A New Proof of an Inequality of Oppenheim

Marian Dinca and J. L. Díaz-Barrero

Abstract

In this short note a new proof of a classical inequality involving the areas of a pair of triangles is presented.

Keywords and phrases: Geometric inequalities, Oppenheim inequality, inequalities for the triangle.

Mathematical Subject Classification 2000: 26D99

1 Introduction

In 1974 Oppenheim [1] published a generalization of the well-known Finsler-Hadwiger inequality (see [2], [3]). Namely,

Theorem 1 If ABC is a triangle of sides a, b, c and area F, there exists a triangle of sides $a^{1/p}, b^{1/p}, c^{1/p}, (p > 1)$ and area F_p such that

$$(4F_p/\sqrt{3})^p \ge 4F/\sqrt{3}$$

Equality holds only if a = b = c.

Our goal in this paper is to give a new proof of the preceding statement using elementary inequalities. Moreover, an open problem that is a generalization of the about result involving the areas of a pair of polygons is also posed.

2 Proof of Oppenheim's Inequality

In the following a new proof of Theorem 1 is given. First, we write it in the most convenient form: If ABC is a triangle of sides a, b, c and area F, there exists a triangle of sides $a^{1/p}, b^{1/p}, c^{1/p}, (p > 1)$ and area F_p such that

$$16F_p^2 \ge 3^{p-1}F^2 \tag{1}$$

Equality holds only if a = b = c.

To prove (1) we need the following results.

Lemma 1 Let Δ_p be the triangle of sides $a^{1/p}, b^{1/p}, c^{1/p}, (p > 1)$ with angles α, β, γ measured in radians and let Δ be the triangle ABC with its angles A, B, C also measured in radians. Then

$$(\cos\gamma)^p \le \left(\cos\frac{\pi}{3}\right)^{p-1} \cos C \tag{2}$$

Proof. Taking into account the Law of Cosine the preceding inequality can be written as

$$\left(\frac{a^{2/p} + b^{2/p} - c^{2/p}}{2a^{1/b^{1/p}}}\right)^p \le \left(\frac{1}{2}\right)^{p-1} \frac{a^2 + b^2 - c^2}{2ab}$$

which is equivalent to

$$\left(a^{2/p} + b^{2/p} - c^{2/p}\right)^p \le a^2 + b^2 - c^2$$

or

$$(a^{2} + b^{2} - c^{2})^{1/p} + c^{2/p} \ge a^{2/p} + b^{2/p}$$

To prove the last inequality we assume without loss of generality that $a \ge c \ge b$. Now we consider the function $f : [0, +\infty) \to \mathbb{R}$ defined by $f(x) = -x^{1/p}$ which is convex for all $p \ge 1$. Next we will apply Karamata's inequality [4]. Namely, if $(x_1; x_2) \succ (y_1; y_2)$ and f is convex, then $f(x_1) + f(x_2) \ge f(y_1) + f(y_2)$. Setting $(x_1; x_2) = (a^2; b^2)$ and $(y_1; y_2) = (\max(a^2 + b^2 - c^2, c^2); \min(a^2 + b^2 - c^2, c^2))$ we have $x_1 \ge y_1$ and $x_1 + x_2 = y_1 + y_2$. That is, $(x_1; x_2) \succ (y_1; y_2)$. Then, by Karamata's inequality, we get

$$f(a^2) + f(b^2) \ge f\left(\max(a^2 + b^2 - c^2, c^2)\right) + f\left(\min(a^2 + b^2 - c^2, c^2)\right)$$

from which immediately follows

$$(a^{2} + b^{2} - c^{2})^{1/p} + c^{2/p} \ge a^{2/p} + b^{2/p}$$

and the proof is complete.

