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I derive herein a general form of Kepler’s 3rd Law for the general solution to Einstein’s
vacuum field. I also obtain stable orbits for photons in all the configurations of the
point-mass. Contrary to the accepted theory, Kepler’s 3rd Law is modified by General
Relativity and leads to a finite angular velocity as the proper radius of the orbit goes
down to zero, without the formation of a black hole. Finally, I generalise the expression
for the potential function of the general solution for the point-mass in the weak field.

1 Introduction

In previous papers [1, 2] I derived the general solution for
Einstein’s vacuum field and showed that black holes do not
exist in Einstein’s universe. In those papers I also obtained
expressions for Kepler’s 3rd Law for the simple (i. e. non-
rotating) point-mass and the simple point-charge. In this
paper I obtain expressions for Kepler’s 3rd Law for the
rotating point-mass and the rotating point-charge. Owing to
the rotation of the source of the field, Kepler’s 3rd Law for
the polar orbit is not the same as that for the equatorial orbit,
so that stable photon orbits are also different in the polar and
equatorial orbits, showing that in the rotating configurations
spacetime is no longer isotropic.

The expressions I obtain readily reduce to those I have
previously derived for the non-rotating configurations.

2 Definitions

I have already shown [3] that the most general static metric
for the point-mass is,

ds2=A(D)dt2 −B(D)dD2 − C(D)
(
dθ2 + sin2 θdϕ2

)
,

D = |r − r0| ,

A,B,C > 0 ,

where r0 is an arbitrary real number. With respect to this
metric I identify the coordinate radius, the r-parameter, the
radius of curvature, and the proper radius thus:

1. The coordinate radius is D= |r − r0| .
1. The r-parameter is the variable r .

2. The radius of curvature is R=
√
C(D) .

3. The proper radius is Rp=
∫ √

B(D) dD .

3 The equatorial orbit

The general Kerr-Newman form in Boyer-Lindquist coordi-
nates is,

ds2=
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
R2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dR2−ρ2dθ2.

This can be written as,

ds2=

(
Δ− a2 sin2 θ

ξ

)

dt2 −
ξ

Δ
dR2 −

− ξdθ2 +

[
a2Δsin4 θ −

(
R2 + a2

)2
sin2 θ

ξ

]

dϕ2−

−

[
2aΔsin2 θ − 2a

(
R2 + a2

)
sin2 θ

ξ

]

dtdϕ ,

(1)

where I have previously shown [2, 3] in the case of the
rotating point-charge,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈<, r∈< ,

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 , n∈<+, ξ= ρ2=R2 + a2 cos2 θ ,

a=
L

m
, Δ=R2 − αR+ a2 + q2 ,

0< |r − r0|<∞ ,

where L is the angular momentum, and n and r0 are arbitrary.
I have also shown previously that Kepler’s 3rd Law for

the simple point-mass is,

ω2=
α

2R3
, (2)

where
lim
r→ r±0

√
Cn(r)=R0=α=2m ∀ r0 ,

is a scalar invariant; and for the simple point-charge is,

ω2=
α

2R3
−
q2

R4
, (3)
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where, ∀ r0 ,

lim
r→ r±0

√
Cn(r)=R0=β=m+

√
m2 − q2, q2<m2 ,

is a scalar invariant.
In the case of the equatorial orbit, θ= π

2 and θ̇=0, so
(1) becomes,

ds2=

(
Δ− a2

ξ

)

dt2 −
ξ

Δ
dR2 +

+

[
a2Δ−

(
R2 + a2

)2

ξ

]

dϕ2 −

−

[
2aΔ− 2a

(
R2 + a2

)

ξ

]

dtdϕ .

(4)

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2 , q2<m2 ,

ξ=R2 , Δ=R2 − αR+ a2 + q2 ,

0< |r − r0|<∞ .

