi is mapped onto a Wj, such that each Ti is a neutrosophic 
linear transformation from Vi to Wj; 1≤ i ≤ m and 1 ≤ j ≤ n. 
 Then T = T1 ∪ T2 ∪ … ∪ Tm is defined as a special (m, n) 
neutrosophic linear transformation of V to W.  
 
We will first illustrate this situation by an example. 
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Example 3.1.35: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, b, c, d, e, f) | a, b, c, d, e, f ∈ QI} ∪ 

 

1 2

3 4 i

5 6

a a
a a a QI;1 i 6
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3 4
i

5 6 7 8

a a a a
a QI;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4
i

5 6

7 8

a a
a a

a QI;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 6-vector space over the field Q. 
 Let W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

a b
c d a,b,c,d,e,f QI
e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  

 
7

i
i i

i 0
a x a QI;0 i 7

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ {(a, b, c, d) | a, b, c, d ∈ QI} ∪ 

 

1 2 3
i

4 5 6

a a a
a QI;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a neutrosophic 4-vector space over the real field Q. 
 Define T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6 : V = V1 ∪ V2 ∪ 
V3 ∪ V4 ∪ V5 ∪ V6 → W = W1 ∪ W2 ∪ W3 ∪ W4 by  

T1 : V1 → W3 
T2 : V2 → W4 
T3 : V3 → W1 
T4 : V4 → W1, 
T5 : V5 → W2 

and       T6 : V6 → W3 
where each Ti is a neutrosophic linear transformation from Vi to 
Wj; i = 1, 2, …, 6 and j = 1, 2, 3, 4. 
 
T1 : V1 → W3 is defined by 

T1
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = (a, b, c, d),  

T1 is a neutrosophic linear transformation from V1 to W3. 
 
T2 : V2 → W4 is such that 

T2 (a, b, c, d, e, f) = 
a b c
d e f
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Clearly T2 is neutrosophic linear transformation from V2 to W4. 
 
T3 : V3 → W1 is given by  

T3

1 2

3 4

5 6

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
1 3

2 5

6 4

a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
T3 is a neutrosophic linear transformation from V3 to W1. 
 
T4 : V4 → W1 is defined by 

 

T4 
a 0 0
b c 0
d e f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
a b d

c e f
+⎡ ⎤

⎢ ⎥+⎣ ⎦
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T4 is a neutrosophic linear transformation of V4 to W1. 
T5 : V5 → W2 is such that 
 

T5
1 2 3 4

5 6 7 8

a a a a
a a a a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = a1 + a2x + a3x2 + a4x3 + a5x4 + a6x5 + 

a7x6 + a8x7 
T5 is a neutrosophic linear transformation of V5 to W2. 
 
T6 : V6 → W3 is defined by 

T6

1 2

3 4

5 6

7 8

a a
a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a1 + a2, a3 + a4, a5 + a6, a7 + a8). 

 
Clearly T6 is a neutrosophic linear transformation of V6 to W3. 
Thus T = (T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6) is a (6, 4) 
neutrosophic linear transformation of V to W. 
 
DEFINITION 3.1.13: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vm be a 
neutrosophic m-vector space over a field F and W = W1 ∪ W2 ∪ 
… ∪ Wn be a neutrosophic n-vector space defined over the same 
field F (m ≠ n, m < n). Define a m-map, T = T1 ∪ T2 ∪ … ∪ Tm: 
V = V1 ∪ V2 ∪ … ∪ Vm into W1 ∪ W2 ∪ … ∪ Wn such that Ti : 
Vi → Wj where each Vi is mapped into a distinct Wj; 1 ≤  i ≤ m 
and 1 ≤ j ≤ n; where each Ti is a neutrosophic linear 
transformation of Vi to Wj.  
 We define T = T1 ∪ T2 ∪ … ∪ Tm as a (m, n) neutrosophic 
linear transformation of V into W. 
 
We will illustrate this situation by an example. 
 
Example 3.1.36: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

1 2 3
i 17

4 5 6

a a a
a Z I;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1 2

3 4

5 6 i 17

7 8

9 10

a a
a a
a a a Z I;1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
11

i
i i 17

i 0
a x a Z I;0 i 11

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪  17

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1

2 3
i 17

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the field Z17. Let W = W1 
∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 =  
 

17

a 0 0
b c 0 a,b,c,d,e,f Z I
d e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5 6
i 17

7 8 9 10 11 12

a a a a a a
a Z I;1 i 12

a a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

17

a d e b
g h i j

a,b,d,e,g,h,i, j,k,l,m,n,s,p,q, r Z I
k l m n
s p q r

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{(a, b, c, d, e) | a, b, c, d, e ∈ Z17I} ∪ 
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1

2

3 i 17

4

5

a 0 0 0 0
0 a 0 0 0
0 0 a 0 0 a Z I;1 i 5
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
9

i
i i 17

i 0
a x a Z I;0 i 9

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪  

 

1 2 3

4 5 6
i 17

7 8 9

10 11 12

a a a
a a a

a Z I;1 i 12
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 7-vector space over the field Z17. Define T = 
T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 : V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 → W = 
W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 such that  

T1 : V1 → W1, 
T2 : V2 → W6, 
T3 : V3 → W2, 
T4 : V4 → W3, 

and   
T5 : V5 → W5. 

where  
 
T1 : V1 → W1 is a neutrosophic linear transformation given by 

 

T1

1
1 2 3

2 3
4 5 6

4 5 6

a 0 0
a a a

a a 0
a a a

a a a

⎧ ⎫⎛ ⎞
⎛ ⎞ ⎪ ⎪⎜ ⎟= ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 

and 
 
T2 : V2 → W6 is defined by 
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T2 

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a1 + a2x + a3x2 + a4x3 + a5x4 + a6x5 + a7x6 + 

a8x7 + a9x8 + a10x9) 
 
is a neutrosophic linear transformation of V2 to W6. 
 
T3 : V3 → W2 is given by 

 

T3

11
i

i
i 0

a x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 1 2 3 4 5 6

7 8 9 10 11 0

a a a a a a
a a a a a a
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
T3 is again a neutrosophic linear transformation from V3 to W2. 
 
Consider T4 : V4 → W3 given by 

 

T4

a 0 0 b
a b 0 0 0 0
c d 0 0 0 0

c 0 0 d

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

 

 
T4 is also a neutrosophic linear transformation from V4 to W3. 
 
T5: V5 → W5 defined by  

 

1

2 3
5

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

T
a a a 0
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2

3 4

5 6

7 8

9 10

a a 0 0 0 0
0 a a 0 0 0
0 0 a a 0 0
0 0 0 a a 0
0 0 0 0 a a

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟+
⎜ ⎟

+⎜ ⎟
⎜ ⎟+⎝ ⎠
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is a neutrosophic linear transformation. Thus T = T1 ∪ T2 ∪ T3 
∪ T4 ∪ T5 is a (5, 7) neutrosophic linear transformation of V to 
W. 
 
Now having defined several types of neutrosophic n-linear 
transformations of neutrosophic n-vector spaces V and W we 
can define in a similar way all types of neutrosophic n-linear 
transformation for neutrosophic n-linear algebras with 
appropriate changes. 

We will only illustrate them by examples as modified 
definitions can be easily obtained by any reader. 
 
Example 3.1.37: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

13

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6) | ai ∈ Z13I; 1 ≤ i ≤ 6} ∪ 

 

1

2 3 i 13

4 5 6

a 0 0
a a 0 a Z I;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8
i 13

9 10 11 12

13 14 15 16

a a a a
a a a a

a Z I;1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-linear algebra over the field Z13. Let W = 
W1 ∪ W2 ∪ W3 ∪ W4 = 
 

1 2 3

4 5 i 13

6

a a a
0 a a a Z I;1 i 6
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 



 256

13

a 0 0 0
0 b 0 0

a,b,c,d Z I
0 0 c 0
0 0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

13

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 i 13

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a a Z I;1 i 25
a a a a a
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-linear algebra over the field Z13. Define a 4-
map T = T1 ∪ T2 ∪ T3 ∪ T4 : V = V1 ∪ V2 ∪ V3 ∪ V4 → W1 ∪ 
W2 ∪ W3 ∪ W4 as follows.  

T1 : V1 → W2, 
T2 : V2 → W1, 
T3: V3 → W4 

and 
T4 : V4 → W3 

so that each Ti is a neutrosophic linear transformation.  
 
T1 : V1 → W2 is such that 
 

T1

a 0 0 0
a b 0 b 0 0
c d 0 0 c 0

0 0 0 d

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

 

 
is a neutrosophic linear transformation of neutrosophic linear 
algebras V1 into W2. 
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T2 : V2 → W1 is such that 

T2(a1, a2, a3, a4, a5, a6) = 
1 2 3

4 5

6

a a a
0 a a
0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
is a neutrosophic linear transformation of V2 to W1. 
 
T3 : V3→ W4 is defined by 
 

 T3 

1

1 2

2 3 3

4 5 6 4

5

a 0 0 0 0
a 0 0 0 a 0 0 0
a a 0 0 0 a 0 0
a a a 0 0 0 a 0

0 0 0 0 a

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
is a neutrosophic linear transformation of V3 into W4. 
 
T4 : V4 → W3 given by 
 

1 2 3 4

5 6 7 8
4

9 10 11 12

13 14 15 16

a a a a
a a a a

T
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

a a a a a a a a
a a a a a a a a

+ + + + + +⎡ ⎤
⎢ ⎥+ + + + + +⎣ ⎦

 

 
is a neutrosophic linear transformation of V4 into W3. 

Thus T = T1 ∪ T2 ∪ T3 ∪ T4 is a neutrosophic 4-linear 
transformation the neutrosophic 4-linear algebra V = V1 ∪ V2 ∪ 
V3 ∪ V4 into the neutrosophic 4-linear algebra W = W1 ∪ W2 ∪ 
W3 ∪ W4. 
 
We will now give an example of a neutrosophic n-linear 
operator. 
 
Example 3.1.38: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 
neutrosophic 5-linear algebra over the field Z17 where  
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V1 = 17

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
V2 = {(a1, a2, a3, a4, a5, a6) | ai ∈ Z17I, 1 ≤ i ≤ 6}, 

 

V3 = 
1

2 3 i 17

4 5 6

a 0 0
a a 0 a Z I;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

, 

 

V4 = 

1

2
i 17

3

4

a 0 0 0
0 a 0 0

a Z I;1 i 4
0 0 a 0
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

and  
V5 = {all 6 × 6 neutrosophic matrices with entries from Z17I}.  

Define T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 : V = V1 ∪ V2 ∪ V3 ∪ 
V4 ∪ V5 → V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5; where 

T1 : V1 → V4; 
T2 : V2 → V3; 
T3 : V3 → V2; 
T4 : V4 → V1 

and 
T5 : V5 → V2 

such that  

T1
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 

1

2

3

4

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

; 

 

T2 (a1, a2, a3, a4, a5, a6) = 
1

2 3

4 5 6

a 0 0
a a 0
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

; 
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T3 
1

2 3

4 5 6

a 0 0
a a 0
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a1, a2, a3, a4, a5, a6); 

 

T4 

1

2

3

4

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= 1 2

3 4

a a
a a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and  

T5 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= (a1, a2, a3, a4, a5, a6). 

 
It is easily verified T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 is a 

neutrosophic 5-linear operator on V. Clearly T is not a usual 
neutrosophic 5-linear operator on V. 

We will now illustrate by the example the usual 
neutrosophic n-linear operator on V. 
 
Example 3.1.39: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  

19

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6, a7) | ai ∈ Z19I, 1 ≤ i ≤ 7} ∪  

 

1

2 3
19

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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{All 5×5 neutrosophic matrix with entries from Z19I} ∪ {8 × 8 
neutrosophic diagonal matrices with entries from Z19I} ∪  
 

1 2 3 4

5 6 7
i 19

8 9

10

a a a a
0 a a a

a Z I;1 i 10
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 6-linear algebra over the real field Z19. 
 Define T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6 : V = V1 ∪ V2 ∪ 
V3 ∪ V4 ∪ V5 ∪ V6 → V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 = V 
such that Ti : Vi → Vi for i =1, 2, …, 6. 
 
T1 : V1 → V1 such that 

T1 
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
b a
d c
⎛ ⎞
⎜ ⎟
⎝ ⎠

; 

 
T2 : V2 → V2 is defined by 
 
T2 (a1, a2, a3, a4, a5, a6) = (a1 + a2, a2 + a3, a3 + a4, a4 + a5, a5 + a6, 

a6 + a1), 
 

T3 

1 2 3 4

5 6 7

8 9

10

a a a a
0 a a a
0 0 a a
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 → 

1

3

6

10

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
where T3 : V3 → V3 ; 
  
T4 : V4 → V4 is such that 
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T4

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 → 

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

a 0 0 0 0
a a 0 0 0
a a a 0 0
a a a a 0
a a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
T4 is a neutrosophic linear operator on V4.  
 
T5 : V5 → V5 is such that T5 maps any 8 × 8 matrix into the 8 × 
8 diagonal matrix  
 
T6 : V6 → V6 is such that  
 

T6 

1 2 3 4

5 6 7

8 9

10

a a a a
0 a a a
0 0 a a
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 → 

1

5

8

10

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
T6 is a neutrosophic linear operator on V6. Thus T = T1 ∪ T2 ∪ 
T3 ∪ T4 ∪ T5 ∪ T6 is a usual neutrosophic 6-linear operator on 
V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6.  
 
Example 3.1.40: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7  

 

=  
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1

2 3 i

4 5 6

a 0 0
a a 0 a QI;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
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1 2 3

4 5 i

6

a a a
0 a a a QI;1 i 6
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
 {All 5 × 5 neutrosophic matrices with entries from QI} ∪ {all 7 
× 7 neutrosophic diagonal matrices with entries from QI} ∪  
 

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a QI;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ 

 

1 2 3 4

5 6 7
i

8 9

10

a a a a
0 a a a

a QI;1 i 10
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 7-linear algebra over the field Q. 

Let W = W1 ∪ W2 ∪ W3 ∪ W4 = {(a, b, c, d, e, f) | a, b, c, d, 
e, f ∈ QI} ∪  

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{7 × 7 neutrosophic upper triangular matrices with entries from 
QI} ∪  

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a QI;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-linear algebra over the real field Q. 
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 Define T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6 ∪ T7 : V = V1 ∪ 
V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 → W1 ∪ W2 ∪ W3 ∪ W4 as 
follows. 
T1 : V1 → W2 where  

T1
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

= 
a b b c
c d d a
+ +⎛ ⎞

⎜ ⎟+ +⎝ ⎠
, 

 
T2 : V2 → W1 defined by 

T2 
1

2 3

4 5 6

a 0 0
a a 0
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a1, a2, a3, a4, a5, a6) , 

 
T3 : V3 → W1 is defined by 

T3 
1 2 3

4 5

6

a a a
0 a a
0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a1, a2, a3, a4, a5, a6), 

 
T4 : V4 → W4 is such that 

T4

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

1

6 7

11 12 13

21 22 24 25

a 0 0 0
a a 0 0
a a a 0
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 
T5 : V5 → W3 is defined by 

T5 

1

2

3

4

5

6

7

a 0 0 0 0 0 0
0 a 0 0 0 0 0
0 0 a 0 0 0 0
0 0 0 a 0 0 0
0 0 0 0 a 0 0
0 0 0 0 0 a 0
0 0 0 0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4

5 5 5

6 6

7

a a a a a a a
0 a a a a a a
0 0 a a a a a
0 0 0 a a a a
0 0 0 0 a a a
0 0 0 0 0 a a
0 0 0 0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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T6 : V6 → W4 defined by 
 

T6 

1

2 3

4 5 6

7 8 9 10

a 0 0 0
a a 0 0
a a a 0
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

10

9 8

7 6 5

4 3 2 1

a 0 0 0
a a 0 0
a a a 0
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
and T7 : V7 → W4 is defined by 
 

T7 

1 2 3 4

5 6 7

8 9

10

a a a a
0 a a a
0 0 a a
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

1

2 3

4 5 6

7 8 9 10

a 0 0 0
a a 0 0
a a a 0
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6 ∪ T7 : V = V1 ∪ V2 ∪ V3 ∪ 
V4 ∪ V5 ∪ V6 ∪ V7 → W1 ∪ W2 ∪ W3 ∪ W4 is a (7, 4) 
neutrosophic linear algebra transformation of V into W.  
 
Example 3.1.41: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

 
{(a1, a2, a3, a4, a5, a6, a7, a8) | ai ∈ Z7I; 1 ≤ i ≤ 8} ∪ 

 

7

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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1

2 3
i 7

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{5 × 5 diagonal neutrosophic matrices with entries from Z7I} be 
a neutrosophic 5-linear algebra over the real field Z7. Let W = 
W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 = {8 × 8 neutrosophic 
diagonal matrices with entries from Z7I} ∪  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

 

1 2 3 4

5 6 7
i 7

8 9

10

a a a a
0 a a a

a Z I;1 i 10
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ Z7I; 1 ≤ i ≤ 5} ∪ {4 × 4 neutrosophic 
diagonal matrices with entries from Z7I} ∪  
 

7

a b c
0 d e a,b,c,d,e,f , Z I
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1

2 3 i 7

4 5 6

a 0 0
a a 0 a Z I;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
 be a neutrosophic 7-linear algebra over Z7. 
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 Define T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 : V = V1 ∪ V2 ∪ V3 ∪ 
V4 ∪ V5 → W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 as 
follows; 

T1 : V1 → W5, 
T2 : V2 → W1, 
T3 : V3 → W7, 
T4 : V4 → W3 

and  
T5 : V5 → W5 

defined in the following way. 
 
T1 : V1 → W5 is such that 

T1 
a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 
T2 : V2 →W1 is defined as  
 

T2 (a1, a2, a3, a4, a5, a6, a7, a8) = 

1

2

3

4

5

6

7

8

a 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0
0 0 a 0 0 0 0 0
0 0 0 a 0 0 0 0
0 0 0 0 a 0 0 0
0 0 0 0 0 a 0 0
0 0 0 0 0 0 a 0
0 0 0 0 0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 
T3 : V3 → W7 is given by 
 

T3 
a b c
d e f
g h i

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
a 0 0
b c 0
d e f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
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and T4 : V4 → W3 is defined as 
 

T4 

1

2 3

4 5 6

7 8 9 10

a 0 0 0
a a 0 0
a a a 0
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

1 2 3 4

5 6 7

8 9

10

a a a a
0 a a a
0 0 a a
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 
T5 : V5 → W4 is expressed as 
 

T5 

1

2

3

4

5

a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = (a1, a2, a3, a4, a5) . 

 
It is easily verified that T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 is a (5, 7) 
neutrosophic linear transformation of V to W or neutrosophic 
(5, 7) linear transformation of V to W. 
 Now having seen several types of neutrosophic (m, n) linear 
transformation of neutrosophic m-linear algebra and 
neutrosophic n-linear algebra now we proceed onto define more 
properties about these neutrosophic n-linear transformation of 
neutrosophic n-linear algebra. 
 
We have defined several subalgebraic structures of neutrosophic 
n-linear algebras (n-linear vector spaces) we now define 
subspace preserving n-linear operators in case of neutrosophic 
n-linear algebras (n-vector spaces).  
 
DEFINITION 3.1.14: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-vector space over the real field F. Suppose W = 
W1 ∪ W2 ∪ … ∪ Wn be a neutrosophic n-vector subspace of V 
over F. Let T = T1 ∪ T2 ∪ … ∪ Tn be a neutrosophic n-linear 
operator on V. Suppose Ti (Wi) ⊆ Wi for every Wi, i =1, 2, …, n 
then we call T = T1 ∪ T2 ∪ … ∪ Tn to be a vector subspace 
preserving neutrosophic n-linear operator on V. 
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It is important to note that in general every neutrosophic n-
linear operator on V need not preserve every neutrosophic n-
vector subspace of V or even a single neutrosophic n-subspace 
of V. 
 We will say however the neutrosophic n-linear operator T 
which is the identity operator on V however preserves every 
neutrosophic n-vector subspace of V. 
 We will illustrate subspace preserving neutrosophic n-linear 
operator by an example. 
 
Example 3.1.42: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

 
a b c
d e f a,b,c,d,e,f ,g,h,i QI
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 

 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
i

i i
i 0

a x a QI;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j,k QI
0 h i j
0 0 0 k

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8 i

9 10 11 12

a a a a
a a a a a QI;1 i 12
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the field Q.  
 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
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a a a
a a a a QI
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 

 
a b

a,b,c QI
0 c

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 2i
i i

i 0
a x a QI;0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 
a a a a
0 a a a

a QI
0 a a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

1 2 3 4 i

1 2 3 4

a a a a
a a a a a QI;1 i 4
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 , be a neutrosophic 5-vector 
subspace of V over the field Q. 
 Define T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 : V = V1 ∪ V2 ∪ V3 ∪ 
V4 ∪ V5 → V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 as follows. Ti : Vi → 
Vi, i = 1, 2, …, 5 is a neutrosophic linear operator for each i and 
Ti is defined as follows;  
 
T1 : V1 → V1 is such that 

 

T1

a b c
d e f
g h i

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
T2 : V2 → V2 is given by 

T2 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
a b
0 d

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 
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T3 : V3 → V3 is defined by 
 

T3 i
i

i 0
a x

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 2i

i
i 0

a x
∞

=
∑  

 
that is Ixi → Ix2i for every i = 0, 1, …, ∞. 
 
T4 : V4 → V4 is such that 
 

T4 

1 2 3 4

5 6 7

8 9

10

a a a a
0 a a a
0 0 a a
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

a a a a
0 a a a
0 0 a a
0 0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
and T5 : V5 → V5 is defined by 
 

T5 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
1 2 3 4

1 2 3 4

1 2 3 4

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
 It is easily verified that T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 is a 
neutrosophic 5-linear operator on V. Further this T preserves the 
neutrosophic 5-vector subspace W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ 
W5. It is easily verified that Ti (Wi) ⊆ Wi for i = 1, 2, …, 5. 
Hence the claim. 
 
We see in general all neutrosophic n-linear operators T on V 
need not preserve a neutrosophic n-vector subspace of V.  

We will illustrate this situation by an example. 
 
Example 3.1.43: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

1 2 3

4 5 6 i 11

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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1 2 3 4 5
i 11

6 7 8 9 10

a a a a a
a Z I;1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i i 11
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

1 2 3

4 5 6

7 8 9 i 11

10 11 12

13 14 15

a a a
a a a
a a a a Z I;1 i 15
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-vector space over the field Z11. Take W = 
W1 ∪ W2 ∪ W3 ∪ W4 =  
 

1 2 3 i 11

0 0 0
a a a a Z I;1 i 3
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

i 11
1 2 3 4 5

0 0 0 0 0
a Z I;1 i 5

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
2i

i i 11
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

1 6

2 7

3 8 i 11

4 9

5 10

a 0 a
a 0 a
a 0 a a Z I;1 i 10
a 0 a
a 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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⊆ V1 ∪ V2 ∪ V3 ∪ V4 to be a neutrosophic 4-subspace of V 
over Z11. Define T = T1 ∪ T2 ∪ T3 ∪ T4 : V = V1 ∪ V2 ∪ V3 ∪ 
V4 → V = V1 ∪ V2 ∪ V3 ∪ V4 as Ti : Vi → Vi; i = 1 to 4 as 
follows.  
T1 : V1 → V1; where  
 

T1 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 4 5 6

0 0 0
a a a
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 
T2 : V2 → V2 as  
 

T2 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
6 7 8 9 10

0 0 0 0 0
a a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

 
 T3 : V3 → V3 is defined by  
 

T3 i
i

i 0
a x

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = 2i

i
i 0

a x
∞

=
∑ , 

 
that is ai xi  aix2i for i = 0, 1, …, ∞ and T4 : V4 → V4 is such 
that  
 

T4 

1 15 6

2 14 7

3 13 8

4 11 9

5 12 10

a a a
a a a
a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

1 6

2 7

3 8

4 9

5 10

a 0 a
a 0 a
a 0 a
a 0 a
a 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
It is easily verified T = T1 ∪ T2 ∪ T3 ∪ T4 : V → V is a 
neutrosophic 4-linear operator on V and it preserve the 
neutrosophic 4-subspace W = W1 ∪ W2 ∪ W3 ∪ W4 that is 
T(W) = T1(W1) ∪ T2(W2) ∪ T3(W3) ∪ T4(W4) ⊆ W1 ∪ W2 ∪ 
W3 ∪ W4. 
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 Consider P = P1 ∪ P2 ∪ P3 ∪ P4 : V = V1 ∪ V2 ∪ V3 ∪ V4 
→ V1 ∪ V2 ∪ V3 ∪ V4 where Pi : Vi → Vi; i = 1, 2, 3, 4 are 
neutrosophic linear operators defined as follows. 
 
