Using Simple Number Theory to Predict Stable Isotopes

Sean C. Williams Herebe Ltd, Birkenhead, Wirral, UK E-mail: isotope@herebe.co.uk

Abstract

An abstract method is described for predicting stable isotopes using simple number theory based on a system of predefined combinations, or "Blocks", of protons and neutrons. Each Block is made up of a prime number of protons, and a binary power increase in the number of neutrons. Predictions using the Block system fully includes all the stable isotopes.

Introduction

The fundamental nature of matter has been at the forefront of scientific consideration from ancient time's right up until the present day [1]. A semi-empirical formula for binding energy using a summation of volume, surface, Coulomb repulsion and symmetry is taught to undergraduates in the Liquid Drop Model. This model "does not account for some of the finer details of nuclear process however, such as stability" [2, see p. 1448]. The Shell Model goes a long way towards describing stability, but as with the Liquid Drop Model, this is a literal interpretation of the atomic nucleus requiring the Coulomb force [2, see p. 1451].

Al Rabeh has published work on the relationship between prime numbers, geometry and physical structure [3] and this gives a clear insight in to the relationship between a solution based on abstract number theory and empirical evidence. This paper discusses the use of a purely abstract method for predicting stable isotopes using number theory.

In this paper, an isotope is only considered stable if it does not have a reported half life; so by this definition, Technetium, Promethium and Tungsten are not considered to have any stable isotopes [4].

Selection of number series

The series of stable isotopes can be predicted using a simple number theory based on a system of

predefined combinations, or Blocks, of protons and neutrons. Each Block is made up a prime number of protons, and a binary power increase in the number of neutrons. When researching this subject, several combinations of number series were considered, including simple multiplication, logarithmic powers, the Fibonacci series and the Magic Number series. A method for substituting prime numbers and binary powers by a combination of averaged Fibonacci series has also been considered.

It may well turn out that the use of alternative number series could give a better match for stable nuclei, however, the system of prime numbers and binary powers described in this paper reveals a regular pattern of instability in isotopes that are constructed using Block A — this has not been found when using other number series.

Application of the number series

Since all stable isotopes, with the exception of Hydrogen and Helium, contain an equal or greater number of neutrons than protons, the Blocks have been designed with positive integers. This means that, by design, the system cannot construct an isotope model with fewer neutrons than protons, although in reality these clearly exist. A model for all stable isotopes can be constructed from the following combination of protons and neutrons — referred to here as Blocks: The proton count increases by prime numbers and the neutron count increases by powers of two (binary powers).

Block	Р	Ν
А	1	1
В	2	2
С	3	4
D	5	8
E	7	16
F	11	32
etc		

Table 1: Block system using prime and binary power number series

Each isotope can be constructed using one or more of Blocks A, B, C, D, E, F, etc.; the only rule is that the largest Block available must be used. So, for example: Lithium-6 is created by combining one Block A (one proton and one neutron) and one Block B (two protons and two neutrons) = three protons and three neutrons. While Lithium-7 is created using a single Block C (three protons and four neutrons). Similarly, Neon-20 can be created using five units of Block B, whereas Neon-21 is created using three units of Block B and one of Block C. See Table 2: Applying the block system to isotopes:

Table 2: The combinations of blocks required to create isotopes between Lithium and Calcium.

