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The vacuum field of the point-mass is an unrealistic idealization which does not occur
in Nature - Nature does not make material points. A more realistic model must therefore
encompass the extended nature of a real object. This problem has also been solved for
a particular case by K. Schwarzschild in his neglected paper on the gravitational field
of a sphere of incompressible fluid. I revive Schwarzschild’s solution and generalise it.
The black hole is necessarily precluded. A body cannot undergo gravitational collapse
to a material point.

1 Introduction

In my previous papers [1, 2] concerning the general solution
for the point-mass I showed that the black hole is not con-
sistent with General Relativity and owes its existence to a
faulty analysis of the Hilbert [3] solution. In this paper I shall
show that, along with the black hole, gravitational collapse
to a point-mass is also untenable. This was evident to Karl
Schwarzschild who, immediately following his derivation of
his exact solution for the mass-point [4], derived a particular
solution for an extended body in the form of a sphere of
incompressible, homogeneous fluid [5]. This is also an ideal-
ization, and so too has its shortcomings, but represents a
somewhat more plausable end result of gravitational collapse.

The notion that Nature makes material points, i. e. masses
without extension, I view as an oxymoron. It is evident that
there has been a confounding of a mathematical point with
a material object which just cannot be rationally sustained.
Einstein [6, 7] objected to the introduction of singularities in
the field but could offer no viable alternative, even though
Schwarzschild’s extended body solution was readily at his
hand.

The point-mass and the singularity are equivalent.
Abrams [8] has remarked that singularities associated with
a spacetime manifold are not uniquely determined until a
boundary is correctly attached to it. In the case of the point-
mass the source of the gravitational field is identified with
a singularity in the manifold. The fact that the vacuum field
for the point-mass is singular at a boundary on the manifold
indicates that the point-mass does not occur in Nature. Oddly,
the conventional view is that it embodies the material point.
However, there exists no observational or experimental data
supporting the idea of a point-mass or point-charge. I can
see no way an electron, for instance, could be compressed
into a material point-charge, which must occur if the point-
mass is to be admitted. The idea of electron compression is
meaningless, and therefore so is the point-mass. Eddington
[9] has remarked in similar fashion concerning the electron,

and relativistic degeneracy in general.
I regard the point-mass as a mathematical artifice and

consider it in the fashion of a centre-of-mass, and therefore
not as a physical object. In Newton’s theory of gravitation,
r=0 is singular, and equivalently in Einstein’s theory, the
proper radius Rp(r0)≡ 0 is singular, as I have previously
shown. Both theories therefore share the non-physical nature
of the idealized case of the point-mass.

To obtain a model for a star and for the gravitational
collapse thereof, it follows that the solution to Einstein’s
field equations must be built upon some manifold without
boundary. In more recent years Stavroulakis [10, 11, 12] has
argued the inappropriateness of the solutions on a manifold
with boundary on both physical and mathematical grounds,
and has derived a stationary solution from which he has
concluded that gravitational collapse to a material point is
impossible.

Utilizing Schwarzschild’s particular solution I shall ex-
tend his result to a general solution for a sphere of incom-
pressible fluid.

2 The general solution for Schwarzschild’s incompress-
ible sphere of fluid

At the surface of the sphere the required solution must
maintain a smooth transition from the field outside the sphere
to the field inside the sphere. Therefore, the metric for the
interior and the metric for the exterior must attain the same
value for the radius of curvature at the surface of the sphere.
Furthermore, owing to the extended nature of the sphere,
the exterior metric must take the form of the metric for
the point-mass, but with a modified invariant containing the
factors giving rise to the field, reflecting the non-pointlike
nature of the source, thereby treating the source as a mass
concentrated at the centre-of-mass of the sphere, just as
in Newton’s theory. Schwarzschild has achieved this in his
particular case. He obtained the following metric for the field
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inside his sphere,
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where ρ0 is the constant density of the fluid, k2 Gauss’
gravitational constant, and the subscript a denotes values at
the surface of the sphere. Metric (1) is non-singular.

Schwarzschild’s particular metric outside the sphere is,
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Metric (2) is non-singular for an extended body.
In the case of the simple point-mass (i. e. non-rotating, no

charge) I have shown elsewhere [13] that the general solution
is,
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where n and r0 are arbitrary.
Now Schwarzschild fixed his solution for r0 =0. I note

that his equations, rendered herein as equations (1) and (2),
can be easily generalised to an arbitrary r0 ∈< and arbitrary
χ0 ∈< by replacing his r and χ by |r − r0| and |χ − χ0|
respectively. Furthermore, equation (3) must be modified to

account for the extended configuration of the gravitating
mass. Consequently, equation (1) becomes,
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and outside the sphere, equation (2) becomes,
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and outside the sphere, equation (3) becomes,
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|ra − r0|6 |r − r0|<∞ .

The general solution for the interior of the incompressible
Schwarzschild sphere is given by (4), and (6) gives the
general solution on the exterior of the sphere.