Consider the associated Lagrangian, where the dot indi-
cates ∂/∂τ ,

L=
1

2

[
Δ− a2

ξ
ṫ2 −

ξ

Δ
Ṙ2
]

+

+
1

2

[
a2Δ−

(
R2 + a2

)2

ξ

]

ϕ̇2 −

−
1

2

[
2aΔ− 2a

(
R2 + a2

)

ξ

]

ṫ ϕ̇ .

(5)

Then,

∂L

∂R
−
∂

∂τ

(
∂L

∂Ṙ

)

=0⇒
ξΔ′ − ξ′

(
Δ− a2

)

2ξ2
ṫ2+

+
ξ
[
a2Δ′ − 4R

(
R2 + a2

)]

2ξ2
ϕ̇2−

−
ξ′
[
a2Δ−

(
R2 + a2

)2]

2ξ2
ϕ̇2−

−
ξ (2aΔ′ − 4aR)− ξ′

[
2aΔ− 2a

(
R2 + a2

)]

2ξ2
ṫϕ̇+

+
Δξ′ − ξΔ′

2Δ2
Ṙ2 +

ξ

Δ
R̈=0 .

(6)

Taking R= const. reduces (6) to,
{
ξ
[
a2Δ′ − 4R

(
R2 + a2

)]
−

− ξ′
[
a2Δ−

(
R2 + a2

)2]}
ω2 −

−
{
ξ (2aΔ′−4aR)−ξ′

[
2aΔ−2a

(
R2+a2

)]}
ω +

+ ξΔ′ − ξ′
(
Δ− a2

)
=0 ,

(7)

where ω= ϕ̇

ṫ
. The solutions for ω are,

ω=
aαR− 2aq2 ±R2

√
2αR− 4q2

a2αR− 2a2q2 − 2R4
.

In order for this to reduce to the non-rotating configura-
tions, the plus sign must be taken so,

ω=
aαR− 2aq2 +R2

√
2αR− 4q2

a2αR− 2a2q2 − 2R4
, (8)

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2 , q2<m2 ,

α=2m,

0< |r − r0|<∞ .

Equation (8) is Kepler’s 3rd Law for the equatorial plane
of the rotating point-charge. I remark that the radius of
curvature in the equatorial orbit is precisely that for the
simple point-charge. The expression for Kepler’s 3rd Law
for the equatorial plane of the rotating point-mass is obtained
from (8) by setting q=0,

ω=
aαR+R2

√
2αR

a2αR− 2R4
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

,

α=2m,

0< |r − r0|<∞ ,

in which case the radius of curvature in the equatorial orbit
is precisely that for the simple point-mass.

Taking the near-field limit on (8) gives,

lim
r→ r±0

ω=
aαβ − 2aq2 + β2

√
2αβ − 4q2

a2αβ − 2a2q2 − 2β4
, (9)

which is a scalar invariant.
When a=0 and q 6=0, equation (8) reduces to,

ω2=
α

2R3
−
q2

R4
,

which recovers Kepler’s 3rd Law (3) for the simple point-
charge. If a= q=0, equation (8) reduces to,

ω2=
α

2R3
,

β=α=2m,

which recovers Kepler’s 3rd Law (2) for the simple point-
mass.
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When a=0 and q 6= 0, (9) reduces in the near-field
limit, to

lim
r→ r±0

ω2=
α

2β3
−
q2

β4
,

β = m+
√
m2 − q2 ,

the scalar invariant of Kepler’s 3rd Law for the simple point-
charge; and when a= q=0, (9) reduces to the near-field
limit,

lim
r→ r±0

ω2=
1

2α2
,

α=2m,

the scalar invariant for Kepler’s 3rd Law for the simple point-
mass, as originally obtained by Karl Schwarzschild [4] for
his particular solution.