64. 57A8E 3 4 1 1 7L 57A8E 3 4 1 1 1 98e $67E(17)$ 4 4 5 1 1 1 98e $57A8E$ 5 5 1 2 1 1 108 57A8E 5 6 1 1 1 1 118 57A8E 6 6 1 1 1 1 126 5788E 6 6 1 1 1 1 127 5748E 6 6 1 1 1 1 138 57A8E 6 7 1 3 1 1 144 57878E 7 8 1 2 1 1 1560 57A8E 8 8 4 1 1 1 1 160 57A8E 8 10 1 1 <th></th>										
TU STABLE 3 4 2 1 1 BBe 6.7E+75 4 4 2 1 1 BBe STABLE 5 1 2 1 1 108 STABLE 5 5 1 2 1 1 118 STABLE 6 6 3 1 1 1 12C STABLE 6 6 3 1 1 1 136 STABLE 7 7 1 1 1 1 1 136 STABLE 7 8 2 1 1 1 144 STABLE 7 9 1 2 1 1 170 STABLE 8 9 1 2 1 1 170 STABLE 8 9 1 2 1 1 170 STABLE 8 1 1 1	Isotope	Stability	Z	N	Block A	Block B	Block C	Block D	Block E	Block F
BB 6.7 E-17s 4 4 2 1 1 08 STABLE 4 5 1 2 1 1 108 STABLE 5 5 1 2 1 1 118 STABLE 5 6 1 1 1 1 128 TABLE 6 6 3 1 1 1 12C STABLE 6 7 1 1 1 1 14C STABLE 7 7 1 2 1 1 14G STABLE 7 8 2 1 1 1 160 STABLE 8 8 4 1 1 1 160 STABLE 8 9 1 2 1 1 180 STABLE 8 10 1 1 1 1 1 180 STABLE 9					1	1				
98e STABLE 4 5 1 1 1 106 STABLE 5 5 1 2	7Li	STABLE	3	4			1			
GR STABLE 4 S 1 1 1 108 STABLE 5 5 1 2										
IOB STABLE S 5 1 2		6.7 E-17 s		4		2				
11B STARE 5 6 1 1 1 12B 173 m3 5 8 1 1 1 12C STABE 6 7 1 1 1 1 12C STABE 6 7 1 1 1 1 1 14C STABE 7 7 1 3 1 1 1 14W STABE 7 9 1 2 1 1 1 16N STABE 7 9 1 2 1 <td>9Be</td> <td>STABLE</td> <td>4</td> <td>5</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	9Be	STABLE	4	5	1		1			
11B STARE 5 6 1 1 1 12B 173 m3 5 8 1 1 1 12C STABE 6 7 1 1 1 1 12C STABE 6 7 1 1 1 1 1 14C STABE 7 7 1 3 1 1 1 14W STABE 7 9 1 2 1 1 1 16N STABE 7 9 1 2 1 <td></td>										
118 STABLE 5 6 1 1 1 126 STABLE 6 6 7 1 1 1 126 STABLE 6 7 1 1 1 1 136 STABLE 7 7 1 3 1 1 146 STABLE 7 9 1 2 1 1 147 STABLE 7 9 1 2 1 1 160 STABLE 8 8 4 1 1 1 170 STABLE 8 8 4 1 1 1 160 STABLE 8 9 1 2 1 1 170 STABLE 8 10 1 1 2 1 180 STABLE 9 12 1 1 1 1 196 STABLE 9 12 <	10B	STABLE	5	5	1	2				
138 12.3 ms 5 8 1 1 12C STABLE 6 6 3 1 1 13C STABLE 6 7 1 1 1 1 14C STRALE 6 7 1 1 1 1 14W STRALE 7 7 1 3 1 1 16N STABLE 7 9 1 2 1 1 16N STABLE 8 9 1 2 1 1 1700 STABLE 8 9 1 2 1 1 180 STABLE 8 10 1 2 1 1 190 2645 8 11 1 1 1 1 1 20F 11.1 5 9 12 2 1 1 1 21F 4.12 9 9 13 1 <		STABLE			-		1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1		1		
13C STABLE 6 7 1<	130	17.51115	5	0				1		
13C STABLE 6 7 1<	100			-		2				
14C 57 K8LE 7 7 1 3 - - 14N STABLE 7 7 1 3 - - - 15N STABLE 7 6 2 1 - - - 16N 7.1s 7 9 1 2 1 - - 17N 4.1s 7 0 1 1 1 - - - 170 STABLE 8 0 1 1 2 1 - - - - - - - - - - - - 1 1 -										
IAN STABLE 7 7 1 3					1	1				
15N STABLE 7 8 2 1 16N 7.1 s 7 9 1 2 17N 4.1 s 7 10 1 1 1 16O STABLE 8 8 4 17O STABLE 8 10 1 2 18O STABLE 8 10 1 2 19O 26.4 s 8 11 1 1 20F 11.1 s 9 1 4 21F 4.1 s 9 12 2 1 20Ne STABLE 10 10 5 21Ne STABLE 10 12 2 2 23Ne 3.2 s 10 13 1 2 21Ne STABLE 10	14C	5.7 E+3 years	6	8			2			
15N STABLE 7 8 2 1 16N 7.1 s 7 9 1 2 17N 4.1 s 7 10 1 1 1 16O STABLE 8 8 4 17O STABLE 8 10 1 2 18O STABLE 8 10 1 2 19O 26.4 s 8 11 1 1 20F 11.1 s 9 1 4 21F 4.1 s 9 12 2 1 20Ne STABLE 10 10 5 21Ne STABLE 10 12 2 2 23Ne 3.2 s 10 13 1 2 21Ne STABLE 10										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14N		7	7	1	3				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15N	STABLE	7	8		2	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			7	9	1		2			
160 STABLE 8 9 1 2 1 170 STABLE 8 9 1 2 1 1 180 STABLE 8 10 1 2 1 1 200 1255 8 12 1 1 1 1 200 1355 8 12 1 1 1 1 200 STABLE 9 10 3 1 1 1 21F 4.1s 9 11 1 1 2 1 21F 4.2s 9 13 1 1 1 1 1 21Ne STABLE 10 11 1 3 1 2 2 1 22Ne STABLE 10 13 1 2 2 1 1 1 24Ne 3.2 min 11 1 1 1 1 1 1						1		1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1713	-1.1 5	,	10						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1(0		0	0		4				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		STABLE			1					
200 13.5 s 8 12 1 1 1 19F 109.7 min 9 9 1 4							2			
200 13.5 s 8 12 1 1 19F 109.7 min 9 9 1 4		26.4 s			1	1		1		
IBF IOP.7 min 9 9 1 4 19F STABLE 9 10 3 1 20F 11.1 s 9 11 1 1 2 21F 4.1 s 9 12 2 1 22Ne STABLE 10 10 5 22Ne STABLE 10 11 1 3 1 22Ne STABLE 10 12 2 22Ne STABLE 10 12 2 22Ne STABLE 10 13 1 2 22Na 2.6yr 11 1 1 1 1 22Na 3.0 ms 11 15 1 1 1		13.5 s		12				1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18F	109.7 min	9	9	1	4	1	1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					· ·	-7	2	1	1	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		11.15						2	-	+
Zone STABLE 10 10 5									1	
21Ne STABLE 10 11 1 3 1 22Ne STABLE 10 12 2 2 23Ne 37.2s 10 13 1 2 1 24Ne 3.3min 10 14 1 1 1 22Na 2.6yr 11 11 1 5 22Na STABLE 11 12 4 1 23Na STABLE 11 12 4 1 24Ma 14.9 h 11 13 1 2 2 25Na 59.1 s 11 16 2 1 26Na 1.0 s 11 16 2 1 28Na 30.5 ms 11 17 1 2 1 28Mg STABLE 12 16 1 3 1 1	22F	4.2 s	9	13	1		1	1		
21Ne STABLE 10 11 1 3 1 22Ne STABLE 10 12 2 2 23Ne 37.2s 10 13 1 2 1 24Ne 3.3min 10 14 1 1 1 22Na 2.6yr 11 11 1 5 22Na STABLE 11 12 4 1 23Na STABLE 11 12 4 1 24Ma 14.9 h 11 13 1 2 2 25Na 59.1 s 11 16 2 1 26Na 1.0 s 11 16 2 1 28Na 30.5 ms 11 17 1 2 1 28Mg STABLE 12 16 1 3 1 1										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20Ne	STABLE	10	10		5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1		1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1		2	1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1		1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24Ne	3.3 min	10	14			1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.6 yr			1					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23Na			12		4	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24Na	14.9 h	11	13	1	2	2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1		1			
28Na 30.5 ms 11 17 1 2 2 24Mg STABLE 12 12					1	1				
24Mg STABLE 12 12 13 6 25Mg STABLE 12 13 6					1		2			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28Na	30.5 ms	11	17	1			2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24Mg	STABLE	12							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25Mg	STABLE	12	13		6				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			12	14	1	4	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					i			1	İ	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1			1	<u> </u>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							1		+	+
33Mg 90.5 ms 12 21 2 1 1 1 34Mg 20 ms 12 22 1 1 1 1 1 36Mg 3.9 ms 12 24 1 1 1 1 1 36Mg 3.9 ms 12 24 1 1 1 1 1 36Mg 3.9 ms 12 24 1 1 1 1 1 36Mg 3.9 ms 12 24 1 1 1 1 1 26Al 7.1 E+5a 13 13 1 6 1 1 1 28Al 2.2 min 13 14 5 1 1 1 1 28Al 2.2 min 13 15 1 3 2 1					1	۷			1	
34Mg 20 ms 12 22 1 1 1 1 36Mg 3.9 ms 12 24 1 1 1 1 26Al 7.1 E+5 a 13 13 1 6 1 1 27Al STABLE 13 14 5 1 1 1 28Al 2.2 min 13 16 4 1 1 1 29Al 6.5 min 13 17 1 2 1 1 1 30Al 3.6 s 13 17 1 2 1 1 1 1 31Al 644 ms 13 18 1 2 1 1 1 31Al 644 ms 13 19 1 1 2 1 1 33Al 41.7 ms 13 20 1 2 1 1 35Al 38.6 ms 13 22 3 1 1 1 36Al 90 ms 13 23 1 1 <td< td=""><td></td><td></td><td></td><td></td><td> </td><td></td><td>2</td><td></td><td></td><td></td></td<>							2			
36Mg 3.9 ms 12 24 1 1 1 26Al 7.1 E+5 a 13 13 1 6 27Al STABLE 13 14 5 1 28Al 2.2 min 13 15 1 3 2 29Al 6.5 min 13 17 1 2 1 1 30Al 3.6 s 13 17 1 2 1 1 31Al 644 ms 13 18 1 2 1 32Al 31.7 ms 13 19 1 1 2 1 33Al 41.7 ms 13 20 1 1 2 35Al 38.6 ms 13 22 3 1 1 1 36Al 90 ms 13 23 1 1 1 1 37Al 10.7 ms 13 25 1						ļ		2		
26Al 7.1 E+5 a 13 13 1 6						1	1			
26Al 7.1 E+5 a 13 13 1 6	36Mg	3.9 ms	12	24				1	1	
27Al STABLE 13 14 5 1 28Al 2.2 min 13 15 1 3 2 29Al 6.5 min 13 16 4 1 30Al 3.6 s 13 17 1 2 1 1 31Al 644 ms 13 18 1 2 1 32Al 31.7 ms 13 19 1 1 2 1 33Al 41.7 ms 13 20 1 2 <td></td>										
27Al STABLE 13 14 5 1 28Al 2.2 min 13 15 1 3 2 29Al 6.5 min 13 16 4 1 30Al 3.6 s 13 17 1 2 1 1 31Al 644 ms 13 18 1 2 1 32Al 31.7 ms 13 19 1 1 2 1 33Al 41.7 ms 13 20 1 2 <td>26AI</td> <td>7.1 E+5 a</td> <td>13</td> <td>13</td> <td>1</td> <td>6</td> <td></td> <td></td> <td></td> <td></td>	26AI	7.1 E+5 a	13	13	1	6				
28Al 2.2 min 13 15 1 3 2					· · · · · · · · · · · · · · · · · · ·		1	1	<u> </u>	1
29Al 6.5 min 13 16 4 1 1 30Al 3.6 s 13 17 1 2 1 1 1 31Al 644 ms 13 18 1 2 1 1 1 32Al 31.7 ms 13 19 1 1 2 1 1 33Al 41.7 ms 13 20 1 2 1 1 33Al 41.7 ms 13 20 1 2 1 1 35Al 38.6 ms 13 22 3 1 1 1 1 36Al 90 ms 13 23 1 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 1 38Al 7.6 ms 13 25 1 1 1 1 28Si STABLE 14 14 7 1 1 1 1 29Si STABLE 14 15 1 5 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>+</td><td>+</td><td>+</td></td<>					1			+	+	+
30Al 3.6 s 13 17 1 2 1 1 1 31Al 644 ms 13 18 1 2 1 1 1 32Al 31.7 ms 13 19 1 1 2 1 1 33Al 41.7 ms 13 20 1 2 1 1 2 33Al 41.7 ms 13 20 1 2 1 1 2 35Al 38.6 ms 13 22 3 1 1 1 1 36Al 90 ms 13 23 1 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 1 38Al 7.6 ms 13 25 1 1 1 1 1 28Si STABLE 14 14 7 1 1 1 1 29Si STABLE 14 15 1 5 1 1 1 30Si STABLE<							۷	1	-	
31Al 644 ms 13 18 1 2 1 1 32Al 31.7 ms 13 19 1 1 2 1 1 33Al 41.7 ms 13 20 1 2 1 1 2 1 35Al 38.6 ms 13 22 3 1 1 2 1 1 36Al 90 ms 13 23 1 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 1 38Al 7.6 ms 13 25 1 1 1 1 28Si STABLE 14 14 7 1 1 1 29Si STABLE 14 15 1 5 1 1 1 30Si STABLE 14 16 4 2 1 1 1				16			<u> </u>			
32Al 31.7 ms 13 19 1 1 2 1 33Al 41.7 ms 13 20 1 2 1 2 1 35Al 38.6 ms 13 22 3 1 1 2 1 36Al 90 ms 13 23 1 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 1 1 38Al 7.6 ms 13 25 1 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>ļ</td> <td>ļ</td>					1				ļ	ļ
33Al 41.7 ms 13 20 1 2 1 35Al 38.6 ms 13 22 3 1 1 1 36Al 90 ms 13 23 1 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 1 38Al 7.6 ms 13 25 1 1 1 1 28Si STABLE 14 14 7 1 1 1 29Si STABLE 14 15 1 5 1 1 1 30Si STABLE 14 16 4 2 1 1 1						1	2			
33Al 41.7 ms 13 20 1 2 1 35Al 38.6 ms 13 22 3 1 1 1 36Al 90 ms 13 23 1 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 1 38Al 7.6 ms 13 25 1 1 1 1 28Si STABLE 14 14 7 1 1 1 29Si STABLE 14 15 1 5 1 1 1 30Si STABLE 14 16 4 2 1 1 1	32AI	31.7 ms	13	19	1	1		2		
35Al 38.6 ms 13 22 3 1 36Al 90 ms 13 23 1 1 1 37Al 10.7 ms 13 24 2 1 38Al 7.6 ms 13 25 1 1 28Si STABLE 14 14 7 1 29Si STABLE 14 15 1 5 1 30Si STABLE 14 16 4 2 1							1			
36Al 90 ms 13 23 1 1 1 1 37Al 10.7 ms 13 24 2 1 1 38Al 7.6 ms 13 25 1 1 1 28Si STABLE 14 14 7 1 1 29Si STABLE 14 15 1 5 1 1 30Si STABLE 14 16 4 2 1 1						3	1 .	† –	1	1
37Al 10.7 ms 13 24 2 1 38Al 7.6 ms 13 25 1 1 28Si STABLE 14 14 7 1 29Si STABLE 14 15 1 5 1 30Si STABLE 14 16 4 2 1					1		1	1		1
38Al 7.6 ms 13 25 1 1 1 28Si STABLE 14 14 7	30AI									
28Si STABLE 14 14 7 29Si STABLE 14 15 1 5 1 30Si STABLE 14 16 4 2 1				24		1	۷	1		
29Si STABLE 14 15 1 5 1 30Si STABLE 14 16 4 2	38AI	7.6 MS	13	25						
29Si STABLE 14 15 1 5 1 30Si STABLE 14 16 4 2						ļ	ļ		ļ	
30Si STABLE 14 16 4 2										
30Si STABLE 14 16 4 2	29Si		14		1	5				
31Si 157.3 min 14 17 1 4 1				17	1		ł	1	ł	t

