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Abstract. The classical treatment of the Kepler problem leaves room for the description 
of the space region of the central body by a hyperbolic geometry. If the correspondence 
between the empty space and the space filled with matter is taken to be a harmonic 
mapping, then the region of atomic nucleus, like the one of the Sun for the planetary 
system proper, is described by hyperbolic skyrmions. This fact makes possible the 
description of the nuclear matter within framework of general relativity. The classical 
“hedgehog” solution for skyrmions can then be classically interpreted in terms of the 
characterizations of intra-nuclear forces. 
 

 CLASSICAL KEPLER MOTION: THE POSITION OF CENTRAL BODY 
 The classical Kepler motion can be described with the Newtonian equations of motion 
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Here K is a constant, r
 denotes the position vector of the material point whose motion is 

described, with respect to the center of force, and a dot over a symbol means derivative with 
respect to time. The constant K does not depend on quantities related to the point in motion, but 
only in cases when electric forces are involved. We can simplify the algebra by confining the 
geometry to the plane of motion, where the coordinates of the point in motion are ξ and η say 
(Mittag, Stephen, 1992). Equation (1) is then equivalent to the system 
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with r and φ the polar coordinates of the plane with respect to the attraction center. The 
magnitude of the rate of area swept by the position vector of the particle is then given by 
 φ=ξη−ηξ≡  2ra  (3) 
This constant of motion allows us an elegant integration of the system (2) with the analytical 
form of the trajectory as a direct outcome. First we define the complex variable 
 φ=η+ξ≡ ireiz  (4) 
so that (2) can be written in the form 
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Now, use (3) to eliminate r2, such that 
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where w ≡ w1 +iw2 is a complex constant of integration to be determined by the initial conditions 
of the problem. The analytical equation of motion can be then extracted directly from (3) by 
using (6). In polar coordinates of the plane of motion the result is 
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The shape of this trajectory is best pictured by going back to Cartesian coordinates, where we 
have, instead of (7) the second-degree curve – a conic: 
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The center of this conic is not the center of the force, but has the coordinates 
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In cases where ∆ = 0, the center of this trajectory is at infinity: the trajectory is a parabola. We 
have here the ballistic cases, where the basic motion is parabolic.  

Assuming the center of the trajectory at finite distance with respect to the center of force, and 
referring the trajectory to this center by the translation x = ξ−ξ0, y = η−η0, its equation becomes 
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The quadratic form from the left hand side of this equation is completely characterized by the 
2×2 matrix 
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The eigenvalues of this matrix are ∆ and K2/ 2a , with the corresponding eigenvectors 
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Thus, the orientation of trajectory in its plane is completely defined by the initial conditions of 
the motion. The magnitude ‘w’ is proportional with the eccentricity ‘e’ of trajectory. Indeed the 
semi axes ‘a’ and ‘b’ are 
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Thus, the initial conditions can actually be expressed only in terms of ‘contemporary’ 
magnitudes allowing us to forget about the past: 
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This is essentially the observation that imposed the Newtonian explanation for the real planetary 
motions in terms of contemporary quantities. Indeed, a force is always contemporary, and the 
initial conditions of the motion, whatever they might be, are then to be read in some 
contemporary parameters of motion: area constant and eccentricity. 

