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Abstract 

We analyze a theoretical example of parallel electric and magnetic fields in a 

hypothetical anisotropic medium with varying susceptibility. We deduce the 

polarization characteristics and we discuss the conditions under which this could be 

utilized in electromagnetic invisibility. 

 

1. Introduction 

In a previous work [1] we have presented a general method for solving the Beltrami 

problem for a spherically symmetric vector potential. This class of fields has been 

previously discussed in the literature [2-7], with respect to their peculiar property of 

having both the electric and magnetic components in parallel. This situation caused 

an initial controversy which was settled down after the realization that such special 

cases constitute very special solutions of Maxwell equations that can only exist 

within cavities with prescribed boundary conditions [7]. In fact, an experimental 

realization of such a state in a laser cavity with opposite circularly polarized modes 

was shown in [5]. 

In the present work we present an example which proves that the application of such 

peculiar states is far from exhausted. In particular, in section 2 we consider a 

spherical region where a varying charge density followed by the associated 

polarization and current sources exists and we analyze the general form of solutions 

of Maxwell equations under the condition that the electric field is an eigen-rotation 

field [9-10] although the magnetic field is not.   

This approach differs from previous studies where the magnetic field was supposed 

to satisfy a Beltrami condition which is a special class of eigen-rotation fields.  In 

section 3, we present a special multipole solution for the eigen-rotation equation 

from which we derive the generalized susceptibility and permittivity of the enclosing 

space. In section 4, we discuss the possibility that such solutions could have potential 

applications with respect to electromagnetic invisibility (plasma sheath).  

 

2. Parallel electric and magnetic fields 

We start from a polarizable medium which contains a harmonically time varying 

radial charge distribution )exp(),,(),( trtr ωφθρρ i= where ω stands for a 

monochromatic frequency, inside a spherical region of maximum radius R, an 

associated current J and a polarization P. The need for the addition of a polarization 

term will become apparent in the next section. Our aim will be to define the spatial 
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dependence of the quantities ρ, J and P under the condition of parallelization of the 

E and B fields and find the characteristics of the medium.  

Denoting with ε0 and µ the respective permittivity and permeability of the vacuum, 

Maxwell equations in the SI system take the form 

 

JDH

BE

BD

+∂=×∇

−∂=×∇

=•∇=•∇

t

t

0,ρ
    (1a) 

 

with the constitutive relations 

 

µ

ε

B
H

PED

=

+= 0

    (1b) 

 

The last of (1a) can be rewritten in terms of a polarization current source term taking 

into account the constitutive relations as 

 

JPEB

BE

BD

+∂+∂=×∇

−∂=×∇

=•∇=•∇

tt

t

µµε

ρ

0

0,

   (2) 

 

We assume a harmonic time-dependence of the form )exp( tωi  and a linear Ohm’s law 

such that EJ σ= so that we can rewrite the last two as 

 

EPiEiB

BiE

σµωµωε
ω

++=×∇

−=×∇

0

   (3) 

 

The central hypothesis of this section is that we can find solutions for the sources 

such that E//B. We express this through the condition  

 

EB ),( ωrΛ=     (4) 

 

where Λ is an arbitrary scalar function. Substituting this into the first of (3) we 

derive the eigen-rotation equation  

 

EiE Λ−=×∇ ω     (5) 

 

This is similar with the equation describing a Beltrami flow in hydrodynamics but 

without the additional condition for E to be a purely solenoidal field [9-10]. The term 

Λωi  is then the field’s eigen-vorticity. Applying the divergence operator to the lhs 

leads naturally to the condition ( ) 0=Λ∇ E which results in the relation 
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EE •







Λ
Λ∇

−=∇     (6) 

 

This also automatically satisfies 0=∇B . We then substitute (4) into the second of (3) 

which results in the equation 

 

EPiEiEE σµωµωε ++=×∇Λ+×Λ∇ 0)(   (7) 

 

From the above and using (5) we can find the polarization current in terms of the 

electric field as 

 

E
i

EP ×Λ∇−−=
µω

ωχ ),(r    (8a) 

µ
σεωχ

2

0),(
Λ
++=r     (8b) 

 

We now see that in the absence of any polarization the current would have to obey a 

strongly non-linear form with unnatural characteristics like negative resistance. From 

(8a) we see that D can now be expressed as 

 

E
i

EPED ×Λ∇−
Λ
−=+=

µωµ
ε

2

0   (9) 

 

Accordingly, the charge distribution can now be found from the first of (2) as 

 

( ) EEE
i

D ∇
Λ
−•Λ∇

Λ
−×Λ∇∇−=•∇=

0

2

0 µµµω
ρ  (10) 

 

From standard vector identities we also have that 

 

( ) EiEE •Λ∇Λ=×∇•Λ−∇=×Λ∇∇ ω)(  (11) 

  

Using both (10) and (6) in (9) finally yields 

 

E•Λ∇
Λ

=
0µ

ρ    (12) 

 