P1 : V1 → V1 such that  
 

P1 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
1

5

9

a 0 0
0 a 0
0 0 a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 
P2 : V2 → V2 is defined by  

P2 
1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 1 3 5

6 8 10

a 0 a 0 a
a 0 a 0 a

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

 
P3 : V3 → V3 is given by 
 

P3 i
i

i 0
a x

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  = a1 x + a3x3 + a5x5 + … + a2n+1 x2n+1 + … 

 
and P4 : V4 → V4 is defined by  
 

P4 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

2

5

8

11

14

0 a 0
0 a 0
0 a 0
0 a 0
0 a 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
The neutrosophic 4-linear operator P on V does not preserve the 
neutrosophic 4-subspace W = W1 ∪ W2 ∪ W3 ∪ W4 ⊆ V1 ∪ V2 
∪ V3 ∪ V4. Thus P = P1 ∪ P2 ∪ P3 ∪ P4 is neutrosophic 4-linear 
operator which does not preserve the subspace W.  

It can be easily proved that for V and W any two 
neutrosophic n-vector spaces over a real field F if T and S are 
neutrosophic n-linear transformations of V to W then (T+S) is a 
neutrosophic n-linear transformation of V to W. Further if T is a 
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neutrosophic n-linear transformation of V to W for any c an 
element of F, the function cT defined by (cT)α = cTα is again a 
neutrosophic n-linear transformation of V to W. It is interesting 
to note the set of all neutrosophic n-linear transformations from 
V into W with addition and scalar multiplication defined above 
is a neutrosophic n-vector space over F. 

Further as in case of usual n-vector spaces of type I we see 
in case of two neutrosophic n-vector spaces V and W over the 
field F both V and W are of n-finite dimension say (n1, n2, …, 
nn) and (m1, m2, …, mn) over the field F, and if T = T1 ∪ T2 ∪ 
… ∪ Tn is a neutrosophic n-linear transformation of V into W, 
where Ti : Vi → Wj (That is no two Vi’s are mapped on to the 
same Wj) true for 1 ≤ i, j ≤ n; then n rank T + n nullity T = n 
dim V; that is rank T1 ∪ … ∪ rank Tn + (nullity T1 ∪ … ∪ 
nullity Tn) = dim V1 ∪ … ∪ dim Vn; that is (rank T1 + nullity 
T1) ∪ (rank T2 + nullity T2) ∪ … ∪ (rank Tn + nullity Tn) = dim 
V1 ∪ dim V2 ∪ … ∪ dim Vn. 
 
We can also prove the result which is as follows: 
 

Let V = V1 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ … ∪ Wn be 
two neutrosophic n-vector spaces over the field F. Let  
B = ( ) ( ){ 1 2

1 1 1 2 2 2
1 2 n 1 2 n, ,..., , ,...,α α α ∪ α α α  ∪ … ∪ ( )}n

n n n
1 2 n, ,...,α α α  

be a n-basis of V = V1 ∪ V2 ∪ … ∪ Vn; i.e., ( )i

i i i
1 2 n, ,...,α α α  is a 

basis of Vi; i = 1, 2, …, n. Let  
C = ( ) ( ){ 1 2

1 1 1 2 2 2
1 2 n 1 2 n, ,..., , ,...,β β β ∪ β β β  ∪ … ∪ ( )}n

n n n
1 2 n, ,...,β β β  

be any n-vector in W = W1 ∪ W2 ∪ … ∪ Wn then there is 
precisely only one neutrosophic linear n-transformation T = T1 
∪ T2 ∪ … ∪ Tn from V onto W such that T i

jα  = i
jβ ; j = 1, 2, 

…, ni; 1 ≤ i ≤ n.  
The following result is also true and it can be proved as in 

the case of n-vector spaces.  
Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic (n1, n2, …, 

nn) n-dimensional vector space over a field F. If W = W1 ∪ W2 
∪ … ∪ Wn is a neutrosophic (m1, m2, …, mn) n-dimensional 
vector space over the field F. Then NLn (V, W) = {collection of 
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all neutrosophic n-linear transformations from V to W} is finite 
(m1n1, m2n2, …, mnnn) dimensional neutrosophic n-vector space 
over F. It is to be noted that as in case of n-vector spaces we in 
case of neutrosophic n-vector spaces also define neutrosophic n-
linear transformations V to W where V is a neutrosophic n-
vector space where as W is a neutrosophic m-vector space m > 
n. 

Let V and W be two neutrosophic n-vector space and 
neutrosophic m-vector space respectively (m > n) over a real 
field F. Let T = T1 ∪ T2 ∪ … ∪ Tn be a neutrosophic n-linear 
transformation of V into W such that Ti : Vi → Wj, where each 
Vi is mapped onto a distinct Wj 1 ≤ i ≤ n and 1 ≤ j ≤ m that is no 
two Vi’s are mapped onto the same Wj true for each i, i = 1, 2, 
…, n. Then NLn (V, W) can be defined and in this case NLn (V, 
W) is finite dimensional n-space over F of n-dimension 
( )1 2 ni 1 i 2 i nm n ,m n , ,m n…  where 1 ≤ i1, i2, …, in ≤ m. 

Now as in case of n-vector spaces we can define for 
neutrosophic n-vector spaces composition of neutrosophic n-
linear transformations. 

Let V, W and Z be three neutrosophic n-vector spaces over 
the field F, i.e., V = V1 ∪ V2 ∪ … ∪ Vn, W = W1 ∪ W2 ∪ … ∪ 
Wn and Z = Z1 ∪ Z2 ∪ … ∪ Zn. 

Define T = T1 ∪ T2 ∪ … ∪ Tn : V = V1 ∪ V2 ∪ … ∪ Vn → 
W1 ∪ W2 ∪ … ∪ Wn; Ti : Vi → Wj; i = 1, 2, …, n; 1 ≤ j ≤ n. Let 
P = P1 ∪ P2 ∪ … ∪ Pn : W = W1 ∪ W2 ∪ … ∪ Wn → Z = Z1 ∪ 
Z2 ∪ … ∪ Zn; Pj : Wj → Zk; j = 1, 2, …., n and 1 ≤ k ≤ m so that 
no two subspaces Wj are mapped on to same Zk; k = 1, 2, …, n. 
Now  
(Pj Ti) (cαi + βi) 

 =  Pj [Ti (cαi + βi)] 
 =  Pj Ti (cαi ) + Pj (βi) 
 =  Pj [cωi + δj] (as Ti :Vi → Wj; δj , ωj ∈ Wj) 
 =  cPj (ωj) + Pj (δj) 
 =  cak + bk; ak, bk ∈ Zk. 

 
 Thus PjTi is a neutrosophic n-linear transformation from Wj 
to Zk. Hence the claim and the result is true for each i and j. 
Thus PT is a neutrosophic n-linear transformation from W to Z. 
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So PT = (P1 ∪ P2 ∪ … ∪ Pn) (T1 ∪ T2 ∪ … ∪ Tn) = P1 1i
T  ∪ 

P2 2i
T  ∪ … ∪ Pn ni

T  where (i1, i2, …, in) is a permutation of (1, 
2, …, n).  

Now we for the notational convenience recall that if V = V1 
∪ V2 ∪ … ∪ Vn is a neutrosophic n-vector space over the field 
F then Vi’s will be known as the component neutrosophic 
subvector space of V. Vi’s are also known as the component of 
V.  Now we proceed onto give some properties of neutrosophic 
n-linear operators. 
 Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic n-vector 
space over the field F. Let T = T1 ∪ T2 ∪ … ∪ Tn be a 
neutrosophic n-linear operator on V with Ti : Vi → Vi, i = 1, 2, 
…, n. Let S = S1 ∪ S2 ∪ … ∪ Sn be another neutrosophic n-
linear operator on V with Si : Vi → Vi, i = 1, 2, …, n.  Now ST 
and TS is again neutrosophic n-linear operators on V. 
 Thus the neutrosophic n-space of all neutrosophic n-linear 
operators has a product defined as composition. 
 In this case the neutrosophic n-linear operator TS is also 
defined. In general ST ≠ TS; that is ST – TS ≠ 0. 
 NLn (V, V) is a neutrosophic n-vector space of n-dimension 
( )2 2 2

1 2 nn ,n ,...,n  where the n-dimension of V is (n1, n2, …, nn). All 

relations like n-nilpotent, n-diagonalizable can be defined in 
case of neutrosophic n-vector spaces of type I with appropriate 
modifications.  
 
 
3.2 Neutrosophic Strong n-Vector Spaces 
 
In this section we proceed onto define the new notion of 
neutrosophic strong n-vector spaces (n ≥ 3) and discuss a few of 
their properties. 
 
DEFINITION 3.2.1: Let V = V1 ∪ V2 ∪ … ∪ Vn be such that each 
Vi is a neutrosophic vector space over the same neutrosophic 
field F then we call V to be a neutrosophic strong n-vector 
space or strong neutrosophic n-vector space. 
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We will first illustrate this by some examples. 
 
Example 3.2.1:  Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3
i

4 5 6

a a a
a QI;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4

5 6 i

7 8

9 10

a a
a a
a a a QI;1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{QI[x]; all polynomials in the variable x with coefficients from 
QI} ∪ (QI × QI × QI × QI × QI) = {(a, b, c, d, e) | a, b, c, d, e ∈ 
QI} be a neutrosophic strong 5-vector space over the 
neutrosophic field F = QI. 
 
Example 3.2.2: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 =  
 

1 2 3 4
i 2

5 6 7 8

a a a a
a Z I;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3

4 5 6

7 8 9 i 2

10 11 12

13 14 15

a a a
a a a
a a a a N(Z );1 i 15
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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1 2 3

4 5 6 i 2

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{(x1, x2, x3, x4, x5, x6, x7) | xi ∈ Z2I; 1 ≤ i ≤ 7} ∪ {9 × 9 upper 
triangular matrices with entries from N(Z2)} ∪ {N(Z2)[x]; all 
polynomials in the variable x with coefficients from N(Z2)} ∪  
 

1 2

3 4

5 6
i 2

7 8

9 10

11 12

a a
a a
a a

a Z I;1 i 12
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 7-vector space over the neutrosophic 
field F = Z2I.  
 
Now having seen examples of strong neutrosophic n-vector 
spaces n ≥ 3 we define substructures in them. It is both 
interesting and important to note that in a strong neutrosophic n-
vector space V if n = 2 we get the strong neutrosophic bivector 
space defined and discussed in chapter two of this book. When 
n = 3 we call V to be a strong neutrosophic trivector space. 
 
Example 3.2.3:  Let V = V1 ∪ V2 ∪ V3 =  
 

a b
a,b,c,d RI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3 4 5
i

6 7 8 9 10

a a a a a
a QI;1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1 2

3 4
i

5 6

7 8

a a
a a

a N(R);1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

; 

 
V is a strong neutrosophic trivector space (3-vector space) over 
the neutrosophic field F = QI. 
 
DEFINITION 3.2.2: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-vector space over the neutrosophic field F. Let 
W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn such that φ ≠ Wi 
⊄ Vi; i = 1, 2, …, n be a strong neutrosophic n-vector space 
over the same neutrosophic field F. Then we call W to be a 
strong neutrosophic n-vector subspace of V over F. 
 
We note that even if one Wi = φ or Wi = Vi (1 ≤  i ≤ n) then we 
do not call W = W1 ∪ W2 ∪ … ∪ Wn to be a strong 
neutrosophic n-vector subspace of V. 
 We will first illustrate this situation by some examples. 
 
Example 3.2.4: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3 4
i 7

5 6 7 8

a a a a
a Z I;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i i 7
i 0

a x a Z I;i 0,1,2,...,
∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  ∪ 
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7

a b c
d e f

a,b, ,p,q Z Ig h i
k l m
o p q

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

…  

 
∪ {(x1, x2, x3, x4, x5, x6) | xi ∈ N(Z7); 1 ≤ i ≤ 6} be a strong 
neutrosophic 5-vector space over the neutrosophic field Z7I. Let 
W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

7

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 7

a a a a
a,b Z I

b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
51

i
i i 7

i 0
a x a Z I;0 i 51

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  ∪ 

 

7

a a a
a a a

a Z Ia a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{(x1, x2, x3, x4, x5, x6) | xi ∈ Z7I; 1 ≤ i ≤ 6} ⊆ V1 ∪ V2 ∪ V3 ∪ 
V4 ∪ V5. It is easily verified that W is a strong neutrosophic 5-
vector subspace of V over the neutrosophic field Z7I. 
 
Example 3.2.5: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 =  
 

1 2
i

3 4

a a
a N(Q);1 i 4

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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i
i i

i 0
a x a N(Q);i 0,1,2,...,

∞

=

⎧
∈ = ∞⎨

⎩
∑  ; 

 
all polynomials in the variable x with coefficients from the 
neutrosophic field N (Q)} ∪  
 

1

2

3 i

4

5

a
a
a a QI;1 i 5
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4
i

5 6 7 8

a a a a
a QI;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{all 8 × 8 neutrosophic matrices with entries from N(Q)} ∪ {All 
4 × 4 lower triangular matrices with entries from N(Q)} ∪ {all 7 
× 7 upper triangular matrices with entries from N(Q)} be a 
neutrosophic strong 7-vector space over the neutrosophic field 
QI. Let W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 =  
 

a a
a N(Q)

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
8

i
i i

i 0
a x a N(Q);i 0,1,2,...,8

=

⎧
∈ =⎨

⎩
∑ ; 

 
all polynomials in the variable x with coefficients from the 
neutrosophic field N(Q) of degree less than or equal to 8} ∪  
 

a
a

a QIa
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
a a a a

a,b QI
b b b b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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{All 8 × 8 neutrosophic matrices with entries from the 
neutrosophic field QI} ∪ {All 4 × 4 lower triangular matrices 
with entries from the neutrosophic field QI} ∪ {All 7 × 7 
diagonal matrices with entries from the neutrosophic field N 
(Q)} ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7; it is easily verified 
that W is a strong neutrosophic 7-vector subspace of V over the 
neutrosophic field QI.  
 We say a strong neutrosophic n-vector space is simple if V 
has no proper strong neutrosophic n-vector subspaces. 
 
We will illustrate this by some examples. 
 
Example 3.2.6:  Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

3

a a a
a Z I

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 3

a a a
a a a

a Z Ia a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{(a a a a a a) | a ∈ Z3I} ∪ {All 8×8 neutrosophic diagonal 
matrices of the form Z3I, that is  
 

3

a 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0
0 0 a 0 0 0 0 0
0 0 0 a 0 0 0 0

a Z I
0 0 0 0 a 0 0 0
0 0 0 0 0 a 0 0
0 0 0 0 0 0 a 0
0 0 0 0 0 0 0 a

⎫⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟ ∈ ⎬⎜ ⎟ ⎪⎜ ⎟ ⎪⎜ ⎟ ⎪⎜ ⎟ ⎪⎜ ⎟⎜ ⎟ ⎪⎝ ⎠ ⎭
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be a strong neutrosophic 4-vector space over the neutrosophic 
field Z3I. Clearly V has no strong neutrosophic 4-vector 
subspace. Hence V is a simple neutrosophic strong 4-vector 
space or simple strong neutrosophic 4-vector space over Z3I. 
 
Example 3.2.7: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 =  
 

{(a a a a a a a a a) | a ∈ Z7I} ∪ 
 

7

a a
a a a Z I
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

7

a 0 0 0 0
a a 0 0 0

a Z Ia a a 0 0
a a a a 0
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

7

a a a a a a a
a a a a a a a

a Z I
a a a a a a a
a a a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

7

a a
a a
a a

a Z I
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  ∪ 7

a 0 0 0 0
0 a 0 0 0

a Z I0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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7

a a a
0 0 0

a Z I
a a a
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 7-vector space over the neutrosophic 
field Z7I. It is easily verified that V has no proper strong 
neutrosophic 7-vector subspace. Hence V is a simple strong 
neutrosophic 7-vector space over Z7I. 
 
DEFINITION 3.2.3: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vn be a strong 
neutrosophic n-vector space over a neutrosophic field F. If each 
Vi is a neutrosophic strong linear algebra over F then we call V 
= V1 ∪ V2 ∪ … ∪ Vn to be a strong neutrosophic n-linear 
algebra over F.  
 
We will illustrate then by some examples. 
 
Example 3.2.8: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ i
i i

i 0
a x a N(Q)

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

 

1 2 3

4 5 6 i

7 8 9

a a a
a a a a QI;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
1

2
i

3

4

a 0 0 0
0 a 0 0

| a QI
0 0 a 0
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{All 8 × 8 upper triangular matrices with entries from N(Q)} be 
a strong neutrosophic 5-linear algebra over QI. 
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Example 3.2.9: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 =  
 

i 19

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

19

a 0 0
a a 0 a N(Z )
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{All 9×9 upper triangular neutrosophic matrices with entries 
from Z19I} ∪ {(x1, x2, x3, xy) | xi ∈ Z19I; 1 ≤ i ≤ 4} ∪ {all 5×5 
lower triangular matrices with entries from Z19I} ∪ {All 12 × 12 
neutrosophic diagonal matrices with entries from Z19I} ∪  
 

i
i i 19

i 0
a x a N(Z )

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑ . 

 
V is a strong neutrosophic 7-linear algebra over the 
neutrosophic field Z19I. 
 It is important and interesting to record that every strong 
neutrosophic n-linear algebra is a strong neutrosophic n-vector 
space but in general every strong neutrosophic n-vector space 
need not be a strong neutrosophic n-linear algebra. We leave the 
proof of this to the reader; however we give an example of a 
neutrosophic strong n-vector space which is not a neutrosophic 
strong n-linear algebra. 
 
Example 3.2.10: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

1 2 3 4
i 13

5 6 7 8

a a a a
a Z I;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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1

2

3 i 13

4

5

a
a
a a Z I;1 i 5
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2
i 13

3

4

0 0 0 a
0 0 a 0

a Z I;1 i 4
0 a 0 0
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

13

a 0 b 0
a c 0 d

a,b,e,d,f ,h,i Z I
e 0 f 0
a h a i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
19

i
i i 13

i 0
a x a Z I

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic 5-vector space over the neutrosophic 
field Z13I. Clearly V is not a strong neutrosophic 5-linear 
algebra over Z13I as none of Vi is closed under multiplication; 1 
≤ i ≤ 5. 
 Hence in general a strong neutrosophic n-vector space need 
not be a strong neutrosophic n-linear algebra. 
 
Now we proceed onto define the notion of strong neutrosophic 
n-linear subalgebra of a strong neutrosophic n-linear algebra. 
 
DEFINITION 3.2.4: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-linear algebra over the neutrosophic field F. 
Suppose W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn (Wi ⊄ 
Vi ; Wi ≠ φ and Wi ≠ Vi for each i, 1≤ i ≤ n) is such that W is 
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strong neutrosophic n-linear algebra over the field F, then we 
call W to be a strong neutrosophic n-linear subalgebra of V. 
 
It is interesting and important to note that even if one of the Wi 
is {0} or Vi then W is not a strong neutrosophic n-linear 
subalgebra of V over F. 
 We will illustrate this by some simple examples. 
 
Example 3.2.11: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, b, c, d, e, f) | a, b, c, d, e, f ∈ N(Q)} ∪ 

 

i
i i

i 0
a x a N(Q)

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

a 0 0
0 b 0 a,b,d N(Q)
0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
a 0 0 0
b c 0 0

a,b,c,d,e,f ,g,h, j,k N(Q)
d e f 0
g h j k

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic n-linear algebra over QI. Let W = W1 
∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

a a
a QI

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a a a) | a ∈ N(Q)} ∪ 

 
2i

i i
i 0

a x a N(Q)
∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 
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a 0 0
0 a 0 a N(Q)
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
a 0 0 0
b c 0 0

a,b,c,d,e,g,p,q, r,s QI
d e g 0
p q r s

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5. 

 
It is easily verified that W is a strong neutrosophic n-linear 
subalgebra of V over the field QI. 
 
Example 3.2.12: Let V = V1 ∪ V2 ∪ V3 =  
 

1 2 3

4 5 6 i 3

7 8 9

a a a
a a a a Z I;1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{All 4 × 4 neutrosophic matrices with entries from N(Z3)} ∪ 
{All 9 × 9 upper triangular matrices with entries from N(Z3)}; V 
is a neutrosophic strong trilinear algebra over the neutrosophic 
field Z3I. Take W = W1 ∪ W2 ∪ W3 =  
 

3

a a a
a a a a Z I
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{All 4 × 4 neutrosophic matrices with entries from Z3I} ∪ {All 
9 × 9 upper triangular matrices with entries from Z3I} ⊆ V1 ∪ 
V2 ∪ V3. W is a strong neutrosophic 3-linear subalgebra of V of 
V over the neutrosophic field Z3I. 
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 We call a strong neutrosophic n-linear algebra to be simple 
if V = V1 ∪ V2 ∪ … ∪ Vn has no proper strong neutrosophic n-
linear subalgebra. 
 
We will illustrate this by some examples. 
 
Example 3.2.13: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

5

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, a, a, a) | a ∈ Z5I} ∪ 

 

5

a 0 0 0
0 a 0 0

a Z I
0 0 a 0
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 5

a 0 0
a a 0 a Z I
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

5

a 0 0 0 0
0 a 0 0 0

a Z I0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 5-linear algebra over the neutrosophic 
field Z5I. Clearly V has no proper strong neutrosophic 5-linear 
subalgebra. 
 Thus V is a simple strong neutrosophic 5-linear algebra 
over Z5I. 
 
Example 3.2.14: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

11

a a a
a a a a Z I
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 11

a 0
a Z I

a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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{(a 0 a 0 a 0 a) | a ∈ Z11I} ∪ {9 × 9 diagonal matrices where all 
the diagonal entries are equal to (say) a; a ∈ Z11I} ∪  
 

11

a 0 0 0
a a 0 0

a Z I
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

11

a a a a a a
0 a a a a a
0 0 a a a a

a Z I
0 0 0 a a a
0 0 0 0 a a
0 0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 be a strong neutrosophic 6-linear algebra over the neutrosophic 
field Z11I. It is easy to vertify that V has no proper strong 
neutrosophic 6-linear subalgebras; hence V is a simple strong 
neutrosophic linear algebra. 
 