32Si 132 a 14 18 3 1 1 33Si 6.1 s 14 19 1 1 2 1 34Si 2.7 s 14 20 2 2 2 35Si 780 ms 14 21 1 1 2 1 37Si 90 ms 14 23 1 3 3 1 2	
34Si 2.7 s 14 20 2 2 35Si 780 ms 14 21 1 1 2	
34Si 2.7 s 14 20 2 2 2 35Si 780 ms 14 21 1 1 2	
35Si 780 ms 14 21 1 1 2	
37Si 90 ms 14 23 1 3	
	1
38Si 90 ms 14 24 2 1	1
39Si 47.5 ms 14 25 1 2	1
40Si 33.0 ms 14 26 1 1	
30P 2.4 min 15 15 1 7	
31P STABLE 15 16 6 1	
32P 14.2 d 15 17 1 4 2	
33P 25.3 d 15 18 5 1	
34P 12.4 s 15 19 1 3 1 1	
35P 47.3 s 15 20 2 2 1	
36P 5.6 s 15 21 1 2 2	
37P 2.31 s 15 22 1 1 2	
39P 190 ms 15 24 4	1
40P 153 ms 15 25 1 2 1	1
	1
42P 48.5 ms 15 27 1 1 1	1
43P 36.5 ms 15 28 1 1 1	1
32S STABLE 16 16 8	
33S STABLE 16 17 1 6 1	
34S STABLE 16 18 5 2	
35S 87.5 d 16 19 1 5 1	
36S STABLE 16 20 4 1 1	
37S 5.0 min 16 21 1 2 2 1	
385 170.3 min 16 22 3 2	1
40S 8.8 s 16 24 2 2	
41S 1.9s 16 25 1 4	1
42S 1.0 s 16 26 3 1	1
43S 260 ms 16 27 1 1 2	1
44S 100 ms 16 28 2 1	1
455 68 ms 16 29 1 1 1	1
34Cl 1.5 s 17 17 1 8	
35CI STABLE 17 18 7 1	
36Cl 3.0 E+5 a 17 19 1 5 2	
38Cl 37.2 min 17 21 1 4 1 1	
39Cl 55.6 min 17 22 3 2 1	
40Cl 1.3 min 17 23 1 3 2	
41Cl 38.4 s 17 24 2 1 2	
42CI 6.8 s 17 25 1 2 2	
43Cl 3.0 s 17 26 5	1
44Cl 0.56 s 17 27 1 3 1	1
45Cl 400 ms 17 28 2 2	1
46Cl 232 ms 17 29 1 2 1	1
47Cl 101 ms 17 30 1 1 1 1	1
36Ar STABLE 18 18 9	
37Ar 35.0 d 18 19 1 7 1	
38Ar STABLE 18 20 6 2	
39Ar 269a 18 21 1 6 1	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1	1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 <td></td>	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 5 5 1 2 2	1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 5 1 2 2	
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 5 1 2 2 46Ar 8.4 s 18 28 4 1 1 1	1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 5 1 2 2 46Ar 8.4 s 18 28 4 1 1 4 47Ar 1.2 s 18 29 1 2 2 2	1 1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 5 1 2 2 46Ar 8.4 s 18 28 4 1 1 1 47Ar 1.2 s 18 29 1 2 2 2 48Ar 0.4 s 18 30 1 3 3 1	1 1 1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 1 2 2 45Ar 21.4 s 18 27 1 5 1 2 2 46Ar 8.4 s 18 28 4 1 1 1 47Ar 1.2 s 18 29 1 2 2 2 48Ar 0.4 s 18 30 1 3 1 1 49Ar 170 ms 18<	1 1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 1 2 2 45Ar 21.4 s 18 27 1 5 1 2 2 46Ar 8.4 s 18 28 4 1 1 1 47Ar 1.2 s 18 29 1 2 2 2 48Ar 0.4 s 18 30 1 3 1 1 49Ar 170 ms 18<	1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 1
39Ar 269 a 18 21 1 6 1 40Ar STABLE 18 22 5 1 1 41Ar 109.6 min 18 23 1 3 2 1 42Ar 32.9 a 18 24 4 2 2 43Ar 5.3 min 18 25 1 2 1 2 43Ar 5.3 min 18 25 1 2 1 2 44Ar 11.8 min 18 26 1 2 2 2 45Ar 21.4 s 18 27 1 5 1 2 2 46Ar 8.4 s 18 28 4 1 1 1 47Ar 1.2 s 18 29 1 2 2 2 48Ar 0.4 s 18 30 1 3 1 1 1 49Ar 170 ms 18	1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 1

