PDEs and Symmetry : an Open Problem

Elemér E Rosinger
Department of Mathematics
and Applied Mathematics
University of Pretoria
Pretoria
0002 South Africa
eerosinger@hotmail.com

Dedicated to Marie-Louise Nykamp

Abstract

A simple and basic problem is formulated about symmetric partial differential operators. The symmetries considered here are other than Lie symmetries.

1. A Starting Remark

Let
(1.1) $\quad \mathcal{S}\left(\mathbb{R}^{n}\right)$
be the set of all \mathcal{C}^{∞}-smooth functions $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ which are symmetric.

We consider \mathcal{C}^{∞}-smooth partial differential operators of the form

$$
\begin{equation*}
P(x, D) U(x)=F\left(x, U(x), \ldots, D^{p} U(x), \ldots\right), \quad x \in \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

acting on \mathcal{C}^{∞}-smooth functions $U: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, where F is a real valued \mathcal{C}^{∞}-smooth function defined for all real values of all its arguments, while $p \in \mathbb{N}^{n},|p| \leq m$, for a certain given $m \geq 1$.

We call $P(x, D)$ symmetric, if and only if

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{n}\right) \ni U \longmapsto P(x, D) U \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{1.3}
\end{equation*}
$$

Obviously, the partial differentials $D_{x_{1}}, \ldots, D_{x_{n}}: \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ are not symmetric. On the other hand, simple examples of symmetric partial differential operators are given by

$$
\begin{equation*}
D_{x_{1}} U(x)+\ldots+D_{x_{n}} U(x)-F(U(x)), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \tag{1.4}
\end{equation*}
$$

or by the Poisson operators

$$
\begin{equation*}
D_{x_{1}}^{2} U(x)+\ldots+D_{x_{n}}^{2} U(x)-F(U(x)), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \tag{1.5}
\end{equation*}
$$

where $F: \mathbb{R} \longrightarrow \mathbb{R}$ is any \mathcal{C}^{∞}-smooth function.
One can note that the above symmetries are not of Lie type.

2. A Simple Example

For convenience, let us start by noting a few facts when $n=2$.
First, as mentioned, the implication does not hold

$$
\begin{equation*}
f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \quad \Longrightarrow \quad D_{x_{1}} f, D_{x_{2}} f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.1}
\end{equation*}
$$

on the other hand, also as noted, we have

$$
\begin{equation*}
f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \Longrightarrow D_{x_{1}} f+D_{x_{2}} f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.2}
\end{equation*}
$$

Let us consider the converse of (2.2). Namely, given $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, then let us see whether

$$
\begin{equation*}
f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right), \quad D_{x_{1}} f+D_{x_{2}} f=g \quad \Longrightarrow \quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.3}
\end{equation*}
$$

As a particular case of (2.3), we recall that, for a given $g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$, the solution of the PDE

$$
\begin{equation*}
D_{x_{1}} f+D_{x_{2}} f=g \tag{2.4}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
f\left(x_{1}, 0\right)=h\left(x_{1}\right), \quad x_{1} \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

for a specified $h \in \mathcal{C}^{\infty}(\mathbb{R})$, is given by
(2.6) $\quad f\left(x_{1}, x_{2}\right)=h\left(x_{1}-x_{2}\right)+\int_{0}^{x_{2}} g\left(x_{1}+\left(\xi-x_{2}\right), \xi\right) d \xi, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$

Thus
(2.7) $\quad f\left(x_{2}, x_{1}\right)=h\left(x_{2}-x_{1}\right)+\int_{0}^{x_{1}} g\left(x_{2}+\left(\xi-x_{1}\right), \xi\right) d \xi, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
and therefore, f is symmetric, if and only if

$$
\begin{aligned}
& h\left(x_{1}-x_{2}\right)+\int_{0}^{x_{2}} g\left(x_{1}+\left(\xi-x_{2}\right), \xi\right) d \xi= \\
& \quad=h\left(x_{2}-x_{1}\right)+\int_{0}^{x_{1}} g\left(x_{2}+\left(\xi-x_{1}\right), \xi\right) d \xi, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

or equivalently, if and only if, for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, we have

$$
\begin{align*}
& \int_{0}^{x_{1}} g\left(x_{2}+\left(\xi-x_{1}\right), \xi\right) d \xi-\int_{0}^{x_{2}} g\left(x_{1}+\left(\xi-x_{2}\right), \xi\right) d \xi= \tag{2.8}\\
& \quad=h\left(x_{1}-x_{2}\right)-h\left(x_{2}-x_{1}\right)
\end{align*}
$$

However, $h \in \mathcal{C}^{\infty}(\mathbb{R})$ in (2.5) can be arbitrary, and (2.6) will give a corresponding solution $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$ of (2.4), (2.5).