Now we proceed onto define the notion of pseudo strong 
neutrosophic n-linear subalgebra. 
 
DEFINITION 3.2.5: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vn be a strong 
neutrosophic n-linear algebra over the neutrosophic field F. 
 Let W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn, where 
some Wi (Wi ≠ (0) and Wi ≠ Vi) contained in Vi are just strong 
neutrosophic vector space over the neutrosophic field F; i = 1, 
2, …, n. 
 We define W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn to 
be a pseudo strong neutrosophic linear subalgebra of V over F 
if some Wi’s are strong neutrosophic vector spaces and some 
Wj’s are strong neutrosophic linear algebras over the 
neutrosophic field F. 1≤ i, j ≤ n (i≠j). 
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We will illustrate this situation by some examples. 
 
Example 3.2.15: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

23

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6) | ai ∈ Z23I; 1 ≤ i ≤ 6} ∪ 

 

23

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i 23
i 0

a x a Z I; i 0,1,2,...,
∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  

 
be a strong neutrosophic 4-linear algebra over the neutrosophic 
field Z23I. Choose W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

23

0 a
a,b Z I

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a a a) | a ∈ Z23I} ∪ 

 

23

0 0 a
0 b 0 a,b,c,d Z I
c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
2i

i i 23
i 0

a x a Z I; i 0,1,2,...,
∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4. It is easily verified that W = W1 ∪ W2 ∪ 
W3 ∪ W4 is a pseudo strong neutrosophic linear subalgebra of V 
over the neutrosophic field F = Z23I.  
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Example 3.2.16: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

13

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6, a7, a8) | ai ∈ Z13I; 1 ≤ i ≤ 8} ∪ 

 

1

2 3
i 13

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2
i 13

3 4

a a
a Z I;1 i 4

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i i 13
i 0

a x a Z I;1 i
∞

=

⎧
∈ ≤ ≤ ∞⎨

⎩
∑ ; 

 
that is all polynomials in the variable x with coefficients from 
Z13I} ∪  
 

1

2

3 i 13

4

5

a 0 0 0 0
0 a 0 0 0
0 0 a 0 0 a Z I;1 i 5
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 6-linear algebra over the neutrosophic 
field Z13I.  

Choose W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 =  
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13

0 0 a
0 b 0 a,b,d Z I
d 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{(a1, 0, a2, 0, a3, 0, a4, 0) | ai ∈ Z13I; 1 ≤ i ≤ 4} ∪ 

 

13

a 0 0 0
a a 0 0

a Z I
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  

 

13

0 a
a,b Z I

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
27

i
i i 13

i 0
a x a Z I; 0 i 27

=

⎧
∈ ≤ ≤⎨

⎩
∑ ; 

 
all polynomials in the variable x with coefficients from Z13I} ∪  
 

13

a 0 0 0 0
0 a 0 0 0

a Z I0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6.  
 It is easily verified that W is a pseudo strong neutrosophic 
6-linear subalgebra of V over the field Z13I.  
 
Now we proceed onto give an example and then define the 
notion of strong pseudo neutrosophic n-vector space of a strong 
neutrosophic n-linear algebra over the neutrosophic field F. 
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Example 3.2.17: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field QI; 0 ≤ ai ≤ ∞} ∪ 
 

a a a
a a a a N(Q)
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4

5 6 7 8
i

9 10 11 12

13 14 15 16

a a a a
a a a a

a QI;1 i 16
a a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{all 8 × 8 neutrosophic matrices with entries from QI} be a 
strong neutrosophic 5-linear algebra over the neutrosophic field 
QI. 
 Let W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

0 a
a,b N(Q)

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
10

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field QI of degree less than equal to 10; ai 
∈ QI; i = 0, 1, 2, …, 10} ∪  
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0 0 a
0 a 0 a QI
a 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
0 0 0 a
0 0 a 0

a QI
0 a 0 0
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2

3

4
i

5

6

7

8

0 0 0 0 0 0 0 a
0 0 0 0 0 0 a 0
0 0 0 0 0 a 0 0
0 0 0 0 a 0 0 0

a QI;1 i 8
0 0 0 a 0 0 0 0
0 0 a 0 0 0 0 0
0 a 0 0 0 0 0 0
a 0 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5. W is a strong neutrosophic 5-
vector space over the neutrosophic field QI. We call this strong 
neutrosophic 5-vector space as strong pseudo neutrosophic 5-
vector space of V over the neutrosophic field QI.  
 
We now give the formal definition of this new notion. 
 
DEFINITION 3.2.6: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vn be a strong 
neutrosophic n-linear algebra over the neutrosophic field F. Let 
W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be such that 
each Wi ⊆ Vi is different from (0) and Vi for i = 1, 2, …, n and 
each Wi is only a strong neutrosophic vector space over the 
field F and is not a strong neutrosophic linear algebra over F. 
 We define W = W1 ∪ W2 ∪ … ∪ Wn to be a strong pseudo 
neutrosophic n-vector space of V over the field F.  
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We will give an example of this concept. 
 
Example 3.2.18: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

17

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

17

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field Z17I; ai ∈ Z17I; 0 ≤ i ≤ ∞} ∪ {all 6 × 
6 matrices with entries from Z17I} be a strong neutrosophic 4-
linear algebra over the neutrosophic field Z17I. Take W = W1 ∪ 
W2 ∪ W3 ∪ W4 =  
 

17

0 0 a
0 b 0 a,b,c Z I
c 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 17

0 a
a,b Z I

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
5

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in variable x with coefficients from 

Z17I of degree less than or equal to five ai ∈ Z17I; 0 ≤ i ≤ 5} ∪  
 

1

2

3
i 17

4

5

6

0 0 0 0 0 a
0 0 0 0 a 0
0 0 0 a 0 0

a Z I;1 i 6
0 0 a 0 0 0
0 a 0 0 0 0
a 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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⊆ V1 ∪ V2 ∪ V3 ∪ V4. It is easy to verify each Wi ⊆ Vi is only a 
strong neutrosophic vector space over Z17I. i = 1, 2, 3, 4. So W 
= W1 ∪ W2 ∪ W3 ∪ W4 ⊆ V1 ∪ V2 ∪ V3 ∪ V4 is only a pseudo 
strong neutrosophic 4-vector space of V over the field Z17I. 
 
DEFINITION 3.2.7: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-linear algebra over the neutrosophic field F. Let 
W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-linear algebra over the neutrosophic field K ⊆ F 
(K is only a proper subfield of F, K ≠ F). We define W to be a 
pseudo strong neutrosophic n-linear subalgebra of V over the 
real field K ⊆ F. 
 
We will illustrate this situation by some examples. 
 
Example 3.2.19: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

23

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6, a7) | ai ∈ N(Z23) 1 ≤ i ≤ 7} ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field N(Z23)} ∪  
 

1 2 3

4 5 6 i 23

7 8 9

a a a
a a a a N(Z );1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{9 × 9 matrices with entries from N(Z23)} be a strong 
neutrosophic 5-linear algebra over the neutrosophic field N(Z23). 
 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
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23

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a a a a) | a ∈ Z23I} ∪ 

 
i

i i 23
i 0

a x a Z I;0 i
∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

 

1

2 3 i 23

4 5

a 0 0
a a 0 a N(Z )
a a 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{all 9 × 9 lower triangular matrices with entries from N(Z23) ⊆ 
V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is a neutrosophic 5-linear algebra 
over the field Z23 ⊆ N(Z23). Thus W is a pseudo strong 
neutrosophic 5-linear subalgebra of V over the subfield Z23 ⊆ 
N(Z23). 
 
Example 3.2.20: Let V = V1 ∪ V2 ∪ V3 = {All 5 × 5 
neutrosophic matrices with entries from N(R)} ∪ {All 

polynomial   i
i

i 0
a x

∞

=
∑  with coefficients from N(R) in the variable 

x} ∪ {(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) | xi ∈ N(R); 1 ≤ i ≤  
10} be a strong neutrosophic 3-linear algebra over the 
neutrosophic field N(R). Take W = W1 ∪ W2 ∪ W3 = {All 5×5 
diagonal matrices with entries from N(R)} ∪  
 

2i
i i

i 0
a x a N(R)

∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

 
{(a a a a a a a a a a) | a ∈ N(R)} ⊆ V1 ∪ V2 ∪ V3; W is a 
neutrosophic 3-linear algebra over the field R ⊆ N(R). Thus W 
is a pseudo strong neutrosophic 3-linear subalgebra of V over 
the field R ⊆ N(R).  
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DEFINITION 3.2.8: Let V = V1 ∪ V2 ∪ … ∪Vn be a strong 
neutrosophic n-linear algebra over the neutrosophic field K. Let 
W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over a real field F, F ⊆ K; we call W = W1 ∪ W2 ∪ … ∪ 
Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn to be a pseudo n-vector subspace of V 
over the real subfield F of K. 
 
We will illustrate this situation by some examples. 
 
Example 3.2.21: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪V6 ∪ V7 =  
 

2

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

i
i

i 0
a x

∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from N(Z2); ai ∈ N(Z2) and i = 0, 1, 2, …, ∞} ∪ {All 5 × 5 
matrices with entries from N(Z2)} ∪ {All 7 × 7 matrices with 
entries from N(Z2)} ∪ {All 4 × 4 matrices with entries from 
N(Z2)} ∪ {All 6 × 6 matrices with entries from N(Z2)} ∪  
 

2

a b c
d e f a,b,c,d,e,f ,g,h,i N(Z )
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 7-linear algebra over the neutrosophic 
field N (Z2). Let W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7  
 

= 2

0 a
a,b Z

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
6

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the real field Z2 of degree less than or equal to 6} ∪  
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2

0 0 0 0 a
0 0 0 a 0

a Z0 0 a 0 0
0 a 0 0 0
a 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2

3

4 i 2

5

6

7

0 0 0 0 0 0 a
0 0 0 0 0 a 0
0 0 0 0 a 0 0
0 0 0 a 0 0 0 a Z ;1 i 7
0 0 a 0 0 0 0
0 a 0 0 0 0 0
a 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

2

0 0 0 a
0 0 b 0

a,b,c,d Z
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2

3

4 i 2

5

6

7

0 0 0 0 0 0 a
0 0 0 0 0 a 0
0 0 0 0 a 0 0
0 0 0 a 0 0 0 a Z ;1 i 7
0 0 a 0 0 0 0
0 a 0 0 0 0 0
a 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

2

0 0 a
0 b 0 a,b,d Z
d 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7. W is only a 7-vector 
space over the field Z2 ⊆ N (Z2). Thus W is a pseudo 7-vector 
subspace of V over the real field Z2 ⊆ N (Z2). 
 
Example 3.2.22: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ N(Z7); 1 ≤ i ≤ 5} ∪ {All 4×4 matrices 
with entries from N(Z7)} ∪ {All 6 × 6 matrices with entries 
from N(Z7)} ∪ {All 5 × 5 matrices with entries from N(Z7)} be 
a strong neutrosophic 5-linear algebra over the neutrosophic 
field N(Z7). 
 Take W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

7

0 a
a,b Z

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1 0 a2 0 a3) | ai ∈ Z7; 1 ≤ i ≤ 3} ∪ 

 

7

0 0 0 a
0 0 b 0

a,b,c,d Z
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

7

0 0 0 0 0 a
0 0 0 0 b 0
0 0 0 c 0 0

a,b,c,d,e,p Z
0 0 d 0 0 0
0 e 0 0 0 0
p 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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7

0 0 0 0 a
0 0 0 0 0

a,b,c Z0 0 b 0 0
0 0 0 0 0
c 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5. Clearly W is only a 7-vector space 
over the real field Z7. Thus W is a pseudo 7-vector subspace of 
V over the real field Z7 of N(Z7).  
 
DEFINITION 3.2.9: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-linear algebra over the neutrosophic field F. Let 
W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a n-linear 
algebra over the real field K; K ⊄ F. We define W to be a 
pseudo n-linear subalgebra of V over the real field K ⊆ F.  
 
We will illustrate this situation by some examples. 
 
Example 3.2.23: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

11

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{a1, a2, a3, a4, a5, a6) | ai ∈ N(Z11); 1 ≤ i ≤ 6} ∪ 

 

11

a b c
d e f a,b,c,d,e,f ,g,h,i N(Z )
g h u

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i i 11
i 0

a x a N(Z )
∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  

be a strong neutrosophic 4-linear algebra over the neutrosophic 
field N(Z11).  
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Let W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

11

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, b, b, b) | a, b ∈ Z11} ∪ 

 

11

a a a
b b b a,b,c Z
c c c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
2i

i i 11
i 0

a x a Z
∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4. 
 
It can be easily verified that W is a pseudo 4-linear subalgebra 
of V over the field Z11 ⊆ N(Z11). 
 
Example 3.2.24: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, b, c) | c, a, b ∈ N (Q)} ∪ 

 
i

i i
i 0

a x a N(Q)
∞

=

⎧
∈⎨

⎩
∑ ; collection of all polynomials in the variable 

x with coefficients from the neutrosophic field N(Q)} ∪  
 

a b 0 0
c d 0 0

a,b,c,d,e,f ,g,h N(Q)
0 0 e f
0 0 g h

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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a 0 0 0 0
b d 0 0 0

a,b,d,e,f ,g,h,i, j,k,l,m,n,p,q N(Q)e f g 0 0
h i j k 0
l m n p q

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 

∪ 

a 0 0 0 0 0
0 b 0 0 0 0
0 0 c 0 0 0

a,b,c,d,e,g N(Q)
0 0 0 d 0 0
0 0 0 0 e 0
0 0 0 0 0 g

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 6-linear algebra over the neutrosophic 
field N (Q). Consider W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 =  
 

a 0
a,b Q

0 b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, b, 0) | a, b ∈Q} ∪ 

 

i
i i

i 0
a x a Q;0 i

∞

=

⎧ ⎫
∈ ≤ ≤ ∞⎨ ⎬

⎩ ⎭
∑  ∪ 

a b 0 0
c d 0 0

a,b,c,d Q
0 0 0 0
0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ 

 
a 0 0 0 0
0 b 0 0 0

a,b,c,d,e Q0 0 c 0 0
0 0 0 d 0
0 0 0 0 e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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a 0 0 0 0 0
0 b 0 0 0 0
0 0 c 0 0 0

a,b,c,d,e,f ,g are in Q
0 0 0 d 0 0
0 0 0 0 e 0
0 0 0 0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪
⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5.  
 
It is easy to prove, W is a 5-linear algebra over Q, the real field 
of rationals. Hence W is a pseudo 5-linear subalgebra of V over 
the real field Q. 
 Now as in case of strong neutrosophic bivector spaces we 
can define in case of strong neutrosophic n-vector spaces V and 
W defined over the same neutrosophic field F; where V = V1 ∪ 
V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ … ∪ Wn; a strong 
neutrosophic n-linear transformation T from V to W such that T 
= T1 ∪ T2 ∪ … ∪ Tn : V = V1 ∪ V2 ∪ … ∪ Vn → W = W1 ∪ 
W2 ∪ … ∪ Wn with Ti : Vi → Wj; 1 ≤ i, j ≤ n so that no two Vi’s 
are mapped on to the same Wj. We denote the collection of all 
strong neutrosophic n-linear transformations of V to W by 
SNHomF (V, W). Like in case of strong neutrosophic bivector 
spaces we can define strong neutrosophic n-linear operator for 
strong neutrosophic n-vector space V defined over the field K. 
 That is if V = W then the strong neutrosophic n-linear 
transformation will be known as strong neutrosophic n-linear 
operator on V. SNHomK (V, V) denotes the set of all strong 
neutrosophic n-linear operators on V. 
 Now as in case of usual neutrosophic n-vector spaces over 
the real field F we can define special (m, n) linear 
transformation where V = V1 ∪ V2 ∪ … ∪ Vm and W = W1 ∪ 
W2 ∪ … ∪ Wn, m < n and (m, n) linear transformations when m 
> n. All properties derived for neutrosophic n-vector spaces (n-
linear algebras) defined over a real field can be derived with 
appropriate modifications in case of strong neutrosophic n-
vector spaces (n-linear algebras) defined over the neutrosophic 
field.  
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Interested reader can construct examples.  
Now we proceed onto define n-basis. 
 
DEFINITION 3.2.10: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-vector space over the neutrosophic field K. A 
proper n-subset S = S1 ∪ S2 ∪ … ∪ Sn ⊆ V1 ∪ V2 ∪ … ∪ Vn is 
said to be a n-basis of V if S a n-linearly independent n-set and 
each Si ⊆ Vi generates Vi and Si is a basis of Vi true for each i = 
1, 2, …, n. 
 If the n-set X = X1 ∪ X2 ∪ … ∪ Xn ⊆ V1 ∪ V2 ∪ … ∪ Vn is 
such that each Xi is a linearly independent subset of Vi; i = 1, 2, 
…, n then we say X = X1 ∪ X2 ∪ … ∪ Xn is a n-linearly 
independent n-subset of V. 
 A n-basis S = S1 ∪ S2 ∪ … ∪ Sn ⊆ V1 ∪ V2 ∪ … ∪ Vn is 
always a n-linearly independent n- subset of V over the field F. 
 
However every n-linearly independent n-subset of V need not 
be a n-basis of V. If a n-subset Y = Y1 ∪ Y2 ∪ … ∪ Yn ⊆ V1 ∪ 
V2 ∪ … ∪ Vn is not a n-linearly independent n-subset of V then 
we define Y to be a n-linearly dependent n-subset of V. 
 
 Interested reader can give examples of these concepts.  

We can as in case of neutrosophic n-vector spaces define 
the notion of n-kernel of a n-linear transformation. 
 
DEFINITION 3.2.11: Let V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ 
W2 ∪ … ∪ Wn be two strong neutrosophic n-vector spaces over 
the neutrosophic field F. Let T = T1 ∪ T2 ∪ … ∪ Tn : V = V1 ∪ 
V2 ∪ … ∪ Vn → W = W1 ∪ W2 ∪ … ∪ Wn ; Ti : Vi → Wj; i = 1, 
2, 3, …, n and j = 1, 2, …, n such that no two Vi’s are mapped 
onto the same Wj. The n-kernel of T = T1 ∪ T2 ∪ … ∪ Tn 
denoted by 

kerT = kerT1 ∪ kerT2 ∪ … ∪ kerTn 
where ker Ti = {vi ∈ Vi | Ti(vi) = 0}; i = 1, 2, …, n. 
 Thus kerT = {(v1, v2, …, vn) / T(v1, v2¸…, vn) = {T1(v1) ∪ 
T2(v2) ∪ … ∪ Tn (vn) = 0 ∪ 0 ∪ … ∪ 0}.  
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It is left as a simple exercise for the reader to prove kerT is a 
proper neutrosophic n-subgroup of V. Further kerT is a strong 
neutrosophic n-vector subspace of V. 
 
 
3.3 Neutrosophic n-Vector Spaces of Type II 
 
 In this section we proceed onto define the new notion of 
neutrosophic n-vector spaces of type II. We discuss several 
interesting results about them.  
 
DEFINITION 3.3.1: Let V = V1 ∪ V2 ∪ … ∪ Vn; where each Vi is 
a neutrosophic vector space over Fi; Vi ⊄ Vj and Vj ⊄ Vi (if i ≠ j, 
i ≤ i, j ≤ n) and Fi ⊄ Fj as well as Fj ⊄ Fi (i ≠ j, 1 ≤ i, j ≤ n). We 
define V = V1 ∪ V2 ∪ …∪ Vn to be a neutrosophic n-vector 
space over the real n field F = F1 ∪ F2 ∪ … ∪ Fn of type II. 
 
We will illustrate this situation by some examples. 
 
Example 3.3.1: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3
i 11

4 5 6

a a a
a Z I;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4

5 6
i

7 8

9 10

11 12

a a
a a
a a

a N(Q);1 i 12
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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12
i

i
i 0

a x
=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field Z2I of degree less than or equal to 
12 ai ∈ Z2I; 0 ≤ i ≤ 12} ∪  
 

29

a 0 a
0 b 0 a,b,c,d Z I
d 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the 5-field F = Z7 ∪ Z11 ∪ 
Q ∪ Z2 ∪ Z29 of type II. 
 
Example 3.3.2: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 =  
 

2

a
b

a,b,c,d,e N(Z )c
d
e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4
i 3

5 6 7 8

a a a a
a N(Z );1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
20

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 20 with coefficients from the field Z23I} ∪  
 

11

a b c d
0 g e f

a,b,c,d,g,e,f ,h,i,k Z I
0 0 h i
0 0 0 k

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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a b c
b a c
c a b

a,b,c N(Q)
b c a
c b a
a c b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

0 0 0 a
0 0 b 0

a,b,c,d Z I
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2

3 4

5 6 i 31

7 8

9 10

a a
a a
a a a N(Z );1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 7-vector space over the 7-field F = Z2 ∪ Z3 ∪ 
Z23 ∪ Z11 ∪ Q ∪ Z17 ∪ Z31 of type II.  
 
Even if we do not mention the word type II by the context one 
of easily understand what type of n-spaces are under study. 
 
DEFINITION 3.3.2: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-vector space over the n-field F = F1 ∪ F2 ∪ … ∪ Fn . Let W = 
W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn, to be a neutrosophic 
n-vector space over the n-field F = F1 ∪ F2 ∪ … ∪ Fn, then we 
define W1 ∪ W2 ∪ … ∪ Wn to be a neutrosophic n-vector 
subspace of V of type II over the n-field F. 
 
We illustrate this situation by some simple examples. 
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Example 3.3.3: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

1 2 3 4 5
i

6 7 8 9 10

a a a a a
a N(Q);1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4

5 6
i 11

7 8

9 10

11 12

a a
a a
a a

a Z I;1 i 12
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
12

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials of degree less than or equal to 12 

with coefficients from the neutrosophic field N(Z5); ai ∈ N(Z5); 
0 ≤ i ≤ 12} ∪  
 

3

0 0 0 a
0 0 b 0

a,b,c,d N(Z )
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-vector space over the 4-field F = Q ∪ Z11 ∪ 
Z5 ∪ Z3 of type II. 
 Choose W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

1 2 3 4 5
i

6 7 8 9 10

a a a a a
a QI;1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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11

a a
a a
a a

a Z I
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
12

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 12 with coefficients from Z5I} ∪  
 

3

0 0 0 a
0 0 a 0

a N(Z )
0 a 0 0
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4; W is a neutrosophic 4-vector subspace 
of V over the 4-field F of type II. 
 
Example 3.3.4: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

1 2

3 4
i 7

5 6

7 8

a a
a a

a Z I;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
30

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials of degree less than or equal to thirty 

with coefficients from the field N(Z13); ai ∈ N(Z13); 0 ≤ i ≤ 30}  
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∪ 1 2 3 4 5
i 17

6 7 8 9 10

a a a a a
a N(Z );1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

19

0 0 a
0 b 0 a,b,d,e,f Z I
d e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1

2

3 i

4

5

a
a
a a N(Q);1 i 5
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ 

 
{All 10 × 19 matrices with entries from N(Z2)} be a 
neutrosophic 6-vector space over the 6-field F = F1 ∪ F2 ∪ F3 ∪ 
F4 ∪ F5 ∪ F6 = Z7 ∪ Z13 ∪ Z17 ∪ Z19 ∪ Q ∪ Z2 of type II. Take 
W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 =  
 

7

a a
a a

a Z I
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
10

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials of degree less than or equal to 10 

with coefficients from Z13I in the variable x; ai ∈ Z13I; 0 ≤ i ≤ 
10} ∪  
 

17

a a a a a
a N(Z )

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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19

0 0 a
0 a 0 a Z I
a 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
a
a

a QIa
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{All 10×19 matrices with entries from Z2I} ⊆ V1 ∪ V2 ∪ V3 ∪ 
V4 ∪ V5 ∪ V6 is a neutrosophic 6-vector subspace of V over the 
6-field F of type II. 
 