As it can be seen directly from equations (13) one of the semi axes can be imaginary, for ∆ < 
0, in which case we have to do with hyperbolic trajectories. It is only in cases where ∆ > 0, that 
we have to do with elliptic trajectories, properly representing planetary motion. Along this line of 
reasoning, the parabolic trajectories are all characterized by points on the circle ∆ = 0, i.e. 
 ω⋅≡νω⋅≡µ=ν+µ sine,cose,e222  (15) 
and the whole interior of this circle corresponds to all possible finite motions that a material 
point can have around a center of force acting with a force inversely proportional to square of 
distance. This would mean that a planet would have infinitely many possible initial conditions 
we have to choose from. Fact is that the actual motion of a planet is perceived as if it had unique 
initial conditions. Any departure from this perception has always induced arguments about some 
actual perturbations acting on the planet. To a certain extent this is true: the discovery of 
Neptune is an example. However, as the history shows, it has not the touch of universality 
needed for the continuity of knowledge. Thus, we have to turn to the origin of the problem, and 
lead the reasoning along the following lines: Kepler motion has reality only as a “snapshot”, this 
is undeniable; it could not have been discovered otherwise. However the planetary motion is a 
succession of such snapshots, which have to be put together in order to make the whole thing. 
First of all, we have to find the time scale of such a snapshot, and that is hard. But we have 
another possibility, opened by the remarks just made above: there is an a priori metric geometry 
of the defining parameters of the snapshot, which are the initial conditions of the dynamical 
problem describing this snapshot. This geometry defines a kinematics, and the kinematics offers 
us a natural way to continuously connect the snapshots in a succession representing a real 
trajectory. 
 Indeed, even superficially it can be seen at once that the mentioned freedom of the 
parameters defining the types of orbits, allows us to construct a Cayley-Klein (or Absolute) 
geometry (Cayley, 1859; Klein, 1897) characterizing the variation of those orbits. We know that 
an Absolute geometry is related to some conservation laws, at least as long as some realizations 
of SL(2, R) group structure are involved. And indeed, the absolute metric for the interior of the 
circle (15) 
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can be brought to the form of Poincaré metric 
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by the following transformation of coordinates: 
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The conservation laws for the metric (17) are 
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The description we are also interested in now is the one in variables (e, ω), i.e. the eccentricity 
and the orientation of the orbit in its plane. In terms of these parameters the metric (16) becomes 
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We can rewrite this metric in a well-known form, by noticing that for elliptic trajectories ‘e’ is 
confined to the interval between –1 and +1, so that the change of parameter 
 ψ= tanhe  (21) 
is legitimate. With this the metric (20) becomes 
 2222 )d(sinh)d()ds( ωψ+ψ=  (22) 
The complex parameter ‘h’ from equation (18) has a direct relationship with the theory of 
classical potentials. In order to show this relationship we write here ‘h’ in terms of (e, ω). We 
have: 
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It just happens that this equation represents a harmonic map from the usual space into the 
Lobachevsky plane provided χ (and therefore ψ) is a solution of the Laplace equation in free 
space. 
 Indeed, the problem of harmonic correspondences between space and the hyperbolic plane is 
described by the minimum of energy functional corresponding to the metric (17) where the 
differentials are transformed into space gradients (Eells, Sampson, 1965; Misner, 1978). The 
minimization of energy functional corresponds to Euler-Lagrange equations for the Lagrangian 
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and its complex conjugate. Then it is easy to see that ‘h’ from (23) verifies this equation when χ 
is a solution of Laplace equation, and ω does not depend on the position in space. It might, 
nevertheless, depend on the local time of the Newtonian dynamics. 

 This method can be thought of really ascribing “a spatial expanse”, in the form of harmonic 
surfaces in space, of the regions of space extended over the ranges of eccentricity of the Kepler 
motion. This is to say, that the harmonic maps from the Lobachevsky plane to space are related 
to the physics of Sun, in the case of planetary system, or to the physics of nucleus in the case of 
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classical atomic model. There is no obvious sign today in physics for the first case, i.e. the solar 
system, but the conclusion seems to be fair for the case of atomic model. 

 