42K	12.3 h	19	23	1	5	1	1		
43K	22.3 h	19	24		4	2	1		
44K	22.1 min	19	25	1	4		2		
45K	17. 3min	19	26		3	1	2		
46K	105 s	19	27	1	1	2	2		
47K	17.5 s	19	28		6			1	
48K	6.8 s	19	29	1	4	1		1	
49K	1.2 s	19	30		3	2		1	
50K	472 ms	19	31	1	3		1	1	
51K	365 ms	19	32			1	1	1	
52K	105 ms	19	33	1		2	1	1	
53K	30 ms	19	34		1		2	1	
40Ca	>5.9 E+21 a	20	20		10				
41Ca	1.0 E+5 a	20	21	1	8	1			
42Ca	STABLE	20	22		7	2			
43Ca	STABLE	20	23	1	7		1		
44Ca	STABLE	20	24		6	1	1		
45Ca	162.6 d	20	25	1	4	2	1		
46Ca	>100E+15 a	20	26		5		2		
47Ca	4.5 d	20	27	1	3	1	2		
48Ca	43 E+18 a	20	28		2	2	2		
49Ca	8.7 min	20	29	1	6			1	
50Ca	13.9 s	20	30		5	1		1	
51Ca	10.0 s	20	31	1	3	2		1	
52Ca	4.6 s	20	32		4		1	1	
53Ca	90 ms	20	33	1	2	1	1	1	
54Ca	50 ms	20	34		1	2	1	1	
55Ca	30 ms	20	35	1	1		2	1	
56Ca	10 ms	20	36			1	2	1	

