A New Proof of an Inequality of Oppenheim

Marian Dinca and J. L. Díaz-Barrero

Abstract

In this short note a new proof of a classical inequality involving the areas of a pair of triangles is presented.

Keywords and phrases: Geometric inequalities, Oppenheim inequality, inequalities for the triangle.
Mathematical Subject Classification 2000: 26D99

1 Introduction

In 1974 Oppenheim [1] published a generalization of the well-known FinslerHadwiger inequality (see [2], [3]). Namely,

Theorem 1 If $A B C$ is a triangle of sides a, b, c and area F, there exists a triangle of sides $a^{1 / p}, b^{1 / p}, c^{1 / p},(p>1)$ and area F_{p} such that

$$
\left(4 F_{p} / \sqrt{3}\right)^{p} \geq 4 F / \sqrt{3}
$$

Equality holds only if $a=b=c$.
Our goal in this paper is to give a new proof of the preceding statement using elementary inequalities. Moreover, an open problem that is a generalization of the about result involving the areas of a pair of polygons is also posed.

2 Proof of Oppenheim's Inequality

In the following a new proof of Theorem 1 is given. First, we write it in the most convenient form: If $A B C$ is a triangle of sides a, b, c and area F, there exists a triangle of sides $a^{1 / p}, b^{1 / p}, c^{1 / p},(p>1)$ and area F_{p} such that

$$
\begin{equation*}
16 F_{p}^{2} \geq 3^{p-1} F^{2} \tag{1}
\end{equation*}
$$

Equality holds only if $a=b=c$.
To prove (1) we need the following results.
Lemma 1 Let Δ_{p} be the triangle of sides $a^{1 / p}, b^{1 / p}, c^{1 / p},(p>1)$ with angles α, β, γ measured in radians and let Δ be the triangle $A B C$ with its angles A, B, C also measured in radians. Then

$$
\begin{equation*}
(\cos \gamma)^{p} \leq\left(\cos \frac{\pi}{3}\right)^{p-1} \cos C \tag{2}
\end{equation*}
$$

Proof. Taking into account the Law of Cosine the preceding inequality can be written as

$$
\left(\frac{a^{2 / p}+b^{2 / p}-c^{2 / p}}{2 a^{1 /} b^{1 / p}}\right)^{p} \leq\left(\frac{1}{2}\right)^{p-1} \frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

which is equivalent to

$$
\left(a^{2 / p}+b^{2 / p}-c^{2 / p}\right)^{p} \leq a^{2}+b^{2}-c^{2}
$$

or

$$
\left(a^{2}+b^{2}-c^{2}\right)^{1 / p}+c^{2 / p} \geq a^{2 / p}+b^{2 / p}
$$

To prove the last inequality we assume without loss of generality that $a \geq c \geq b$. Now we consider the function $f:[0,+\infty) \rightarrow \mathbb{R}$ defined by $f(x)=-x^{1 / p}$ which is convex for all $p \geq 1$. Next we will apply Karamata's inequality [4]. Namely, if $\left(x_{1} ; x_{2}\right) \succ\left(y_{1} ; y_{2}\right)$ and f is convex, then $f\left(x_{1}\right)+f\left(x_{2}\right) \geq f\left(y_{1}\right)+f\left(y_{2}\right)$. Setting $\left(x_{1} ; x_{2}\right)=\left(a^{2} ; b^{2}\right)$ and $\left(y_{1} ; y_{2}\right)=\left(\max \left(a^{2}+b^{2}-c^{2}, c^{2}\right) ; \min \left(a^{2}+b^{2}-c^{2}, c^{2}\right)\right)$ we have $x_{1} \geq y_{1}$ and $x_{1}+x_{2}=y_{1}+y_{2}$. That is, $\left(x_{1} ; x_{2}\right) \succ\left(y_{1} ; y_{2}\right)$. Then, by Karamata's inequality, we get

$$
f\left(a^{2}\right)+f\left(b^{2}\right) \geq f\left(\max \left(a^{2}+b^{2}-c^{2}, c^{2}\right)\right)+f\left(\min \left(a^{2}+b^{2}-c^{2}, c^{2}\right)\right)
$$

from which immediately follows

$$
\left(a^{2}+b^{2}-c^{2}\right)^{1 / p}+c^{2 / p} \geq a^{2 / p}+b^{2 / p}
$$

and the proof is complete.
Lemma 2 Let $0<a_{k} \leq 1,1 \leq k \leq n$, be real numbers and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be positive numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=s$. Then

$$
\begin{equation*}
\prod_{k=1}^{n}\left(1-a_{k}\right)^{\lambda_{k}} \leq\left(\frac{1}{s} \sum_{k=1}^{n} \lambda_{k}\left(1-a_{k}\right)\right)^{s} \leq\left(1-\prod_{k=1}^{n} a_{k}^{\lambda_{k} / s}\right)^{s} \tag{3}
\end{equation*}
$$

Proof. Statement (3) follows immediately applying Jensen's inequality to the function $f(x)=\ln \left(1-e^{x}\right)$ which is concave for $x<0$ and setting $x_{k}=\ln a_{k}$.