DEFINITION 3.3.3: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vn be a 
neutrosophic n-vector space over the n-field F = F1 ∪ F2 ∪ … 
∪ Fn. If W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn and K1 
∪ K2 ∪ … ∪ Kn = K ⊆ F = F1 ∪ F2 ∪ … ∪ Fn . If W is a 
neutrosophic n-vector space over the n-field K then we call W to 
be a special subneutrosophic n-vector subspace of V over the n-
subfield K of F of type II. 
 
We will illustrate this by some examples and counter examples. 
 
Example 3.3.5: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

5

a a a a a
a,b N(Z )

b b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3

4 5 6
i 7

7 8 9

10 11 12

a a a
a a a

a N(Z );1 i 12
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 



 314

 

1

2

3

4 i 11

5

6

7

a
a
a
a a Z I;1 i 7
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

19

0 0 0 0 a
0 0 0 b 0

a,b,c,d,e Z I0 0 c 0 0
0 d 0 0 0
e 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3

4 5 6

7 8 9 i

10 11

12 13

a a a 0 0
a a a 0 0
a a a 0 0 a N(Q);1 i 13
0 0 0 a a
0 0 0 a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the 5-field F = Z5 ∪ Z7 ∪ 
Z11 ∪ Z19 ∪ Q. We see each of the fields are prime so F has no 
5-subfield. Thus V has no special subneutrosophic 5-vector 
subneutrosophic 5-vector subspace. 
 
Example 3.3.6: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

a b
a,b,c,d N(Q( 2, 3, 19))

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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a 0 0
0 b 0 a,b,d N(Q( 17, 3, 5, 13, 11))
0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
a
b

a,b,c,d,e N(Q( 23, 29, 11, 7, 2))c
d
e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
a b c d e a, , j N(Q( 2, 23, 19,
f g h i j 17, 41, 43, 53))

⎧ ⎫∈⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

…
 

 
be a neutrosophic 4-vector space over the 4-field  
 

F = F1 ∪ F2 ∪ F3 ∪ F4 
= Q ( 2, 3, 19)  ∪ Q ( 17, 3, 5, 13, 11)  ∪ 

Q ( 23, 29, 11, 7, 2)  ∪ 
Q ( 2, 23, 19, 17, 41, 43, 53)  

 
of type II. Consider W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

a a
a N(Q( 2, 3, 19))

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a 0 0
0 a 0 a N(Q( 17, 3, 5, 13, 11))
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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a
b

a,b N(Q( 23, 29, 11, 7, 2))a
b
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
a b c d e a,b,c,d,e N(Q( 2, 23,
a b c d e 19, 17, 41, 43, 53))

⎧ ⎫∈⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4. W is a neutrosophic 4-vector space over 
the 4-field  

K = K1 ∪ K2 ∪ K3 ∪ K4 
= Q ( 3, 19)  ∪ Q ( 17, 5, 13)  ∪  

Q ( 23, 29, 11, 2)  ∪ Q ( 41, 43)  
⊆ F1 ∪ F2 ∪ F3 ∪ F4. 

 
K is clearly a 4-subfield of F. Thus W is a special sub 
neutrosophic 4-vector subspace of V over K = K1 ∪ K2 ∪ K3 ∪ 
K4. 
 
Example 3.3.7: Let V = V1 ∪ V2 ∪ V3 =  
 

1 2 3 2
i 2

4 5 6

a a a Z [x]a N
a a a x x 1

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟∈⎨ ⎬⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 

 
(〈x2 + x + 1〉 denotes the ideal generated by x2 + x +1, 1 ≤ i ≤ 6)  

 

∪ 3
3 2

a
b

Z [x]a,b,c,d,e Nc
x x x 2

d
e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟∈⎨ ⎬⎜ ⎟+ + +⎜ ⎟⎪ ⎪⎝ ⎠⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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5
2

0 0 0 a
0 0 b 0 Z [x]a,b,c,d N
0 d 0 0 x 2
c 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟∈⎨ ⎬⎜ ⎟ ⎜ ⎟+⎪ ⎪⎝ ⎠⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 3-vector space over the 3-field  
 

F = F1 ∪ F2 ∪ F3 
 

= 2
2

Z [x]
x x 1+ +

 ∪ 3
3 2

Z [x]
x x x 2+ + +

 ∪ 5
2

Z [x]
x 2+

. 

 
Take W = W1 ∪ W2 ∪ W3 =  
 

2
2

a b c Z [x]a,b,c N
a b a x x 1

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟∈⎨ ⎬⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 ∪  

 

3
3 2

a
a

Z [x]a Na
x x x 2

a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟∈⎨ ⎬⎜ ⎟+ + +⎜ ⎟⎪ ⎪⎝ ⎠⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

5
2

0 0 0 a
0 0 a 0 Z [x]a N
0 a 0 0 x 2
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟∈⎨ ⎬⎜ ⎟ ⎜ ⎟+⎪ ⎪⎝ ⎠⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3; be a neutrosophic 3-vector space over the 3-
field K = Z2 ∪ Z3 ∪ Z5 ⊆ F1 ∪ F2 ∪ F3. Clearly W is a special 
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subneutrosophic 3-vector subspace of V over the 3-subfield K = 
Z2 ∪ Z3 ∪ Z5 ⊆ F. 
 Now a neutrosophic n-vector space V = V1 ∪ V2 ∪ … ∪ Vn 
over a n-field F = F1 ∪ F2 ∪ … ∪ Fn of type II is said to be n-
simple if V has no proper special subneutrosophic n-vector 
subspace over the n-subfield K = K1 ∪ K2 ∪ … ∪ Kn ⊆ F = F1 
∪ F2 ∪ … ∪ Fn.  
 
Example 3.3.8: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 =  
 

( )2

a a b c
a,b,c,d,e,f ,g N Z

d e f g
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

( )3

a b
c d

a,b,c,d,e,f ,g,h,i, j N Ze f
g h
i j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

( )5

0 0 0 a
0 0 b 0

a,b,c,d N Z
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
6

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from N(Z17); ai ∈ N(Z17); 0 ≤ i ≤ 6} ∪  
 

( )7

a b c d e
f g h i j a,b,c,d,e,f ,g,h,i, j N Z
a b c d e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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( )

1

2

3

4 i 13

5

6

7

a
a
a
a a N Z ;1 i 7
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

( )

1 2 3 4 17

5 6 7 8 18
i 19

9 10 11 12 19

13 14 15 16 20

a a a a a
a a a a a

a N Z ;1 i 20
a a a a a
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 7-vector space over the 7-field F = F1 ∪ F2 ∪ 
… ∪ Fn = Z2 ∪ Z3 ∪ Z5 ∪ Z17 ∪ Z7 ∪ Z13 ∪ Z19. Clearly every 
Fi in F is a prime field. So F has no proper 7-subfield. Hence 
even if V has a proper 7-subset W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ 
W5 ∪ W6 ∪ W7 ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7 which 
is a neutrosophic 7-vector subspace yet it cannot become a 
special subneutrosophic 7-vector subspace of V as F has no 
proper 7-subfield.  
 
Inview of this we has the following theorem the proof of which 
is straight forward.  
 
THEOREM 3.3.1: Let V = V1 ∪ V2 ∪…∪ Vn be any neutrosophic 
n-vector space over the n-field F = F1 ∪ F2 ∪ … ∪ Fn where 
each Fi is a prime field; 1≤ i ≤ n. V is a simple neutrosophic n-
vector space over the n-field F. 
 
DEFINITION 3.3.4: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-vector space over a n-field F = F1 ∪ F2 ∪ … ∪ Fn where 
some of the Fi’s are prime fields and some of the Fj’s are non 
prime fields; 1≤ i, j ≤ n. Let K = K1 ∪ K2 ∪ … ∪ Kn ⊆ F1 ∪ F2 
∪ …∪ Fn where some of the Ki’s are equal to Fi (Ki = Fi) and 
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some Kj’s are proper subfields of Fj for 1≤ i, j≤ n. We call K = 
K1 ∪ K2 ∪ … ∪ Kn ⊆ F1 ∪ F2 ∪ … ∪ Fn = F to be a quasi n-
field. Let W = W1 ∪ W2 ∪ …∪ Wn ⊆ V1 ∪ V2 ∪ …∪ Vn be such 
that W is a neutrosophic n-vector space over K = K1 ∪ K2 ∪ … 
∪ Kn ⊆ F1 ∪ F2 ∪ … ∪ Fn. 

We call W as a quasi special neutrosophic n-vector 
subspace of V over the quasi n-field K1 ∪ K2 ∪ … ∪ Kn. 
 
We will illustrate this situation by an example. 
 
Example 3.3.9: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

1 2 3 4 5
i

6 7 8 9 10

a a a a a
a N(R);1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3

4 5 6

7 8 9

10 11 12 i 7

13 14 15

16 17 18

19 20 21

a a a
a a a
a a a
a a a a N(Z );1 i 21
a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

3
3 2

0 0 0 a
0 0 b 0 Z [x]a,b,c,d N
0 c 0 0 x x x 2
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ + + +⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
24

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 24 with coefficients from N(Z17) ai ∈ N(Z17); 0 ≤ i ≤ 
24} be a neutrosophic 4-vector space over the 4-field  
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F = F1 ∪ F2 ∪ F3 ∪ F4 

= R ∪ Z7 ∪ 3
3 2

Z [x]
x x x 2+ + +

 ∪ Z17. 

 
Take W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

7

a a a a a
a,b N(Z )

b b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

7

a a a
a a a
a a a

a,b N(Z )b b b
a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

3

0 0 0 a
0 0 b 0

a,b,c,d N(Z )
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
15

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field N(Z17) of degree less than or equal 
to 17} ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ; Take K = K1 ∪ K2 ∪ K3 ∪ K4 = 
Q ∪ Z7 ∪ Z3 ∪ Z17 ⊆ F1 ∪ F2 ∪ F3 ∪ F4. Clearly W is a 
neutrosophic 4-vector space over the 4-field K = K1 ∪ K2 ∪ K3 
∪ K4. Thus W is a quasi special neutrosophic 4-vector subspace 
of V over the 4-quasi field K. 
 The notion of n-basis and n-linearly independent elements 
can be defined as in case of neutrosophic n-vector spaces of 
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type I here each Si ⊆ Vi is a basis of Vi over Fi; i = 1, 2, …, n 
where V = V1 ∪ V2 ∪ … ∪ Vn is defined over the n-field F = F1 
∪ F2 ∪ … ∪ Fn. 
 The reader is expected to construct examples. Also the 
notion of n-linear transformation of type II neutrosophic n-
vector spaces can be defined as in case of type I n-vector spaces 
with necessary changes. Further the notion of kernel T, T a n-
linear transformation of the neutrosophic n-vector space V to a 
neutrosophic n-vector space W defined over the same n-field F 
= F1 ∪ … ∪ Fn is defined as follows. 
 Let T = T1 ∪ T2 ∪ … ∪ Tn : V = V1 ∪ V2 ∪ … ∪ Vn → W 
= W1 ∪ W2 ∪ … ∪ Wn be a map such that Ti : Vi → Wj is a 
linear transformation and no two Vi is mapped onto the same 
Wj; 1 ≤ i, j ≤ n. i = 1, 2, …, n. The n-kernel of T denoted by 
kerT = kerT1 ∪ kerT2 ∪ … ∪ kerTn where ker Ti = {vi ∈ Vi | Ti 
(vi) = 0 }, i = 1, 2, …, n. Thus  
 

ker T = kerT1 ∪ kerT2 ∪ … ∪ kerTn 
= {(v1, v2, …, vn) ∈ V1 ∪ V2 ∪ … ∪ Vn / T(v1, v2¸…, vn) 

= T1(v1) ∪ T2(v2) ∪ … ∪ Tn(vn) 
= 0 ∪ 0 ∪ … ∪ 0}. 

 
It is easily verified that kerT is a neutrosophic n-vector subspace 
of V over the n-field F = F1 ∪ F2 ∪ … ∪ Fn of type II. 
 We can prove if V and W are n-finite dimensional and T a 
n-linear transformation then n rank T + n nullity T = (n1, n2, …, 
nn) dim V = n-dimension of V. 

(rank T1 ∪ rank T2 ∪ … ∪ rank Tn) + nullity T1 ∪ … ∪ 
nullity Tn = dim V1 ∪ dim V2 ∪ … ∪ dim Vn (dim Vi over the 
field Fi, i = 1, 2, …, n) 
 Thus (rank T1 + nullity T1) ∪ (rank T2 + nullity T2) ∪ … ∪ 
rank Tn + nullity Tn = (n1, n2, …, nn). 
 Further if V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ … 
∪ Wn be two neutrosophic n-vector spaces over the n-field F = 
F1 ∪ F2 ∪ … ∪ Fn of type II and if S = S1 ∪ S2 ∪ … ∪ Sn and T 
= T1 ∪ T2 ∪ … ∪ Tn are two n-linear transformations of V to W 
then the n function (T+S) =  
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(T1 ∪ T2 ∪ … ∪ Tn + S1 ∪ S2 ∪ … ∪ Sn) = T1 + S1 ∪ T2 + S2 ∪ 
… ∪ Tn + Sn is defined by  
 
(T + S)α  
= ((T1 + S1) ∪ (T2 + S2) ∪ … ∪ (Tn + Sn)] (α1 ∪ α2 ∪ … ∪ αn)  
= (T1 + S1) α1 ∪ (T2 + S2) α2 ∪ … ∪ (Tn + Sn) αn  
= (T1α1 + S1α1) ∪ (T2α2 + S2α2) ∪ … ∪ (Tnαn+ Snαn)  
 
is a neutrosophic n-linear transformation from V = V1 ∪ V2 ∪ 
… ∪ Vn to W1 ∪ W2 ∪ … ∪ Wn = W and α1 ∪ α2 ∪ … ∪ αn ∈ 
V1 ∪ V2 ∪ … ∪ Vn. Also if c = c1 ∪ c2 ∪ c3 ∪ … ∪ cn ∈ F1 ∪ 
F2 ∪ … ∪ Fn then (c1 ∪ c2 ∪ … ∪ cn) (T1 ∪ T2 ∪ … ∪ Tn) (α1 
∪ α2 ∪ … ∪ αn) = c1 T1 α1 ∪ c2 T2 α2 ∪ … ∪ cn Tn αn. 
 Thus the set of all n-linear transformations of V to V with n-
addition and n-scalar multiplication defined above is again a 
neutrosophic n-vector space of type II over the n-field F = F1 ∪ 
F2 ∪ … ∪ Fn. 
 Thus NL(V, W) = NL1(V1, W1) ∪ NL2(V2, W2) ∪ … ∪ NLn 
(Vn, Wn) is a neutrosophic n-vector space over the n-field F = F1 
∪ F2 ∪ … ∪ Fn where Vi and Wi are neutrosophic vector spaces 
defined over the field Fi, i = 1, 2, …, n.  
 
Now we proceed onto define the new notion of neutrosophic n-
linear algebra of type II. 
 
DEFINITION 3.3.5: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-vector space over the n-field F = F1 ∪ F2 ∪ … ∪ Fn of type II. 
If each Vi is a neutrosophic linear algebra over Fi for i = 1, 2, 
…, n; then we call V to be a neutrosophic n-linear algebra over 
the n-field F of type II. 
 
We will illustrate this situation by some examples. 
 
Example 3.3.10: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from N(Z11) that is ai ∈ (Z11); 0 ≤ i ≤ ∞} ∪ 
 

a 0 0 0
b c 0 0

a,b,c,d,e,g,p,q, r,s N(Q)
d e g 0
p q r s

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

2

a b c
a,b,c,d,e,f N(Z )0 d e

0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-linear algebra over the 4-field F = F1 ∪ F2 
∪ F3 ∪ F4 = Z7 ∪ Z11 ∪ Q ∪ Z2. 
 
Example 3.3.11: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

i
i

i 0
a x

∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from N(Z19). ai ∈ N(Z19); 0 ≤ i ≤ ∞} ∪  
 

13

a 0
a,b,d Z I

b d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a b c

a,b,c,d,e,f ,g,h,i N(Q)d e f
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
{All 10 × 10 upper triangular matrices with entries from the 
neutrosophic field N(Z23)} ∪ {All 12×12 diagonal matrices with 
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entries from Z2I} ∪ {All 5 × 5 lower triangular matrices with 
entries from the neutrosophic field. N (Z41)}; is a neutrosophic 
6-linear algebra over the 6-field F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ 
F6 = Z19 ∪ Z13 ∪ Q ∪ Z23 ∪ Z2 ∪ Z41of type II. 
 
Now we proceed onto define the substructure in neutrosophic n-
linear algebras of type II. 
 
DEFINITION 3.3.6: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-linear algebra over the n-field F = F1 ∪ F2 ∪ … ∪ Fn. Let W 
= W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn ; if W itself is a 
neutrosophic n-linear algebra of type II over the n-field F = F1 
∪ F2 ∪ … ∪ Fn and Wi ≠ {0} or Wi ≠ Vi for every i, i = 1, 2, …, 
n. We call W to be a neutrosophic n-linear subalgebra of V over 
the n-field F of type II. If V has no neutrosophic n-linear 
subalgebras then we define V to be a n-simple neutrosophic n-
linear algebra over F of type II.  
 
We will illustrate both the situations by some simple examples. 
 
Example 3.3.12: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7  
 

= 
a b

a,b,c,d N(Q)
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ Z11I; 1 ≤ i ≤ 5} ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field N(Z19) ∪ {All 10 × 10 neutrosophic 
matrices with entries form Z41I} ∪ {All 8 × 8 upper triangular 
matrices with entries from N(Z2)} ∪ {All 5 × 5 low triangular 
matrices with entries from N(Z5)} ∪ {3 × 3 matrices with 
entries from N(Z31)} be a neutrosophic 7-linear algebra over the 
7-field F = F1 ∪ … ∪ F7 = Q ∪ Z11 ∪ Z19 ∪ Z41 ∪ Z2 ∪ Z5 ∪ 
Z31. Consider W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 ∪ W7 =  
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a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a 0) | a ∈ Z11I} ∪  

 
2i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials of even degree in the variable x with 

coefficients from Z19I} ∪ {All 10 × 10 neutrosophic upper 
triangular matrices with entries from Z41I} ∪ {All 8 × 8 upper 
triangular matrices with entries from Z2I}∪ {All 5 × 5 lower 
triangular matrices with entries from Z5I} ∪ {3 × 3 matrices 
with entries from Z31I} ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7; 
it is easily verified W is a neutrosophic 7-linear subalgebra of V 
over the 7-field F.  
 
Example 3.3.13: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

2

a a
a Z I

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a a a) | a ∈ Z3I} ∪  

 

5

a 0 0
a Z Ia a 0

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 7

a 0 0 0 0
0 a 0 0 0

a Z I0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

13

a a a a
0 a a a

a Z I
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-linear algebra over the 5-field F = Z2 ∪ Z3 
∪ Z5 ∪ Z7 ∪ Z13. It is easy to verify V has no proper 
neutrosophic 5-sublinear algebras of type II over F in V. Thus V 
is a simple neutrosophic 5-linear algebra over F. 
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DEFINITION 3.3.7: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-linear algebra over the n-field F = F1 ∪ F2 ∪ … ∪ Fn of type 
II. Let W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be such 
that W is a neutrosophic n-vector space over the n-field F and 
no Wi ⊆ Vi is a neutrosophic linear algebra over Fi; Wi ≠ Vi, i = 
1, 2, …, n. We define W to be a pseudo neutrosophic n-vector 
subspace of V over the n-field F.  
 
We will illustrate this situation by some examples. 
 
Example 3.3.14: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

7

a b c
a,b,c,d,e,f ,g,h,i Z Id e f

g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from Z2I} ∪  
 

a b c d
a e f g

a,b,c,d,e,f ,g,p,q, r N(Q)
a a p g
a a a r

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{All 7 × 7 neutrosophic matrices with entries from N(Z11)} be a 
neutrosophic 4-linear algebra over 4-field F = Z7 ∪ Z2 ∪ Q ∪ 
Z11. Let W = W1 ∪ W2 ∪ W3 ∪ W4 =  
 

7

0 0 b
b,c,d Z I0 c 0

d 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪⎜ ⎟ ⎪
⎝ ⎠⎩ ⎭

 ∪ 
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12
i

i
i 0

a x
=

⎧
⎨
⎩
∑ ; all polynomials of degree less than or equal to 12 

with coefficients from Z2I; ai ∈ Z2I; 0 ≤ i ≤ 12} ∪  
 

0 0 0 d
0 0 f 0

f ,d,a N(Q)
0 a 0 0
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

11

0 0 0 0 0 0 a
0 0 0 0 0 b 0
0 0 0 0 d 0 0

a,b,c,d,e,f ,g,h N(Z )0 0 0 e 0 0 0
0 0 f 0 0 0 0
0 g 0 0 0 0 0
h 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
 ⊆ V1 ∪ V2 ∪ V3 ∪ V4 be a neutrosophic 4-vector space over F 
= Z7 ∪ Z2 ∪ Q ∪ Z11. Clearly W is a pseudo neutrosophic 4-
vector subspace of V over the 4-field F = Z7 ∪ Z2 ∪ Q ∪ Z11 of 
type II.  
 
Example 3.3.15: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from N(Z11)} ∪ {all 8 × 8 neutrosophic matrices with entries 
from N(Z29)} ∪ {all 7 × 7 upper triangular matrices with entries 
from N(Z3)} ∪ {4 × 4 matrices with entries from Z23I} ∪ {5 × 5 
neutrosophic matrices with entries from N(Z41)} be a 
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neutrosophic 6-linear algebra over the 6-field algebra over the 
6-field F = Q ∪ Z11 ∪ Z29 ∪ Z3 ∪ Z23 ∪ Z41 of type II. Let W = 
W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 =  
 

0 a
a,b QI

b 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

5
i

i
i 0

a x
=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 5 with coefficients from N(Z11)} ∪  
 

29

0 0 0 0 0 0 0 a
0 0 0 0 0 0 b 0
0 0 0 0 0 c 0 0
0 0 0 0 d 0 0 0

a,b,c,d,g,f ,p Z I
0 0 0 0 0 0 0 0
0 0 g 0 0 0 0 0
0 f 0 0 0 0 0 0
p 0 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

3

0 0 0 0 0 0 a
0 0 0 0 0 b 0
0 0 0 0 c 0 0

a,b,c,g Z I0 0 0 g 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

3

0 0 a b
0 0 c 0

a,b,c,d,g,f Z I
0 d g 0
g 0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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41

0 0 a b c
0 0 0 d 0

a,b,c,d,e,f ,g,h,p Z I0 0 e f 0
0 g 0 0 h
g 0 0 0 p

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 is a pseudo neutrosophic 6-
vector subspace of V over F = Q ∪ Z11 ∪ Z29 ∪ Z3 ∪ Z43 ∪ Z41 
of type II. 
 
DEFINITION 3.3.8: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-finite 
neutrosophic n-vector space (n-linear algebra) of type II over 
the n-field F = F1 ∪ F2 ∪ … ∪ Fn. Suppose W = W1 ∪ W2 ∪ … 
∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic n-vector subspace 
(n-linear subalgebra) of V of n-dimension (n1 – 1, n2 – 1, …, nn 
– 1) over the n-field F of type II, where n-dimension of V is (n1, 
n2, …, nn). Then we define W to be a neutrosophic hyper n-space 
(n-algebra) of V. 
 