4 Photons in equatorial orbit

Setting θ= π
2 in (1) and setting (1) equal to zero gives,

[
a2Δ−

(
R2 + a2

)2]
ω2−

−
[
2aΔ− 2a

(
R2 + a2

)]
ω +

(
Δ− a2

)
=0 ,

(10)

from which it follows,

ω=
ϕ̇

ṫ
=
a
(
q2 − αR

)
+R2

√
R2 − αR+ a2 + q2

a2q2 − αa2R− a2R2 −R4
. (11)

Equating (8) to (11) gives,

aαR− 2aq2 +R2
√
2αR− 4q2

a2αR− 2a2q2 − 2R4
=

=
a
(
q2 − αR

)
+R2

√
R2 − αR+ a2 + q2

a2q2 − αa2R− a2R2 −R4
,

(12)

α=2m,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2, q2<m2 ,

r0 ∈<, n∈<
+ ,

for the radius of curvature Rph−e=R=
√
Cn(rph−e) of the

equatorial orbit of a photon for the rotating point-charge.
When a=0 equation (12) reduces to,

Rph−e=
√
Cn(rph−e)=

3α+
√
9α2 − 32q2

4
,

recovering the stable radius of curvature for the photon orbit
about the simple point-charge [2]. When a= q =0, equation
(12) reduces to,

Rph−e=
√
Cn(rph−e)=

3α

2
=3m, (13)

which recovers the stable radius of curvature for the photon
around the simple point-mass [1].

When n=1 and r0 =α, equation (13) gives,

Rph−e=
√
Cn(rph−e)= rph−e=3m,

This radius is taken incorrectly by the orthodox relativists as
a measurable proper radius in the gravitational field of the
simple point-mass. The actual proper radius associated with
(13) is,

Rp=
α
√
3

2
+ α ln

(
1 +

√
3

√
2

)

,

which is a scalar invariant for the photon orbit about the
point-mass.

The expression for the radius of curvature of the stable
photon equatorial orbit for the rotating point-mass is obtained
from (12) by setting q= 0, thus

aαR+R2
√
2αR

a2αR− 2R4
=
aαR−R2

√
R2 − αR+ a2

αa2R+ a2R2 +R4
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

,

α=2m,

r0 ∈<, n∈<
+ .

5 The polar orbit

According to (1), if R=
√
Cn(r) is a function of t,

R=R(t, θ)= =
√
Cn(r(t))=

(
|r(t)− r0|

n + βn
) 1
n ,

β=m+
√
m2 − q2 − a2 cos2 θ ,

so if ṙ=0, Ṙ=0.
In the polar orbit there is no loss of generality in taking

ϕ= const., ϕ̇=0. Then (1) becomes,

ds2=
Δ− a2 sin2 θ

ξ
dt2 −

ξ

Δ
dR2 − ξdθ2 , (14)

R2=Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈<, r∈< ,

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 , n∈<+, ξ= ρ2=R2 + a2 cos2 θ ,

a=
L

m
, Δ=R2 − αR+ a2 + q2 ,

0< |r − r0|<∞ .

Consider the associated Lagrangian,

L=
1

2

[
Δ− a2 sin2 θ

ξ
ṫ2 −

ξ

Δ
Ṙ2 − ξθ̇2

]

.

72 S. J. Crothers. On the Generalisation of Kepler’s 3rd Law for the Vacuum Field of the Point-Mass



July, 2005 PROGRESS IN PHYSICS Volume 2

Then,

∂L

∂R
−
∂

∂τ

(
∂L

∂Ṙ

)

=
1

2

[
ξΔ′− ξ′(Δ−a2 sin2 θ)

ξ2
ṫ2
]

+

−
1

2

[
(Δξ′ − ξΔ′)

Δ2
Ṙ2 + ξ′θ̇2

]

+
ξ

Δ
R̈=0 .

