A CLASS OF STATIONARY SEQUENCES

Florentin Smarandache, Ph D
Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail:smarand@unm.edu

$\S 1$. We define a class of sequences $\left\{a_{n}\right\}$ by $a_{1}=a$ and $a_{n+1}=P\left(a_{n}\right)$, where P is a polynomial with real coefficients. For which a values, and for which polynomials P will these sequences be constant after a certain rank? Then we generalize it from polynomials P to real functions f.

In this note, the author answers this question using as reference F. Lazebnik \& Y. Pilipenko's E 3036 problem from A. M. M., Vol. 91, No. 2/1984, p. 140.

An interesting property of functions admitting fixed points is obtained.
$\S 2$. Because $\left\{a_{n}\right\}$ is constant after a certain rank, it results that $\left\{a_{n}\right\}$ converges. Hence, $(\exists) e \in R: e=P(e)$, that is the equation $P(x)-x=0$ admits real solutions. Or P admits fixed points $((\exists) x \in R: P(x)=x)$.

Let e_{1}, \ldots, e_{m} be all real solutions of this equation. We construct the recurrent set E as follows:

1) $e_{1}, \ldots, e_{m} \in E$;
2) if $b \in E$ then all real solutions of the equation $P(x)=b$ belong to E;
3) no other element belongs to E, except those elements obtained from the rules 1) and/or 2), applied for a finite number of times.

We prove that this set E, and the set A of the " a " values for which $\left\{a_{n}\right\}$ becomes constant after a certain rank, are indistinct.

Let's show that" $E \subseteq A^{\prime \prime}$:

1) If $a=e_{i}, 1 \leq i \leq m$, then $(\forall) n \in \mathbb{N}^{*} \quad a_{n}=e_{i}=$ constant.
2) If for $a=b$ the sequence $a_{1}=b, a_{2}=P(b)$ becomes constant after a certain rank, let x_{0} be a real solution of the equation $P(x)-b=0$, the new formed sequence: $a_{1}^{\prime}=x_{0}, a_{2}^{\prime}=P\left(x_{0}\right)=b, a_{3}^{\prime}=P(b), \ldots$ is indistinct after a certain rank with the first one, hence it becomes constant too, having the same limit.
3) Beginning from a certain rank, all these sequences converge towards the same limit e (that is: they have the same e value from a certain rank) are indistinct, equal to e.

Let's show that " $A \subseteq E$ ":
Let " a " be a value such that: $\left\{a_{n}\right\}$ becomes constant (after a certain rank) equal to e. Of course $e \in\left\{e_{1}, \ldots, e_{m}\right\}$ because e_{1}, \ldots, e_{m} are the only values towards these sequences can tend.

If $a \in\left\{e_{1}, \ldots, e_{m}\right\}$, then $a \in E$.
Let $a \notin\left\{e_{1}, \ldots, e_{m}\right\}$, then $(\exists) n_{0} \in \mathbb{N}: a_{n_{0}+1}=P\left(a_{n_{0}}\right)=e$, hence we obtain by applying the rules 1) or 2) a finite number of times. Therefore, because $e \in\left\{e_{1}, \ldots, e_{m}\right\}$ and the equation $P(x)=e$ admits real solutions we find $a_{n_{0}}$ among the real solutions of this equation: knowing $a_{n_{0}}$ we find $a_{n_{0}-1}$ because the equation $P\left(a_{n_{0}-1}\right)=a_{n_{0}}$ admits real solutions (because $a_{n_{0}} \in E$ and our method goes on until we find $a_{1}=a$ hence $a \in E$.

Remark. For $P(x)=x^{2}-2$ we obtain the E 3036 Problem (A. M. M.).
Here, the set E becomes equal to

Hence, for all $a \in E$ the sequence $a_{1}=a, a_{n+1}=a_{n}^{2}-2$ becomes constant after a certain rank, and it converges (of course) towards -1 or 2 :

$$
(\exists) n_{0} \in \mathbb{N}^{*}:(\forall) n \geq n_{0} \quad a_{n}=-1
$$

or

$$
(\exists) n_{0} \in \mathbb{N}^{*}:(\forall) n \geq n_{0} \quad a_{n}=2 .
$$

Generalization.

This can be generalized to defining a class of sequences $\left\{a_{n}\right\}$ by $a_{1}=a$ and $a_{n+1}=f\left(a_{n}\right)$, where $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a real function. For which a values, and for which functions f will these sequences be constant after a certain rank?
In a similar way, because $\left\{a_{n}\right\}$ is constant after a certain rank, it results that $\left\{a_{n}\right\}$ converges. Hence, ($\exists) e \in R: e=f(e)$, that is the equation $f(x)-x=0$ admits real solutions. Or f admits fixed points $((\exists) x \in R: \mathrm{f}(x)=x)$.

Let e_{1}, \ldots, e_{m} be all real solutions of this equation. We construct the recurrent set E as follows:

1) $e_{1}, \ldots, e_{m} \in E$;
2) if $b \in E$ then all real solutions of the equation $f(x)=b$ belong to E;
3) no other element belongs to E, except those elements obtained from the rules 1) and/or 2), applied for a finite number of times.

Analogously, this set E, and the set A of the " a " values for which $\left\{a_{n}\right\}$ becomes constant after a certain rank, are indistinct.
[Published in "Gamma", Braşov, XXIII, Year VIII, No. 1, pp. 5-6, October 1985.]