Proof of Theorem 1. Taking into account the usual expressions for the area of triangles Δ_{p} and Δ respectively, equation (1) reads

$$
\left(a^{1 / p} b^{1 / p} \sin \gamma\right)^{p} \geq\left(\frac{3}{4}\right)^{p-1}(a b \sin C)^{2}
$$

which after simplification reduces to

$$
\begin{equation*}
(\sin \gamma)^{p} \geq\left(\sin \frac{\pi}{3}\right)^{p-1} \sin C \tag{4}
\end{equation*}
$$

Particularizing Lemma 2 to the case when $n=2$ and putting $a_{1}=\sin ^{2} \frac{\pi}{3}$, $a_{2}=\sin ^{2} C, \lambda_{1}=p-1$ and $\lambda_{2}=1$ we obtain

$$
\left(1-\sin ^{2} \frac{\pi}{3}\right)^{p-1}\left(1-\sin ^{2} C\right) \leq\left(1-\sin ^{(2 p-2) / p} \frac{\pi}{3} \sin ^{2 / p} C\right)^{p}
$$

Combining the above result with (2) yields

$$
\left(1-\sin ^{2} \gamma\right)^{p} \leq\left(1-\sin ^{2} \frac{\pi}{3}\right)^{p-1}\left(1-\sin ^{2} C\right) \leq\left(1-\sin ^{(2 p-2) / p} \frac{\pi}{3} \sin ^{2 / p} C\right)^{p}
$$

and $1-\sin ^{2} \gamma \leq 1-\sin ^{(2 p-2) / p} \frac{\pi}{3} \sin ^{2 / p} C$. Rearranging terms, we get

$$
\sin \gamma \geq\left(\sin \frac{\pi}{3}\right)^{(p-1) / p} \sin ^{1 / p} C
$$

from which (4) immediately follows. This completes the proof.
Finally, we state the following open question.
Theorem 2 Let $a_{1}, a_{2}, \ldots, a_{n}$ be the sides of a polygon $A_{1} A_{2} \ldots A_{n}$ inscribed in a circle $\mathcal{C}_{1}\left(O, R_{1}\right)$, and let $a_{1}^{1 / p}, a_{2}^{1 / p}, \ldots, a_{n}^{1 / p}$ be the sides of a polygon $B_{1} B_{2} \ldots B_{n}$ inscribed in a circle $\mathcal{C}_{2}\left(O, R_{2}\right)$. Then, for all $p \geq 1$,

$$
\left[\mathcal{A}\left(B_{1} B_{2} \ldots B_{n}\right)\right]^{p} \geq \frac{n^{p-1}}{2^{2 p-2}}\left(\cot \frac{\pi}{n}\right)^{p-1} \mathcal{A}\left(A_{1} A_{2} \ldots A_{n}\right)
$$

where $\mathcal{A}\left(P_{1} P_{2} \ldots P_{n}\right)$ represents the area of a polygon with vertices $P_{1}, P_{2}, \ldots, P_{n}$.

References

[1] A. Oppenheim. Inequalities involving the elements of triangles, quadrilaterals or tethraedra, Publikacije Electrotehn. Fak. Univ. Beograd, No. 461-479 (1974) 257-267.
[2] P. Finsler and H. Hadwiger. Einige Relationen im Dreieck, Comment. Math. Helv., Vol. 10, (1937/38) 316-326.
[3] O. Botema, R. Z. Dordevic, R. R.Janic, D. S. Mitrinovic, P. M. Vasic. Geometric Inequalities, Groningen, 1969.
[4] J. Karamata. Sur une inegalite relative aux fonctions convexes, Publ. Math. Univ. Belgrade, No. 1 (1932), 145-148.

Bucuresti, Romania
e-mail: marianprofesoru@yahoo.com
Universitat Politècnica de Catalunya
Barcelona, Spain
e-mail: jose.luis.diaz@upc.edu

