Determination of Proton and Neutron Radii

Chun-Xuan. Jiang
P.O.Box 3924, Beijing 100854, P.R.China
Jiangchunxuan@vip.sohu.com

In note we calculate Proton and Neutron radii[1]
The Newtonian gravitation formula has the following form .

$$
\begin{equation*}
F=-G \frac{M_{1} M_{2}}{R^{2}} \tag{1}
\end{equation*}
$$

We assume[1]

$$
\begin{equation*}
G=K_{0} \rho_{1} \rho_{2} \tag{2}
\end{equation*}
$$

Where ρ_{1} and ρ_{2} denote the densities of both M_{1} and M_{2} separately. Using the Cavendish experiment we determine K_{0}. In (2) $G=6.7 \times 10^{-8} \mathrm{~cm}^{3} / \mathrm{g} \mathrm{sec}^{2}$ and the density of lead $\rho_{1}=\rho_{2}=11.37 \mathrm{~g} / \mathrm{cm}^{3}$. From (2) we have

$$
\begin{equation*}
K_{0}=5.2 \times 10^{-10} \mathrm{~cm}^{9} / \mathrm{g}^{3} \mathrm{sec}^{2} \tag{3}
\end{equation*}
$$

Thus, K_{0} is new gravitational constant.

By using (2) we determine the proton radius γ_{p}. From (2) we have

$$
\begin{equation*}
\gamma_{p}=\left(\frac{9 K_{0} m_{p}^{2}}{16 \pi^{2} G_{s}}\right)^{1 / 6} \tag{4}
\end{equation*}
$$

In the nucleus the strong interaction prevails. We have [2].

$$
\begin{equation*}
\frac{\text { strong interaction }}{\text { gravitational interaction }}=\frac{G_{s}}{G}=10^{38} \tag{5}
\end{equation*}
$$

where $G_{s}=6.7 \times 10^{30} \mathrm{~cm}^{3} / \mathrm{g} \mathrm{sec}^{2}$. We know the proton mass $m_{p}=1.67 \times 10^{-24} \mathrm{~g}$. From (4) we obtain the proton radius

$$
\begin{equation*}
\gamma_{p}=1.5 \times 10^{-15} \mathrm{~cm}=1.5 \mathrm{jn} \tag{6}
\end{equation*}
$$

In the same way we have the neutron radius

$$
\begin{equation*}
\gamma_{n}=1.5 \times 10^{-15} \mathrm{~cm}=1.5 \mathrm{jn} \tag{7}
\end{equation*}
$$

Pohl,et al obtain the size of proton $3 \mathrm{jn}[3]$.

References

. [1] Jiang,Chun-Xuan.Determination of proton and neutron radii,Apeiron,3,Nr.3-4,126(1996).
[2] Elementary Particle Physics Pancl et al., Elententary Particle Physics (Physics Throught the 1990s) National Academy Press, 1986.
[3] Pohl,R.et al,The size of the proton,Nature 466,213-217(2010)

