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I. INTRODUCTION

In previous works, it was suggested that e¤ective actions of anomalous models could be

mapped into gauge invariant ones by some mathematical manipulations over the functional

integral [1], [2]. On the other hand, similar developments may be used to map the non-gauge

Proca model [3] into the gauge invariant Stueckelberg one [4], which is shown to be unitary

and renormalizable [5]�[7]. To be more precise, two formulations may be raised in order
to achieve a gauge invariant e¤ective action: the standard formulation, �rst developed by

Fadeev and Shatashvilli [8] and, then, derived from such mapping by Harada and Tsutsui

[2], and a kind of generalization of the Stueckelberg trick, that may be also obtained by the

Harada and Tsutsui procedure, called the enhanced formulation [9].

However, for the simplest case of the Jackiw-Rajaraman model [10], it was particularly

shown that the standard formulation does not coincide physically with the original one

unless we restrict the gauge �elds by a constraint that cancels the anomaly out [11]. On

the other hand, it can be shown that if we impose the equations of motions of the abelian

gauge �eld, and accept that the anomaly may cancel out as a subsidiary condition, then the

enhanced version of the Harada and Tsutsui procedure may be equivalent to the original

one, since a simple gauge choice, which means to impose the equation that cancels out the

anomaly, reduces the enhanced formulation to the original one. This naturally brings a kind

of equivalence between gauge and non-gauge models, since one is reducible to the other by

a gauge choice that do not change the physical results [12].

At this point, one question deserves special attention: if current may be conserved by

imposing the equations of motion of the gauge �eld as a kind of subsidiary condition, and

a gauge theory may be equivalent to a non-gauge one, what is the relation between gauge

symmetry and current conservation?

This work is intended to rediscuss this quite important question. In this sense, section

II is intended to establish the classical relation between Noether symmetry and current

conservation. In section III, we bring this discussion to the quantum environment, where

the anomaly case shows up quite naturally. We discuss the alternative point-of-view in which

the anomaly may be canceled out as a subsidiary condition in section IV. In section V, it is

shown that the enhanced Stueckelberg formalism may be used to verify the consistence of

anomalous models. Finally, the conclusion is presented in section VI.
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II. NOETHER SYMMETRY AND CLASSICAL CURRENT CONSERVATION

Let us consider the classical theory de�ned by the action

I[ ; � ;A�] = IM [ ; � ;A�] + IG[A�] (1)

where IM [ ; � ;A�] is the matter action de�ned by fermionic �elds  and � that carries any

SU (N) representation, and by gauge �elds de�ned by

A� = Aa�Ta; (2)

where Ta are the SU (N) generators acting on the matter �elds and satisfying

[Ta; Tb] = ifabcTc; tr (TaTb) = �
1

2
�ab: (3)

We de�ne the local gauge transformations as

Ag� = gA�g
�1 � i

e
(@�g) g

�1; (4)

 g = g ; (5)

� g = � g�1; (6)

with g being a local and arbitrary SU(N) element, de�ned by

g = exp(i� (x)); �(x) � �a (x)Ta: (7)

The entire action (1) as well as each of its part is suposed to be invariant under the referred

transformations, that is

I[ g; � g; Ag�] = I[ ; � ;A�]; (8)

IM [ 
g; � g; Ag�] = IM [ ; � ;A�]; (9)

IG[A
g
�] = IG[A�]: (10)

We shall analyze each part of the action separetly, starting from the matter action. The

following development was inspired by ref. [13] brought to this context. Since the matter

action IM is invariant by the local gauge transformations above (9), it is also invariant under
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global gauge transformations

 ! exp (i�) ;

� ! � exp (�i�) ; (11)

A� ! exp (i�)A� exp (�i�) ;

being � � �aTa an arbitrary linear conbination of the gauge group generators (3) with

@��
a = 0. If we change the transformation law (11) from global to a modi�ed local one

 ! exp (i�(x)) ;

� ! � exp (�i�(x)) ; (12)

A� ! exp (i�(x))A� exp (�i�(x)) ;

which, in the in�nitesimal form, reduces to

 (x)!  (x) + i�(x) (x);