 SOME VARIATIONS ON A THEME OF SKYRMIONS 
 We don’t need to insist again in recalling that the main scientific image of the atom is the 
planetary one, amended perhaps with the idea that this physical system is not plane but a spatial 
one – maybe spherical. This sphericity of the model, if real, is due to the noncentrality of forces 
or to the space extension of the matter at the nuclear level. If this is the case, then the region of 
the nucleus can be characterized by a 3D hyperbolic space. With this statement we enter the 
realm of recent date of the hyperbolic skyrmions (Atiyah, Sutcliffe 2001, 2004). 
 Indeed, one of the dominant contemporary concepts in the theory of structure of the nuclear 
matter, is that of skyrmion, which represents itself a variation on the subject of harmonic 
applications. The Skyrmion is a soliton representing the nucleons. The history of this subject 
starts with the physicist Tony Skyrme, and the reader in need of following it can begin with his 
recollections of the beginning (Skyrme 1988), where the reasons and the original works are 
indicated. The main mathematical point of Skyrme’s idea, is a certain, “almost harmonic” map, 
from the usual space to sphere, built after the traditional manner of the variational problem 
leading to the Laplace and Schrödinger equations. Let’s shortly describe this manner, following 
by and large the recent work of Slobodeanu (Slobodeanu 2009). 
 As known, such a harmonic map is obtained by finding the functions which realize the 
extremum of the energy functional 
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Here the function realizing the correspondence is generally of the nature of a matrix – this is why 
we even denoted it by Φ – and the dot product is the one induced by the metric of the hyperbolic 
space. In the case of Lobachevsky plane, the metric Lagrangian (24) corresponds to the metric of 
the plane: 
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This variational principle is directly connected with the inertial field in vacuum, because it is 
equivalent with Einstein vacuum field equations (Ernst 1968, 1971; Israel, Wilson 1973). 
Consequently, those very equations can be simply considered as equally describing the states of 
nuclear matter, provided this one admits a description in the hyperbolic plane. And this is what 
the classical Kepler problem actually points out. One would therefore expect that based on that 
classical problem of motion, the solution of problem of the nuclear structure should be simply a 
matter of study of the harmonic maps, but this is not quite the case. The nucleus is assumed to 
have a particulate structure, and the harmonic principle, if not somehow amended, cannot 
account for that. So, it comes that the Skyrme functional is not quite as simple as the above one, 
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but involves higher degree terms, belonging to different cohomology classes, given by the 
equation 
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If Φ is a mapping from the Euclidean space to itself, then this term assures that the resulting 
equations of motion are nonlinear, and the nonlinear equations always admit confined (soliton) 
solutions, as the structure of the nucleus seems to require. 
 In order to establish the place of the hyperbolic geometry in the theory of nuclear matter, and 
therefore of the stellar matter or of some other nature, we just need to guide our guesses. The 
first observation is actually the gist of the work from 2004 of Atiyah and Sutcliffe (Atiyah, 
Sutcliffe 2004), and is referring to the very significance of hyperbolic skyrmions. Namely, the 
theory of Euclidean skyrmions, with massive pions, leads to detailed results which are almost 
identical with those referring to massless hyperbolic skyrmions. It is as if the mass – the source 
of inertia in classical mechanics and general relativity – is somehow related to the curvature – 
again an idea of general relativity – not in the space-time but simply in space. 
 However, it seems more comfortable to work with maps from real space to itself – like 
always in classical mechanics – as in the cases leading to the equations of Laplace or 
Schrödinger. Along this line an essential observation has been made by N. S. Manton (Manton 
1987), and presents the Euclidean skyrmions as related to the deformations of matter. This is an 
idea of classical inspiration, taking its roots from the deformation theory, where the experimental 
deformations are described by the so-called tensor of elongations (Hill 1968; Ogden 1972). The 
most general energetic functional of Skyrme can be written, according to Manton, in the form 
given in equation (26), where Φ is now a vector dictated by the deformation of matter in the 
regular space: 
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with λ1,2,3 the elongations along three reciprocally orthogonal directions. Here the interior 
product from (26) is simply the dot product of regular vectors. As from equation (29) we have 
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it is plain that the energy functional from equation (26) is 
 ( )∫ λ+λ+λ= xd)(E 32
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As to the other term from the original theory of Skyrme, it is simply the dot product of the 
exterior square of the gradient: 
 dydxdxdzdzdydd 211332 ∧λλ+∧λλ+∧λλ=∧ ΦΦ  (32) 
So the functional from equation (28) can be written in the form 
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Incidentally, the indices 2 and 4 occuring in the energetic functionals of Manton are justified by 
the orders of the tensors entering the integrands of those functionals. Thus dΦ is defined by a 
second order tensor, while dΦ∧dΦ is defined by a fourth order tensor. Finally the Manton 
functional for the Skyrme model is the sum of the two contributions to the energy, i.e.: 
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Details on this line of reasoning can be found in the original work of N. S. Manton (Manton 
1987), and in numerous works that followed along this line (see Manton, Sutcliffe 2004). The 
interested reader is directed to those works, for our line of reasoning will take here another turn 
in the pursuit of hyperbolic skyrmions. 
 
