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Abstract

We introduce a new test of isotropy or uniformity on the circle, based on the
Gini mean difference of the sample arc-lengths and obtain both the exact and
asymptotic distributions under the null hypothesis of circular uniformity. We
also provide a table of upper percentile values of the exact distribution for
small to moderate sample sizes. Illustrative examples in circular data analysis
are also given. It is shown that a “generalized” Gini mean difference test has
better asymptotic efficiency than a corresponding “generalized” Rao’s test
in the sense of Pitman asymptotic relative efficiency.
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1. Introduction

In this paper, we introduce a new test of uniformity on the circle based
on the Gini mean difference of the sample arc-lengths. This test extends the
Gini mean difference spacings test on the real line in Jammalamadaka and
Goria (2004) to the circular case. These sample arc-lengths, which are the
gaps between successive observations on the circumference of the circle, are
analogous to sample spacings on the real line and provide a maximal-invariant
under rotations so that all invariant tests have to be based on them. The Gini
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mean difference compares these arc-lengths between themselves and is very
similar to the Rao’s spacings test which has been used to test the uniformity
of circular data, that compares the gaps to their expected length.

Observations representing directions in two dimensions can be modeled
as random variables taking values on the circumference of the circle. We
take this circle to be the circle with unit radius, and hence a circumference
of length 2π. A circular probability distribution is one whose support is this
circumference.

The simple goodness-of-fit problem on the circle consists of testing fit
to a single fixed circular distribution for a given data set. In particular,
consider a random sample of angular measurements θ1, θ2, . . . , θn with circu-
lar distribution function F defined on the real line with the property that
F (x + 2π) − F (x) = 1, for all x ∈ R. We are interested in testing the null
hypothesis

H0 : F = F0,

where F0 is a completely specified distribution function.

Without loss of generality, if F is assumed to be continuous as we shall
do, by way of the probability integral transform, the goodness-of-fit problem
reduces to one of testing circular uniformity, i.e. testing the null hypothesis

H0 : F (θ) =
θ

2π
, for 0 ≤ θ < 2π.

Let 0 ≤ θ(1) ≤ θ(2) ≤ . . . ≤ θ(n) < 2π denote the sample order statistics.
The sample arc-lengths are defined by the random variables

Dk = θ(k) − θ(k−1), for k = 1, 2, . . . , n (1.1)

where we take θ(0) = θ(n) − 2π to make D1 the natural gap between the first
and last order statistics that straddle the origin. The sample arc-lengths
{Dk} represent the differences between successive observations on the circum-
ference of the circle, and remain invariant under the choice of zero-direction
or sense of rotation. Tests based on these sample arc-lengths are the focus
here for testing the null hypothesis.

Under the null hypothesis of circular uniformity, the joint distribution of(
D1

2π
, D2

2π
, . . . , Dn

2π

)
is a Dirichlet(α1 = 1, . . . , αn−1 = 1; αn = 1) distribution on

the unit (n− 1)-simplex
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Sn−1 =

{
(t1, t2, . . . , tn−1) ∈ Rn−1 : tk ≥ 0, k = 1, 2, . . . , n− 1,

n−1∑

k=1

tk ≤ 1

}
.

By a multivariate transformation, the sample arc-lengths (D1, D2, . . . , Dn)
have probability density function

fD1,D2,...,Dn−1(d1, d2, . . . , dn−1)

=
(n− 1)!

(2π)n−1
· I

(
n−1⋂

k=1

(0 ≤ dk ≤ 2π),
n−1∑

k=1

dk ≤ 2π

)
. (1.2)

Moreover, under the null hypothesis, these sample arc-lengths are exchange-
able random variables and have the same distribution as the spacings from
a random sample of (n− 1) random variables from the Uniform distribution
on the line segment [0, 2π). This suggests that spacings tests on the real line,
with some minor modifications, can be used for circular statistical inference.
In fact, spacings tests are the only general class of goodness-of-fit tests that
are directly applicable to both circular and linear data.