� (x)! � (x)� i � (x)�(x); (13)

A� ! A� � i [A�; �(x)] ;

Aa�Ta ! Aa�Ta � iAb��
c(x) [Tb; Tc] = Aa�Ta + Ab��

c(x)fbcaTa;

=) Aa� ! Aa� + fabcA
b
��
c(x); (14)

we will obtain the local gauge transformations (9) without the inhomogeneous part of the

gauge �eld and, therefore, we will have no symmetry. On the other hand, if �(x) is constant,

we get back to the global gauge transformations (11). Therefore, the noninvariance of

the action by (12) must only depend on @��
a(x). Thus, if we perform the in�nitesimal

transformations (13), we shall obtain

IM [ 
g; � g; gA�g

�1]

= IM [ ; � ;A�] +

Z
dx�a(x)

�
�IM
� (x)

iTa (x)� i � (x)Ta
�IM
� � (x)

+ fbacA
b
�

�IM
�Ac�(x)

�
� IM [ ; � ;A�] +

Z
dx@��

a(x)J�a (x); (15)

)
Z
dx�a(x)

�
�IM
� (x)

iTa (x)� i � (x)Ta
�IM
� � (x)

+ fbacA
b
�

�IM
�Ac�(x)

�
(16)

= �
Z
dx�a(x)@�J

�
a (x):
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The in�nitesimal gauge parameter �a(x) being arbitrary, we conclude thatZ
dx�a(x)

�
�IM
� (x)

iTa (x)� i � (x)Ta
�IM
� � (x)

�
(17)

= �
Z
dx�a(x)

�
@�J

�
a (x) + fbacA

b
�

�IM
�Ac�(x)

�
:

If we use the equations of motion of the matter �eld

�I

� (x)
=

�IM
� (x)

= 0; (18)

�I

� � (x)
=

�IM
� � (x)

= 0;

then, we just �nd

@�J
�
a (x) + fcabA

c
�

�IM
�Ab�(x)

= 0: (19)

One may notice that this result is independent of local gauge invariance of any part of

the action. Indeed, this was achieved only by global invariance and the equations of motion

of the matter �elds. In the abelian case, we see that we have a conserved current

@�J
�(x) = 0 (20)

with no mention to local gauge symmetry.

Now, we explore the local gauge invariance of the matter action, that is,

IM [ 
g; � g; A�] = IM [ ; � ;A

g�1 ] = IM [ ; � ; g
�1A�g �

i

e

�
@�g

�1� g]: (21)

if, instead of A we use

A0� = gA�g
�1; (22)

in the matter action, then we will just obtain

IM [ 
g; � g; A0�] = IM [ 

g; � g; gA�g
�1] (23)

= IM [ ; � ;
�
gA�g

�1�g�1 ]
= IM [ ; � ;A� �

i

e

�
@�g

�1� g]:
In the in�nitesimal form, (gA�g�1)

g�1 reduces to

�
gA�g

�1�g�1 = A� +
i

e
[@� (1� i�)] (1 + i�) = A� �

1

e
@��: (24)
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Therefore, for � in�nitesimal,

IM [ 
g; � g; gA�g

�1] = IM [ ; � ;A
a
� �

1

e
@��

a]

= IM [ ; � ;A�]�
1

e

Z
dx@��

a(x)
�IM

�Aa�(x)
: (25)

Comparing (25) with (15), we just �ndZ
dx@��

a(x)J�a (x) =

Z
dx@��

a(x)

�
�1
e

�IM
�Aa�(x)

�
; (26)

and, since �a(x) is arbitrary and we did not make use of any boundary condition at in�nite,

we may ensure that

J�a (x) = �
1

e

�IM
�Aa�(x)

: (27)

Thus, we see that the local gauge symmetry of the matter action shows a coupling of the

gauge �eld with the matter action in such a way that the current obays the expression (27)

above. Thus, using (27) in (19), we arrive at

Da
�bJ

�
b (x) = 0; (28)

where

Da
�b � �ab@� + efcabA

c
�: (29)

Therefore, we see that, while in the abelian case local gauge symmetry does not interfere

whith the current conservation law, in the Yang-Mills one the symmetry of the matter action

is important in the sense that current may be obtained from (27), which ensures that current

is covariantly conserved. On the other hand, it is clear that gauge symmetry of any other

part of the action is irrelevant.

