The Formula of the Particle Radii

Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

In 1996 we found the formula of the particle radii[1-3]

$$
\begin{equation*}
r=1.55[m(\mathrm{Gev})]^{1 / 3} \mathrm{jn}, \tag{1}
\end{equation*}
$$

where $1 \mathrm{jn}=10^{-15} \mathrm{~cm}$ and $m(\mathrm{Gev})$ is the mass of the particles.
From (1) we have that the proton and neutron radii are 1.5 jn .
Pohl et al measure the proton diameter $3 \mathrm{jn}[4]$.
We have the formula of the nuclear radii

$$
\begin{equation*}
r=1.2(A)^{1 / 3} \mathrm{fm}, \tag{2}
\end{equation*}
$$

where $1 \mathrm{fm}=10^{-13} \mathrm{~cm}$ and A is its mass number.
It is shows that (1) and (2) have the same form. The particle radii $r<5 \mathrm{jn}$ and the nuclear radii $r<7 \mathrm{fm}$.

References

[1] Jiang, C-X. Determination of proton and neutron radii, Apeiron3, Nr. 3-4, 126 (1996) July- Oct.
[2] Jiang, C-X. A unified theory of the gravitationa and strong interactons, Hadronic J., 24, 629-638(2001).
[3] Jiang, C-X. An equation that changed the universe: $\bar{F}=-m c^{2} / R$, http://www.wbabin.net/ntham/xuan150.pdf.
[4] Pohl, R.et al. The size of the proton, Nature 466, 213-216(2010).