3. Solutions of the eigen-rotation equation 

Complete solution of the problem of sources for the previously prescribed electric 

and magnetic fields requires a solution of the eigen-rotation equation (5). We have 

provided a generic semi-analytical technique for solving such a problem elsewhere 

[1]. Here we will approach the problem from a different viewpoint that allows 

finding a special analytical solution that can be utilized for computations. 
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Specifically, we avoid the use of a vector potential and we recourse to a two step 

technique. We will have to introduce a set of vector spherical harmonics as 

lmlmlmlmlmlm r Υ∇×=ΦΥ∇=ΨΥ=Υ rr
r

,,ˆ  where lmΥ  are the usual scalar spherical 

harmonics. Next, we proceed in two steps. We seek for a set of dual fields with 

respect to the rotation operator that transform as  

 

122

211

EE

EE

λ

λ

=×∇

=×∇
     (13) 

 

A solution of the the eigen-rotation equation can be found from a linear combination 

of a set of special solutions of the above that allow a common factor. From standard 

identities of vector spherical harmonics as presented in [12] we have  

 

Ψ






 +−Υ
+

−=Φ×∇

Φ−=Υ×∇

r

f

dr

df
rf

r

ll
rf

rf
r

rf

)(
)1(

)(

)(
1

)(

   (14) 

 

We see that the second part of the rhs of (14) cancels out if we choose rkrf /)( =  

which leads to the choice 

 

lmlm

r

k

r

k
Φ=Υ= 21 , EE     (15) 

for which (13) is satisfied with )1(,/,/1 0021 +=−=−= llrr λλλλ . In order to find a 

symmetric linear combination of these fields we assume a set of coefficients that 

depend on λ0 and write the total field in the form 

 

2010 EEE
νµ λλ +=      (16) 

 

where µ and ν are unknown exponents. Then we observe that the action of the 

rotation operator is to interchange the coefficients of (16) in the form 

 

)( 201

1

01 EEE
µν λλλ +=×∇ +     (17) 

 

In order for the final combination to be written in terms of the original we rewrite the 

above as  

 

)( 20010

1

01 EEE
ννµµµν λλλλλ −+− +=×∇    (18) 

 

In order to get a common factor the following condition must be satisfied 

11)(2

00

1

0 =⇔= +−−+− µννµµν λλλ     (19) 
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This is equivalent to the equation 01)(2 =+− µν or ,...2,1,0,2/1 =+= ννµ . Then from 

(17) we find the eigen-vorticity as 
r

ll )1(
' 2/1

01

+
−== λλλ . We can thus write a family 

of special solutions of the eigen-rotation equation in the form 

 

0),( 212)( >Φ+= + lLYL
r

k
lmlm

ννν
E     (20) 

 

where we introduced the abbreviation )1( += llL . From (5) we now find that the Λ 

factor has the form 
ω

ω
r

L
r i−=Λ ),( from which we deduce the susceptibility function 

as 

 
2

0

1
),( 







++=
ωµ

σεωχ
r

L
r     (21) 

 

We may now separate the overall polarization into an isotropic and an anisotropic 

part as 

( )lmA

A

r

L
Φ×=×Λ∇−=

+−=
+

rE
i

P

PEP

ˆ
22

12

ωµµω

χ
ν    (22) 

 

We notice that both parts diverge as 0→r or 0→ω . In fact, both terms diverge as 

)/(1 22ωr taking into account that lmlm ΦΥ , are functions of the spherical angles and r̂ is 

a unit vector. For the charge distribution we also have that 

 

lm
r

L
Υ=

+

23

32

ωµ
ρ

ν

     (23) 

 

Assuming that we can set up appropriate boundary conditions in an interior and 

exterior spherical surface 21 RrR << , we may suppress the divergence to a scale less 

than 1R  by taking the product 11 →ωR in which case the divergence can be reduced to 

a very low scale by increasing the frequency. Thus, for a frequency of the order of 

GHz the divergence region for both parts can be reduced to a radius of less than 1 

nm.  

 

4. Conclusion  

The previous sections are devoted to an abstract treatment of a hypothetical 

polarizable medium capable of sustaining parallel electric and magnetic fields. In 

section 3 an exact analytical form of the polarizability and the susceptibility of such 

a medium were derived. The important property of the prescribed solutions of 

Maxwell equations resumes into their ability to hold a large amount of 

electromagnetic energy due to radiation cancellation ( 0=×BE ).  
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The last decade has seen an increasing effort towards optical invisibility cloaks using 

special metamaterials with negative refractive index which were first introduced with 

the pioneering work of J. Pendry and others [13 - 14]. In our treatment, a different 

possibility arises due to the radiation cancellation condition. While in ordinary 

invisibility the effort is towards “light bending” around an object similar to 

gravitational lensing, in our case it appears that in principle radiation could get 

trapped inside a spherical region. This in practice would represent an alternative 

method of shielding an area against any passive detection method.   

In the present report we found that a solution with non-radiating parallel electric and 

magnetic fields is possible inside an anisotropic polarizable medium with a varying 

charge concentration and polarization current.  
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