We now turn our attention to a pure gauge �eld term, which may be exemplied by

IG[A�]. Performing an in�nitesimal gauge transformation on IG[A�] and making use of its

gauge invariance we arrive at

IG

�
A� +

1

e
D��

�
= IG [A�] +

Z
dx
�IG[A]

�Aa�(x)

1

e
Da
�b�

b(x)

= IG [A�]�
Z
dx�a(x)Da

�b

�
1

e

�IG[A]

�Ab�(x)

�
;

) Da
�b

�
�1
e

�IG[A]

�Ab�(x)

�
= 0: (30)
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which is nothing but a Noether identity, as can be exempli�ed by the kinect term of the

abelian vector model IG [A] = �1
4

R
dnxF ��F�� .

Thus, current conservation in the classical abelian case is achieved only by global gauge

invariance and the classical equations of motion of the matter �elds. In the non-abelian case,

on the other hand, it is necessary that the matter action possesses local gauge symmetry in

order to arrive at the covariantly conserved Yang-Mills current (28).

On the other hand, if instead of IG [A] we have a non-gauge action, that is, if

I[ ; � ;A�] = IM [ ; � ;A�] + IA[A�]; (31)

being IA[Ag�] 6= IA[A�], then we will not have the Noether identity (30) above and, thus,

Da
�b

�
�1
e
�IA[A]
�Ab�(x)

�
6= 0, but the current is still conserved by gauge invariance of the matter

action, thus, if we get the equation of motion of the gauge �eld, we will arrive at

�I

�A�
=
�IM
�A�

+
�IA
�A�

= 0: (32)

Taking the covariant divergence of (32) and using the fact that current is conserved, we

obtain

Da
�b

�
�1
e

�IA[A]

�Ab�(x)

�
= 0: (33)

This is the generalization of the classical subsidiary condition that appears in the Proca

model. As it was seen, this is not an identity since IA[A] is not gauge invariant. This

means that eq. (33) imposes restrictions over the gauge �eld. One must check, however, the

consistence of such constraints with the speci�c theory under consideration.

III. NOETHER SYMMETRY AND QUANTUM CURRENT CONSERVATION

We now consider the case where the fermion �elds are quantized. This is achieved by

functional integration over the fermions, de�ning the e¤ective action

exp (iW [A�]) �
Z
d d � exp

�
iI[ ; � ;A�]

�
: (34)

Now, we follow analogue procedure as done in previous section, performing an in�nitesimal

transformation only over the matter action and changing the global transformation law as in

(13). Then, we will obtain a modi�ed transformed action which will di¤er from the original
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one by @��a(x), since it is invariant for @��a = 0. Using this in (34) and expanding it to the

�rst order, we will have

� fexp (iW )g = i

Z
dnx�a(x)

Z
d d exp

�
iI[ ;  ;A�]

�� �I

� (x)
iTa (x)

�i (x)Ta
�I

� (x)
+ fbacA

b
�

�IM
�Ac�(x)

�
= �i

Z
dnx�a(x)

Z
d d exp

�
iI[ ;  ;A�]

�
@�J

�
a : (35)

At this point, just as in classical case, we may notice that local gauge invariance of the

matter action is important in non-abelian case, in the sense that it allow us to use the

identi�cation (27) to arrive atZ
d d Da

�bJ
�
b exp

�
iI[ ;  ;A�]

�
=

Z
d d 

�
i (x)Ta

�IM

� (x)
� �IM
� (x)

iTa (x)

�
exp

�
iI[ ;  ;A�]

�
: (36)

Now comes the subtle di¤erence between the classical and quantum case. If the quantum

fermionic measure is invariant under local gauge transformations, that is, if

d �d 
�
= d d ; (37)

then, to any functional F
�
 ;  ;A�

�
, we will haveZ

d d F
�
 ;  ;A�

�
=

Z
d �d 

�
F
�
 �;  