(15)

If Ṙ=0, then (15) yields,

ω2=
θ̇2

ṫ2
=
ξΔ′ − ξ′(Δ− a2 sin2 θ)

ξ′ξ2
=

=
αR2 − αa2 cos2 θ − 2q2R

2R (R2 + a2 cos2 θ)
2 =

=
αCn − αa2 cos2 θ − 2q2

√
Cn

2
√
Cn (Cn + a2 cos2 θ)

2 ,

(16)

β=m+
√
m2 − a2 cos2 θ − q2 , a2 + q2<m2 ,

n∈<+ r0 ∈< ,

0< |r − r0|<∞ .

Equation (16) is Kepler’s 3rd Law for the polar orbit of
the rotating point-charge. I remark that the angular velocity
depends upon azimuth.

Let a=0, q 6=0, then (16) reduces to,

ω2=
α

2R3
−
q2

R4
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

, β=m+
√
m2 − q2,

q2 < m2, r0 ∈<, n∈<
+ ,

0< |r − r0|<∞,

which recovers Kepler’s 3rd Law (3) for the simple point-
charge. Setting a= q=0 reduces (16) to,

ω2=
α

2R3
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

,

n∈<+, r(0)∈< ,

0< |r − r0|<∞,

which recovers Kepler’s 3rd Law (2) for the simple point-
mass.

Taking the near-field limit on (16),

lim
r→ r±0

ω2=
αβ2 − αa2 cos2 θ − 2q2β

2β (β2 + a2 cos2 θ)
2 , (17)

which is a scalar invariant, subject to azimuth, for the polar
orbit of the rotating point-charge.

When q=0, a 6=0, equation (16) reduces to,

ω2=
αR2 − αa2 cos2 θ

2R (R2 + a2 cos2 θ)
2 =

=
αCn − αa2 cos2 θ

2
√
Cn (Cn + a2 cos2 θ)

2 ,

(18)

β=m+
√
m2 − a2 cos2 θ , a2<m2 ,

n∈<+ r0 ∈< ,

0< |r − r0|<∞ .

This is Kepler’s 3rd Law for the polar orbit of the rotating
point-mass.

Taking the near-field limit on (18),

lim
r→ r±0

ω2=
αβ2 − αa2 cos2 θ

2β (β2 + a2 cos2 θ)
2 , (19)

which is a scalar invariant, subject to azimuth, for the polar
orbit of the rotating point-mass.

Thus, ω varies with azimuth as does R=
√
Cn(r). At

the poles of the rotating point-charge,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 − q2 ,

ω2=
αR2 − αa2 − 2q2R

2R (R2 + a2)
2 ,

(20)

and at the equator,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=m+
√
m2 − q2 ,

ω2=
α

2R3
−
q2

R4
.

(21)

It is noted that at the momentary equator in a polar orbit,
the radius of curvature and Kepler’s 3rd Law are precisely
those for the simple point-charge.

In the case of the rotating point-mass, at the poles,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 ,

ω2=
αR2 − αa2

2R (R2 + a2)
2 ,

(22)

and at the equator,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=2m=α ,

ω2=
α

2R3
.

(23)
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At the momentary equator in a polar orbit the radius of
curvature and Kepler’s 3rd Law are precisely those for the
simple point-mass.

6 Photons in the polar orbit

Setting (14) equal to zero, with Ṙ=0, gives

ω2=
Δ− a2 sin2 θ

ξ2
=
R2 − αR+ a2 cos2 θ + q2

(R2 + a2 cos2 θ)
2 . (24)

Denote the stable photon radius of curvature for a photon
in polar orbit by Rph−p=

√
Cn(rph−p). Then equating (24)

to (16) gives,

2R3ph−p − 3αR
2
ph−p +

+
(
2a2 cos2 θ + 4q2

)
Rph−p + αa

2 cos2 θ=0 ,

R2ph−p=Cn(rph−p)=
(
|rph − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 cos2 θ − q2, a2 + q2<m2 ,

r0 ∈<, n∈<+ .

(25)

Equation (25) gives the stable photon radius of curvature
in the polar orbit. The orbit has a variable radius of curvature
with azimuth.