 A GEOMETRY OF HYPERBOLIC SKYRMIONS 
 The way we see it, theory of hyperbolic skyrmions is the legitimate descendant of the 
classical theory describing the atomic structure based on the classical dynamics of electric forces. 
Indeed, according to our presentation above, this theory describes the region of atomic space 
normally assigned to the nucleus of the atom, and the geometry of this region is the hyperbolic 
geometry. In spite of the fact that Manton’s idea is about Euclidean skyrmions, it contains almost 
explicitly a connection with hyperbolic skyrmions. This connection comes about in another work 
of Atiyah and Manton (Atiyah, Manton 1993), whereby the deformation is treated in terms of 
the roots of a family of cubic equations. 
 The idea of a family of cubic equations involved in the geometry of skyrmions is indeed 
germane to the problem, as Atiyah and Manton show. However, it is also germane to the 
problem of deformation, inasmuch as a state of deformation is described in terms of matrices, 
and a cubic equation is simply the characteristic equation of a 3×3 matrix. A process of 
deformation is then described by a family of matrices, therefore by a family of cubic equations. 
And a family of cubic equation is always described by a metric of constant negative curvature 
that generalizes the metric of hyperbolic plane (Barbilian 1938). Thus we can come directly to a 
metric describing the deformation, and then use the harmonic principle in order to describe the 
hyperbolic skyrmions. Let’s expound along this line. 
 From energetical point of view the Manton’s functional is actually a very special one. Indeed, 
in the realm of hyperelastic deformations, it is only a special instance of the so-called Mooney-
Rivlin model, where the energy density is a linear combination of the two invariants of the 
deformation 
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This model describes correctly deformations up to 30 – 40% which, for some rubbers, are even 
small deformations. However, it is the only theoretical model accepting a microscopic physical 
description by means of a Gaussian statistics of the macromolecular chains, so that the 
contemporary theoretical physics almost got stuck within its limits. Another reason for this might 
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also be the fact that the range of deformations covered by this description is quite enough for 
application in phenomena with industrial application. However, theoretically speaking, the 
physics cannot afford to say that this model universally describes the process of deformation: it 
cannot be taken as a fundamental law of nature. So much less, therefore, can we say that such a 
model will describe the deformations of nuclear matter. Here, we are in the hazy range of the 
confluence between the matter proper and space. It is to be expected, for instance, that the 
deformations of nuclear matter are not reversible, because of the energy dissipation in the form 
of particles and heat, like, for instance inside the Sun – our daily nucleus. 
 The general idea here would be that the irreversible deformations taking place with 
dissipation of energy, are dominated not by the usual invariants of deformation, but by an 
algebraical combination of them, appearing as an intensity of shearing deformations, as 
Novozhilov (Novozhilov 1952) has shown. This algebraical combination carries, in the theory of 
deformations, the name of invariant of von Mises. In terms of the invariants from equation (35) it 
can be written as 
 ( ) ( ) ( )22
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Consequently, the Manton-like functional corresponding to this situation should be written in the 
algebraically homogeneous form 
 { }∫ ∧∧−= xddddd3dd

2
1)(E 32 ΦΦΦΦΦΦΦ  (37) 

which is, obviously, out of the limits of Skyrme theory as first conceived. However, this 
functional suggests a consistent way of description of the nuclear matter, within the limits of 
general relativity, inasmuch as it generalizes the Ernst approach. This consists of reducing the 
Skyrme functional to its first term only, therefore to the usual energy of a harmonic application. 
We will work therefore on the form of the map Φ itself, and generalize it in a natural manner, so 
as to include the regular hyperbolic geometry as a special case. In order to understand this 
extension a short incursion in a special theory of deformation of higher orders will be necessary, 
suggested by the Barbilian’s cubic space (Barbilian 1938) considered as a Cayley-Klein space. 
 Let’s therefore make only the assumption that the deformations are represented by a 3×3 
matrix, without being interested if it is indeed derivable from a gradient or not. It can represent, 
for instance, a variation, at a certain scale, of the metric tensor of the space within which the 
matter is contained. Let’s denote by x this deformation matrix. Its eigenvalues, ( 2)1( 2 −λ  in the 
previous formalism of Manton) are the roots of a third degree equation – the characteristic 
equation of matrix. This is the circumstance allowing us to write a general deformation energy 
density, as based on the algebraical principle of the polarity of the binary algebraic forms. This 
will be explained as we proceed. 
 Assume, to start with, that we have a quadratic binary form – a homogeneous second degree 
polynomial – having the coefficients a0, a1 and a2, which happens to have some physical meaning 
in a physical problem. Assume also that we have a set of cubic binary forms, representing the 
characteristic polynomials of our deformation matrices. These cubic polynomials have a common 