�
; A�

�
=

Z
d d F

�
 + � ;  + � ;A�

�
=

Z
d d F

�
 ;  ;A�

�
+

Z
d d dA�

�
�F

� 
� + � 

�F

� 

�
; (38)

)
Z
d d 

�
�F

� 
� + � 

�F

� 

�
= 0: (39)

If we take

F
�
 ;  ;A�

�
� exp

�
iIM [ ;  ;A�]

�
and � = i�(x) (x); � = �i (x)�(x); (40)

then, since �(x) is arbitrary, we �ndZ
d d 

�
�IM
� 

iTa � i Ta
�IM

� 

�
exp

�
iI[ ;  ;A�]

�
� �

Z
d d Da

�bJ
�
b exp

�
iI[ ;  ;A�]

�
= 0; (41)
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which is the quantum version of current conservation law.

We may notice that, at this point of discussion, the local gauge invariance of d d was

important to achieve (41). On the other hand, there is no distinct discussion about the

importance of local gauge invariance of the action. Indeed, just as in classical case, it seems

important only in the non-abelian case, due to the coupling (27), to arrive at the current

covariant derivative in (19).

If, instead of (37), we have

d �d 
�
= exp (�1 [A�; �]) d d ; (42)

which, in in�nitesimal form turns to be

d �d 
�
=

�
1 +

��1
��

����
�=0

�(x)

�
d d ; (43)

then, performing the same development as in (38), but using (43) we arrive at

�
Z
d d 

�
�F

� 
� + � 

�F

� 

�
=

Z
d d 

��1
��

����
�=0

F
�
 ;  ;A�

�
:

Identifying our generic functional with (40), we �ndR
d d Da

�bJ
�
b exp

�
iI[ ;  ;A�]

�R
d d exp

�
iI[ ;  ;A�]

� =
��1 [A; �]

��a(x)

����
�=0

: (44)

We, thus, de�ne an anomalous model as the one whose normalized covariant current

divergence, after integrated out all other �elds besides the gauge one, is not identically null,

and its anomaly as being

Aa [A] �
R
d'd d Da

�bJ
�
b exp

�
iI[ ;  ;A�; ']

�R
d'd d exp

�
iI[ ;  ;A�; ']

� ; (45)

and we see that, in the case where we have a non-trivial fermionic Jacobian, the theory

exhibits an anomaly that may potentially break current conservation at quantum level,

given by

Aa [A] =
��1 [A; �]

��a(x)

����
�=0

: (46)

It is easy to notice that such appearance of an anomaly in (44) may be particularly explained

by an e¤ective action gauge invariance breakdown of a classically gauge invariant model. To
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see this, we write

exp (iW [A�]) �
Z
d d � exp

�
iI[ ; � ;A�]

�
=

Z
d ��d � �� exp

�
iI[ ��; � ��; A�]

�
=

Z
d d � exp

�
iI[ ; � ;A��]� i�1 [A; �]

�
(47)

= exp
�
iW

�
A�
�
� i�1 [A; �]

�
(48)

which leads to the Wess-Zumino action [14]

�1 [A; �] =W
�
A�
�
�W [A�]: (49)

Using �(x) in�nitesimal and expanding the exponential of the gauge transformed e¤ective

action to the �rst order in both, left and right-hand sides, it is straightforward to �ndZ
dxDa

�b�
b(x)

1

e

�W [A]

�Aa�
exp (iW [A]) =

Z
dxDa

�b�
b

Z
d d � 

1

e

�I

�Aa�
exp

�
iI[ ; � ;A�]

�
(50)

) Da
�b

�
�1
e

W [A]

�Ab�

�
exp (iW [A]) =

Z
d d � Da

�b

�
�1
e

�I

�Ab�

�
exp

�
iI[ ; � ;A�]

�
: (51)

Since we are dealing with a gauge invariant starting action such as (1), then

Da
�b

�
�1
e
�IG[A]
�Ab�

�
� 0, thus

Da
�b

�
�1
e

W [A]

�Ab�

�
exp (iW [A]) =

Z
d d � Da

�b

�
�1
e

�IM
�Ab�

�
exp

�
iI[ ; � ;A�]

�
: (52)

As the matter action is gauge invariant, we may identify the current with eq. (27) and,

therefore, from (52), we may also write the anomaly as

Aa [A] = Da
�b

�
�1
e

W [A]

�Ab�

�
: (53)

We shall recognize the necessity of using the gauge invariance of the matter action to write

the anomaly as in (53), contrary to (44), even in the abelian case.