Lemma 2 Let $0 < a_k \le 1, 1 \le k \le n$, be real numbers and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be positive numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_n = s$. Then

$$\prod_{k=1}^{n} (1-a_k)^{\lambda_k} \le \left(\frac{1}{s} \sum_{k=1}^{n} \lambda_k (1-a_k)\right)^s \le \left(1 - \prod_{k=1}^{n} a_k^{\lambda_k/s}\right)^s \tag{3}$$

Proof. Statement (3) follows immediately applying Jensen's inequality to the function $f(x) = \ln(1 - e^x)$ which is concave for x < 0 and setting $x_k = \ln a_k$.

Proof of Theorem 1. Taking into account the usual expressions for the area of triangles Δ_p and Δ respectively, equation (1) reads

$$\left(a^{1/p}b^{1/p}\sin\gamma\right)^p \ge \left(\frac{3}{4}\right)^{p-1} \left(ab\,\sin C\right)^2$$

which after simplification reduces to

$$\left(\sin\gamma\right)^p \ge \left(\sin\frac{\pi}{3}\right)^{p-1} \sin C \tag{4}$$

Particularizing Lemma 2 to the case when n = 2 and putting $a_1 = \sin^2 \frac{\pi}{3}$, $a_2 = \sin^2 C$, $\lambda_1 = p - 1$ and $\lambda_2 = 1$ we obtain

$$\left(1 - \sin^2 \frac{\pi}{3}\right)^{p-1} \left(1 - \sin^2 C\right) \le \left(1 - \sin^{(2p-2)/p} \frac{\pi}{3} \sin^{2/p} C\right)^p$$

Combining the above result with (2) yields

$$\left(1 - \sin^2 \gamma\right)^p \le \left(1 - \sin^2 \frac{\pi}{3}\right)^{p-1} \left(1 - \sin^2 C\right) \le \left(1 - \sin^{(2p-2)/p} \frac{\pi}{3} \sin^{2/p} C\right)^p$$

and $1 - \sin^2 \gamma \le 1 - \sin^{(2p-2)/p} \frac{\pi}{3} \sin^{2/p} C$. Rearranging terms, we get

$$\sin \gamma \ge \left(\sin \frac{\pi}{3}\right)^{(p-1)/p} \, \sin^{1/p} C$$

from which (4) immediately follows. This completes the proof.

Finally, we state the following open question.

Theorem 2 Let a_1, a_2, \ldots, a_n be the sides of a polygon $A_1A_2 \ldots A_n$ inscribed in a circle $C_1(O, R_1)$, and let $a_1^{1/p}, a_2^{1/p}, \ldots, a_n^{1/p}$ be the sides of a polygon $B_1B_2 \ldots B_n$ inscribed in a circle $C_2(O, R_2)$. Then, for all $p \ge 1$,

$$\left[\mathcal{A}(B_1B_2\dots B_n)\right]^p \ge \frac{n^{p-1}}{2^{2p-2}} \left(\cot\frac{\pi}{n}\right)^{p-1} \mathcal{A}(A_1A_2\dots A_n),$$

where $\mathcal{A}(P_1P_2...P_n)$ represents the area of a polygon with vertices $P_1, P_2, ..., P_n$.

References

- A. Oppenheim. Inequalities involving the elements of triangles, quadrilaterals or tethraedra, *Publikacije Electrotehn. Fak. Univ. Beograd*, No. 461–479 (1974) 257–267.
- [2] P. Finsler and H. Hadwiger. Einige Relationen im Dreieck, Comment. Math. Helv., Vol. 10, (1937/38) 316–326.
- [3] O. Botema, R. Z. Dordevic, R. R.Janic, D. S. Mitrinovic, P. M. Vasic. Geometric Inequalities, Groningen, 1969.
- [4] J. Karamata. Sur une inegalite relative aux fonctions convexes, Publ. Math. Univ. Belgrade, No. 1 (1932), 145-148.

Bucuresti, Romania e-mail: marianprofesoru@yahoo.com

Universitat Politècnica de Catalunya Barcelona, Spain e-mail: jose.luis.diaz@upc.edu