Most common among spacings tests are symmetric spacings tests, i.e.
general test statistics of the form

Vn(g) =
1

n

n∑

k=1

g(nDk), (1.3)

and

Wn(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(nDi, nDj), (1.4)

where g(·) is a real-valued function satisfying some regularity conditions and
h : [0,∞) × [0,∞) → R is a symmetric function satisfying some other reg-
ularity conditions. Test statistics of the form Vn(g) are symmetric sum-
functions of the sample spacings (e.g. cf. Pyke (1965), Sethuraman and Rao
(1970), and Rao and Sethuraman (1975)), and those of the form Wn(h) are
U -statistics of the sample spacings (cf. Tung and Jammalamadaka (2010)).
Moreover, as these papers show, these symmetric spacings tests are known
to have asymptotic Normal distributions under mild conditions.
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Among spacings tests of the form Vn(g), Rao’s spacings test (cf. Rao
(1969), Rao (1976)) given by

Jn =
1

n

n∑

k=1

|nDk − 2π|
2

=
1

2

n∑

k=1

∣∣∣∣Dk − 2π

n

∣∣∣∣ =
n∑

k=1

(
Dk − 2π

n

)

+

, (1.5)

is one of the more important tests and corresponds to taking g(t) = |t−2π|/2.
Large values of Jn indicate clustering of sample observations or evidence for
directionality, and rejection of the null hypothesis of circular uniformity.
Rao’s test is a powerful statistic that can discriminate between uniform
(isotropic) and concentrated (anisotropic) circular distributions, regardless
of whether the distributions are unimodal or multimodal.

Under the null hypothesis of circular uniformity, the probability density
function of Jn is

fJn(u) =
n−1∑

k=1

(
n

k

) ( u

2π

)n−k−1 ψk(nu) · (n− 1)! · I[0 ≤ u ≤ 2π(1− 1/n)]

nk−1(n− k − 1)!
,

(1.6)
where

ψk(x) =
1

2π(k − 1)!

∞∑
j=0

(−1)j

(
k

j

) ( x

2π
− j

)k−1

+
. (1.7)

Rao’s test is one of the few spacings-type statistics for which both the exact
and asymptotic distributions are known. A table of upper percentiles of the
exact distribution for Jn was first given in Rao (1976), and extended tables
of these critical values can be found in Russell and Levitin (1995). On the
other hand, for almost all spacings tests, saddlepoint approximations to the
null distribution, which give practically exact values, are available and have
been studied in Gatto (2001) and Gatto and Jammalamadaka (1999).

Under the null hypothesis, Jn has an asymptotic Normal distribution, i.e.
in the limit as n →∞,

√
n

(
Jn − e−1

)
=
√

n

(
1

2

n∑

k=1

∣∣∣∣Dk − 2π

n

∣∣∣∣− e−1

)

D−→ N1

(
0, 2e−1 − 5e−2

)
. (1.8)

We introduce the Gini mean difference arc-lengths test in the next sec-
tion and obtain both its exact and asymptotic distributions under the null
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hypothesis. We also furnish a table of upper percentile values of the exact
distribution. Section 3 contains examples of circular data analysis featuring
Rao’s test and the Gini mean difference test. Section 4 discusses the Pitman
asymptotic relative efficiencies of a generalized Rao’s test, and a generalized
Gini mean difference test.

2. The Gini Mean Difference Arc-Lengths Test

Comparable to Rao’s arc-lengths test is the Gini mean difference of the
sample arc-lengths, i.e.

Gn =
2

n(n− 1)

∑
1≤i<j≤n

|nDi − nDj|
2

=
1

2n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj| ,

(2.1)
which corresponds to taking h(u, v) = |u − v|/2 in (1.4), and may also be
rewritten as

Gn =
1

n(n− 1)

n∑
i=1

n∑
j=1

(nDi − nDj)+ . (2.2)

The statistic Gn, which compares these sample arc-lengths between them-
selves, is of the form Wn(h) and an average over all pairs of absolute pairwise
differences of the sample arc-lengths. The Gini mean difference spacings test
was first proposed in Jammalamadaka and Goria (2004) for testing goodness-
of-fit on the real line. There, under the goodness-of-fit null hypothesis (i.e.
linear uniformity on [0, 1]), they derive both the exact and asymptotic dis-
tributions, and show that it has good performance based on Monte Carlo
powers.