The reader is requested to give examples of the above 
definition. 
 We define neutrosophic n-polynomial ring or neutrosophic 
polynomial n-ring over the n-field F = F1 ∪ F2 ∪ … ∪ Fn to be 
F1[x] ∪ F2[x] ∪ … ∪ Fn[x] = F[x] where F1, F2, …, Fn are n 
distinct neutrosophic fields. 
 
Example 3.3.16: F[x] = N(Z7)[x] ∪ Z11I[x] ∪ RI[x] ∪ Z2I [x] ∪ 
N [Z13] [x] ∪ N (Z47)[x] is a 6-polynomial neutrosophic ring. 
 
DEFINITION 3.3.9: Let V = V1 ∪ V2 ∪ …∪ Vn be a neutrosophic 
n-vector space (linear algebra) over the n-field F = F1 ∪ F2 ∪ 
… ∪ Fn. Let W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn be 
such that W is only just a n-vector space (linear algebra) over 
the n-field F then we all W to be pseudo n-vector space (n-
linear algebra) of V over the n-field F = F1 ∪ F2 ∪ … ∪ Fn . 
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We will illustrate this situation by some simple examples. 
 
Example 3.3.17: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

1 2 3
i

4 5 6

a a a
a N(Q);1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4

5 6 i 11

7 8

9 10

a a
a a
a a a N(Z );1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2 3
i 2

4 5 6

7 8 9 10

0 0 0 a
0 0 a a

a N(Z );1 i 10
0 a a a
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
19

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from N(Z17) of degree less than or equal to 19; ai ∈ N(Z17); 0 ≤ i 
≤ 19} ∪  
 

1 2 5 6

3 4 7
i 43

8 9

10

a a a a
a a a 0

a N(Z );1 i 10
a a 0 0
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 5-vector space over the 5-field F = F1 ∪ F2 ∪ 
F3 ∪ F4 ∪ F5 = Q ∪ Z11 ∪ Z2 ∪ Z17 ∪ Z43 of type II. Let W = 
W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
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1 2 3
i

1 2 3

a a a
a Q;1 i 3

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

11

a a
b b

a,b,c,d,e Zc c
d d
e e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  

 

2

0 0 0 a
0 0 b b

a,b,c,d Z
0 c c c
d d d d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
10

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 10 with coefficients from Z17} ∪  
 

43

a a a a
b b b 0

a,b,c,d Z
c c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a pseudo 5-vector space of V 
over the 5-field F. 
 
Example 3.3.18: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

2

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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{All 9 × 9 neutrosophic matrices with entries from N(Z11)} ∪  
{all 7 × 7 upper triangular neutrosophic matrices with entries 
from N(Z13)} ∪  
 

47

a b 0 0
c d 0 0

a,b,c,d,e,f ,g,h N(Z )
0 0 e f
0 0 g h

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomial in the variable x with coefficients from 

N(Z53)} ∪  
 

1 2 3

4 5 6

7 8 9
i 5

10 11 12

13 14 15

16 17 18

a a a 0 0 0
a a a 0 0 0
a a a 0 0 0

a N(Z );1 i 18
0 0 0 a a a
0 0 0 a a a
0 0 0 a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 6-linear algebra over the field F = Z2 ∪ Z11 ∪ 
Z13 ∪ Z47 ∪ Z53 ∪ Z5 of type II. Consider W = W1 ∪ W2 ∪ W3 
∪ W4 ∪ W5 ∪ W6 = 
 

2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{All 9 × 9 matrices with entries from Z11} ∪ {all 7 × 7 upper 
triangular matrices with entries from Z13} ∪  
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47

a a 0 0
a a 0 0

a,b Z
0 0 b b
0 0 b b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all polynomial in the variable x with coefficients from 

Z53} ∪  
 

5

a a a 0 0 0
a a a 0 0 0
a a a 0 0 0

a,b Z
0 0 0 b b b
0 0 0 b b b
0 0 0 b b b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6; is a 6-linear algebra over F. 
Thus W is a pseudo 6 linear algebra of V over the 6-field F of 
type II. 
 A neutrosophic n-vector space (n-linear algebra) V = V1 ∪ 
V2 ∪ … ∪ Vn of type II over the n-field F = F1 ∪ F2 ∪ … ∪ Fn 
is said to be pseudo simple n-vector space (n-linear algebra) if V 
does not contain any pseudo n-vector subspace (n-linear 
subalgebra).  
 
In view of this we give the following theorem which guarantees 
the existence of pseudo simple n-vector spaces (n-linear 
algebras). 
 
THEOREM 3.3.2: Let V = V1 ∪ V2 ∪ … ∪ Vn be a neutrosophic 
n-vector space (n-linear algebra) over the n-field F = F1 ∪ F2 
∪ … ∪ Fn of type II. If each Vi is defined over a field Ki with Ki 
= Fi I (Fi real prime field) for i = 1, 2, …, n. V is a pseudo 
simple n-vector space (n-linear algebra) over F of type II. 
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Proof: Given V = V1 ∪ V2 ∪ … ∪ Vn is a neutrosophic n-
vector space over the n-field F = F1 ∪ F2 ∪ … ∪ Fn where each 
Vi is defined over FiI; i = 1, 2, …, n. Thus there does not exist a 
Wi ⊆ Vi where Wi is a real vector space over Fi as Fi ⊄ FiI for i 
= 1, 2, …, n. Thus V = V1 ∪ V2 ∪ … ∪ Vn does not contain any 
n-vector subspace. So V is a pseudo simple n-vector space. 
 
We will illustrate this by some simple examples. 
 
Example 3.3.19: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7  
 

= 2

a b c
a,b,c,d,e,f Z I

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3

4 5 6

7 8 9 i 7

10 11 12

13 14 15

a a a
a a a
a a a a Z I;1 i 15
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5 6 7
i 11

8 9 10 11 12 13 14

a a a a a a a
a Z I;1 i 14

a a a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1

2

3

4
i 19

5

6

7

8

a
a
a
a

a Z I;1 i 8
a
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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8
i

i
i 0

a x
=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 8 with coefficients from the field QI; ai ∈ QI; 0 ≤ i ≤ 
8} ∪  

3

0 0 0 a
0 0 b d

a,b,d,c,f ,g,h,p,q Z I
0 c d f
g h p q

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2 3

4
i 31

5 6

7

8 9

0 0 0 0 0 a
0 0 0 0 a a
0 0 0 a 0 0

a Z I;1 i 9
0 0 a 0 a 0
0 a 0 0 0 0
a 0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 7-vector space over the 7-field F = Z2 ∪ Z7 ∪ 
Z11 ∪ Z19 ∪ Q ∪ Z3 ∪ Z31 of type II. It is easily verified that V 
has no proper pseudo 7-vector subspace over the 7-field F. 
Hence V is a pseudo simple 7-vector space. 
 
Example 3.3.20: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5) | ai ∈ Z7I; 1 ≤ i ≤ 5} ∪ 

 

1

2 3
i 19

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z I;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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47

a b c
d e f a,b,c,d,e,f ,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a neutrosophic 4-linear algebra over the 4-field F = Q ∪ Z7 ∪ 
Z19 ∪ Z47. It is easily verified that V has no pseudo 4-linear 
subalgebra over F. Thus V is a pseudo simple 4-linear algebra. 
 
DEFINITION 3.3.10: Let V = V1 ∪ V2 ∪ … ∪ Vn be a 
neutrosophic n-vector space (n-linear algebra) over the n-field 
F = F1 ∪ F2 ∪ … ∪ Fn. Suppose W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 
∪ V2 ∪ … ∪ Vn (Wi ≠ Vi, Wi ≠ {0} for i = 1, 2, …, n} is a 
neutrosophic n-vector space (n-linear algebra) over the n-
subfield K = K1 ∪ K2 ∪ … ∪ Kn ⊆ F1 ∪ F2 ∪ … ∪ Fn (Each Ki 
is a proper subfield of Fi; i = 1, 2, …, n) the we call W to be a 
subneutrosophic n-vector subspace (n-linear subalgebra) of V 
over the n-subfield K ⊂ F of type II. If V has no proper 
subneutrosophic n-vector subspace (n-linear subalgebra) over a 
proper n-subfield of F then we call V to be a n-simple 
subneutrosophic n-vector space (n-linear algebra).  
 
 Now we can define strong neutrosophic n-vector spaces of 
type II and derive for them also some interesting properties with 
appropriate modifications. 
 
DEFINITION 3.3.11: Let V = V1 ∪ V2 ∪ … ∪ Vn be such that 
each Vi is a strong neutrosophic vector space over the 
neutrosophic field Fi, i = 1, 2, …, n then we call V = V1 ∪ V2 ∪ 
… ∪ Vn to be a strong neutrosophic n-vector space over the 
neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn . 
 
We will illustrate them by some examples.  
 
Example 3.3.21: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  

11

a a a a a
a,b N(Z )

b b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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7

a a
b b

a,b,c,d N(Z )
c c
d d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2
i 47

3

4

0 0 0 a
0 0 a 0

a N(Z );1 i 4
0 a 0 0
a 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

19

a b c d e g
a b c d e g a,b,c,d,e,g N(Z )
a b c d e g

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 4-vector space over the 4 neutrosophic 
field F = Z11I ∪ N (Z7) ∪ Z47I ∪ N (Z19). 
 
Example 3.3.22: Let V = V1 ∪ V2 ∪ V3 =  
 

a
b
c

a,b,c,d,e,f N(Q)
d
e
f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  

 

41

a b a b a b
b c b c b c a,b,c,d N(Z )
c d c d c d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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11

a b c
d e f

a,b,c,d,e,f Z Ia b c
d e f
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic trivector space over the neutrosophic 
trifield F = N (Q) ∪ Z41I ∪ Z11I.  
 
We can define the notion of strong neutrosophic n-linear 
algebra. 
 
DEFINITION 3.3.12: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-vector space over the neutrosophic n-field F = 
F1 ∪ F2 ∪ … ∪ Fn. If each Vi is strong neutrosophic linear 
algebra over the neutrosophic field Fi, i = 1, 2, …, n then we 
call V to be a strong neutrosophic n-linear algebra over the 
neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn . 
 
We will illustrate this situation by some examples. 
 
Example 3.3.23: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
i

i
i 0

a x
∞

=

⎧
⎨
⎩
∑ ; all neutrosophic polynomials in the variable x with 

coefficients from the neutrosophic field Z11I; ai ∈ Z11I; 0 ≤ i ≤ 
∞} ∪ {(a1, a2, a3, …. a20} | ai ∈ Z3I; 1 ≤ i ≤ 20} ∪  
 

1

2 3 i 2

4 5 6

a 0 0
a a 0 a Z I;1 i 6
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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1

2

3 i 17

4

5

a 0 0 0 0
0 a 0 0 0
0 0 a 0 0 a Z I;1 i 5
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 5-linear algebra over the neutrosophic 
5-field F = QI ∪ Z11I ∪ Z3I ∪ Z2I ∪ Z17I of type II. 
 
Example 3.3.24: Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {All 10 × 10 
upper triangular neutrosophic matrices with entries from the 
neutrosophic field Z2I} ∪ {set of all 15 × 15 neutrosophic 
diagonal matrices with entries from the neutrosophic field Z3I} 
∪ {set of all 3 × 3 lower triangular matrices with entries from 
the neutrosophic field N(Q)} ∪ {(a1, a2, a3, a4, a5, a6, a7, a8) | ai ∈ 
Z5I} be a strong neutrosophic 4-linear algebra over the 
neutrosophic 4-field F = Z2I ∪ Z3I ∪ N(Q) ∪ Z5I.  

We as in case of neutrosophic n-vector spaces (n-linear 
algebras) of type II define in case of strong neutrosophic n-
vector spaces (n-linear algebras) the notion of strong 
neutrosophic n-vector subspaces (n-linear subalgebras) of type 
II. 

Recall in F = F1 ∪ F2 ∪ … ∪ Fn and if some of the Fi’s are 
neutrosophic fields and some of the Fj’s of real fields; 1 ≤ i, j ≤ 
n then we call F to be a quasi neutrosophic n-field. We shall just 
give some examples of them. 
 

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6 

= Z7I ∪ Z2 ∪ N(Q) ∪ R ∪ Z11I ∪ N(Z23) 
is a quasi neutrosophic 6-field. 

 
K = K1 ∪ K2 ∪ K3 ∪ K4 ∪ K5 ∪ K6 ∪ K7 ∪ K8 

 = Q( 2 )I ∪ Z3I ∪ N(Z29) ∪ Z17I ∪ Q( 7 11 ) ∪ 
N(Q( 19 23 3 ) ∪ N(Z47) ∪ Z43I 

is a quasi neutrosophic 8-field. 
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 Using the notion of quasi neutrosophic n-field we can 
define the new notion of quasi strong neutrosophic n-vector 
spaces (n-linear algebras) over quasi n-neutrosophic fields. 
 
DEFINITION 3.3.13: Let V = V1 ∪ V2 ∪ … ∪ Vn be such that 
some Vi’s are vector spaces over the real field Fi and some of 
the Vj’s are strong neutrosophic vector spaces over the 
neutrosophic field Fj (i ≠ j, 1 ≤ i, j ≤ n). We define V1 ∪ V2 ∪ … 
∪ Vn to be a quasi strong neutrosophic n-vector space over the 
quasi neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn. 
 
We will illustrate this and the substructures mentioned earlier by 
some examples. 
 
Example 3.3.25: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 =  
 

5

a b a
a,b,c,d Z I

c d b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1

2

3 i 7

4

5

a
a
a a Z I
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2 4

3 1 6 i 13

4 6 7 8

9 1 2 3 4

0 0 0 0 a
0 0 0 a a
0 0 a a a a Z I;1 i 6
0 a a a a
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4
i

5 6 7 8

a a a a
a N(Q);1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 



 342

 
12

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all neutrosophic polynomials in the variable x with 

coefficients from the neutrosophic field Z41I of degree less than 
or equal to 12; ai ∈ Z41I; 0 ≤ i ≤ 12} ∪  
 

1 2

3 4

5 6

7 8 i 11

9 10

11 12

13 14

a a
a a
a a
a a a Z I;1 i 14
a a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a quasi strong neutrosophic 6-vector space over the quasi 
neutrosophic 6-field F = Z5 ∪ Z7I ∪ Z13 ∪ N(Q) ∪ Z41 ∪ Z11I. 
 
Example 3.3.26: Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

1 2 3

4 5 6

7 8 9

10 11 12 i

13 14 15

16 17 18

19 20 21

a a a
a a a
a a a
a a a a N(Q);1 i 21
a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

41

a b c d e f g
b c d e g f a a,b,c,d,e,f ,g N(Z )
a b d f g a e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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41

0 0 0 a
0 0 b 0

a,b,c,d N(Z )
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

a b c d e
a b a c a a,b,c,d,e N(Z I)
d e d e c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a quasi strong neutrosophic 4-vector space over the quasi 
neutrosophic 4-field F = Q ∪ Z5I ∪ Z41 ∪ Z17I. 
 
Example 3.3.27: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

11

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3, a4, a5, a6, a7) | ai ∈ Z17I; 1 ≤ i ≤ 7} ∪ {All 7 × 7 upper 
triangular matrices with entries from N(Q)} ∪ {All 8 × 8 lower 
triangular neutrosophic matrices with entries from N(Z23)} ∪ 

i
i

i 0
a x

∞

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field N(Z41); ai ∈ N(Z41); 0 ≤ i ≤ ∞} be a 
strong quasi neutrosophic 5-linear algebra over the quasi 
neutrosophic is field F = Z11 ∪ Z17I ∪ N(Q) ∪ Z23 ∪ N(Z41).  
 
Example 3.3.28: Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {All 10×10 
neutrosophic matrices with entries from N(Z53)} ∪  
 

1

2 3 i 11

1 2 3

a 0 0
a a 0 a Z I;1 i 3
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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{All 5 × 5 diagonal matrices with entries from N(Z41)} ∪  
 

2

a b 0 0
c d 0 0

a,b,c,d N(Z )
0 0 b a
0 0 d c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong quasi neutrosophic 4-linear algebra over the quasi 
neutrosophic 4-field F = N(Z53) ∪ Z11 ∪ N(Z41) ∪ Z2. 
 
Example 3.3.29: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

1 2 3
i 3

4 5 6

a a a
a N(Z );1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
15

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all neutrosophic polynomials in the variable x of 

degree less than or equal to fifteen with coefficients from N(Q); 
ai ∈ N(Q); 0 ≤ i ≤ 15} ∪ {All 5 × 5 neutrosophic matrices with 
entries from Z7I} ∪  
 

11

a b
c d

a,b,c,d,e,f ,g,h,i, j Z Ie f
g h
i j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

0 0 0 a
0 0 b c

a,b,c,d Z I
0 c d a
a b c d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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be a strong neutrosophic 5-vector space over the 5-neutrosophic 
field F = Z3I ∪ N(Q) ∪ Z7I ∪ Z11I ∪ Z17I. W = W1 ∪ W2 ∪ W3 
∪ W4 ∪ W5 =  

3

a a a
a,b Z I

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

6
i

i
i 0

a x
=

⎧
⎨
⎩
∑ ; all polynomial in the variable x with coefficients from 

the field N(Q) of degree less than or equal to 6; 0 ≤ i ≤ 6; ai ∈ 
N(Q)} ∪ {All 5 × 5 upper triangular matrices with entries from 
the field Z7I} ∪  
 

11

a a
a a

a,b Z Ia a
a a
b b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

17

0 0 0 a
0 0 b 0

a,b,d,e Z I
0 d 0 0
e 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is a strong neutrosophic 5-vector 
subspace over the 5-neutrosophic field F. 
 
Example 3.3.30: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 = {(a1, 
a2, a3, a4, a5, a6) | ai ∈ Z7I; 1 ≤ i ≤ 6} ∪ {All polynomials in the 
variable x with coefficients from N(Q); N(Q)[x]} ∪  
 

11

a b c
d e f a,b,c,d,e,f ,g,h,k Z I
g h k

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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{All 7 × 7 neutrosophic matrices with entries from Z5I} ∪ {All 
9 × 9 upper triangular matrices with entries from N(Z23)} ∪  
 

29

a b 0 0
d e 0 0

a,b,e,b Z I
0 0 a a
0 0 a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a strong neutrosophic 6-linear algebra over the neutrosophic 
6-field F = Z7I ∪ QI ∪ Z11I ∪ Z5I ∪ N (Z23) ∪ Z29I. Let W = W1 
∪ W2 ∪ W3 ∪ W4 ∪ W5 ∪ W6 = {(a, a, a, b, b, a) | a, b ∈ Z7I} 
∪ {All polynomials in the variable x with coefficients from QI; 
that is QI[x]} ∪  
 

11

a a a
a a a a,b Z I
b a b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 
{7 × 7 neutrosophic upper triangular matrices with entries from 
Z5I} ∪ {All 9 × 9 diagonal matrices with entries form N(Z23)}  
 

∪ 29

a a 0 0
a a 0 0

a Z I
0 0 a a
0 0 a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 is a strong neutrosophic 6-
linear subalgebra of V over the neutrosophic 6-field F. 
 Thus we have given examples of strong neutrosophic n-
vector subspaces (n-linear subalgebras) over a neutrosophic n-
field F. 
 As in case of neutrosophic n-vector spaces (n-linear 
algebras) one can in case of strong neutrosophic n-vector spaces 
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(n-linear algebras) define the notion of n-linearly independent n-
subset, n-basis, strong neutrosophic n-linear transformations 
from a strong neutrosophic n-vector space (n-linear algebra) 
into a strong neutrosophic n-vector space (n-linear algebra) W 
both defined on the same n-neutrosophic field F. We can also 
define and study the properties enjoyed by strong neutrosophic 
n-linear operators on a strong neutrosophic n-vector space (n-
linear algebra) V. Concepts like strong neutrosophic eigen 
values, eigen vectors, etc of strong neutrosophic n-linear 
operators can be obtained after suitable modifications.  
 Further almost all theorems derived in case of strong 
neutrosophic bivector spaces can be derived for strong 
neutrosophic n-vector spaces. Hence we leave this task for the 
interested reader. Only in case of strong neutrosophic n-vector 
spaces one can define n-linear functions, strong neutrosophic 
dual n-vector spaces and prove (V*)* = V. That is if  
 
V*   =  * * *

1 2 nV V V∪ ∪ ∪…   
=  (V1 ∪ V2 ∪ … ∪ Vn)* 

(V*)*   =   ( * * *
1 2 nV V ... V∪ ∪ ∪ )*  

  =  * * * * * *
1 2 n(V ) (V ) ... (V )∪ ∪ ∪   

  =  V1 ∪ V2 ∪ … ∪ Vn. 
As * *

i(V )  = Vi for each i, i = 1, 2, …, n. 
 
The reader is expected to prove the following theorem. 
 
THEOREM 3.3.3: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator on a finite (n1, n2, …, nn) dimension strong 
neutrosophic n-vector space V = V1 ∪ V2 ∪ … ∪ Vn over the n-
field F = F1 ∪ F2 ∪ … ∪ Fn. Let  
C = { }1

1 1 1
1 2 kC ,C , ,C…  ∪ { }2

2 2 2
1 2 kC ,C , ,C… ∪ …∪{ }n

n n n
1 2 kC ,C , ,C…  

be distinct n-characteristic values of T = T1 ∪ T2 ∪ … ∪ Tn and 
let Wi = 

1 2 n

1 2 n
i i iW W W∪ ∪ ∪…  be the null n-space (n-null space) 

of  
T – CId = [T1 – 

1 1

1
i dC I ] ∪ [T2 – 

2 2

2
i dC I ] ∪ … ∪ [Tn – 

n n

n
i dC I ]; 
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The following are equaivalent  
(i) T is n-diagonalizable 
(ii) The n-characeristic n-polynomial for T = T1 ∪ T2 ∪ … ∪ Tn 

is  
f = f1 ∪ f2 ∪ … ∪ fn 
= (x – 

1
1d1

1C )  … (x – 
1
k1

1

d1
kC )  ∪  (x  – 

2
1d2

1C )  …(x  –  
2
k2

2

d2
kC )  

∪ … ∪  (x – 
n
1dn

1C ) … (x – 
n
kn

n

dn
kC ) . 

 
We define the notion of the n-ideal generated by n-polynomials 
which n-annihilate T = T1 ∪ T2 ∪ … ∪ Tn. 
 
DEFINITION 3.3.14: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator of the finite (n1, n2, …, nn) dimensional strong 
neutrosophic n-vector space V = V1 ∪ V2 ∪ … ∪ Vn over the 
neutrosophic n-field F = F1 ∪ … ∪ Fn. The n-minimal 
neutrosophic n-polynomial for T is the unique monic n-
generator of the n-ideal of n-polynomials over the n-field F = F1 
∪ F2 ∪ … ∪ Fn which n-annihilate T = T1 ∪ T2 ∪ … ∪ Tn. 
 The n-minimal neutrosophic n-polynomial p = p1 ∪ p2 ∪ … 
∪  pn for the n-linear operator T = T1 ∪ T2 ∪ … ∪ Tn is 
uniquely determined by the following properties.  
 
i. p is a n-monic neutrosophic n-polynomial over the n-field F 

= F1 ∪ F2 ∪ … ∪ Fn. 
ii. p(T) = p1(T1) ∪ p2(T2) ∪ … ∪ pn(Tn) = 0 ∪ 0 ∪ … ∪ 0.  

iii. No neutrosophic n-polynomial over the n-field F = F1 ∪ F2 
∪ … ∪ Fn which n-annihilates T = T1 ∪ T2 ∪ … ∪ Tn has 
smaller n-degree than p = p1 ∪ p2 ∪… ∪ pn, has.  

iv. (n1 × n1, n2 × n2, …, nn × nn) to be the order of the 
neutrosophic n-matrix A = A1 ∪ A2 ∪ … ∪ An over the n-
field F = F1 ∪ F2 ∪ … ∪ Fn (Each Ai is the neutrosophic 
matrix of order ni × ni associated with Ti with entries from 
the field Fi, i = 1, 2, …, n). 