Consider the general form for a static metric for the
gravitational field [13],

ds2=A(D)dt2 −B(D)dD2 − C(D)
(
dθ2 + sin2 θdϕ2

)
,

D = |r − r0| ,

A,B,C > 0 ∀ r 6= r0 .

With respect to this metric I identify the real r-parameter,
the radius of curvature, and the proper radius thus:

1. The real r-parameter is the variable r.

2. The radius of curvature is Rc=
√
C(D).

3. The proper radius is Rp=
∫ √

B(D) dD.

According to the foregoing, the proper radius of the
sphere of incompressible fluid determined from inside the
sphere is, from (4),
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The proper radius of the sphere cannot be determined
from outside the sphere. According to (6) the proper radius
to a spacetime event outside the sphere is,
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K = const.

At the surface of the sphere the proper radius from outside
has some value Rpa , for some value ra of the parameter r.
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Substituting into (8) for K gives for the proper radius
from outside the sphere,
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Then by (9), for |r − r0|> |ra − r0|
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According to (4) the radius of curvature Rc=Pa at the

surface of the sphere is,

Pa =

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ . (10)

Furthermore, inside the sphere,

G

Rp
6 2π ,

and

lim
χ→χ±0

G

Rp
=2π ,

where G=2πRc is the circumference of a great circle.
But outside the sphere,

G

Rp
> 2π ,

with the equality only when Rp→∞.
The radius of curvature of (6) at the surface of the sphere

is
√
Cn(ra) so,

√
Cn(ra)=

(∣
∣ra − r0

∣
∣n + εn

) 1
n

. (11a)
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The variable r is just a parameter for the radial quantities
Rp and Rc associated with (6). Similarly, χ is also a param-
eter for the radial quantities Rp and Rc associated with (4).
I remark that r0 and χ0 are both arbitrary, and independent
of one another, and that |r − r0| and |χ − χ0| do not of
themselves denote radii in any direct way. The arbitrary
values of the parameter “origins”, r0 and χ0, are simply
boundary points on r and χ respectively. Indeed, by (7),
Rp(χ0)≡ 0, and by (9), Rp(ra)≡Rpa , irrespective of the
values of r0, ra , and χ0. The centre-of-mass of the sphere of
fluid is always located precisely at Rp(χ0)≡ 0. Furthermore,
Rp(r) for |r − r0|< |ra − r0| has no meaning since inside
the sphere (4) describes the geometry, not (6).
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Schwarzschild [5] has also shown that the velocity of
light inside his sphere of incompressible fluid is given by,
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which generalises to,
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means that there is a lower bound on the possible radii of
curvature for spheres of incompressible, homogeneous fluid,
which is, by (13) and (6),
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from which it is clear that a body cannot collapse to a material
point.

From (13), a sphere of given gravitational mass α
k2 ,

cannot have a radius of curvature, determined from outside,
smaller than,
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3 Kepler’s 3rd Law for the sphere of incompressible
fluid

There is no loss of generality in considering only the equator-
ial plane, θ= π

2 . Equation (6) then leads to the Lagrangian,
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where the dot indicates ∂/∂τ .
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Let R=
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Equation (16) is Kepler’s 3rd Law for the sphere of in-
compressible fluid.

Taking the near-field limit gives,
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In contrast, the limiting value of ω for the simple point-
mass [4] is,
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Clearly, equation (17) is an invariant,
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4 Passive and active mass

The relationship between passive and active mass manifests,
owing to the difference established by Schwazschild, be-
tween what he called “substantial mass” (passive mass) and
the gravitational (i .e. active) mass. He showed that the for-
mer is larger than the latter.

Schwarzschild has shown that the substantial mass M is
given by,
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I have generalised Schwarzschild’s result to,

M =2πρ0

(
3

κρ0

)3
2
(∣
∣χa − χ0

∣
∣−

1

2
sin 2

∣
∣χa − χ0

∣
∣
)

,

m=
αc2

2G
=
1

2

√
3

κρ0
sin3

∣
∣χa − χρ0

∣
∣ =

=
κρ0
6
P 3a =

4π

3
P 3aρ0 ,

(19)

Pa=

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ ,

06
∣
∣χa − χ0

∣
∣ <

π

2
,

where G is Newton’s gravitational constant. Equation (19)
is only formally the same as that for the Euclidean sphere,
because the radius of curvature Pa is not a Euclidean quan-
tity, and cannot be measured in the gravitational field.

The ratio between the gravitational mass and the sub-
stantial mass is,

m

M
=
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Schwarzschild has shown that the naturally measured fall
velocity of a test particle, falling from rest at infinity down
to the surface of the sphere of incompressible fluid is,

va= sinχa ,
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which I generalise to,

va= sin
∣
∣χa − χ0

∣
∣ .

The quantity va is the escape velocity.
Therefore, as the escape velocity increases, the ratio m

M
decreases, owing to the increase in the mass concentration.

In the case of the fictitious point-mass,
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)
=1 .

However, according to equation (14), for an incompress-
ible sphere of fluid,
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Finally,
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∣
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π
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.

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).
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