Under the null hypothesis of circular uniformity, the sample arc-lengths
between successive observations should be approximately evenly spaced, about
(2π)/n apart, and Gn should be close to zero. Large values of Gn resulting
from unusually large arc-lengths or unusually short arc-lengths between ob-
servations are evidence for directionality, and rejection of the null hypothesis
of circular uniformity.

Here, we will adapt both the exact and asymptotic null distributions for
the Gini mean difference spacings test on the real line to the case of the unit
circle with circumference of length 2π.
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Let U1, U2, . . . , Un−1 be independent Uniform([0, 1]) random variables,
and let {Xk} = {(2π)Uk} define (n − 1) independent Uniform([0, 2π)) ran-
dom variables. We define the uniform spacings on the unit interval [0, 1] by
the random variables

Tk = U(k) − U(k−1), for k = 1, 2, . . . , n (2.3)

where 0 ≡ U(0) ≤ U(1) ≤ U(2) ≤ . . . ≤ U(n−1) ≤ U(n) ≡ 1.

Under the null hypothesis, the sample arc-lengths {Dk} are related to the
uniform spacings {Tk} by the relation

Dk ' X(k) −X(k−1) = (2π)[U(k) − U(k−1)] = (2π)Tk. (2.4)

Here as elsewhere, we use ' to denote the distributional equivalence of quan-
tities on the left and right hand sides of the symbol. Since

n∑
i=1

n∑
j=1

|Ti − Tj| ' 2
n−1∑

k=1

Uk, (2.5)

n∑
i=1

n∑
j=1

|Di −Dj| ' (2π)
n∑

i=1

n∑
j=1

|Ti − Tj| ' 2
n−1∑

k=1

Xk. (2.6)

Thus, we have

Gn =
1

2n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj| ' Sn−1

n− 1
, (2.7)

where Sn−1 =
∑n−1

k=1 Xk is the sum of (n − 1) independent Uniform([0, 2π))
random variables. The probability distribution of Sn−1 is a variation of the
classical Irwin-Hall Uniform sum distribution, which was first derived by
P.S. Laplace in 1814 (cf. Wilks (1962), Feller (1971, Theorem 1, I.9)). The
probability density function of Sn−1 has the form

fSn−1(s) =
I[0 < s < 2π(n− 1)]

(2π)n−1(n− 2)!

n−1∑

k=0

(
n− 1

k

)
(−1)k(s− 2πk)n−2

+ , (2.8)

and can be derived via the Fourier inversion formula and Cauchy’s integral
formula from complex analysis. The cumulative distribution function of Sn−1

is

FSn−1(s) =
I[0 < s < 2π(n− 1)]

(2π)n−1(n− 1)!

n−1∑

k=0

(
n− 1

k

)
(−1)k(s− 2πk)n−1

+ . (2.9)
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Under the null hypothesis of circular uniformity, the probability density
function of Gn is

fGn(y) =
(n− 1) · I(0 < y < 2π)

(2π)n−1(n− 2)!

n−1∑

k=0

(
n− 1

k

)
(−1)k [(n− 1)y − 2πk]n−2

+ ,

(2.10)
with cumulative distribution function

FGn(y) =
I(0 < y < 2π)

(2π)n−1(n− 1)!

n−1∑

k=0

(
n− 1

k

)
(−1)k [(n− 1)y − 2πk]n−1

+ , (2.11)

and characteristic function

ϕGn(t) =

∫ ∞

−∞
eity dFGn(y) = (n− 1)n−1

(
exp

(
2πit
n−1

)− 1

2πit

)n−1

, (i =
√−1).

