GENERALIZATION OF THE THEOREM OF MENELAUS USING A SELF-RECURRENT METHOD

Florentin Smarandache University of New Mexico, Gallup Campus, USA

Abstract.

This generalization of the Theorem of Menelaus from a triangle to a polygon with n sides is proven by a self-recurrent method which uses the induction procedure and the Theorem of Menelaus itself.

The **Theorem of Menelaus for a Triangle** is the following:

If a line (d) intersects the triangle $\Delta A_1 A_2 A_3$ sides $A_1 A_2$, $A_2 A_3$, and $A_3 A_1$ respectively in the points M_1 , M_2 , M_3 , then we have the following equality:

$$\frac{M_{1}A_{1}}{M_{1}A_{2}} \cdot \frac{M_{2}A_{2}}{M_{2}A_{3}} \cdot \frac{M_{3}A_{3}}{M_{3}A_{1}} = 1$$

where by M_IA_I we understand the (positive) length of the segment of line or the distance between M_I and A_I ; similarly for all other segments of lines.

Let's generalize the Theorem of Menelaus for any *n*-gon (a polygon with *n* sides), where $n \ge 3$, using our Recurrence Method for Generalizations, which consists in doing an induction and in using the Theorem of Menelaus itself.

For n = 3 the theorem is true, already proven by Menelaus.

The Theorem of Menelaus for a Quadrilateral.

Let's prove it for n = 4, which will inspire us to do the proof for any n.

Suppose a line (d) intersects the quadrilateral $A_1A_2A_3A_4$ sides A_1A_2 , A_2A_3 , A_3A_4 , and A_4A_1 respectively in the points M_1 , M_2 , M_3 , and M_4 , while its diagonal A_2A_4 into the point M [see *Fig. 1* below].

We split the quadrilateral $A_1A_2A_3A_4$ into two disjoint triangles (3-gons) $\Delta A_1A_2A_4$ and $\Delta A_4A_2A_3$, and we apply the Theorem of Menelaus in each of them, respectively getting the following two equalities:

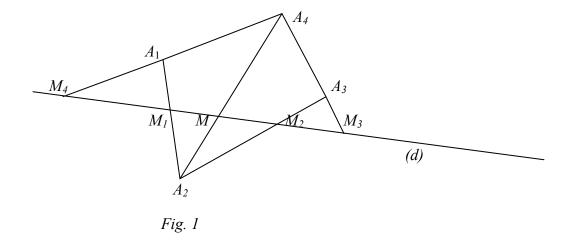
$$\frac{M_1A_1}{M_1A_2} \cdot \frac{MA_2}{MA_4} \cdot \frac{M_4A_4}{M_4A_1} = 1$$

and

$$\frac{MA_4}{MA_2} \cdot \frac{M_2A_2}{M_2A_3} \cdot \frac{M_3A_3}{M_3A_4} = 1.$$

Now, we multiply these last two relationships and we obtain the Theorem of Menelaus for n = 4 (a quadrilateral):

$$\frac{M_1A_1}{M_1A_2} \cdot \frac{M_2A_2}{M_2A_3} \cdot \frac{M_3A_3}{M_3A_4} \cdot \frac{M_4A_4}{M_4A_1} = 1.$$



Let's suppose by induction upon $k \ge 3$ that the Theorem of Menelaus is true for any *k*-gon with $3 \le k \le n-1$, and we need to prove it is also true for k = n.

Suppose a line (d) intersects the n-gon $A_1A_2...A_n$ sides A_iA_{i+1} in the points M_i , while its diagonal A_2A_n into the point M {of course by A_nA_{n+1} one understands A_nA_1 }.

We consider the *n*-gon $A_1A_2...A_{n-1}A_n$ and we split it similarly as in the case of quadrilaterals in a *3-gon* $\Delta A_1A_2A_n$ and an *(n-1)-gon* $A_nA_2A_3...A_{n-1}$ and we can respectively apply the Theorem of Menelaus according to our previously hypothesis of induction in each of them, and we respectively get:

$$\frac{M_1A_1}{M_1A_2} \cdot \frac{MA_2}{MAn} \cdot \frac{MnAn}{MnA_1} = 1$$

and

$$\frac{MAn}{MA_2} \cdot \frac{M_2A_2}{M_2A_3} \cdot \dots \cdot \frac{M_{n-2}A_{n-2}}{M_{n-2}A_{n-1}} \cdot \frac{M_{n-1}A_{n-1}}{M_{n-1}A_n} = 1$$

whence, by multiplying the last two equalities, we get

the Theorem of Menelaus for any n-gon:

$$\prod_{i=1}^n \frac{M_i A_i}{M_i A_{i+1}} = 1.$$

Conclusion.

We hope the reader will find useful this self-recurrence method in order to generalize known scientific results by means of themselves!

{*Translated from French by the Author.*}

References:

- 1. Alain Bouvier et Michel George, sous la direction de François Le Lionnais, *Dictionnaire des Mathématiques*, Presses Universitaires de France, Paris, p. 466 (*Ménélaüs d'Alexandrie*), 1979.
- 2. Florentin Smarandache, *Généralisation du Théorème de Ménélaüs*, Séminaire de Mathématiques, Lycée Sidi El Hassan Lyoussi, Sefrou, Morroco, 1984.
- 3. Florentin Smarandache, *Généralisations et Généralités*, Ed. Nouvelle, Fès, Morocco, 1984.