 
The reader to expected to derive these facts and also obtain all 
the related results like Cayley Hamilton Theorem, n-projection 
primary n-decomposition theorem, n-cyclic decomposition 
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theorem, Generalized Cayley Hamilton theorem and so on. All 
these concepts can be extended appropriately from the results 
proved in case of strong neutrosophic bivector spaces over 
bifields.  

The reader can define and derive n-Jordan form or Jordan n-
form analogous to bi Jordan form or Jordan biform. 

The notion of n-inner product on strong neutrosophic n-
vector spaces of type II is an important and an interesting 
notion. 
 
DEFINITION 3.3.15: Let F = F1 ∪ F2 ∪ F3 ∪ … ∪ Fn be a real 
neutrosophic n-field and V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-vector space over F. A n-inner product of V is a 
n-function which assigns to each n-ordered pair of n-vectors α 
= α1 ∪ α2 ∪ … ∪ αn and β = β1 ∪ β2 ∪ … ∪ βn in V a n-scalar 
(α/β) = (α1/β1) ∪ (α2/β2) ∪ … ∪ (αn/ βn) in F = F1 ∪ F2 ∪ … 
∪ Fn; that is (αi / βi) ∈ Fi; i = 1, 2, …, n. (αi, βi ∈ Vi) in such a 
way that for all α = α1 ∪ α2 ∪ … ∪ αn, β = β1 ∪ β2 ∪ … ∪ βn 
and γ = γ1 ∪ γ2 ∪ … ∪ γn in V = V1 ∪ V2 ∪ … ∪ Vn and for all 
n-scalars c = c1 ∪ c2 ∪ … ∪ cn in F = F1 ∪ F2 ∪ … ∪ Fn. 
 
(a)  (α + β/γ) = (α/γ) + (β/γ) 
 (α1 + β1/γ1) ∪ (α2 + β2/γ2) ∪ … ∪ (αn+ βn/γn)  

= (α1/γ1) + (β1/γ1) ∪ (α2/γ2)+ (β2/γ2) ∪…∪ (αn/γn) + (βn/γn). 
 
(b)  (cα/β) = c(α/β) that is  
 (c1α1/β1) ∪ (c2α2/β2) ∪ … ∪ (cnαn/βn)  

= c1 (α1/ β1) ∪ c2 (α2/ β2) ∪ … ∪ cn (αn/ βn) . 
 
(c)  (α/β) = (β/α) that is  

(α1 ∪ α2 ∪ … ∪ αn / β1 ∪ β2 ∪ … ∪ βn)=  
 (β1 ∪ β2 ∪ … ∪ βn  / α1 ∪ α2 ∪ … ∪ αn ). 
  
(d)  (α/α) = (α1 ∪ α2 ∪ … ∪ αn /α1 ∪ α2 ∪ … ∪ αn) 
 = (α1/α1) ∪ (α2/α2) ∪ … ∪ (αn/αn) > (0 ∪ 0 ∪ … ∪ 0) 
 if αi ≠ 0 for i = 1, 2, …, n. 
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A strong neutrosophic n-vector space endowed with a n-linear 
product is defined as a strong neutrosophic n-inner product 
space over the real neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn. 
 Let V = 

nn n n1 2

1 2 nF F F∪ ∪ ∪…  be a strong neutrosophic n-
vector space over the real neutrosophic n-field F = F1 ∪ F2 ∪ 
… ∪ Fn, there is a standard n-inner product called the n-
standard inner product. It is defined for  
 

α = α1 ∪ α2 ∪ … ∪ αn 
= 

1 2 n

1 1 2 2 n n
1 n 1 n 1 n( x x ) ( x x ) ( x x )∪ ∪ ∪… … … …  

and  
β = β1 ∪ β2 ∪ … ∪ βn 

= 
1 2 n

1 1 2 2 n n
1 n 1 n 1 n( y y ) ( y y ) ( y y )∪ ∪ ∪… … … …  

 by 
(α/β) = 

1 1

1

1 1
j j

j
x y∑  ∪ 

2 2

2

2 2
j j

j
x y∑  ∪ … ∪ 

n n

n

n n
j j

j
x y∑ . 

 
 If A = A1 ∪ A2 ∪ …∪ An is a neutrosophic n-matrix over the 
n-field F = F1 ∪ F2 ∪ …∪ Fn, where Ai ∈ i in n

iF × , i = 1, 2, …, n. 
i in n

iF ×  is a strong neutrosophic vector space over Fi; i = 1, 2, 
…, n. V = 1 1n n

1F ×  ∪ 2 2n n
2F ×  ∪ … ∪ n nn n

nF ×  is a strong 
neutrosophic n-vector space over the n-field F = F1 ∪ F2 ∪ … 
∪ Fn and V = 1 1n n

1F ×  ∪ 2 2n n
2F ×  ∪ … ∪ n nn n

nF ×  is a strong 
neutrosophic n-vector space over the n-field F = F1 ∪ F2 ∪ … 
∪ Fn is isomorphic to the strong neutrosophic n-vector space 

2
1n

1F  ∪ 
2
2n

2F  ∪ … ∪ 
2
nn

nF  in a natural way.  
 

(A/B) = 
1 1 1 1

1 1

1 1
j k j k

j k
A B∑  ∪ 

2 2 2 2

2 2

2 2
j k j k

j k
A B∑  ∪ … ∪ 

n n n n

n n

n n
j k j k

j k
A B∑  

 
defines a n-inner product on V. A strong neutrosophic n-vector 
space over the neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn on 
which is defined a n-linear product is known as the n-inner 
product neutrosophic space or neutrosophic n-inner product 
space. 
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The reader is expected to prove the following theorem. 
 
THEOREM 3.3.4: If V = V1 ∪ V2 ∪ … ∪ Vn be a n-inner product 
neutrosophic space then for any n-vectors α = α1 ∪ α2 ∪ … ∪ 
αn and β = β1 ∪ β2 ∪ … ∪ βn in V and any scalar c = c1 ∪ c2 ∪ 
… ∪ cn in F = F1 ∪ F2 ∪ … ∪ Fn 
 
i.  ||cα|| = |c| ||α|| that is  
 ||cα|| = ||c1 α1|| ∪ … ∪ ||cn αn|| 
 = |c1| || α1|| ∪ … ∪ |cn| || αn||; 
 
ii. || α || > 0 ∪ 0 ∪ … ∪ 0 for α≠ 0,  

that is || α1|| ∪ || α2|| ∪ … ∪ || αn|| > (0, 0, …, 0) 
  = 0 ∪ 0 ∪ … ∪ 0 
 
iii.  ||(α/β)|| < || α || || β || that is 

 ||(α1/ β1)|| ∪ ||(α2/ β2)|| ∪ … ∪ ||(αn/ βn)||  
 ≤ ||α1|| ||β1|| ∪ ||α2|| ||β2|| ∪ … ∪ ||αn|| ||βn||. 

 
As in case of strong neutrosophic bivector spaces we can define 
in case of strong neutrosophic n-vector spaces the notion of n-
orthogornal n-vectors. 
 If α, β ∈ V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector in a n-inner 
product space we can define  

γ = β – 2

( / )
|| ||
β α

α
α

 ; 

that is  
γ1 ∪ γ 2 ∪ … ∪ γn 

 

= 1 1
1 12

1

( / )
|| ||

⎛ ⎞β α
β − α⎜ ⎟α⎝ ⎠

 ∪ 2 2
2 22

2

( / )
|| ||

⎛ ⎞β α
β − α⎜ ⎟α⎝ ⎠

  

 

∪ … ∪ n n
n n2

n

( / )
|| ||

⎛ ⎞β α
β − α⎜ ⎟α⎝ ⎠

. 
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We say α = α1 ∪ α2 ∪ … ∪ αn is n-orthogonal to β = β1 ∪ β2 ∪ 
… ∪ βn if  
 
(α | β)  =  (α1 | β1) ∪ (α2 | β2) ∪ … ∪ (αn | βn )   

=  0 ∪ 0 ∪ … ∪ 0. 
 This clearly implies β = β1 ∪ β2 ∪ … ∪ βn is n-orthogonal 
to α = α1 ∪ α2 ∪ … ∪ αn . 
 
The reader can easily prove the following theorem. 
 
THEOREM 3.3.5: A n-orthogonal n-set of non zero n-vectors is 
n-linearly independent. 
 
THEOREM 3.3.6: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-inner product space and let 

1

1 1
1 n( , , )β β…  ∪  

2 n

2 2 n n
1 n 1 n( , , ) ( , , )β β β β∪ ∪… … …  be any n-independent vectors 

in V. Then one way to construct n-orthogonal vectors 

1 2 n

1 1 2 2 n n
1 n 1 n 1 n( , , ) ( , , ) ( , , )α α α α α α∪ ∪ ∪… … … …  in V = V1 ∪ V2 

∪ … ∪ Vn is such that for each ki = 1, 2, …, ni the set 

1 2 n

1 1 2 2 n n
1 k 1 k 1 k( , , ) ( , , ) ( , , )α α α α α α∪ ∪ ∪… … … …  is a n-basis for 

the neutrosophic n-vector subspace spanned by 
1

1 1
1 k( , , )β β ∪…  

2 n

2 2 n n
1 k 1 k( , , ) ( , , )β β β β∪ ∪… … … . 

 
Proof: The n-vectors 

1 2

1 1 2 2
1 n 1 n( , , ) ( , , ) ...α α ∪ α α ∪ ∪… …  

n

n n
1 n( , , )α α…  will be obtained by means of a construction 

known as Gram-Schmidt n-orthogonalization process. 
 First let α1 = 1 2 n

1 1 1α ∪ α ∪ ∪ α…  = β1 = 1 2 n
1 1 1...β ∪ β ∪ ∪ β . 

The other n-vector are given inductively as follows.  
 Suppose α1 , α2 , …, 

imα (1 ≤ mi < ni) have been choosen so 

that for every ki, {α1, α2 , …, 
ikα }; 1 ≤ ki ≤ mi is an orthogonal 

n-basis for the n-subspace of V that is spanned by β1 … βk. To 
construct the next n-vector 

im 1+α  let  
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im 1+α  = 
i i i

1 2 n
m 1 m 1 m 1...+ + +α ∪ α ∪ ∪ α  

 

im 1+β  = 
m

m 1 k k
2

k 1 k

( / )
|| ||
+

=

β α α
α∑  

 
= 

i i i1 2 n

1 2 n
m 1 m 1 m 1...+ + +β ∪ β ∪ ∪ β   

 

– i i1 1

i1
i i1 1

1 1
m 1 k 1

k1 2
k k

( )

|| ||
+β α

α
α∑ ∪ i i2 2

i2
i i2 2

2 2
m 1 k 2

k2 2
k k

( )

|| ||
+β α

α
α∑  ∪ … ∪  

 

i in n

in
i in n

n n
m 1 k n

kn 2
k k

( )

|| ||
+β α

α
α∑  = i i1 1

i i1 1
i1

1 1
m 1 k1 1

m 1 k1 2
k

( / )

|| ||
+

+

⎛ ⎞β α
⎜ ⎟β − α
⎜ ⎟α⎝ ⎠

∑  ∪ … ∪  

 

i in n

i in n
in

n n
m 1 kn n

m 1 kn 2
k

( / )

|| ||
+

+

⎛ ⎞β α
⎜ ⎟β − α
⎜ ⎟α⎝ ⎠

∑ . 

 
Then 

im 1+α  ≠ 0 i.e., i
m 1+α  ≠ 0; for other wise i

m 1+β  is a linear 

combination of i i i
1 2 m 1... +α ∪ α ∪ ∪ α ; i = 1, 2, …,n. Further more 

it can be verified (
i

i i
m 1 j/+α α ) = 0; 1≤ j ≤ mi true for i = 1,2,…, n. 

 Hence true for (αm+1/αj) = 0 ∪ … ∪ 0.  
Therefore  

1

1 1
1 m 1{ , , }+α α…  ∪ 

2

2 2
1 m 1{ , , }+α α…  ∪ … ∪

n

n n
1 m 1{ , , }+α α…  

is an n-orthogonal set consisting (m1 + 1, m2 + 1, …, mn + 1) non 
zero n-vectors in the n-subspace spanned by  

1

1 1
1 m 1{ , , }+β β…  ∪ 

2

2 2
1 m 1{ , , }+β β…  ∪ … ∪

n

n n
1 m 1{ , , }+β β… . 

In particular for m = 4 we have  
 

1 2 n
1 1 1...α ∪ α ∪ ∪ α  = 1 2 n

1 1 1...β ∪ β ∪ ∪ β . 
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1 2 n
2 2 2...α ∪ α ∪ ∪ α  = 1 2 n

2 2 2...β ∪ β ∪ ∪ β  – 
( )1 1

2 1 1
11 2

1

/
|| ||
β α

α
α

 ∪ 

 
( )2 2

2 1 2
12 2

1

/
|| ||
β α

α
α

 ∪ … ∪ 
( )n n

2 1 n
1n 2

1

/
|| ||
β α

α
α

 

 

= 
( )1 1

2 11 1
2 11 2

1

/
|| ||
β α

β − α
α

 ∪ 
( )2 2

2 12 2
2 12 2

1

/
|| ||
β α

β − α
α

 ∪ … ∪ 
( )n n

2 1n n
2 1n 2

1

/
|| ||
β α

β − α
α

 

 
and so on. 

 
Interested reader on similar lines can construct α3 = 

1 2 n
3 3 3...α ∪ α ∪ ∪ α  interms of β3, α2 and α1 and so on. 

 
Now we define the notion of best n-approximation in case of 
strong neutrosophic n-vector spaces over the neutrosophic n-
field F.  
 
DEFINITION 3.3.16: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-vector space over the neutrosophic n-field F = 
F1 ∪ F2 ∪ … ∪ Fn (All Fi’s are not pure neutrosophic for i = 1, 
2, …, n) of type II. 
 Let W = W1 ∪ W2 ∪ … ∪ Wn be a strong neutrosophic n-
vector subspace of V over F. Let β = β1 ∪ β2 ∪ … ∪ βn be a n-
vector in V = V1 ∪ V2 ∪ … ∪ Vn, β ∉ W (i.e., βi ∉ Wi for i = 1, 
2, …, n). 
To find the n best approximation (best n-approximation) to β = 
β1 ∪ β2 ∪ … ∪ βn in W = W1 ∪ W2 ∪ … ∪ Wn.  
That is to find a n-vector α  = α1 ∪ α2 ∪ … ∪ αn for which  

 
||β−α|| = || β1 – α1|| ∪ || β2 – α2|| ∪ … ∪ || βn – αn|| 

 
is as small as possible subject to the restriction α  = α1 ∪ α2 ∪ 
… ∪ αn is in W = W1 ∪ W2 ∪ … ∪ Wn (that is each || βi – αi|| is 
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as small as possible subject to the restriction that αi should 
belong to Wi, i = 1, 2, …, n). 

To be more precise a best n-approximation to β = β1 ∪ β2 
∪ … ∪ βn in W = W1 ∪ W2 ∪ … ∪ Wn is a n-vector α = α1 ∪ 
α2 ∪ … ∪ αn in W such that 

||β − α|| < ||β – γ|| 
that is  

||β1 – α1|| ∪ ||β2 – α2|| ∪ … ∪ ||βn – αn|| 
≤ ||β1 – γ1|| ∪ ||β2 – γ2|| ∪ … ∪ ||βn – γn|| 

 
for every n-vector γ = γ1 ∪ γ2 ∪ … ∪ γn in W. 
 
It is important to note that as in case of n-vector spaces of type 
II, we as in case of strong neutrosophic n-vector spaces define 
the notion of n-orthogonality. 

However the interested reader can prove the following 
theorem. 
 
THEOREM 3.3.7: Let W = W1 ∪ W2 ∪ … ∪ Wn be a strong 
neutrosophic n-vector subspace of a strong neutrosophic n-
inner product space V = V1 ∪ V2 ∪ … ∪ Vn. Let β = β 1 ∪ β 2 ∪ 
… ∪ β n ∈ V = V1 ∪ V2 ∪ … ∪ Vn; βi ∈ Vi; i = 1, 2, …, n. 
 
i. The n-vector α = α 1 ∪ α2 ∪ … ∪ α n in W is a best n-

approximation to β  = β1 ∪ β2 ∪ … ∪ βn by n-vectors in W 
= W1 ∪ W2 ∪ … ∪ Wn if and only if β – α = (β1 – α1) ∪ (β2 
– α2) ∪ … ∪ (βn – αn) is n-orthogonal to every n-vector in 
W.  
That is each βi – αi is orthogonal to every vector in Wi; true 
for i = 1, 2, …, n. 

ii. If the best n-approximation to β = β1 ∪ β2 ∪ … ∪ βn in W 
= W1 ∪ W2 ∪ … ∪ Wn exists then it is unique. 

 
Now we proceed onto define the notion of n-orthogonal 
complement of a n-set of n-vectors in V = V1 ∪ V2 ∪ … ∪ Vn. 
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DEFINITION 3.3.17: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic inner produce space of type II defined over the 
neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn.  

Let S = S1 ∪ S2 ∪ … ∪ Sn be any n-set of n-vectors in V = 
V1 ∪ V2 ∪ … ∪ Vn. The n-orthogonal complement of S denoted 
by S⊥ = 1 2S S⊥ ⊥∪ ∪ … ∪ nS ⊥  is the set of all n-vectors in V 
which are n-orthogonal to every n-vector in S. 
 
The reader is expected to prove the following theorems. 
 
THEOREM 3.3.8: Let V = V1 ∪ V2 ∪ … ∪ Vn be a strong 
neutrosophic n-inner product space. Let W = W1 ∪ W2 ∪ … ∪ 
Wn be a finite dimensional strong neutrosophic n-vector 
subspace of V and E = E1 ∪ E2 ∪ … ∪ En be the n-orthogonal 
projection of V on W.  

Then the n-mapping β → (β – Eβ); that is  
β1 ∪ β2 ∪ … ∪ βn → (β1 – Eβ1) ∪ (β2 – Eβ2) ∪ … ∪ (βn – Eβn) 
i.e., each βi → (βi – Eβi) for i = 1, 2, …, n is the n-orthogonal 
projection of V on W. 
 
THEOREM 3.3.9: Let W = W1 ∪ W2 ∪ … ∪ Wn be a finite (n1, 
n2, …, nn) n-dimensional strong neutrosophic n-vector subspace 
of the strong neutrosophic n-inner product space V = V1 ∪ V2 ∪ 
…∪ Vn of type II. 

 Let E = E1 ∪ E2 ∪ …∪ En be an n-idempotent n-linear 
transformation of V onto W. W⊥= 1 2W W⊥ ⊥∪ ∪…∪ nW ⊥  is the 
null n-subspace of E = E1 ∪ E2 ∪ … ∪ En and V = W ⊕ W⊥ that 
is  

V = V1 ∪ V2 ∪ … ∪ Vn 
= 1 1 n nW W W W⊥ ⊥⊕ ∪ ∪ ⊕… . 

 
THEOREM 3.3.10: Under the conditions of the above theorem I 
– E = I1 ∪ I2 ∪ … ∪ In – (E1 ∪ E2 ∪ … ∪ En) = I1 – E1 ∪ I2 – 
E2 ∪ … ∪ In – En is the n-orthogonal n-projection of V on W⊥. It 
is a n-idempotent n-linear transformation of V on to W⊥ with n-
null space W = W1 ∪ W2 ∪ … ∪ Wn. 
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THEOREM 3.3.11: Let  
{ }1

1 1
1 n,...,α α  ∪ { }2

2 2
1 n,...,α α  ∪ … ∪ { }n

n n
1 n,...,α α  

 
be a n-orthogonal set of non zero n-vectors in a strong n-inner 
product space V = V1 ∪ V2 ∪ … ∪ Vn over F = F1 ∪ F2 ∪ … ∪ 
Fn of type II.  

If β = β1 ∪ β2 ∪ … ∪ βn is any n-vector in V = V1 ∪ V2 ∪ 
… ∪ Vn then  

 

1

1 1

1 2
1 k

1 2
k k

|( / )|
|| ||
β α

α

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑  ∪ 

 

2

2 2

2 2
2 k

2 2
k k

|( / )|
|| ||
β α

α

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑  ∪ … ∪ 

 

n

n n

2 2
n k

2 2
k k

|( / )|
|| ||
β α

α

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑  

 
≤ ||β1||2 ∪ ||β2||2 ∪ … ∪ ||βn||2 

 
and equality holds if and only if 
 

β1 ∪ β2 ∪ … ∪ βn 
 

= ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1

1

1

1 1
21

1
1

||||
)/(

k
k

k

k α
α

αβ
 ∪ 

 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2

2

2

2 2
22

2
2

||||
)/(

k
k

k

k α
α

αβ
 ∪ … ∪ 
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∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

n

n

n

n

k
k

k

kn 2
22

2

||||
)/(
α

α
αβ

. 

 
 Results on neutrosophic bivector spaces (bilinear algebras) 
discussed and derived in Chapter 2 can be derived for 
neutrosophic n-vector spaces (n-linear algebras).  
 Further all results true in case of n-linear algebras of type II 
can be derived in case of neutrosophic n-linear algebras of type 
II with appropriate modifications.  
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Chapter Four  
 
 
 
 
 

 
APPLICATIONS OF  
NEUTROSOPHIC n-LINEAR ALGEBRAS  
 
 
 
 
 
 
 
 
In this chapter we just suggest the possible applications of the 
neutrosophic n-linear algebras of type I and II (n ≥ 2), strong 
neutrosophic n-linear algebras of type I and II and quasi strong 
neutrosophic linear algebras of type II.  
 These neutrosophic n-linear algebras over the neutrosophic 
n-fields or over the real n-field can be used in neutrosophic 
fuzzy models like Neutrosophic Cognitive Maps (NCMs) and 
when we have multiexperts we can use the neutrosophic n-
matrices and model n- NCMs (n ≥ 2).  
 These neutrosophic n-matrices can also be used to model 
Neutrosophic Fuzzy Relational maps, when n-experts give their 
opinion on any real world problem. Use of these neutrosophic 
n-matrices will save time and economy. 
 These neutrosophic n-matrices can be used in n-models 
whenever the concept of indeterminacy is present. 
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 The n-NCMs (i.e., NCMs constructed using neutrosophic n-
matrices which gives the NCM model of n-experts n ≥ 2) can be 
used in creating metabolic regulatory n-Network models. Also 
multi expert NCM models can be used to find the driving speed 
vehicles of any one in free way.  These n-NCM models will be 
very useful in Medical diagnostics. n-NCMs using neutrosophic 
n-matrices with entries from [0, 1] can be used in diagnosis and 
study of specific language impairment.  
 These structures will be best suited for web mining n-
inferences and in robotics. 
 The strong neutrosophic n-linear operators when analyzing 
the eigen values and eigen vectors in any real models where 
indeterminacy is dominant can be used. 
 We see pure complex numbers ni, (i is such that i2 = –1 and 
n ∈ R) at an even stages (powers) merges with real but when we 
use the indeterminant ‘I’ they at no point of time merge with 
reals. Thus if the presence of indeterminacy prevails use of 
neutrosophic models is more appropriate. 
 The n-NCM models can be used in legal rules when several 
lawyers give their opinion about a case. 
 These models will also be better suited in analysis of 
Business Performance Assessment as in business always a 
factor of indeterminacy is present.  
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Chapter Five  
 
 
 
 
 

 
SUGGESTED PROBLEMS  
 
 
 
 
 
 
 
 
In this chapter we have given over eighty problems for the 
reader to solve. This will help one to understand the concepts 
introduced in this book.  
 