(2.12)

Under the null hypothesis, Gn has an asymptotic Normal distribution
which is applicable to large sample situations. From the classical Central
Limit Theorem, in the limit as n →∞,

√
n

(
1

n− 1

n−1∑

k=1

Uk − 1

2

)
D−→ N1

(
0,

1

12

)
. (2.13)

Since Gn ' Sn−1

n−1
= (2π)

n−1

∑n−1
k=1 Uk, we have in the limit as n →∞,

√
n(Gn − π) =

√
n

(∑n
i=1

∑n
j=1 |nDi − nDj|

2n(n− 1)
− π

)
D−→ N1

(
0,

π2

3

)
. (2.14)

Let
α = P(Gn > yα) = 1− FGn(yα) (2.15)

be the upper-tail probability corresponding to the critical value yα of the test
statistic Gn. In the following Table 1, we give the upper percentiles of the
exact distribution function for the statistic Gn for testing the null hypothesis
of circular uniformity. The table gives these critical values, which have been
given in degrees for immediate applicability, for small to moderate sample
sizes. If for a given sample size n and significance level α, the observed value
of the test statistic Gn, say yobs, is greater than the tabulated critical value
yα, i.e. yobs > yα, then we reject the null hypothesis of circular uniformity.
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n α = 0.01 α = 0.02 α = 0.03 α = 0.04 α = 0.05 α = 0.10
2 356.22 352.62 349.02 345.42 341.82 323.82
3 333.92 323.55 315.55 308.77 302.80 279.30
4 312.25 300.32 291.87 285.12 279.40 258.62
5 296.23 284.63 276.75 270.64 265.57 247.67
6 284.59 273.79 266.61 261.07 256.49 240.31
7 275.90 265.81 259.15 254.02 249.78 234.90
8 269.07 259.57 253.32 248.53 244.58 230.74
9 263.51 254.51 248.61 244.10 240.39 227.40
10 258.88 250.31 244.71 240.44 236.92 224.65
11 254.93 246.75 241.41 237.33 233.99 222.32
12 251.53 243.68 238.57 234.67 231.47 220.33
13 248.55 241.00 236.08 232.34 229.27 218.59
14 245.91 238.63 233.89 230.29 227.33 217.06
15 243.56 236.52 231.94 228.46 225.60 215.69
16 241.44 234.61 230.19 226.82 224.06 214.47
17 239.52 232.90 228.60 225.33 222.65 213.37
18 237.77 231.33 227.15 223.98 221.38 212.36
19 236.16 229.89 225.83 222.74 220.21 211.44
20 234.68 228.57 224.61 221.60 219.14 210.60
21 233.32 227.35 223.48 220.55 218.14 209.82
22 232.05 226.21 222.44 219.57 217.22 209.10
23 230.86 225.16 221.46 218.66 216.37 208.42
24 229.76 224.17 220.55 217.81 215.56 207.79
25 228.72 223.24 219.70 217.01 214.81 207.20
30 224.36 219.36 216.13 213.67 211.67 204.74
35 220.99 216.36 213.37 211.10 209.24 202.84
40 218.29 213.96 211.16 209.04 207.30 201.32
45 216.04 211.98 209.34 207.34 205.70 200.07
50 213.87 210.25 207.78 205.90 204.35 199.01

Table 1. Upper Percentiles (in degrees) of the Exact Distribution for the Gini
Mean Difference Arc-Lengths Test Gn.

Note that, under the null hypothesis, the so-called “p-value” or observed
significance level can be calculated by

p = P(Gn > yobs) = 1− FGn(yobs). (2.16)

Equivalently, the null hypothesis is rejected whenever p < α.
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3. Illustrative Examples

In this section, we present a couple of circular data analysis examples.
We illustrate how the Gini mean difference test Gn compares with Rao’s test
Jn on two classical circular data sets.