Comments on Table 2:

Isotopes that cannot be calculated using the Block method have been omitted.

- Total Isotopes reported between Lithium and Calcium: 365 [4].
- Isotopes predicted as stable between Lithium and Calcium: 160.
- Actual stable Isotopes between Lithium and Calcium: 39.

This method produces a good percentage of stable isotopes up to Calcium, and it fares particularly well between Lithium and Neon. After Calcium, the number of models of isotopes that can be constructed using the proton/neutron Blocks expands, however so does the number of isotopes per element. The proton/neutron Block system still predicts the stable isotopes (it never misses a stable isotope) however, the number of unstable isotopes appearing within the models starts to increase and rapidly becomes greater than that of the stable isotopes.

Modifying the number series

It becomes clear that to predict the stable isotopes beyond Calcium, an additional factor, or modifier, must be used in number series for calculating the Blocks. The proton/neutron Blocks are not enough to discriminate between stable and un-stable isotopes, and so modifiers can be added as a triangulation device to further refine the predictions. These modifiers are built in to the Block system in exactly the same way as protons and neutrons. There are many different series that can be used here and as many modifiers can be added as desired (e.g. o setting a prime number sequence), however, a single modifier that works quite well up to Calcium is a simple Fibonacci series (dubbed

the "Abs" modifier) as in Table 3.

Block	Р	Ν	Abs
А	1	1	1
В	2 3	2 4	1
C	3	4	2
D	5	8	3
E	7	16	5
F	11	32	8
etc			

Table 3: Protons in prime numbers, neutrons in binary powers and Abs in Fibonacci series.

When plugging these figures in to the Block system, the results in Table 4 can be observed.

lsotope	Stability	z	Ν	Abs	Block A	Block B	Block C	Block D	Block E	Block F
6Li	STABLE	3	3	2	1	1				
7Li	STABLE	3	4	2			1			
8Be	6.7 E-17 s	4	4	2		2				
9Be	STABLE	4	5	3	1		1			
10B	STABLE	5	5	3	1	2				
11B	STABLE	5	6	3		1	1			
13B	17.3 ms	5	8	3				1		
12C	STABLE	6	6	3		3				
13C	STABLE	6	7	4	1	1	1			
14C	5.7 E+3 years	6	8	4			2			
14N	STABLE	7	7	4	1	3				
15N	STABLE	7	8	4		2	1			
16N	7.1 s	7	9	5	1		2			
17N	4.1 s	7	10	4		1		1		
160	STABLE	8	8	4		4				
170	STABLE	8	9	5	1	2	1			
180	STABLE	8	10	5		1	2			
190	26.4 s	8	11	5	1	1		1		
200	13.5 s	8	12	5				1	1	
18F	109.7 min	9	9	5	1	4				
19F	STABLE	9	10	5			3	1		

Table 4: Block system result using Abs modifier.