IV. QUANTUM NOETHER SYMMETRY AND SUBSIDIARY CONDITIONS

Now, we turn our attention to the full quantum theory, i. e., the one de�ned after

integrated the fermions and the gauge �eld. We start from the vacuum functional of a
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non-invariant model, however anomaly-free, described by (31)

Z �
Z
dA�d d � exp

�
iIM [ ; � ;A�] + iIA [A]

�
=

Z
dA� exp (iWM [A] + iIA [A]) (54)

with its gauge symmetry broken by the free bosonic term IA [A].

Since the theory is not anomalous and the matter action is gauge invariant, then the

integrated matter action is also gauge invariant, which leads us to conclude that

Da
�b

�
�1
e

WM [A]

�Ab�

�
= 0; (55)

which ensures that current is covariantly conserved. Performing an in�nitesimal change of

variables on the gauge �eld A� ! A�� in (54) and using gauge invariance of the bosonic

measure dA�� = dA�, it is straightforward to �nd that�
Da
�b

�
�1
e

IA [A]

�Ab�

��
= 0; (56)

which seems to be the quantum version of the subsidiary condition (33).

If, on the other hand, we keep the boson �eld being classical, we may use the variational

principle on the e¤ective action and take the covariant divergence of the equation of motion.

Then, we obviously arrive at

Da
�b

�
�1
e

IA [A]

�Ab�

�
= 0; (57)

as a subsidiary condition, just as in (33).

We now turn to the anomalous case; we saw that the non-invariance of the fermionic

measure leads us to an e¤ective action which is not gauge invariant. On the other hand,

if we bring the above point-of-view to this context, and allow ourselves to use the gauge

invariance of the bosonic measure, then we will also �nd

hAa [A]i =
�
Da
�b

�
�1
e

W [A]

�Ab�

��
= 0; (58)

or, if we consider the gauge �eld as being classical, get its equation of motion from the

e¤ective action and take its covariant divergence, we arrive at

Da
�b

�
�1
e

W [A]

�Ab�

�
= 0 (59)
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which turns to cancel the anomaly, in other words, to get null current divergence as a

subsidiary condition.

The subtle di¤erence between the two cases mentioned above relies in the fact that in the

�rst one we obtain current conservation from the non-anomalous matter action, use gauge

invariance of dA� and get the subsidiary condition as its consequence, while in the second

one we use the gauge invariance of dA� to achieve the nullity of anomaly as the subsidiary

condition.

From the point-of-view presented above, thus, we obtain two distinct ways to achieve

current conservation at quantum level: by global gauge invariance of the matter action

and local gauge invariance of the fermionic measure d d or, alternatively, by local gauge

invariance of the classical matter action and local gauge invariance of the bosonic measure

dA�. We notice that, unlike in classical case, local gauge invariance is of greater importance

to the current conservation law, since it remains necessary even in the abelian case. However,

its importance relies only in the fermionic measure or, alternatively, in the classical matter

action and bosonic measure. It is not necessary a stronger condition which is that the

entire e¤ective action be gauge invariance, since such breakdown, as it was seen, may merely

represent restrictions over the gauge �elds. On the other hand, it remains to be veri�ed the

consistence of models subjected to such kind of restrictions.

V. GAUGE INVARIANT ENHANCED FORMULATION AND CONSISTENCE

OF ANOMALOUS GAUGE MODELS

An interesting way to check the consistence of non-invariant gauge models is to notice if

the theory under consideration may be thought as a gauge invariant one with the subsidiary

condition being provided by a particular gauge choice. Indeed, this may be the case of the

Proca model and the anomalous chiral Schwinger model. As can be shown, an inclusion of

the Stueckelberg scalar in both models turns them to be gauge invariant.