1. Let V = V1 ∪ V2 =  
 

13

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 1 2 3

4 5 6

a a a
a a a

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 

 
 where ai ∈ N(Z13); 1 ≤ i ≤ 6} be a neutrosophic bivector space 

over the field Z13.  
a. Find neutrosophic bivector subspaces of V. 
b.  Find 

13ZNHom (V, V). 
c.  Can V have special neutrosophic bivector subspaces over 

a subfield of Z13? 
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2. Let V = V1 ∪ V2 be a neutrosophic bivector space over a real 
field F. Develop some interesting properties of V. 

 
3. Let V = V1 ∪ V2 and W = W1 ∪ W2 be two neutrosophic 

bivector spaces over the field F. Find the algebraic structure 
of NHomF (V, W).  

 
4. Let V = V1 ∪ V2 =  
 

17

a b c
0 d e a,b,c,d,e,f Z I
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

1 2

3 4
i 17

5 6

7 8

a a
a a

a N(Z )
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

  
 be a neutrosophic bivector space over the real field Z17. Find 

atleast one neutrosophic linear bioperator on V which is 
inverible. Does there exist a neutrosophic linear bioperator T 
on V which is inverible but T has a non trivial kernel? 

 
5. Let V = V1 ∪ V2 = {Z11I[x]} ∪  
  

 1 2 3 4 5
i 17

6 7 8 9 10

a a a a a
a Z I;1 i 10

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
 be a neutrosophic bivector space over the field Z11. Find a 

bibasis of V over Z11. Define a bilinear bioperator T on V 
which is not inverible. 

 
6. Let V = V1 ∪ V2, W = W1 ∪ W2 and S = S1 ∪ S2 be three 

neutrosophic bivector spaces over the real field F. Suppose T: 
V → W is a neutrosophic bilinear bitransformation, P : W → 
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S is a neutrosophic bilinear transformation. Will TP: V→ S be 
a neutrosophic bilinear transformation from V to S?(we define 
(TP) (ν) = P(T(ν)) | ν ∈ V so T(ν) ∈ W; P((T(ν)) ∈ S). 

 
7. Let V = V1 ∪ V2 and W = W1 ∪ W2 be two finite 

bidimensional neutrosophic bivector spaces over the real field 
F. Prove if T = T1 ∪ T2 : V → W is a linear bitransformation 
then nullity T + rank T = bidim V, that is nullity (T1 ∪ T2) + 
rank (T1 ∪ T2) = dim V1 ∪ dim V2. 

 
8. Define neutrosophic hyperbisubspace of V. Illustrate this 

concept by an example. 
 
9. Does there exist a neutrosophic bivector space which has no 

neutrosophic hyper bisubspace? Justify your claim. 
 
10. Can you characterize those neutrosophic bivector spaces 

which has no neutrosophic hyper bisubspace? 
 
11. Let V = V1 ∪ V2 = {Z17I} ∪ {Z17I[x]} be a neutrosophic 

bivector space over the field Z17. Does V have neutrosophic 
hyper bisubspace? 

 
12. Obtain some interesting properties about the special strong 

neutrosophic bivector spaces over the neutrosophic bifield F = 
F1 ∪ F2. 

 
13. Let V = V1 ∪ V2 =  
 

11

a b c
a,b,c,d,e,f Z I

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4
i

5 6

7 8

a a
a a

a N(Q);1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = Z11I ∪ N(Q) = F1 ∪ F2. 
a. Find a bibasis of V over the bifield F = F1 ∪ F2. 
b. Can V have proper strong neutrosophic bivector 

subspaces W1, W2 which are such that W1 ≅ W2? 
c. Is V bisimple? 
d. Find a linear bioperator on V which is non biinvertible. 
e. Find a linear bioperator on V which is biinvertible. 
f. Can V have proper hyper bisubspace? 

 
14. Let V = V1 ∪ V2 = {collection of all 7 × 7 neutrosophic 

matrices with entries from the neutrosophic field Z5I} ∪ 
{Collection of all 9 × 9 neutrosophic matrices with entries 
from the neutrosophic field QI} be a strong neutrosophic 
bivector space over the neutrosophic bifield F = F1 ∪ F2 = Z5I 
∪ QI. 
a. Is V a strong neutrosophic bilinear algebra over F? 
b. Can V have proper strong neutrosophic bilinear 

subalgebras over F = F1 ∪ F2? 
c. Find SNH (V, V). 
d. Define a linear bioperator T on V which is biinvertible. 
e. Find a bibasis for V. 
f. Can V have pseudo strong bivector subspaces? 
g. Find for a bilinear operator T on V the associated 

bicharacteristic values and bicharacteristic vectors.  
h. Is V bisimple? 
i. Can V have pseudo real bilinear subalgebras? 

 
15. Obtain some interesting properties about SNH (V, W) where 

V and W are strong neutrosophic bivector spaces defined over 
the pure neutrosophic bifield F = F1 ∪ F2. 

 
16. Will every strong neutrosophic bivector space have strong 

neutrosophic hyper space? 
 
17. Let B = B1 ∪ B2 =  
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I 0 1 2
3I 0 1

0 2I I 0
0 5I 4

0 1 I 0 2 I
0 2I 2

2I 1 0 0 I

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∪⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ +⎝ ⎠

 

  
 be a neutrosophic bimatrix with entries from the neutrosophic 

bifield F = F1 ∪ F2 = N(Z5) ∪ N(Z3). Find the bicharacteristic 
values associated with B. Find the bicharacteristic 
neutrosophic bipolynomial associated with it. 

 
18. Let V = V1 ∪ V2 =  
 

1 2

3 4

5 6 i 17

7 8

9 10

a a
a a
a a a Z I;1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3
i 5

4 5 6

a a a
a Z I;1 i 10

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = F1 ∪ F2 = Z17 I ∪ Z5I. W = W1 ∪ W2 = {(a, b, c, d, 
e, f, g) | a, b, c, d, e, f, g ∈ Z17I} ∪  

  

 

1 2 3

4 5 6
i 5

7 8 9

10 11 12

a a a
a a a

a Z I;1 i 12
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 be a strong neutrosophic bivector space over the same 

neutrosophic bifield F = F1 ∪ F2 = Z17I ∪ Z5I. 
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a. Find SNH(V, W) = L2(V, W). Is L2(V, W) a strong 
neutrosophic bivector space over the bifield Z17I ∪ Z5I? 

b. Find a T : V → W such that T is not biinvertible. 
c. Can T : V → W be such that, T is biinvertible? 
d. Find a S : W → W such that S is biinvertible. 
e. Find L2(W, V). 
f. Find a bibasis for V. 
g. Find a bibasis for W. 
h. What is the bidimension of V? 
i. What is the bidimension of L2(V, W) over Z17I ∪ Z5I? 
j. Is V and W bisimple strong neutrosophic bivector spaces? 
k. Find SNH (V, V) = L2(V, V). 
l. Find SNH (W, W) = L2(W, W). 

 
19. Let A = A1 ∪ A2 =  

4I 0 2 I
I 0 3

3I I 0 7
7I 6 2

0 I 0 0
0 0 4I

8 0 7I 4I

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠

 

 
 be a neutrosophic bimatrix with entries from the neutrosophic 

bifield N(Z11) ∪ N(Q) = F1 ∪ F2 = F. 
a. Find the bicharacteristic bipolynomial associated with A. 
b. Find the bicharacteristic bieigen values of A. 
c. Is A bidiagonalizable over the bifield F = F1 ∪ F2? 

 
20. Obtain some interesting properties about bipolynomial 

biideals. 
 
21. Let V = V1 ∪ V2 =  

 
2i

i i 7
i 0

a x a Z I
∞

=

⎧ ⎫
∈⎨ ⎬

⎩ ⎭
∑  ∪ 

19
2i

i i
i 0

a x a N(Q); 0 i 19
=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

  
 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = Z7I ∪ N(Q). Define T : V → V and find the 
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bicharacteristic values associated with T. Find the 
bidimension of V over F = Z7I ∪ N(Q). 

 
22. Let V = V1 ∪ V2 =  

 
a a a a a

a N(R)
a a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

7

a b
b a

a,b Z I
a b
b a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = F1 ∪ F2 = N(R) ∪ Z7I. 
a. Find a bibasis of V relative to the bifield F = R(I) ∪ Z7I. 
b. Find a bibasis of V relative to the bifield K = K1 ∪ K2 = 

RI ∪ Z7I.  
c. Find the bibasis of V relative to the bifield S = S1 ∪ S2 = 

N(Q) ∪ Z7I where V is a strong neutrosophic bivector 
space defined over S = S1 ∪ S2. 

d. Find the bibasis of V relative to the bifield P = P1 ∪ P2 = 
QI ∪ Z7I. 

 Compare the bibasis of V when defined over 4 different fields 
and establish that the bidimension of a strong neutrosophic 
bivector space is dependent on the neutrosophic bifield over 
which the bispace is defined. 

 
23. Does there exist a strong neutrosophic bivector space whose 

bidimension is independent of the neutrosophic bifield over 
which it is defined? 

 
24. Let V =  

11

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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7

a b c
0 d e a,b,c,d,e,f Z I
0 0 f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

  
 be a strong neutrosophic bilinear algebra defined over the 

neutrosophic bifield F = Z11I ∪ Z7I. 
a. Find a bibasis of V and the bidimension of V over F. 
b. Find the bidimension of NL(V,V) = {all linear bioperators 

on V} over F = Z11I ∪ Z7I. 
c. Is V pseudo bisimple? Justify your claim. 

 
25. Let V = V1 ∪ V2 = {(a1, a2, a3, a4, a5) | ai ∈ N(Q)} ∪  
 

 

1

2

3
i 11

4

5

6

a
a
a

a Z I
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = F1 ∪ F2 = QI ∪ Z11I and W = W1 ∪ W2 =  
 

 
a b c
0 d e a,b,c,d,e QI
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

 1 2 3
i 11

4 5 6

a a a
a Z I

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
 be a strong neutrosophic bivector space over the same bifield 

F = F1 ∪ F2 = QI ∪ Z11I. 
 Find L2 (V, W) and L2 (W, V). 
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 Determine the bidimension of L2 (V, W) and L2 (W, V) over F 
= QI ∪ Z11I. 

  
26. Let V = V1 ∪ V2 =  
  

a b
a,b,c,d QI

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
9

i
i i 13

i 0
a x a Z I;0 i 9

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = QI ∪ Z13I. Find the bidimension of L2(V, V) over 
F = QI ∪ Z13I.  

 
27. Let V = V1 ∪ V2 = 

 
a b

a,b,c,d QI
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
9

i
i i

i 0
a x a QI;0 i 9

=

⎧ ⎫
∈ ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
 be a neutrosophic space over the neutrosophic field F = QI. 

a. Find a bibasis for V. 
b. Find the bidimension of L2 (V, V). 

 
28. Let V = V1 ∪ V2 = 
  

3

a b
c d a,b,c,d,e,f Z I
e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
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 {(a, a, a, a, b, b, b, b) | a, b ∈ Z2I} be a strong neutrosophic 
bivector space over the neutrosophic bifield F = Z3I ∪ Z2I. 
a. Find a bibasis for V. 
b. What is the bidimension of V over F? 
c. Find a T = T1 ∪ T2 : V = V1 ∪ V2 → V1 ∪ V2 such that 

all the bicharacteristic values associated with T are 
distinct. 

d. Find L2 (V, V). 
e. What is the bidimension of L2(V, V) over F? 

 
29. Let V = V1 ∪ V2 = {QI} ∪ {Z11I} be a strong neutrosophic 

bilinear algebra defined over the neutrosophic bifield F = QI 
∪ Z11I. 
a. What is the bidimension of V? 
b. Suppose V=V1 ∪V2 is only a strong neutrosophic bivector 

space over F = QI ∪ Z11I, what is the bidimension of V? 
c. Does the bidimension in general dependent on its 

algebraic structure? 
 
30. Let V = V1 ∪ V2 = N (Q) ∪ Z19I be a strong neutrosophic 

bivector space over the neutrosophic bifield F = QI ∪ Z19I. 
a. What is bidimension of V? 
b. If V = V1 ∪ V2 is realized as a strong neutrosophic 

bilinear algebra over the bifield F = QI ∪ Z19I. What is its 
bidimension? 

c. Compare and find if any difference exists. 
 
31. Let V = V1 ∪ V2 = {QI} ∪ {(a, b, c) | a, b, c, ∈ Z17I} be 

neutrosophic bivector space over the real bifield F = Q ∪ Z17. 
a. Find a bibasis for V over F. 
b. Find the bidimension of V over F. 
c. Find L2(V, V). 
d. What is the bidimension of L2 (V, V)? 

 
32. Let V = V1 ∪ V2 =  

 i
i i 11

i 0
a x a Z I;i 0,1,2, ,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑ …   
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∪ i
i i 17

i 0
a x a Z I;i 0,1,2, ,

∞

=

⎧ ⎫
∈ = ∞⎨ ⎬

⎩ ⎭
∑ …  

 
 be a neutrosophic bivector space over the bifield F = Z11 ∪ 

Z17. 
a. What is the bidimension of V over F = Z11 ∪ Z17? 
b. Suppose the same V is defined to be a strong neutrosophic 

bivector space over the field K = Z11I ∪ Z17I, what is the 
bidimension of V over the bifield K = Z11I ∪ Z17I? 

c. Find 2
FL (V, V) and 2

kL (V, V). 
d. What is the bidimensions of 2

FL (V, V)? 
 
33. Let V = V1 ∪ V2 and W = W1 ∪ W2 be two (n1, n2) and (m1, 

m2) bidimensional strong neutrosophic bivector spaces over 
the bifield F = F1 ∪ F2. Let C* and B* be the dual bibasis of V 
and W of C and B respectively.If A is a neutrosophic bimatrix 
of T = T1 ∪ T2, a bilinear transformation of V to W relative to 
the bibasis C and B and Tt relative to C* and B* respectively. 
Obtain some interesting relations between T and Tt. 

 
34. Obtain some interesting properties / results about 

bidiagonalizable bilinear operator. 
 
35. Find the bipolynomial for the neutrosophic bimatrix A = A1 ∪ 

A2 =  
3I 0 4I 1

I 0 1
0 7I 3 0

0 I 1
2 1 4 3

0 1 I
10I 0 9 I

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ ∪ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠

⎝ ⎠

 

 
 where A is defined over the neutrosophic bifield F = F1 ∪ F2 

= N(Z11) ∪ N(Z2). 
 
36. Illustrate by an example that birank Tt = birank T. 
 
37. Let V = V1 ∪ V2 =  
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11

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3
i

4 5 6

a a a
a N(Q),1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
 be a strong neutrosophic bivector space over the bifield F = F1 

∪ F2 and let T = T1 ∪ T2 be a bilinear operator on V defined 
by T = T1 ∪ T2 : V = V1 ∪ V2 → V = V1 ∪ V2 where T1 : V1 
→ V1 and T2 : V2 →V2 such that 

 

 T1 
a b a b
c d 0 d

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 and 

 T2 1 2 3 1 3

4 5 6 5

a a a a 0 a
a a a 0 a 0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

  
 Find Tt. Is birank Tt = birank T? 
 
38. Let V = V1 ∪ V2 =  
 

 29

a b c
d e f a,b,c,d,e,f ,g,h,i Z I
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

 1 2 3 4
i 2

5 6 7 8

a a a a
a N(Z );1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

 W = 

1 2

3 4
i 29

5 6

7 8

a a
a a

a Z I;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 
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1 2 3

4 5 6
i 2

7 8 9

10 11 12

a a a
a a a

a N(Z );1 i 12
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 be two strong neutrosophic bivector spaces over the 
neutrosophic bifield F = F1 ∪ F2 = Z29I ∪ N(Z2). Define a T = 
T1 ∪ T2 : V = V1 ∪ V2 → W = W1 ∪ W2 such that Tt, its 
bitranspose of T.  
a. Prove birange of Tt is the biannihilator of the binull space 

of T. 
b. Prove birank Tt = birank T. 

 
39. For the V and W given in problem (38) Find L2 (V, W) and L2 

(W, V).  
 
40. For V and W given in problem (38) find a T such that (a) T is 

biinverible (b) T is binon singular.  
 

41. For a give strong neutrosophic bivector space V = V1 ∪ V2 =  
 

a b c
d e f a,b,c,d,e,f ,g,h,i N(Q)
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

   1 2 3
i 29

4 5 6

a a a
a N(Z );1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
 defined over the neutrosophic bifield F = N(Q) ∪ N(Z29). 

Define a bilinear functional f = f1 ∪ f2 from V into F. 
a. Find for a bibasis B of V = V1 ∪ V2, the bibasis B* of V* = 

* *
1 2V V∪ . 

b. Prove V** = V and bidimension V = bidimension V*. 
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42. Obtain some interesting properties about bilinear functionals 
defined on a strong neutrosophic bivector space over a 
neutrosophic bifield. 

 
43. Find for V = V1 ∪ V2 =  
 

a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2 3 4
i 11

5 6 7 8

a a a a
a N(Z );1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 a strong neutrosophic bivector space defined over the 

neutrosophic bifield F = N(Q) ∪ N(Z11), a T bidiagonalizable 
linear bioperator on V. If B = B1 ∪ B2 is a bibasis prove [T]B 
= [ ] [ ]

1 2
1 2B B

T T∪ . 

 
44. Let V = V1 ∪ V2 =  
 

 

1 2

3 4
i

5 6

7 8

a a
a a

a N(Q);1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5
i 17

6 7 8 9 10

a a a a a
a N(Z );1 i 8

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
 be a strong neutrosophic bivector space over the neutrosophic 

bifield F = F1 ∪ F2 = N(Q) ∪ N(Z17). Find V*. Prove V** = V. 
Find two distinct strong neutrosophic bivector subspaces W1 
and W2 in V and find o

1W  and o
2W . 

 
45. Let V = V1 ∪ V2 =  
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a b
a,b,c,d N(Q)

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z11I}, 

 

W = 
a b e

a,b,c,d,e,f N(Q)
c d f

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, a, a, b, b) | a, b ∈ Z11I} = W1 ∪ W2 

 
and P = P1 ∪ P2 =  

a b
c d a,b,c,d,e,f N(Q)
e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

11

a b c d e
a,b,c,d,e,f ,g,h,i, j Z I

f g h i j
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
 be three strong neutrosophic bivector spaces over the bifield F 

= QI ∪ Z11I. 
a. Find linear bioperator T = T1 ∪ T2 : V1 ∪ V2 = V → W = 

W1 ∪ W2 and S = S1 ∪ S2 : W = W1 ∪ W2 → P = P1 ∪ P2. 
b. Find L2 (V, W), L2 (W, P) and L2 (V, P) and their 

bidimensions. 
  
46. Let V = V1 ∪ V2 =  

 

7

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
a b

a,b,c,d N(Q)
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 be a strong neutrosophic bilinear algebra over the 

neutrosophic bifield F = F1 ∪ F2 = Z7I ∪ N(Q). 
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a. What is the bidimension of V? 
b. Find a bibasis of V. 
c. What is the bidimension of L2(V, W) = L2(V1, W1) ∪ 

L2(V2, W2)? 
d. Find a linear bifunctional f = f1 ∪ f2 : V = V1 ∪ V2 → F1 

∪ F2 and find bikernel f = kernel f1 ∪ kernel f2. 
 
47. Let F = F1 ∪ F2 be a neutrosophic bifield. Show that the 

neutrosophic biideal generated by finite number of 
neutrosophic bipolynomial f1, f2 where f1 = 1 1

1 2f f∪  and f2 = 
2 2

1 2f f∪  in F[x] = F1[x] ∪ F2[x] is the intersection of all 
neutrosophic biideals in F[x]. 

 
48. Let (n1, n2) be a biset of positive integers and F = F1 ∪ F2 be a 

neutrosophic bifield, let W = W1 ∪ W2 be the set of all 
bivectors ( )1

1 1
1 nx ,..., x  ∪ ( )3

2 2
1 nx ,..., x  in 1 2n nF F∪  such that  

 
1

1 1 1
1 2 nx x ... x 0+ + + =  and 

2

2 2 2
1 2 nx x ... x 0+ + + = . 

a. Prove Wo = o o
1 2W W∪  consists of all bilinear functionals 

f = f1 ∪ f2 of the form 

f1 ( )1

1 1 1
1 2 nx , x ,..., x  ∪ f2 ( )2

2 2 2
1 2 nx ,x ,..., x = 

1 2n n
1 2

1 j 2 j
j 1 j 1

c x c x
= =

∪∑ ∑ . 

b. Show that the bidual space W* of W can be naturally 
identified with the bilinear functionals  

f1 ( )1

1 1 1
1 2 nx , x ,..., x  ∪ f2 ( )2

2 2 2
1 2 nx ,x ,..., x  

= ( )1 1

1 1 1 1
1 1 n nc x ... c x+ +  ∪ ( )2 2

2 2 2 2
1 1 n nc x ... c x+ +  

on 1 2n n
1 2F F∪  which satisfy 

1

i i
1 nc ... c+ +  = 0 for i = 1, 2. 

 
49. Let W = W1 ∪ W2 be a strong neutrosophic bisubspace of a 

finite (n1, n2) bidimensional bivector space over V = V1 ∪ V2 
and if g = g1 ∪ g2 = ( ){ }1

1 1
1 rg ,...,g  ∪ ( ){ }2

2 2
1 rg ,...,g  is a bibasis 

for Wo = o o
1 2W W∪  then prove  
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W = 
ig

i

N∩  = 
1 2

i i1 2
1 2

r r
1 2
g g

i 1 i 1

N N
= =

∪∩ ∩  

 
where ( ){ }1

1 1
1 rN , , N… ∪ ( ){ }2

2 2
1 rN , , N…  is the biset of binull 

space of bilinear functionals  
f = f1 ∪ f2 = ( ){ }1

1 1 1
1 2 rf , f ,..., f  ∪ ( ){ }2

2 2 2
1 2 rf ,f ,..., f  and 

g = g1 ∪ g2 = ( ){ }1

1 1
1 rg ,...,g  ∪ ( ){ }2

2 2
1 rg ,...,g  

and is the bilinear combination of the bilinear functionals f = 
f1 ∪ f2. 