Clearly, no matter how $g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$ is given, there are $h \in \mathcal{C}^{\infty}(\mathbb{R})$ for which (2.8) need not hold.

Indeed, for given $g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$, the relation (2.8) implies on $h \in \mathcal{C}^{\infty}(\mathbb{R})$
the following condition

$$
\begin{equation*}
h(x)-h(-x)=\int_{0}^{x_{1}} g\left(x_{2}+\left(\xi-x_{1}\right), \xi\right) d \xi-\int_{0}^{x_{2}} g\left(x_{1}+\left(\xi-x_{2}\right), \xi\right) d \xi \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
x=x_{1}-x_{2}, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \tag{2.10}
\end{equation*}
$$

therefore

$$
\begin{equation*}
h(x)-h(-x)=\int_{0}^{\left(x+x_{2}\right)} g(\xi-x, \xi) d \xi-\int_{0}^{x_{2}} g(x+\xi, \xi) d \xi \tag{2.11}
\end{equation*}
$$

and then the issue is whether the right hand term in (2.11) does indeed not depend on x_{2}.

In this regard we note that the derivative with respect to x_{2} of the right hand term in (2.11) is

$$
g\left(x+x_{2}-x, x+x_{2}\right)-g\left(x+x_{2}, x_{2}\right)
$$

thus it vanishes whenever g is a symmetric function.
Consequently, for every symmetric function $g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$, the relation (2.11) takes the form

$$
\begin{equation*}
h(x)-h(-x)=G(x), \quad x \in \mathbb{R} \tag{2.12}
\end{equation*}
$$

where $G \in \mathcal{C}^{\infty}(\mathbb{R})$ is defined by g through the right hand term in (2.11).

Clearly, in (2.12), we can choose h arbitrary on $(-\infty, 0)$, provided that it is \mathcal{C}^{∞}-smooth, and then we obtain on $(0, \infty, 0)$ the \mathcal{C}^{∞}-smooth function

$$
\begin{equation*}
h(x)=h(-x)+G(x), \quad x \in(0, \infty) \tag{2.13}
\end{equation*}
$$

As for $x=0$, the relation (2.12) gives
$(2.14) \quad G(0)=0$
and leaves $h(0)$ undetermined. However, (2.12) allows as well the arbitrary \mathcal{C}^{∞}-smooth choice of h on $(-\infty, 0]$. And then, with (2.13), we obtain h being \mathcal{C}^{∞}-smooth on \mathbb{R}, and satisfying (2.12).

In this way we obtain

Proposition 1

Given $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$, then

$$
\begin{equation*}
f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \quad \Longrightarrow D_{x_{1}} f+D_{x_{2}} f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.15}
\end{equation*}
$$

while conversely, the relation

$$
\begin{equation*}
D_{x_{1}} f+D_{x_{2}} f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.16}
\end{equation*}
$$

does not imply
(2.17) $\quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$

Remark 1

In view of the above, the mappings

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{2}\right) \ni f \longmapsto D_{x_{1}} f+D_{x_{2}} f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{2.18}
\end{equation*}
$$

(2.19) $\quad \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right) \ni f \longmapsto D_{x_{1}} f+D_{x_{2}} f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$
are surjective.

3. A Problem

The above motivates the formulation of a general problem.

Problem 1

Given a \mathcal{C}^{∞}-smooth symmetric partial differential operator $P(x, D)$, with $x \in \mathbb{R}^{n}$, such that the mapping
(3.1) $\quad \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \ni f \longmapsto P(x, D) f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$
is surjective.
Is then the mapping
(3.2) $\quad \mathcal{S}\left(\mathbb{R}^{n}\right) \ni f \longmapsto P(x, D) f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$
also surjective ?

Bibliography

[1] Arnold V I : Lectures on PDEs. Springer Universitext, 2004
[2] Evans L C : Partial Differential Equations. AMS, Providence, 1998
[3] Rosinger E E : Can there be a general nonlinear PDE theory for the existence of solutions? arxiv:math/0407026