Example (Hospital Birth Times Data). Suppose one wants to know
whether or not birth times at a hospital are uniformly distributed throughout
the day. The alternative hypothesis is that there is a time (or times) when
births are more frequent. Table 2 displays data for delivery times collected
across several days. This data can be found in Russell and Levitin (1995).

k Delivery Time θ(k) Dk

1 12:20 am 5 34
2 12:40 am 10 5
3 12:40 am 10 0
4 12:48 am 12 2
5 1:08 am 17 5
6 5:40 am 85 68
7 6:00 am 90 5
8 6:36 am 99 9
9 6:40 am 100 1
10 7:20 am 110 10
11 10:12 am 153 43
12 3:32 pm 233 80
13 3:40 pm 235 2
14 7:44 pm 296 61
15 10:04 pm 331 35

Table 2. Hospital Birth Times Data.

These observed event times are modeled as realizations from a continuous
circular distribution. The observations can be converted to angles around a
circle in an obvious way, e.g. if we want the angular units in degrees, we use
1 hr. = 360 deg.

24
= 15 deg. and 1 min. = 360 deg.

24 hr.
· 1 hr.

60
= 0.25 deg. Thus, 12:00

am = 0 deg., 6:00 am = 90 deg., 12:00 pm = 180 deg., 6pm = 270 deg., 9:15
am = 138.75 deg., etc.

Rao’s arc-lengths test statistic gives an observed value of J15 = 177 with a
p-value between 0.01 and 0.05. At the 5% significance level, this is sufficient
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evidence to reject the null hypothesis of circular uniformity and conclude
that there are times when births are more frequent.

On the other hand, the Gini mean difference arc-lengths test statistic
gives an observed value of G15 = 224.86 with a p-value of 0.053. The results
from the Gini test are borderline significant, and may possibly indicate there
are times when births are more frequent.

Example (Homing Pigeon Data). 13 homing pigeons were released
one at a time in the Toggenburg Valley in Switzerland under sub-Alpine
conditions. They did not appear to have adjusted quickly to the homing
direction, but preferred to fly in the axis of the valley, indicating a somewhat
bimodal distribution. The vanishing angles are arranged here in increasing
order as follows:

20, 135, 145, 165, 170, 200, 300, 325, 335, 350, 350, 350, 355.

Do these homing pigeons have a preferred direction of flight? (This example
can also be found in Jammalamadaka and SenGupta (2001).)

The observed value of Rao’s arc-lengths test statistic is J13 = 161.92 with
a p-value between 0.05 and 0.10 (cf. with the table of upper percentiles of
the distribution for Jn in Rao (1976)). On the basis of Rao’s arc-lengths test,
there is not enough evidence to reject the hypothesis of circular uniformity
at the 5% significance level.

On the other hand, the observed value of the Gini mean difference arc-
lengths test statistic is G13 = 231.67 with an observed significance level or
p-value of p = 0.043. Therefore, the results of the Gini mean difference arc-
lengths test are significant at the 5% significance level and we can reject the
null hypothesis of circular uniformity. On the basis of Gini mean difference
arc-lengths test, there is sufficient evidence that the homing pigeons have a
preferred direction of flight.

4. Asymptotic Relative Efficiencies

There are clearly many other spacings tests as well as other uniformity
tests for circular data. There is also considerable literature on comparing
their asymptotic efficiencies. For instance, Pitman asymptotic relative effi-
ciencies (ARE’s) for sum-functions of spacings have been discussed in Sethu-
raman and Rao (1970), while exact Bahadur efficiencies have been studied
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in Zhou and Jammalamadaka (1989). In this section, we discuss the Pitman
ARE’s of both the Gini mean difference test Gn and Rao’s test Jn, as well
as generalized versions of these statistics.

We define the generalized Rao’s arc-lengths test

Jn(r) =
1

2n

n∑

k=1

|nDk − 2π|r, r > 0, (4.1)

and the generalized Gini mean difference arc-lengths test

Gn(r) =
1

2n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj|r, r > 0. (4.2)

For the special case r = 1, we have Jn(1) = Jn and Gn(1) = Gn. Moreover,
the special case of Jn(2) corresponds to both Gn(2) as well as the statistic
1
n

∑n
k=1(nDk)

2, which is called the Greenwood statistic.

