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Relativistic motion in the gravitational field of a massive body is governed by the
external metric of a spherically symmetric extended object. Consequently, any solution
for the point-mass is inadequate for the treatment of such motions since it pertains to a
fictitious object. I therefore develop herein the physics of the standard tests of General
Relativity by means of the generalised solution for the field external to a sphere of
incompressible homogeneous fluid.

1 Introduction

The orthodox treatment of physics in the vicinity of a massive
body is based upon the Hilbert [1] solution for the point-
mass, a solution which is neither correct nor due to Schwarz-
schild [2], as the latter is almost universally claimed.

In previous papers [3, 4] I derived the correct general
solution for the point-mass and the point-charge in all their
standard configurations, and demonstrated that the Hilbert
solution is invalid. The general solution for the point-mass
is however, inadequate for any real physical situation since
the material point (and also the material point-charge) is a
fictitious object, and so quite meaningless. Therefore, I avail
myself of the general solution for the external field of a
sphere of incompressible homogeneous fluid, obtained in a
particular case by K. Schwarzschild [5] and generalised by
myself [6] to,
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where ρ0 is the constant density of the fluid, k2 is Gauss’ gra-
vitational constant, the sign a denotes values at the surface
of the sphere, |χ−χ0| parameterizes the radius of curvature
of the interior of the sphere centred arbitrarily at χ0, |r− r0|
is the coordinate radius in the spacetime manifold of Special
Relativity which is a parameter space for the gravitational
field external to the sphere centred arbitrarily at r0 .

To eliminate the infinite number of coordinate systems
admitted by (1), I rewrite the said metric in terms of the
only measurable distance in the gravitational field, i .e. the
circumference G of a great circle, thus
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2 Distance and time

According to (1), if t is constant, a three-dimensional mani-
fold results, having the line-element,
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4Cn
dr2 + Cn(dθ

2 + sin2 θdϕ2) . (3)
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If α=0, (1) reduces to the line-element of flat spacetime,

ds2= dt2 − dr2 − |r − r0|
2(dθ2 + sin2 θdϕ2) , (4)

06 |r − r0|<∞ ,

since then ra≡ r0 .
The introduction of matter makes ra 6= r0 , owing to the

extended nature of a real body, and introduces distortions
from the Euclidean in time and distance. The value of α is
effectively a measure of this distortion and therefore fixes
the spacetime.

When α=0, the distance D= |r − r0| is the radius of a
sphere centred at r0 . If r0 =0 and r> 0, then D≡ r and is
then both a radius and a coordinate, as is clear from (4).

If r is constant in (3), then Cn(r)=R2c is constant, and
so (3) becomes,

ds2=R2c(dθ
2 + sin2 θdϕ2) , (5)

which describes a sphere of constant radius Rc embedded
in Euclidean space. The infinitesimal tangential distances on
(5) are simply,
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√
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When θ and ϕ are constant, (3) yields the proper radius,
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from which it clearly follows that the parameter r does not
measure radial distances in the gravitational field.

Integrating (6) gives,
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which must satisfy the condition,

r→ r±a ⇒Rp→R+pa ,

where ra is the parameter value at the surface of the body
and Rpa the indeterminate proper radius of the sphere from
outside the sphere. Therefore,
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According to (1), the proper time is related to the coord-
inate time by,

dτ =
√
g00 dt=

√

1−
α

√
Cn(r)

dt . (9)

When α=0, dτ = dt so that proper time and coordinate
time are one and the same in flat spacetime. With the intro-
duction of matter, proper time and coordinate time are no
longer the same. It is evident from (9) that both τ and t are
finite and non-zero, since according to (1),
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since In the far field, according to (9),

√
Cn(r)→∞⇒ dτ→ dt ,

recovering flat spacetime asymptotically.
Therefore, if a body falls from rest from a point distant

from the gravitating mass, it will reach the surface of the
mass in a finite coordinate time and a finite proper time.
According to an external observer, time does not stop at the
surface of the body, where dt=3dτ , contrary to the orthodox
analysis based upon the fictitious point-mass.

3 Radar sounding

Consider an observer in the field of a massive body. Let the
observer have coordinates, (r1, θ0, ϕ0) . Let the coordinates
of a small body located between the observer and the massive
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body along a radial line be (r2, θ0, ϕ0) . Let the observer emit
a radar pulse towards the small body. Then by (1),
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The coordinate time for the pulse to travel to the small
body and return to the observer is,
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The proper time lapse is, according to the observer,
by formula (1),
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Then according to classical theory, the round trip time is
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Equation (10) gives the time delay for a radar signal in
the gravitational field.

4 Spectral shift

Let an emitter of light have coordinates (tE , rE , θE , ϕE).
Let a receiver have coordinates (tR, rR, θR, ϕR). Let u be
an affine parameter along a null geodesic with the values uE
and uR at emitter and receiver respectively. Then,
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ḡij

dxi

du

dxj

du

] 1
2

,

S. J. Crothers. Introducing Distance in General Relativity: Changes for the Standard Tests and the Cosmological Large-Scale 43



Volume 3 PROGRESS IN PHYSICS October, 2005

where ḡij = − gij . Then,
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5 Advance of the perihelia

Consider the Lagrangian,
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where τ is the proper time. Restricting motion, without
loss of generality, to the equatorial plane, θ= π

2 , the Euler-
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relativistic perturbation of the Newtonian orbit.