When a=0, q 6=0, equation (25) reduces to

Rph−p=
√
Cn(rph−p)=

3α+
√
9α2 − 32q2

4
, (26)

Cn(rph−p)=
(∣
∣rph−p − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2, q2<m2 ,

r0 ∈<, n∈<
+ ,

which recovers the radius of curvature for the stable orbit
of a photon about the simple point-charge. When a= q=0,
(25) reduces to,

Rph−p=
√
Cn(rph−p)=

3α

2
, (27)

Cn(rph−p)=
(∣
∣rph−p − r0

∣
∣n + αn

) 2
n

,

α=2m, r0 ∈<, n∈<
+ ,

which recovers the curvature radius for the stable orbit of a
photon about the simple point-mass. When n=1 and r0 =α,
equation (27) gives,

Rph−p=
√
Cn(rph−p)= rph−p=3m,

which is the stable radius of curvature for the photon about
the simple point-mass, but which is misinterpreted by the
orthodox relativists as a measurable proper radius.

To obtain the stable photon radius of curvature of the
polar orbit for the rotating point-mass, set q=0 in (25),

2R3ph−p − 3αR
2
ph−p + 2a

2 cos2 θRph−p +

+ αa2 cos2 θ=0 ,

R2ph−p=Cn(rph−p)=
(
|rph − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 cos2 θ, a2<m2 ,

r0 ∈<, n∈<+ .

(28)

7 Potential functions in the weak field

In the case of the rotating point-charge,

g00 =
Δ− a2 sin2 θ

ρ2
, (29)

Δ=Cn(r)− α
√
Cn(r) + a

2 + q2 ,

ρ2=Cn(r) + a
2 cos2 θ .

The potential Φ for a general metric is given by,

g00 = (1− Φ)
2
=1− 2Φ + Φ2 .

In the weak field,

g00≈ 1− 2Φ .

Now (29) gives,

g00 =
Cn(r)− α

√
Cn(r) + a

2 cos2 θ + q2

Cn(r) + a2 cos2 θ
=

= 1−
α
√
Cn(r)− q2

Cn(r) + a2 cos2 θ
,

so the potential is,

Φ=
α
√
Cn(r)− q2

2 (Cn(r) + a2 cos2 θ)
, (30)

Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈< ,

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 , n∈<+ ,

0< |r − r0|<∞ .
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The potential therefore depends upon azimuth.
The potential for the rotating point-mass is obtained from

(30) by setting q=0,

Φ=
α
√
Cn(r)

2 (Cn(r) + a2 cos2 θ)
, (31)

Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈< ,

β=m+
√
m2 − a2 cos2 θ ,

a2<m2 , n∈<+ ,

0< |r − r0|<∞ .

If a=0 the potential for the simple point-charge is re-
covered from (30),

Φ=
α

2
√
Cn(r)

−
q2

2Cn(r)
, (32)

Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈< ,

β=m+
√
m2 − q2 ,

q2<m2 , n∈<+ ,

0< |r − r0|<∞ ,

and if a= q=0 the potential for the simple point-mass is
recovered,

Φ=
α

2
√
Cn(r)

, (33)

Cn(r)=
(∣
∣r − r0

∣
∣n+αn

) 2
n

, r0 ∈< n∈<+ ,

0< |r − r0|<∞ .

According to (30), orbit in the equatorial gives equations
(32) for the simple point-charge. According to (31), orbit
in the equatorial gives equations (33) for the simple point-
mass. For orbits in the polar, equations (32) and (33) are
momentarily realised at the equator for a test particle orbiting
the rotating point-charge and the rotating point-mass respect-
ively. Thus, the effects of rotation of the source of the field
do not manifest for a test particle in an equatorial orbit.

Taking the near-field limit on (30) gives,

lim
r→ r±0

Φ=
αβ − q2

2 (β2 + a2 cos2 θ)
, (34)

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 .

The potential approaches a finite limit with azimuth.
The limiting values for the simpler configurations are easily
obtained from (34) in the obvious way.
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