9 
 

invariant with our starting quadratic polynomial (Burnside, Panton 1960). This invariant is a 
quadratic form in the coefficients of our family of cubic polynomials: 
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Here X0, X1, X2, X3 are the coefficients of a generic cubic from our family, taken in its binomial 
form 
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X0 – the coefficient of the third degree term of the polynomial, is responsible for the 
indetermination in the relations between roots end coefficients, and x is the generic 
nonhomogeneous variable of the cubic. Vanishing of the quadratic form (38) implies the 
apolarity between our starting quadratic form and every member of the family of cubics. As 
known, the apolarity can be extended to a projective concept, which here comes in handy, 
inasmuch as the ratios 
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can be taken as nonhomogeneous coordinates of a point in a 3D space of cubics. 
 From the point of view of the deformation process, let’s first notice that the function Ψ from 
equation (38) can be taken as a potential which generalizes, in a natural manner, the function 
from equation (36) to a nonhomogeneous function. Indeed, that function is given by the first 
term only, from the right hand side of equation (38). The theory of potential works here directly, 
as follows. First, if the generic cubic of our family is the characteristic equation of the symmetric 
matrix x, with elements xij representing deformations, then the matrix having the entries given by 
equation 
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represents the corresponding stresses; obviously, the opposite is also valid. Equation (41) 
suggests that Ψ is a potential indeed, according to the rules of using the concept of potential. 
 In our conditions the equations (41) should be necessarily of the form 
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because they correlate 3×3 matrices. The problem is to find the coefficients α0, α1, α2, which 
represent the physical properties of the continuum whose deformation is described by the matrix 
x. In order to solve this problem we need to have the coordinates Xj which, up to a common 
factor are given by the coefficients of the characteristic equation of x: 
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Here I1, I2, I3 denote the scalar quantities specific to the matrix x, that in the case of a Euclidean 
tensor are its orthogonal invariants. In general though, they are defined by the formulas 



10 
 

 [ ]

[ ] )ttt3t2(
6
1))(Tr()(Tr))(Tr(3)(Tr2

6
1I

)tt(
2
1)(Tr))(Tr(

2
1I,t)(TrI

3
1213

323
3

2
2
1

22
211

+−≡+−=

−≡−=≡=

xxxx

xxx
 (44) 

where we used obvious notations for the traces of powers of the matrix. Using these we have 
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Therefore, in order to calculate (41) we need the derivatives of the traces of different powers of 
the matrix x. These are calculated according to the formulas 
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so that, finally, we have for α0, α1, α2 the following equations: 
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On the other hand the constitutive relation (42) is also inversible, i.e. we can write the 
deformations in terms of stresses in the form 
 2

210 yyex β+β+β=  (48) 
where e is the identity 3×3 matrix. Here β 0, β1 and β2 are connected with α0, α1 and α2 by the 
system of equations 
 

[ ]
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2
2
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2
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2
2
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2
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32131
2
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=β⋅α−+αα+αα+α+βα

=β⋅α−+αα−αα+βα

=αα+α+αβ+αβ+β

 (49) 

This shows that there are nontrivial states of stress, corresponding to null deformations, as in the 
case of vacuum for instance, or that of classical ether. These are determined exclusively by the 
starting binary quadratic form, through the equations 
 

( ) 02

12
0

220
2
112

21011

2
02010

=βαα+α+βα

=βαα+βα
=αβ+αβ+β

 (50) 

where, according to (47), we take 
 12210 a9;a3;0 =α−=α=α  (51) 
Thus we have 
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1
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2
10 a3

a;
a3
1;0 =β−=β=β  (52) 