205	111.			<i>,</i>	1	1 1			1	1
20F 21F	11.1 s	9	11	6		1	1	2	1	
21F 22F	4.1 s	9	12 13	5 6	1		2	1	1	
ZZF	4.2 s	9	15	0	1		1	1		
20Ne	STABLE	10	10	5		5				
21Ne	STABLE	10	10	6	1	3	1			
22Ne	STABLE	10	12	6	•	2	2			
23Ne	37.2 s	10	13	6	1	2	_	1		
24Ne	3.3 min	10	14	6		- 1	1	1		
22Na	2.6 yr	11	11	6	1	5				
23Na	STABLE	11	12	6		4	1			
24Na	14.9 h	11	13	7	1	2	2			
25Na	59.1 s	11	14	6		3		1		
26Na	1.0 s	11	15	7	1	1	1	1		
27Na	301 ms	11	16	7			2	1		
28Na	30.5 ms	11	17	7	1			2		
24Mg	STABLE	12	12	6						
25Mg	STABLE	12	13	7		6				
26Mg	STABLE	12	14	7	1	4	1			
27Mg	9.4 min	12	15	7		3	2			
28Mg	20.9 h	12	16	7	1	3		1		
29Mg	1.3 s	12	17	8		2	1	1		
30Mg	335 ms	12	18	7	1		2	1		
33Mg	90.5 ms	12	21	8		1	1	2	1	
34Mg	20 ms	12	22	8		1	1	1	1	
36Mg	3.9 ms	12	24	8				1	1	
26AI	7.1 E+5 a	13	13	7	1	6				
27AI	STABLE	13	14	7		5	1			
28AI	2.2 min	13	15	8	1	3	2			
29AI	6.5 min	13	16	7		4		1		
30AI	3.6 s	13	17	8	1	2	1	1		
31Al	644 ms	13	18	8		1	2	1		
32AI	31.7 ms	13	19	8	1	1		2		
33AI	41.7 ms	13	20	8			1	2		
35AI	38.6 ms	13	22	8		3			1	
36AI	90 ms	13	23	9	1	1	1		1	
37AI	10.7 ms	13	24	9			2		1	
38AI	7.6 ms	13	25	9	1			1	1	
28Si	STABLE	14	14	7		7				
29Si	STABLE	14	15	8	1	5	1			
30Si	STABLE	14	16	8		4	2			
31Si	157.3 min	14	17	8	1	4	1	1		
32Si 33Si	132 a	14 14	18 10	8	1	3	1	1		
33Si 34Si	6.1 s 2.7 s	14 14	19 20	9	1	1	2	1		
34Si 35Si	2.7 s 780 ms	14 14	20 21	8 9	1	2	1	2 2		
37Si	90 ms	14	21	9	1	3		2	1	
38Si	90 ms	14	23	9		2	1		1	
39Si	47.5 ms	14	24	10	1		2		1	
					I .	I	I –	I	I ·	I

40Si	33.0 ms	14	26	9		1		1		
30P	2.4 min	15	15	8	1	7				
31P	STABLE	15	16	8		6	1			
32P	14.2 d	15	17	9	1	4	2			
33P	25.3 d	15	18	8		5	_	1		
34P	12.4 s	15	19	9	1	3	1	1		
35P	47.3 s	15	20	9		2	2	1		
36P	5.6 s	15	20	9	1	2	2	2		
37P	2.31 s	15	22	9		1	1	2		
39P	190 ms	15	24	9		4		Z	1	
40P	150 ms	15	25	10	1	2	1		1	
41P	100 ms	15	26	10		1	2		1	
42P	48.5 ms	15	20	10	1	1	2	1	1	
42P 43P	36.5 ms	15	27	10	1	1	1	1	1	
104	50.5 1115	15	20	10					'	
325	STABLE	16	16	8		8				
33S	STABLE	16	10	9	1	6	1			
34S	STABLE	16	18	9	1	5	2			
35S	87.5 d	16	18	9	1	5	2	1		
36S	STABLE	16	20	9	1	4	1	1		
37S	5.0 min	16	20	9 10	1	2	2	1		
38S	170.3 min	16	21	9		3	2	2		
395	11.5 s	16	22	9 10	1	1	1	2		
40S	8.8 s	16	23	10	1	1	2	2		
405 41S	0.8 s	16	24	10	1	4	2	2	1	
413	1.9 s	16	25	10	1	3	1		1	
435	260 ms	16	20	10	1	1	2		1	
44S	100 ms	16	28	10		2	2	1	1	
45S	68 ms	16	29	11	1	2	1	1	1	
100	001115							•		
34Cl	1.5 s	17	17	9	1	8				
35Cl	STABLE	17	18	9		7	1			
36Cl	3.0 E+5 a	17	19	10	1	5	2			
37Cl	STABLE	17	20	9		6		1		
38Cl	37.2 min	17	21	10	1	4	1	1		
39Cl	55.6 min	17	22	10		3	2	1		
40Cl	1.3 min	17	23	10	1	3		2		
41Cl	38.4 s	17	24	10		2	1	2		
42Cl	6.8 s	17	25	11	1		2	2		
43Cl	3.0 s	17	26	10		5			1	
44Cl	0.56 s	17	27	11	1	3	1		1	
45Cl	400 ms	17	28	11		2	2		1	
46Cl	232 ms	17	29	11	1	2		1	1	
47Cl	101 ms	17	30	11		1	1	1	1	
36Ar	STABLE	18	18	9		9				
37Ar	35.0 d	18	19	10	1	7	1			
38Ar	STABLE	18	20	10		6	2			
39Ar	269 a	18	21	10	1	6		1		
40Ar	STABLE	18	22	10		5	1	1		
41Ar	109.6 min	18	23	11	1	3	2	1		
42Ar	32.9 a	18	24	10		4		2		
			I		I	1	I 1		1	1

43Ar	5.3 min	18	25	11	1	2	1	2	1	I
44Ar	11.8 min	18	26	11		1	2	2		
45Ar	21.4 s	18	27	11	1	5	_	_	1	
46Ar	8.4 s	18	28	11		4	1		1	
47Ar	1.2 s	18	29	12	1	2	2		1	
48Ar	0.4 s	18	30	12		1	3		1	
49Ar	170 ms	18	31	12	1	1	1	1	1	
50Ar	85 ms	18	32	12		-	2	1	1	
51Ar	60 ms	18	33	12	1		_	2	1	
								_		
38K	7.6 min	19	19	10	1	9				
39K	STABLE	19	20	10		8	1			
40K	1.2 E+9 a	19	21	11		1	6	2		
41K	STABLE	19	22	10		7		1		
42K	12.3 h	19	23	11	1	5	1	1		
43K	22.3 h	19	24	11		4	2	1		
44K	22.1 min	19	25	11	1	4		2		
45K	17. 3min	19	26	11		3	1	2		
46K	105 s	19	27	12	1	1	2	2		
47K	17.5 s	19	28	11		6			1	
48K	6.8 s	19	29	12	1	4	1		1	
49K	1.2 s	19	30	12		3	2		1	
50K	472 ms	19	31	12	1	3		1	1	
51K	365 ms	19	32	12			1	1	1	
52K	105 ms	19	33	13	1		2	1	1	
53K	30 ms	19	34	12		1		2	1	
40Ca	>5.9 E+21 a	20	20	10		10				
41Ca	1.0 E+5 a	20	21	11	1	8	1			
42Ca	STABLE	20	22	11		7	2			
43Ca	STABLE	20	23	11	1	7		1		
44Ca	STABLE	20	24	11		6	1	1		
45Ca	162.6 d	20	25	12	1	4	2	1		
46Ca	>100E+15 a	20	26	11		5		2		
47Ca	4.5 d	20	27	12	1	3	1	2		
48Ca	43 E+18 a	20	28	12		2	2	2		
49Ca	8.7 min	20	29	12	1	6			1	
50Ca	13.9 s	20	30	12		5	1		1	
51Ca	10.0 s	20	31	13	1	3	2		1	
52Ca	4.6 s	20	32	12		4		1	1	
53Ca	90 ms	20	33	13	1	2	1	1	1	
54Ca	50 ms	20	34	13		1	2	1	1	
55Ca	30 ms	20	35	13	1	1		2	1	
56Ca	10 ms	20	36	13			1	2	1	

