Determination of Proton and Neutron Radii

Chun-Xuan. Jiang

P.O.Box 3924, Beijing 100854, P.R.China

Jiangchunxuan@vip.sohu.com

In note we calculate Proton and Neutron radii[1]

The Newtonian gravitation formula has the following form .

$$F = -G\frac{M_1M_2}{R^2} \tag{1}$$

We assume[1]

$$G = K_0 \rho_1 \rho_2 \tag{2}$$

Where ρ_1 and ρ_2 denote the densities of both M_1 and M_2 separately. Using the Cavendish experiment we determine K_0 . In (2) $G = 6.7 \times 10^{-8} \text{ cm}^3/\text{g sec}^2$ and the density of lead $\rho_1 = \rho_2 = 11.37 \text{ g} / \text{cm}^3$. From (2) we have

$$K_0 = 5.2 \times 10^{-10} \,\mathrm{cm}^9/\mathrm{g}^3 \,\mathrm{sec}^2 \tag{3}$$

Thus, K_0 is new gravitational constant.

By using (2) we determine the proton radius γ_p . From (2) we have

$$\gamma_{p} = \left(\frac{9K_{0}m_{p}^{2}}{16\pi^{2}G_{s}}\right)^{1/6}$$
(4)

In the nucleus the strong interaction prevails. We have [2].

$$\frac{\text{strong interaction}}{\text{gravitational interaction}} = \frac{G_s}{G} = 10^{38}$$
(5)

where $G_s = 6.7 \times 10^{30} \text{ cm}^3/\text{g sec}^2$. We know the proton mass $m_p = 1.67 \times 10^{-24} \text{ g}$. From (4) we obtain the proton radius

$$\gamma_p = 1.5 \times 10^{-15} \,\mathrm{cm} = 1.5 \,\mathrm{jn}$$
 (6)

In the same way we have the neutron radius

$$\gamma_n = 1.5 \times 10^{-15} \,\mathrm{cm} = 1.5 \,\mathrm{jn}$$
 (7)

Pohl,et al obtain the size of proton 3 jn[3].

.

References

- [1] Jiang, Chun-Xuan. Determination of proton and neutron radii, Apeiron, 3, Nr. 3-4, 126(1996).
 - [2] Elementary Particle Physics Pancl et al., Elententary Particle Physics (Physics Throught the 1990s) National Academy Press, 1986.
 - [3] Pohl,R.et al,The size of the proton,Nature 466,213-217(2010)