Consider, for instance, the Proca model

IP [A] �
Z
dnx

�
�1
4
F ��F�� +

m2

2
A�A�

�
: (60)
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If we use the Stueckelberg trick by doing

A� ! A� +
1

e
@�B; (61)

we arrive at the Stueckelberg action

IStueck [A;B] = �
1

4

Z
d4xF ��F�� +

m2

2

Z
d4x

�
A� +

1

e
@�B

��
A� +

1

e
@�B

�
(62)

which is gauge invariant. We see that the Stueckelberg model becomes the Proca one in the

gauge choice where B is set constant.

On the other hand, if we get the equation of motion of the original Proca model (60), we

shall have

@�F
�� +m2A� = 0: (63)

Taking the divergence of (63), we obtain

@�A
� = 0 (64)

as subsidiary condition.

Now, if we use the Stueckelberg�s alternative and perform the functional integration over

the Stueckelberg �eld at (62), we shall arrive at

WStueck [A] =

Z
dnx

�
�1
4
F ��F�� +

1

2
m2A�

�
��� � @�@�

�

�
A�

�
(65)

which reduces to Proca by choosing the Lorentz gauge @�A� = 0 that just turns to be the

subsidiary condition (64).

Let us now turn to the example of the anomalous chiral Schwinger model. Its e¤ective

action is given by

W [A] =

Z
d2x

�
�1
4
F ��F�� +

e2

8�
A�

�
ag�� � (g�� + ���)

@�@�
�

�
g�� � ���

��
A�

�
: (66)

Its equation of motion gives us

@�F
�� +

e2

4�

a2

(a� 1)

�
��� � @�@�

�

�
A� = 0;

with

A = (a� 1) @�A� + ���@�A� = 0
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as its subsidiary condition. We can use the same trick (61), including the Stueckelberg

scalar, performing functional integration over it and we arrive at

Weff [A] =

Z
d2x

�
�1
4
F ��F�� +

1

2

e2

4�

a2

(a� 1)A�
�
g�� � @�@�

�

�
A�

�
: (67)

We see that, analogue to Proca, this model reduces to the anomalous one (66) at the

particular gauge choice where (a� 1) @�A� + ���@�A� = 0.

These two examples bring up a useful guide to turn non-gauge models into gauge equiva-

lent ones by the addition of the Stueckelberg �eld, and may be a road to the renormalizability

of the so-called anomalous gauge models.

VI. CONCLUSION

This work was intended to raise some considerations to the old Noether idea about the

relation between gauge symmetry and current conservation. It is common the point-of-view

that current conservation is due to gauge symmetry, and it is indeed true. However, it is also

common the rather stronger assumption that the whole model must be local gauge invariant

so as to allow current conservation. As it was presented, we can face current conservation

by an alternative point-of-view. At the classical level, the crucial role to achieve it is played

by global gauge symmetry, or local gauge invariance of the matter action in nonabelian case.

At the quantum level, two alternative ingredients must be added: either the fermionic

jacobian must be trivial or the matter action and also the bosonic jacobian must be local

gauge invariant. In the �rst alternative, if we are dealing with a model whose action is gauge

invariant, we arrive at an anomaly-free model with a current which is trivially conserved. In

the second one, on the other hand, we arrive at an e¤ective action with broken symmetry,

and current conservation may be guaranteed by gauge invariance of dA� or, if we are dealing

with classical vector �elds, by the variational principle as a kind of subsidiary condition.

The consistence of the anomaly cancelation as subsidiary condition in anomalous models

may be found if one proves that such models can be obtained from anomaly-free ones, as it

is the case of the 2�D Jackiw-Rajaraman model, as shown in the previous section through

the inclusion of the Stueckelberg scalar into the theory, just as it is done in Proca model.

Finally, we stress out that such technique of recovering gauge invariance through the

inclusion of the Stueckelberg�s �eld, and by proving its equivalence with the original non-

14



gauge model, may be a road to the renormalizability of anomalous models, just as it was

shown to be in the original Stueckelberg�s example.
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