Broadly speaking, the Pitman ARE of one sequence of tests against an-
other corresponds to the limit of the inverse ratio of sample sizes required
for the two tests to attain the same power at a sequence of alternatives
which converges to the null hypothesis. In order to study Pitman ARE’s,
one needs to obtain the asymptotic distribution of test statistics under a
sequence of close alternatives, which converges to the null hypothesis. In
the circular case, the alternative hypothesis can be specified by a sequence of
distribution functions {Fn(x) : n ≥ 1} that converges to the Uniform([0, 2π))
distribution function, which corresponds to the null hypothesis, in the limit
as n →∞.

For symmetric spacings tests, the appropriate sequence of close alterna-
tives (cf. Sethuraman and Rao (1970) and Rao and Sethuraman (1975)) is
obtained by using the distribution function

Fn(x) =
x

2π
+

Ln(x)

n1/4
, for 0 ≤ x < 2π, (4.3)

where Ln(0) = Ln(2π) = 0. We further assume that Ln(x) is twice differen-
tiable on the unit interval [0, 2π) and that there exists a function L(x) which
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is twice continuously-differentiable with L(0) = L(2π) = 0 and

n1/4 sup
0≤x<2π

|Ln(x)− L(x)| = o(1), (4.4)

n1/4 sup
0≤x<2π

|L′n(x)− l(x)| = o(1), (4.5)

n1/4 sup
0≤x<2π

|L′′n(x)− l′(x)| = o(1), (4.6)

where l(x) and l′(x) are respectively the first and second derivatives of L(x).

The asymptotic Normal distributions of test statistics, under both the
null hypothesis and the sequence of close alternatives, can be adapted to
the circular case. However, such an adaptation is not really necessary for
finding the Pitman ARE’s of test statistics, because the Pitman ARE’s in
the linear case carry over nicely to the circular case without much painstaking
effort. The Pitman ARE’s of Jn(r) and Gn(r) were obtained in Tung and
Jammalamadaka (2010) in the context of goodness-of-fit testing on the real
line.

Sethuraman and Rao (1970) have shown that among spacings tests of
the form Vn(g), the most asymptotically efficient, i.e. the asymptotically
locally most powerful test (ALMP) is the Greenwood statistic. Tung and
Jammalamadaka (2010) investigated U -statistics based on spacings of the
form Wn(h) (see Equation (1.4)) and showed that among such tests, the
ALMP test is the Gini mean squared difference test Gn(2). However it turns
out that this is algebraically the same as the Greenwood statistic and thus
has the same efficiency.

Suppose the Pitman ARE of Jn(2) and Gn(2) is taken to be 1. The
following Table 3, taken from Tung and Jammalamadaka (2010), lists the
Pitman ARE of Jn(r) and Gn(r) with respect to various choices of r > 0.
It is seen that the Pitman ARE’s of Jn(1) and Gn(1) are 0.572654 and 0.75
respectively, thus the Gini mean difference test Gn(1) is asymptotically more
efficient than Rao’s test Jn(1). Moreover, it is also seen that the generalized
Gini mean difference test Gn(r) is more Pitman efficient than the generalized
Rao’s test Jn(r), except for the case r = 2, when both tests Gn(2) and Jn(2)
correspond to the Greenwood statistic and have a Pitman ARE of 1.
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r Generalized Rao Generalized Gini
1 0.572654 0.75

3/2 0.892135 0.946889
2 1 1

5/2 0.93921 0.96137
3 0.818649 0.867857
4 0.550562 0.615384

Table 3. Pitman Asymptotic Relative Efficiencies for Jn(r) and Gn(r).

5. Conclusion

We have introduced a new test of uniformity on the circle based on the
Gini mean difference of the sample arc-lengths, and obtained both its exact
and asymptotic distributions under the null hypothesis. We have provided a
table of upper percentile values for this test, which will be useful to applied
scientists employing it for circular data analysis. This new test extends the
use of one by Jammalamadaka and Goria (2004) from the linear case to
the circular case. On the basis of Pitman asymptotic relative efficiency, the
generalized Gini mean difference test is asymptotically more efficient than
the generalized Rao’s test.
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