GENERALIZATION OF THE THEOREM OF MENELAUS USING A SELF-RECURRENT METHOD

Florentin Smarandache
University of New Mexico, Gallup Campus, USA

Abstract

. This generalization of the Theorem of Menelaus from a triangle to a polygon with n sides is proven by a self-recurrent method which uses the induction procedure and the Theorem of Menelaus itself.

The Theorem of Menelaus for a Triangle is the following:
If a line (d) intersects the triangle $\Delta A_{1} A_{2} A_{3}$ sides $A_{1} A_{2}, A_{2} A_{3}$, and $A_{3} A_{1}$ respectively in the points M_{1}, M_{2}, M_{3}, then we have the following equality:

$$
\frac{M_{1} A_{1}}{M_{1} A_{2}} \cdot \frac{M_{2} A_{2}}{M_{2} A_{3}} \cdot \frac{M_{3} A_{3}}{M_{3} A_{1}}=1
$$

where by $M_{l} A_{l}$ we understand the (positive) length of the segment of line or the distance between M_{l} and A_{l}; similarly for all other segments of lines.

Let's generalize the Theorem of Menelaus for any n-gon (a polygon with n sides), where $n \geq 3$, using our Recurrence Method for Generalizations, which consists in doing an induction and in using the Theorem of Menelaus itself.

For $n=3$ the theorem is true, already proven by Menelaus.
The Theorem of Menelaus for a Quadrilateral.
Let's prove it for $n=4$, which will inspire us to do the proof for any n.
Suppose a line (d) intersects the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ sides $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}$, and $A_{4} A_{1}$ respectively in the points M_{1}, M_{2}, M_{3}, and M_{4}, while its diagonal $A_{2} A_{4}$ into the point M [see Fig. 1 below].

We split the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ into two disjoint triangles (3-gons) $\triangle A_{1} A_{2} A_{4}$ and $\Delta A_{4} A_{2} A_{3}$, and we apply the Theorem of Menelaus in each of them, respectively getting the following two equalities:

$$
\frac{M_{1} A_{1}}{M_{1} A_{2}} \cdot \frac{M A_{2}}{M A_{4}} \cdot \frac{M_{4} A_{4}}{M_{4} A_{1}}=1
$$

and

$$
\frac{M A_{4}}{M A_{2}} \cdot \frac{M_{2} A_{2}}{M_{2} A_{3}} \cdot \frac{M_{3} A_{3}}{M_{3} A_{4}}=1
$$

Now, we multiply these last two relationships and we obtain the Theorem of Menelaus for $n=4$ (a quadrilateral):

$$
\frac{M_{1} A_{1}}{M_{1} A_{2}} \cdot \frac{M_{2} A_{2}}{M_{2} A 3} \cdot \frac{M_{3} A_{3}}{M_{3} A_{4}} \cdot \frac{M_{4} A_{4}}{M_{4} A_{1}}=1 .
$$

Fig. 1

Let's suppose by induction upon $k \geq 3$ that the Theorem of Menelaus is true for any k-gon with 3 $\leq k \leq n-1$, and we need to prove it is also true for $k=n$.

Suppose a line (d) intersects the n-gon $A_{1} A_{2} \ldots A_{n}$ sides $A_{i} A_{i+1}$ in the points M_{i}, while its diagonal $A_{2} A_{n}$ into the point M \{of course by $A_{n} A_{n+1}$ one understands $\left.A_{n} A_{1}\right\}$.

We consider the n-gon $A_{1} A_{2} \ldots A_{n-1} A_{n}$ and we split it similarly as in the case of quadrilaterals in a 3-gon $\Delta_{A_{1}} A_{2} A_{n}$ and an (n-1)-gon $A_{n} A_{2} A_{3} \ldots A_{n-1}$ and we can respectively apply the Theorem of Menelaus according to our previously hypothesis of induction in each of them, and we respectively get:

$$
\frac{M_{1} A_{1}}{M_{1} A_{2}} \cdot \frac{M A_{2}}{M A n} \cdot \frac{M n A n}{M n A_{1}}=1
$$

and

$$
\frac{M A n}{M A_{2}} \cdot \frac{M_{2} A_{2}}{M_{2} A_{3}} \cdot \ldots \cdot \frac{M_{n-2} A_{n-2}}{M_{n-2} A_{n-1}} \cdot \frac{M_{n-1} A_{n-1}}{M_{n-1} A_{n}}=1
$$

whence, by multiplying the last two equalities, we get
the Theorem of Menelaus for any \boldsymbol{n}-gon:

$$
\prod_{i=1}^{n} \frac{M_{i} A_{i}}{M_{i} A_{i+1}}=1 .
$$

Conclusion.

We hope the reader will find useful this self-recurrence method in order to generalize known scientific results by means of themselves!
\{Translated from French by the Author.\}

References:

1. Alain Bouvier et Michel George, sous la direction de François Le Lionnais, Dictionnaire des Mathématiques, Presses Universitaires de France, Paris, p. 466 (Ménélaüs d'Alexandrie), 1979.
2. Florentin Smarandache, Généralisation du Théorème de Ménélaüs, Séminaire de Mathématiques, Lycée Sidi El Hassan Lyoussi, Sefrou, Morroco, 1984.
3. Florentin Smarandache, Généralisations et Généralités, Ed. Nouvelle, Fès, Morocco, 1984.