Our starting quadratic form should therefore represent such limit states of matter, that do not 
depend on the state of deformations or tensions. Generally, however, the constitutive relations 
(42) and (48) cannot be simultaneously inversed, because there are separately deformations that 
do not involve stresses, as well as stress phenomena that do not involve deformations. The matter 
for which these phenomena are simultaneous should therefore have special properties. 
 An example of such states can be given immediately. Indeed, the relation (42) shows that the 
stresses can all vanish for a certain nontrivial deformation processes. Indeed, the system of 
equations 
 0210 =α=α=α  (53) 
has a nontrivial solution for the invariants of deformations. This solution is given by the 
following formulas for the traces of powers of deformation matrix as functions of the coefficients 
of the starting binary quadratic 
 

3
0

210
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1

32
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20
2
1

2
0

1
1 a

aaa3a43t;
a

aaa23t;
a
a3t −

=
−

=−=  (54) 

Therefore, the eigenvalues of deformation matrix are functions independent of the state of stress. 
In cases where the starting quadratic form has real roots, say u ± v, these equations give 
 )v3u(u3t);vu(3t;u3t 22

3
22

21 +=+==  (55) 
Using now the formulas (43) and (44) we find easily the coefficients of the characteristic 
equation of the corresponding matrix in the form 
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210  
(56) 

This cubic is the center of the quadric given in equation (38), and has the remarkable property of 
having the roots strictly determined by ‘u’ and ‘v’: 
 

,v
2
3u,u,v

2
3u +−  (57) 

The Hessian of this reference cubic is given by the equations 
 

2
v

2
vu

A
u2

A
1

A 2

2
2

210 −=
+

=
−

=  (58) 

Obviously, this is a polar conjugate of our starting binary quatratic. There are also a family of 
cubics conjugated with (58) in the sense that their Hessians are apolar with this one. This is the 
original Barbilian hyperboloid, having the equation: 
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2
vu 2

2312130
2
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2
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






+  (59) 

The center of this quadric is given by 
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(60) 

and obviously is a cubic having only one real root, i.e. its roots are 
 

,v
2
3iu,u,v

2
3iu +−  (61) 

Therefore we have here a kind of duality. One can say that ‘u’ and ‘v’ are functions of the 
physical characteristics of matter undergoing deformation, and that there are states of strain and 
stress that do not depend on anything else but on these physical characteristics. This is the 
meaning of the starting quadratic form, which represents the Hessian of a certain cubic form. 
 The quadric from equation (59) is the starting point of Dan Barbilian in the construction of 
the Riemann spaces associated with families of one-parameter cubics, as Cayley-Klein spaces 
(Barbilian 1938). The geometrical procedure used by Barbilian will be now discussed in broad 
strokes. First, we need to notice that Barbilian begins with the idea that the starting quadratic 
form is the Hessian of a cubic with real roots, therefore it has complex roots itself. Then, by 
performing the linear transformation of homogeneous coordinates 
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 (62) 

we can reduce (59) to a “canonical” form 
 0XXXX 2130 =′′−′′  (63) 
showing explicitly that we are dealing here with a one-sheeted hyperboloid. Using now the 
Sylvester theorem, for the representation of a cubic in terms of its Hessian (Burnside, Panton 
1960), we get the interesting result that a cubic from the family having the same Hessian can be 
represented by a 2×2 matrix having the entries 
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X 321
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 (64) 

where ‘h’ and ‘h*’ are the complex roots of the Hessian, and k is an arbitrary complex factor of 
unit modulus. The Cayley-Klein metric of this representation, with respect to the hyperboloid 
from equation (63) as an Absolute, is the Barbilian metric given by 
 2

2
2

hh
dhdh

k
dk

)hh(
dhdh4)ds( 


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
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 (65) 