NB Isotopes that cannot be calculated using the Block method have been omitted.

What can be seen from Table 4 is that whilst the proton and neutron numbers increase in an orderly and predictable pattern, the Abs modifier does not. Removing isotopes so that the Abs modifier increases in an orderly and predictable fashion results in Table 5.

Table 5: Block system result using "orderly" Abs modifier.

lsotope	Stability	z	N	Abs	Block A	Block B	Block C	Block D	Block E	Block F
6Li	STABLE	3	3	2	1	1				
7Li	STABLE	3	4	2			1			
8Be	6.7 E-17 s	4	4	2		2				
9Be	STABLE	4	5	3	1		1			
10B	STABLE	5	5	3	1	2				
11B	STABLE	5	6	3		1	1			
13B	17.3 ms	5	8	3				1		
12C	STABLE	6	6	3		3				
13C	STABLE	6	7	4	1	1	1			
14C	5.7 E+3 years	6	8	4			2			
14N	STABLE	7	7	4	1	3				
15N	STABLE	7	8	4		2	1			
17N	4.1 s	7	10	4		1		1		
160	STABLE	8	8	4		4				
170	STABLE	8	9	5	1	2	1			
180	STABLE	8	10	5		1	2			
190	26.4 s	8	11	5	1	1		1		
200	13.5 s	8	12	5				1	1	
105	1007	0		_						
18F	109.7 min	9	9	5	1	4	2			
19F	STABLE	9	10	5			3	1	1	
21F	4.1 s	9	12	5			2		1	
20Ne	STABLE	10	10	5		F				
20Ne 21Ne	STABLE	10	10	6	1	5 3	1			
22Ne	STABLE	10	12	6	1	2	2			
23Ne	37.2 s	10	12	6	1	2	2	1		
24Ne	3.3 min	10	14	6	1	1	1	1		
2 1110	5.5 1111	10		Ŭ		•	•	•		
22Na	2.6 yr	11	11	6	1	5				
23Na	STABLE	11	12	6		4	1			
25Na	59.1 s	11	14	6		3		1		
24Mg	STABLE	12	12	6						
25Mg	STABLE	12	13	7		6				
26Mg	STABLE	12	14	7	1	4	1			
27Mg	9.4 min	12	15	7		3	2			
28Mg	20.9 h	12	16	7	1	3		1		
30Mg	335 ms	12	18	7	1		2	1		
26Al	7.1 E+5 a	13	13	7	1	6				
27AI	STABLE	13	14	7		5	1			
29AI	6.5 min	13	16	7		4		1		
	11 1		I		I.	1	1	1	1	1

28Si	STABLE	14	14	7		7	Í		1	1
29Si	STABLE	14	15	8	1	5	1			
30Si	STABLE	14	16	8		4	2			
31Si	157.3 min	14	17	8	1	4		1		
32Si	132 a	14	18	8		3	1	1		
34Si	2.7 s	14	20	8		2		2		
30P	2.4 min	15	15	8	1	7				
31P	STABLE	15	16	8		6	1			
33P	25.3 d	15	18	8		5		1		
325	STABLE	16	16	8		8				
33S	STABLE	16	17	9	1	6	1			
34S	STABLE	16	18	9		5	2			
35S	87.5 d	16	19	9	1	5		1		
36S	STABLE	16	20	9		4	1	1		
38S	170.3 min	16	22	9		3		2		
34Cl	1.5 s	17	17	9	1	8				
35Cl	STABLE	17	18	9		7	1			
37Cl	STABLE	17	20	9		6		1		
36Ar	STABLE	18	18	9		9				
37Ar	35.0 d	18	19	10	1	7	1			
38Ar	STABLE	18	20	10		6	2			
39Ar	269 a	18	21	10	1	6		1		
40Ar	STABLE	18	22	10		5	1	1		
42Ar	32.9 a	18	24	10		4		2		
38K	7.6 min	19	19	10	1	9				
39K	STABLE	19	20	10		8	1			
41K	STABLE	19	22	10		7		1		
40Ca	>5.9 E+21 a	20	20	10		10				
41Ca	1.0 E+5 a	20	21	11	1	8	1			
42Ca	STABLE	20	22	11		7	2			
43Ca	STABLE	20	23	11	1	7		1		
44Ca	STABLE	20	24	11		6	1	1		
46Ca	>100E+15 a	20	26	11		5		2		

Comments to the Table 5:

- Total Isotopes reported between Lithium and Calcium: 365 [4].
- Isotopes predicted as stable using Abs modifier between Lithium and Calcium: 71.
- Actual stable Isotopes between Lithium and Calcium: 39.

An interesting observation here is that it is the odd Z numbered elements that lose more isotopes when adjusting for the Abs modifier results in this way. When the Block sys-tem is applied to all the elements between Oxygen and Lead, it is revealed that there are no stable odd Z numbered elements that are built using Block A. This means that we can discount any isotope with an odd atomic number and we will find more stable isotopes in the elements with even atomic numbers which do not use Block A

Future work

The Block method has been used to predict the stability of isotopes up to Lead with similar results. Calculating the full periodic table, however, requires the use of further modifiers to cope with the range. It is hoped that further work will re-veal the closest match between predicted and observed stability. Close approximations can be made by replacing the prime and binary power number series with simple combinations of Fibonacci sequences.