 
50  Let V = V1 ∪ V2 ∪ V3 =  

 

7

a b e
a,b,c,d,e,f Z I

c d f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4
i 11

5 6

7 8

a a
a a

a Z I;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5 6
i 13

7 8 9 10 11 12

a a a a a a
a Z I;1 i 12

a a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  
 be a neutrosophic trivector space over the 3-field F = Z7 ∪ Z11 

∪ Z13. 
a. Find a tribasis of V. 
b. Find neutrosophic trivector subspaces of V. 
c. What is the 3-dimension of V? 
d. Define a neutrosophic trilinear operator T on V which is 

non invertible (if T = T1 ∪ T2 ∪ T3 then T-1 = 1 1
1 2T T− −∪ ∪  

1
3T− ) Show T-1 does not exists for the T defined. 
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51. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

7

a b c
a,b,c Z I

b a c
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

1 2

3 4
i 11

5 6

7 8

a a
a a

a Z I;1 i 8
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1

2

3
i 17

4

5

6

a
a
a

a Z I;1 i 6
a
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪∈ ≤ ≤⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3 4 5

6 7 8 9 10 i

11 12 13 14 15

a a a a a
a a a a a a N(Q)
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

  

 
25

i
i

i 0

a x
=

⎧
⎨
⎩
∑ ; all polynomials in the variable x with coefficients 

from the neutrosophic field N(Z19); ai ∈ N(Z19); 0 ≤ i ≤ 25} be 
a strong neutrosophic 5-vector space over the neutrosophic 5-
field F = Z7I ∪ Z11I ∪ Z17I ∪ QI ∪ N(Z19).  
a. Find a strong neutrosophic 5-vector subspace of V. 
b. Is V pseudo simple? 
c. Can on V be defined a strong neutrosophic 5-linear 

operator T so that T is invertible? 
d. What is the 5-dimension of V? 
e. Find a 5-basis of V. 
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f. Find a 5-linearly independent 5-subset of V which is not a 
5-basis. 

 
52. Obtain some important properties about SNHomF (V, V); V is 

a strong neutrosophic n-vector space over a neutrosophic n-
field F = F1 ∪ F2 ∪ … ∪ Fn. What is the algebraic structure of 
SNHomF (V, V)? 

 
53. Characterize those strong neutrosophic n-vector spaces which 

are simple. 
 
54. Give an example of a strong neutrosophic 5-vector space 

which is pseudo simple. 
 
55. Prove in case of a finite n-vector space V of type II, where 

dim V = (n1, n2, …, nn). Rank T + nullity T = dim V. 
 
56. Derive primary decomposition theorem for strong 

neutrosophic n-vector space over the neutrosophic n-field.  
 
57. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 =  
 

a b 0 0
c d 0 0

a,b,c,d N(Q)
0 0 a d
0 0 b c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

1 2 3

4 5 6 i 29

7 8 9

a a a
a a a a N(Z );1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

 

11

a b
a,b,c,d N(Z )

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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 {(a1, a2, …, a9) | ai ∈ N(Z23); 1 ≤ i ≤ 29)} ∪ {All 5 × 5 upper 
triangular matrices with entries from N(Z13)} be a strong 
neutrosophic 5-linear algebra over the 5-field, F = QI ∪ Z29I 
∪ Z11I ∪ N(Z23) ∪ Z13I.  

 Let W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 =  
 

a a 0 0
b b 0 0

a,b QI
0 0 a a
0 0 b b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 

29

a a a
a a a a N(Z )
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 11

a a
a,b N(Z )

b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a, a, a, a, a, a, a, a, a) | a ∈ N(Z23)} ∪ 

 

13

a a a a a
0 a a a a

a N(Z )0 0 a a a
0 0 0 a a
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

  
 ⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a strong neutrosophic 5-linear 

subalgebra over V the 5-field F. 
 For β = β1 ∪ β2 ∪ β3 ∪ β4 ∪ β5 =  
 

7 2I 0 0
5 I 0 0 0

0 0 7 0
0 0 2I 5 I

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎝ ⎠

 ∪ 
0 3I 0

7 I 0 I
1 0 2 I

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟+⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟+⎝ ⎠⎩ ⎭

 ∪ 
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3 3 8I
10I 0

⎧ ⎫+⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

 
{(0, I, 0, 3I, 7+I, 0, 1, 2I+1, 0)} ∪ 

 
9 1 2I 9 I
0 I 0 1 2I
0 0 7I 0 0
0 0 0 2I 4
0 0 0 0 I

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎨ ⎬
⎜ ⎟⎪ ⎪−⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
 ∈ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, find α ∈ W such that = α1 ∪ α2 

∪ α3 ∪ α4 ∪ α5 ∈ W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 = W is the 
best 5-approximation of β. Prove β-α is 5-orthogonal to every 
5-vector in W, that is β1 – α1 ∪ β2 – α2 ∪ β3 – α3 ∪ β4 – α4 ∪ 
β5 – α5 is 5-orthogonal to every 5-vector in W = W1 ∪ W2 ∪ 
W3 ∪ W4 ∪ W5. Prove βi – αi is orthogonal to every vector in 
Wi; i = 1, 2, 3, 4, 5. Find W⊥. Prove V = W ⊕ W⊥ where W⊥ = 

1 2 3 4 5W W W W W⊥ ⊥ ⊥ ⊥ ⊥∪ ∪ ∪ ∪ , that is W1 ⊕ 1W⊥  ∪ W2 ⊕ 

2W⊥  ∪ W3 ⊕ 3W⊥  ∪ W4 ⊕ 4W⊥  ∪ W5 ⊕ 5W⊥  = V1 ∪ V2 ∪ 
V3 ∪ V4 ∪ V5 = V. 

 
58. Prove if V = V1 ∪ V2 ∪ … ∪ Vn is a strong neutrosophic n-

vector space over the n-field F = F1 ∪ F2 ∪ … ∪ Fn of finite 
(n1, n2, …, nn) dimension over F.  T = T1 ∪ T2 ∪ … ∪ Tn be a 
n-linear operator on V.  

 Prove there exists a n-set  { }1

1 1
1 r, ,α α ∪… { }2

2 2
1 r, ,α α… ∪ … ∪   

{ }n

n n
1 r, ,α α…  in V such that V = V1 ∪ V2 ∪ … ∪ Vn = Z( 1

1α ; 

T1) ⊕ … ⊕ Z(
1

1
rα ; T1) ∪ Z( 2

1α ; T2) ⊕ … ⊕ Z(
2

2
rα ; T2) ∪ … 

∪ Z( n
1α ; Tn) ⊕ … ⊕ Z(

n

n
rα ; Tn); i.e., V is the n-direct sum of 

n-cyclic strong neutrosophic n-vector subspaces. 
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59. State and prove Generalized Cayley Hamilton Theorem for a 
finite (n1, …, nn) dimensional strong neutrosophic n-vector 
space V = V1 ∪ V2 ∪ … ∪ Vn over the neutrosophic n-field F 
= F1 ∪ F2 ∪ … ∪ Fn after appropriate changes. 

 
60. Define n-projections associated with the n-primary 

decomposition of T = T1 ∪ T2 ∪ … ∪ Tn.  
 
61. Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator on the 

strong neutrosophic n-vector space V = V1 ∪ V2 ∪ … ∪ Vn 
over the neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn (Fi’s are 
not pure neutrosophic; i = 1, 2, …, n) 

 Let  
 { } { } { }1 2 n

1 1 2 2 n n
1 k 1 k 1 kW ,...,W W ,..., W W ,...,W∪ ∪ ∪…  

 and  
 { } { } { }1 2 n

1 1 2 2 n n
1 k 1 k 1 kE ,...,E E ,...,E E ,...,E∪ ∪ ∪… ; 

 where { }i

i i
1 kW ,...,W  are independent for i = 1, 2, …, n. E = E1 

∪ E2 ∪ … ∪ En is a n-projection operator on V such that E2 = 
E that is E2 = (E1 ∪ … ∪ En)2 = 2 2

1 nE E∪ ∪… = E1 ∪ … ∪ En 
(That is each Ei is a projection of Vi such that 2

iE  = Ei, i=1, 2, 
…, n). 

 Then a necessary and sufficient condition that each strong 
neutrosophic n-vector subspace t

iW  to be invariant under Ti 
for 1 ≤ i ≤ kt; t = 1, 2, …, n is that t

iE Tt = Tt
t
iE  or ET = TE 

for every 1 ≤ i ≤ kt; t = 1, 2, …, n. 
 
62. Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator on a (n1, n2, 

…, nn) finite n-dimensional strong neutrosophic n-vector 
space V = V1 ∪ V2 ∪ … ∪ Vn over the neutrosophic n-field F 
= F1 ∪ F2 ∪ … ∪ Fn (Fi’s are not pure neutrosophic; i = 1, 2, 
…, n). Suppose that the n-minimal neutrosophic polynomial 
for T = T1 ∪ T2 ∪ … ∪ Tn decomposes over F = F1 ∪ F2 ∪ … 
∪ Fn into a n-product of n-linear neutrosophic polynomials. 
Then there is a n-diagonalizable operator N = N1 ∪ N2 ∪ … 
∪ Nn on V = V1 ∪ V2 ∪ … ∪ Vn such that  
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a. T = D + N that is  
T1 ∪ T2 ∪ … ∪ Tn  

=  D1 ∪ D2 ∪ … ∪ Dn + (N1 ∪ N2 ∪ … ∪ Nn). 
=  D1 + N1 ∪ D2 + N2 ∪ … ∪ Dn + Nn. 

b. DN = ND that is 
(D1 ∪ D2 ∪ … ∪ Dn) (N1 ∪ N2 ∪ … ∪ Nn)  

    =  D1 N1 ∪ D2 N2 ∪ … ∪ Dn Nn 
    =  N1 D1 ∪ N2 D2 ∪ … ∪ Nn Dn 
    =  ND. 
 
 The n-diagonalizable operator D = D1 ∪ D2 ∪ … ∪ Dn and 

the n-nilpotent operator N = N1 ∪ N2 ∪ … ∪ Nn are uniquely 
determined by (a) and (b) and each of them is a n-polynomial 
in T1, T2, …, Tn. Prove. 

 
63.  Prove S(β;W) = S(β1;W1) ∪ S (β2; W2) ∪ … ∪ S (βn; Wn) is 

the n-conductor of T where T is a n-linear operator on the 
strong neutrosophic n-vector space V = V1 ∪ V2 ∪ … ∪ Vn 
and W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn is a 
proper T-n-invariant neutrosophic n-vector subspace of V. 

  Prove some interesting results about these structures like 
relating it with neutrosophic n-ideals. Hence or other wise 
prove the n-cyclic decomposition theorem.  

 
64.  If T = T1 ∪ T2 ∪ … ∪ Tn is a n-linear operator of a finite (n1, 

n2, …, nn) dimension strong neutrosophic n-vector space V = 
V1 ∪ V2 ∪ … ∪ Vn over the n-field F = F1 ∪ F2 ∪ … ∪ Fn. 
Prove T is n-diagonalizable if and only if the n-characteristic 
n-polynomial T = T1 ∪ T2 ∪ … ∪ Tn is f = f1 ∪ f2 ∪ … ∪ fn 
= 

1
1d1

1(x c )−  … 
1
k1

1

d1
k(x c )−  ∪ … ∪ 

n
1dn

1(x c )− … 
n
k1

1

dn
k(x c )−  

under the usual notations. 
 
65. Obtain some interesting properties about quasi strong 

neutrosophic n-vector spaces over quasi neutrosophic n-field 
F = F1 ∪ F2 ∪ … ∪ Fn. 

 
66. Let V = V1 ∪ V2 ∪ … ∪ V6 =  
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1 2 3
i 7

4 5 6

a a a
a Z I

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 

11

a a
b b

a,b,c,d,e Z Ic c
d d
e e

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

  
 {All 5 × 5 lower triangular matrices with entries from the 

field N(Z2)} ∪  
  

3

0 0 0 a
0 0 b 0

a,b,c,d Z I
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 

  

 
4

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all polynomials in the variable x of degree less than 

or equal to 4 with coefficients from Z5I} ∪ 
 

 1 2 3 4 5
i 23

6 7 8 9 10

a a a a a
a Z I

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
 be a strong neutrosophic 6-vector space over the neutrosophic 

6-field F = Z7I ∪ Z11I ∪ N (Z2) ∪ Z3I ∪ Z5I ∪ Z23I.  
a. Find a 6-basis of V. 
b. Is V n-finite? 
c. Find at least two strong neutrosophic 6-subspaces of V. 
d. Write V as a direct sum of neutrosophic strong 6-vector 

subspaces. 
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e. If F = Z7I ∪ Z11I ∪ N(Z2) ∪ Z3I ∪ Z5I ∪ Z23I is changed 
to a 6-field K = Z7 ∪ Z11 ∪ Z2 ∪ Z3 ∪ Z5 ∪ Z23. Find a 6-
basis. 

f. Does the change of 6-field affect the structure of V? 
Justify your claim. 

 
67.  Find some interesting properties about neutrosophic n-linear 

algebras. 
 
68. Can Cayley Hamilton theorem hold good for neutrosophic n-

vector spaces defined over a real n-field? Justify your answer! 
 
69.  For the strong neutrosophic 4-linear algebra given by V = V1 

∪ V2 ∪ V3 ∪ V4 =  
 

2

a b
a,b,c,d Z I

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
{(a1, a2, a3) | ai ∈ Z3I; 1 ≤ i ≤ 3} ∪ 

 

1

2 i 5

3

a 0 0
0 a 0 a Z I;1 i 3
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

  
 {All 4 × 4 upper triangular neutrosophic matrices with entries 

from Z7I} defined over the neutrosophic 4-field F = Z2I ∪ Z3I 
∪ Z5I ∪ Z7I. 
a. Find a 4-basis for V. 
b. Define a strong neutrosophic linear operator T on V and 

for that T find the neutrosophic 4-characteristic 
polynomial, neutrosophic 4-eigen values and 4-eigen 
vectors. 

c. If F is replaced by K = Z2 ∪ Z3 ∪ Z5 ∪ Z7 will the 4-basis 
be different? 

d. Find SNHomK(V, V) and SNHomF(V, V). What is the 
difference between them as algebraic structures? 
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e. Is 4-rank T + 4-nullity T = 4-dim V? Justify your claim 
(T:V →V is a neutrosophic strong linear operator on V). 

f. If V is assumed only as a neutrosophic strong 4-vector 
space over the neutrosophic 4-field, what will be 4-basis 
of V? Will the 4-basis of V differ? Justify / substantiate 
your claim. 

 
70.  Let V = V1 ∪ V2 ∪ V3 ∪ V4 =  
 

I 0
1 3I

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ∪ 

I 2I 1 0
0 3I I 6I
6 0 3I 0
2I 1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∪ 

 

I 0 1
0 1 I
1 0 I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ∪ 

I 0 0 0 I
2 0 I 1 0
0 1 1 0 I
0 0 I 2 0
0 I 0 0 2I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  
 be a neutrosophic 4-matrix with entries from the 4-field F = F1 

∪ F2 ∪ F3 ∪ F4 = Z5I ∪ Z7I ∪ Z2I ∪ Z3I respectively. Find the 
4-characteristic neutrosophic 4-polynomial associated with 
the neutrosophic 4-matrix V. Can this have neutrosophic 4-
eigen values? Justify your claim. 

 
71. For the example 2.3.72 given chapter two find SNHomF (V, 

W). Find a T : V → W so that kerT = (0) ∪ (0) .  
 
72. Obtain some interesting and special features enjoyed by quasi 

neutrosophic n-vector spaces. 
 
73. If L = 

1 2 n

1 2 nL L Lα α α∪ ∪ ∪…  is a n-linear function induced by 
α = α1 ∪ α2 ∪ … ∪ αn in V = V1 ∪ V2 ∪ … ∪ Vn, a strong 
neutrosophic n-vector space over the n-field F = F1 ∪ F2 ∪ … 
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∪ Fn. Is α = α1 ∪ α2 ∪ … ∪ αn Lα = 
1 2 n

1 2 nL L ... Lα α α∪ ∪ ∪  
a n-isomorphism of V = V1 ∪ V2 ∪ … ∪ Vn onto V** = 

** ** **
1 2 nV V ... V∪ ∪ ∪ ? Justify your claim.  

 
74. Study the properties enjoyed by SNL (V1, F1) ∪ SNL (V2, F2) 

∪ … ∪ SNL (Vn, Fn) where V = V1 ∪ V2 ∪ … ∪ Vn is a 
strong neutrosophic n-vector space defined over the 
neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn. 

 
75.  Find a set X = X1 ∪ X2 ∪ X3 ∪ X4 ⊆ V = V1 ∪ V2 ∪ V3 ∪ V4  
 

= 1 2 3 4
i 7

5 6 7 8

a a a a
a Z I;1 i 8

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  
 {All 7 × 3 neutrosophic matrices with entries from the 

neutrosophic field Z2I} ∪  

 
5

i
i

i 0
a x

=

⎧
⎨
⎩
∑ ; all neutrosophic polynomials of degree less than or 

equal to 5 with coefficients from Z5I in the variable x} ∪  
 

0 0 0 a
0 0 b 0

a,b,c,d N(Q)
0 c 0 0
d 0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

, 

 
 a strong neutrosophic 4-vector space over the 4-field F = F1 ∪ 

F2 ∪ F3 ∪ F4 = Z7I ∪ Z2I ∪ Z5I ∪ QI; a 4-linearly 
independent 4-set of V which is not a 4-basis of V.  
a. Find a 4-basis of V. 
b. What is the 4-dimension of V? 
c. Define a invertible 4-linear operator on V. 
d. Find SNHomF(V, V). What is the dimension of 

SNHomF(V, V)? 
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e. Does SNL(V, F) = SNL(V1, F1) ∪ SNL(V2, F2) ∪ 
SNL(V3, F3) ∪ SNL(V4, F4) exist? Justify your claim. 

 
76.  Let V = V1 ∪ V2 ∪ … ∪ Vn be neutrosophic strong n-linear 

algebra over the n-field F = F1 ∪ F2 ∪ … ∪ Fn. Consider a n-
basis { } { } { }1 2 n

1 1 2 2 n n
1 n 1 n 1 n, , ,..., ... ,...,α α ∪ α α ∪ ∪ α α…  of V over 

F. If W = W1 ∪ W2 ∪ … ∪ Wn is a strong neutrosophic n-
vector space over the same F and if  

β = { } { } { }1 2 n

1 1 2 2 n n
1 n 1 n 1 n, , , , ... , ,β β ∪ β β ∪ ∪ β β… … …  

 be any n-vector in W. Prove there exists precisely a n-linear 
transformation T = T1 ∪ T2 ∪ … ∪ Tn from V into W such 
that Ti( i

jα ) = i
jβ  for j = 1, 2, …, ni and i = 1, 2. 

 
77.  Prove if V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ … ∪ 

Wn are two strong neutrosophic n-vector spaces over the same 
neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn of type II. If T = 
T1 ∪ T2 ∪ … ∪ Tn is a n-linear transformation of V into W 
then prove the following are equivalent. 
a. T = T1 ∪ T2 ∪ … ∪ Tn is n-invertible. 
b. T = T1 ∪ T2 ∪ … ∪ Tn is n-non singular. 
c. T = T1 ∪ T2 ∪ … ∪ Tn is onto that is the n-range of T = 

T1 ∪ T2 ∪ … ∪ Tn is W = W1 ∪ W2 ∪ … ∪ Wn . 
 
78.  Prove every (n1, n2, …, nn) dimensional strong neutrosophic 

n-vector space V = V1 ∪ V2 ∪ … ∪ Vn over the neutrosophic 
n-field F = F1 ∪ F2 ∪ … ∪ Fn is n-isomorphism to 

1 2 nn n n
1 2 nF F ... F∪ ∪ ∪ . 

 
79. Let V = V1 ∪ V2 ∪ … ∪ Vn be a finite (n1, n2, …, nn) n-

dimensional strong neutrosophic n-vector space over the 
neutrosophic n-field F = F1 ∪ F2 ∪ … ∪ Fn.  

 Let  
B = B1 ∪ B2 ∪ … ∪ Bn 

= { } { } { }1 2 n

1 1 2 2 n n
1 n 1 n 1 n, , , , , ,α α ∪ α α ∪ ∪ α α… … … …  
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 be a n-basis of V = V1 ∪ V2 ∪ … ∪ Vn. There is a unique n-
dual basis (dual n-basis)  

B = * * *
1 2 nB B ... B∪ ∪ ∪  

= { }1

1 1 1
1 2 nf ,f ,..., f  ∪ { }2

2 2 2
1 2 nf ,f ,..., f  ∪ … ∪ { }n

n n n
1 2 nf , f ,...,f  

 for V* = * * *
1 2 nV V ... V∪ ∪ ∪  such that k

if (αj) = k
ijδ . 

  
 Prove for each n-linear functional f = f1 ∪ f2 ∪ … ∪ fn we 

have  

f = 
in

i i i
k k

k 1
f ( )f

=

α∑  

 that is  

f = 
1n

1 1 1
k k

k 1
f ( )f

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  ∪ 

2n
2 2 2

k k
k 1

f ( )f
=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  ∪ … ∪ 

nn
n n n

k k
k 1

f ( )f
=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  

 
 and for each n – vector α = α1 ∪ α2 ∪ … ∪ αn in V = V1 ∪ 

V2 ∪ … ∪ Vn we have  
 

α = 
1n

1 1 1
k k

k 1
f ( )( )

=

⎛ ⎞
α α⎜ ⎟

⎝ ⎠
∑  ∪ 

2n
2 2 2
k k

k 1
f ( )( )

=

⎛ ⎞
α α⎜ ⎟

⎝ ⎠
∑  

∪ … ∪ 
nn

n n n
k k

k 1
f ( )( )

=

⎛ ⎞
α α⎜ ⎟

⎝ ⎠
∑ . 

 
80.  Obtain some important properties about n-best 

approximations on strong neutrosophic n-vector space over 
the n-field F = F1 ∪ F2 ∪ … ∪ Fn. 

 
81.  Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {(a1, a2, …, a9) | ai ∈ Z7I, 1 ≤ i 

≤ 9} ∪ {(a1, a2, …, a20) | ai ∈ N(Z2), 1 ≤ i ≤ 20} ∪ {(a1, a2, a3, 
a4, a5) | ai ∈ N(Z11), 1 ≤ i ≤ 5} ∪ {(a1, a2, …, a8) | ai ∈ N(Z5), 1 
≤ i ≤ 8} be a strong neutrosophic inner product 4-space over 
the 4-field Z7I ∪ Z2I ∪ Z11I ∪ Z5I. 

  Let S = S1 ∪ S2 ∪ S3 ∪ S4 = {(a1, a2, 0, 0, 0, 0, a7, a8, 0), (0, 
0, a3, a4, a5, 0, 0, 0, a9) (0, 0, 0, 0, 0, a6, a7, a8, 0) | ai ∈ Z7I; 1 ≤ 
i ≤ 9} ∪ {(a1, a2, a3, a4, a5, 0, 0, …, 0), (0, 0, 0, 0, 0, 0, 0, a8, 



 390

a9, a10, a11, a12, 0, 0, …, 0) | ai ∈ Z2I; 1 ≤ i ≤ 5; i = 8, 9, 10, 11, 
12) ∪ {(a1, a2, 0, 0, a5) (0, 0, 0, a4, a5)} ∪ {(a1, a2, 0, 0, a5, a6, 
0, 0) ∪ (a1, a2, 0, 0, 0, 0 a7, a8) | ai ∈ N(Z5)} ⊆ V1 ∪ V2 ∪ V3 
∪ V4 be any 4-set of 4-vectors in V. Find the 4-orthogonal 
complement of S denoted by S⊥ = 1 2 3 4S S S S⊥ ⊥ ⊥ ⊥∪ ∪ ∪ . 

 
82. Derive Cayley Hamilton theorem and Primary n-

decomposition theorem for strong neutrosophic n-vector 
space V defined over the n-field F.  
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