The phase factor k can be interpreted in terms of the ensembles of harmonic oscillators (Mazilu 
2010). Geometrically it is the parameter of a family of Bäcklund transformations from the 
Lobachevsky geometry, characterized by the last part of the metric (65), to a general 3D 
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hyperbolic geometry characterized by the whole metric (65). It is thus to be expected that the 
harmonic mapping associated with the energy functional 
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will give us skyrmions, thus bridging the gap between general relativity and the theory of nuclear 
matter. We even have the possibility of an anzatz here. 
 Indeed, we have seen that the first part of the metric (65) is the one generating the energetic 
functional for the gravitational field in vacuum, and the variational principle associated to it, 
leads to Ernst’s equations, equivalent to Einstein equations in vacuum. If we express the complex 
number ‘h’ as a function of the eccentricity ‘e’ of the orbit, by the formula (21), this metric will 
be given by equation (22). This is the metric of a section of hyperbolic space, used by Atiyah and 
Sutcliffe in the construction of hyperbolic skyrmions. Its form is, in general 
 )dsind(sinh)d()ds( 222222 φθ+θψ+ψ=  (67) 
where θ and ϕ are usual spherical polar angles. Obviously , (22) can be obtained from (67) if we 
agree that ω represents the geodesic arc on the unit sphere. But (67) is also the absolute metric of 
the space of relativistic velocities (Fock 1964), and can be directly obtained from (65), and 
probably there are still many meanings of it. The fact that it was used in representing the 
skyrmions with zero mass pions, motivates us to construct for it a skyrmion with distinguished 
significance in the Newtonian mechanics. 
 From the point of view of Newtonian forces, it is quite probable that the third principle of 
dynamics is no more effective over the space of nuclear matter, and that the eccentricity of the 
electronic orbits is actually an expression of the nonequilibrium of the forces. Here the 
Newtonian measurements of the forces one by means of another can still be defined, but by 
means of a quantum definition of the measurement, in the axiomatic manner in which the spin is 
introduced within quantum mechanics (Schwartz 1977). Namely, the 2×2 matrix 
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θ−θ
θθ
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φ

cosesin
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i

i

Q  (68) 

has eigenvalues ±1, or any two numbers equal and opposite in sign, which is the ideal case of 
classical measurement of forces: equal and opposite. Consequently it can represent the third 
principle of dynamics ad literam, in the sense that the two eigenvalues are the values of a force 
and its reaction, i.e. their algebraic sum is zero. Based on this, we can build a matrix that has two 
different eigenvalues, representing two different forces no matter of their directions. Indeed, any 
2×2 matrix of the form 

 QEM µ+λ=  (69) 

where λ and μ are real, and E is the 2×2 identity matrix, has two different real eigenvalues not 
depending on the angles. These are (λ ± μ). Our ansatz is then identical with the original one of 
Skyrme, and amounts to an exponential expression of the matrix M: 
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 )exp( QM ψ=  (70) 

One can really see that this means that the two forces are always in the same ratio, no matter of 
how their system is oriented in space. The absolute metric of the matrices (70) is just the metric 
from equation (67), where we are to take 

 
ψ=

λ
µ tanh  (51) 

Consequently the ratio of forces is practically represented by the eccentricity of the Keplerian 
motion which represents the atom. The “hedgehog” skyrmion from the equation (70) – which we 
would like to call fundamental – then represents the situation of forces at the nuclear level. They 
are in equilibrium according to the third law of Newton, only when the eccentricity of the 
electronic orbits is zero, i.e. when these orbits are perfect circles, as it should be according to the 
classical theory of Newtonian forces. This fundamental skyrmion is, according to the ideas of 
Atiyah and Sutcliffe, essential in the construction of any other with null mass pions. 
 
 CONCLUSIONS 
 There are reasons to hope that the theory of nuclear forces can be naturally unified with the 
general relativity. First, the existence of nucleus is quite naturally described even within the 
classical theory of Kepler motion. Then, this very description is quite close to a successful theory 
of the nuclear matter – the Skyrme theory. Only, the nuclear matter, and probably the matter in 
general, should be described not by an Euclidean geometry but by a Lobachevsky geometry. The 
way we see it now points toward the fact that the geodesics of this hyperbolic geometry represent 
motions of continuum matter giving out the energy, or energies, we usually notice. Then the 
affine parameter of those geodesics should be the temperature of the matter. It plays here the 
same role the time plays in the Newtonian kinematics. 
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