An example for Tin is shown in Table 6. This uses a simple scoring mechanism of a summation of absolute values of the modifier scores to show approximate stability of each isotope. Tin is an interesting element because it contains a high proportion of stable isotopes. The values for the modifiers are calculated as the average score for all isotopes for a particular modifier using a specific number sequence. So in the example below, the proton sequence is prime numbers, the neutron sequence is binary powers, the Abs modifier sequence is 1, 2, 3, 5, 8, 13, 21 and the Hat modifier is 2, 3, 5, 8, 13, 21, 34.

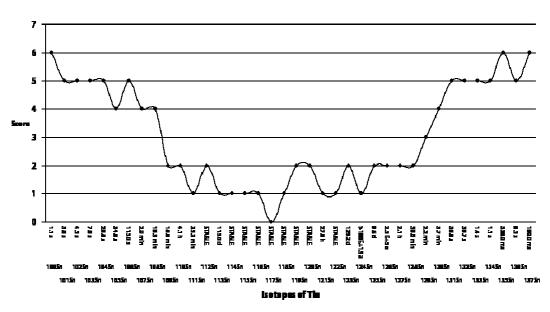

lsotope	half-life	Z	Ν	abs	hat	Scores				Score
						р	n	abs	hat	Total
100Sn	1.1 s	50	50	51	80	0	0	1	5	6
101Sn	3.0 s	50	51	51	80	0	0	1	4	5
102Sn	4.5 s	50	52	51	80	0	0	1	4	5
103Sn	7.0 s	50	53	51	80	0	0	1	4	5
104Sn	20.8 s	50	54	51	80	0	0	1	4	5
105Sn	34.0 s	50	55	51	80	0	0	1	3	4
106Sn	115.0 s	50	56	51	80	0	0	1	4	5
107Sn	2.9 min	50	57	51	80	0	0	1	3	4
108Sn	10.3 min	50	58	51	80	0	0	1	3	4
109Sn	18.0 min	50	59	51	80	0	0	0	2	2
110Sn	4.1 h	50	60	51	80	0	0	0	2	2
111Sn	35.3 min	50	61	51	80	0	0	0	1	1
112Sn	STABLE	50	62	51	80	0	0	0	2	2
113Sn	115.0 d	50	63	51	80	0	0	0	1	1
114Sn	STABLE	50	64	51	80	0	0	0	1	1
115Sn	STABLE	50	65	51	80	0	0	0	1	1
116Sn	STABLE	50	66	51	80	0	0	0	1	1
117Sn	STABLE	50	67	51	80	0	0	0	0	0
118Sn	STABLE	50	68	51	80	0	0	•1	0	1
119Sn	STABLE	50	69	51	80	0	0	•1	•1	2
120Sn	STABLE	50	70	51	80	0	0	•1	•1	2
121Sn	27.0 h	50	71	51	80	0	0	•1	0	1
122Sn	STABLE	50	72	51	80	0	0	•1	0	1
123Sn	129.2 d	50	73	51	80	0	0	•1	•1	2
124Sn	>100•10é a	50	74	51	80	0	0	•1	0	1

Table 6: An example for Tin using multiple modifiers (Abs and Hat) based on offset Fibonacci series.

125Sn	9.6 d	50	75	51	80	0	0	•1	•1	2	1
126Sn	2.3•10 a	50	76	51	80	0	0	•1	•1	2	
127Sn	2.1 h	50	77	51	80	0	0	•1	•1	2	
128Sn	59.0 min	50	78	51	80	0	0	•1	•1	2	
129Sn	2.2 min	50	79	51	80	0	0	•1	•2	3	
130Sn	3.7 min	50	80	51	80	0	0	•2	•2	4	
131Sn	56.0 s	50	81	51	80	0	0	•2	•3	5	
132Sn	39.7 s	50	82	51	80	0	0	•2	•3	5	
133Sn	1.4 s	50	83	51	80	0	0	•2	•3	5	
134Sn	1.1 s	50	84	51	80	0	0	•2	•3	5	
135Sn	530.0 ms	50	85	51	80	0	0	•2	•4	6	
136Sn	0.3 s	50	86	51	80	0	0	•2	•3	5	
137Sn	190.0 ms	50	87	51	80	0	0	•2	•4	6	

The average value for the Abs modifier for all isotopes of Tin is 51 and for the Hat modifier is 80. These figures are then used for all values of Abs and Hat and the score is a sum of the absolute differences.

Figure 1: Plot of Score for Tin

Block Stability Prediction for Isotopes of Tin

Using this scoring method has the advantage of being able to make a prediction on all of the isotopes and so does not require the "orderly clean-up" method used in Table 5.

Summary

The Block system produces the following results:

• Actual stable isotopes between Lithium and Calcium: 39 out of 365 [4];

- When using the Block method with protons using a prime number series and neutrons using a binary power series, the isotopes predicted as stable between Lithium and Calcium is 160 out of 365;
- When using the Block method with protons using a prime number series, neutrons using a binary power series and introducing an Abs modifier using the Fibonacci series, the isotopes predicted as stable between Lithium and Calcium is 71 out of 365;
- Combinations of modifiers can be used to show regions of stability and it may be possible to find a combination of modifiers that offer an exact prediction of stable isotopes;
- Isotopes with odd Z numbers between Oxygen and Lead that are built using Block A are not be stable.

Acknowledgements

The author would like to thank Lois Everett and Peter Row-lands for their help, support and suggestions.

References

1. Rowlands P. The fundamental parameters of physics. PD Publications, 1991.

2. Serway R.A. and Jewett J.W. Physics for scientist and engineers. 6th ed. International Student Edition, Thomson Brooks/Cole, 2004.

3. Al Rabeh R. H. Primes, geometry and condensed matter. *Progress in Physics*, 2009, v. 3.

4. Lunds Universitet. Table of radioactive isotopes. http://www. nucleardata.nuclear.lu.se/nucleardata/

Sean C. Williams. Using Simple Number Theory to Predict Stable Isotopes