Aphelion and perihelion occur when du
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Let u=u1 at aphelion and u=u2 at perihelion, so
u16u6u2. One then finds in the usual way that the angle
Δϕ between aphelion and subsequent perihelion is,
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where G1 and G2 are the measurable circumferences of
great circles at aphelion and at perihelion. Thus, to correctly
determine the value of ψ, the values of the said circum-
ferences must be ascertained by direct measurement. Only
the circumferences are measurable in the gravitational field.
The radii of curvature and the proper radii must be calculated
from the circumference values.

If the field is weak, as in the case of the Sun, one may take
G≈ 2πr, for r as an approximately “measurable” distance
from the gravitating sphere to a spacetime event. In such a
situation equation (21) becomes,
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. (22)

In the case of the Sun, α≈ 3000 m, and for the planet
Mercury, the usual value of ψ≈ 43 arcseconds per century
is obtained from (22). I emphasize however, that this value
is a Euclidean approximation for a weak field. In a strong
field equation (22) is entirely inappropriate and equation
(21) must be used. Unfortunately, this means that accurate
solutions cannot be obtained since there is no obvious way
of obtaining the required circumferences in practise. This
aspect of Einstein’s theory seriously limits its utility. Since
the relativists have not detected this limitation the issue has
not previously arisen in general.

6 Deflection of light

In the case of a photon, equation (17) becomes,
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to first order in α. Putting u=0 and ϕ=π +Δϕ into (25),
then to first order in Δϕ,
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Gc>Ga .

At a grazing trajectory to the surface of the body,
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For the Sun [5],
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so the deflection of light grazing the limb of the Sun is,
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Equation (26) is an interesting and quite surprising result,
for sin

∣
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∣
∣ gives the ratio of the “naturally measured”

fall velocity of a free test particle falling from rest at infinity
down to the surface of the spherical body, to the speed of
light in vacuo. Thus,

the deflection of light grazing the limb of a
spherical gravitating body is twice the square
of the ratio of the fall velocity of a free test
particle falling from rest at infinity down to the
surface, to the speed of light in vacuo, i .e .,
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where Rca is the radius of curvature of the body, Mg the
active mass, and G is the gravitational constant. The quantity
va is the escape velocity,

va=

√
2GMg
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.

7 Practical constraints and general comment

Owing to their invalid assumptions about the r-parameter [7],
the relativists have not recognised the practical limitations
associated with the application of General Relativity. It is
now clear that the fundamental element of distance in the
gravitational field is the circumference of a great circle,
centred at the heart of an extended spherical body and passing
through a spacetime event external thereto. Heretofore the
orthodox theorists have incorrectly taken the r-parameter,

not just as a radius in the gravitational field, but also as a
measurable radius in the field. This is not correct. The only
measurable distance in the gravitational field is the aforesaid
circumference of a great circle, from which the radius of
curvature

√
Cn(r) and the proper radius Rp(r) must be

calculated, thus,
√
Cn(r)=

G

2π
,

Rp(r)=

∫ √
−g11 dr .

Only in the weak field, where the spacetime curvature
is very small, can

√
Cn(r) be taken approximately as the

Euclidean value r, thereby making Rp(r)≡
√
Cn(r)≡ r,

as in flat spacetime. In a strong field this cannot be done.
Consequently, the problem arises as to how to accurately
measure the required great circumference? The correct de-
termination, for example, of the circumferences of great
circles at aphelion and perihelion seem to be beyond practical
determination. Any method adopted for determining the re-
quired circumference must be completely independent of any
Euclidean quantity since, other than the great circumference
itself, only non-Euclidean distances are valid in the gravita-
tional field, being determined by it. Therefore, anything short
of physically measuring the great circumference will fail.
Consequently, General Relativity, whether right or wrong as
theories go, suffers from a serious practical limitation.

The value of the r-parameter is coordinate dependent
and is rightly determined from the coordinate independent
value of the circumference of the great circle associated
with a spacetime event. One cannot obtain a circumference
for the great circle of a given spacetime event, and hence
the related radius of curvature and associated proper radius,
from the specification of a coordinate radius, because the
latter is not unique, being conditioned by arbitrary constants.
The coordinate radius is therefore superfluous. It is for this
reason that I completely eliminated the coordinate radius
from the metric for the gravitational field, to describe the
metric in terms of the only quantity that is measurable in the
gravitational field — the great circumference (see also [6]).
The presence of the r-parameter has proved misleading to
the relativists. Stavroulakis [8, 9, 10] has also completely
eliminated the r-parameter from the equations, but does
not make use of the great circumference. His approach is
formally correct, but rather less illuminating, because his
resulting line element is in terms of the a quantity which is
not measurable in the gravitational field. One cannot obtain
an explicit expression for the great circumference in terms
of the proper radius.

As to the cosmological large-scale, I have proved else-
where [11] that General Relativity adds nothing to Special
Relativity. Einstein’s field equations do not admit of solutions
when the cosmological constant is not zero, and they do
not admit of the expanding universe solutions alleged by
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the relativists. The lambda “solutions” and the expanding
universe “solutions” are the result of such a muddleheaded-
ness that it is difficult to apprehend the kind of thoughtless-
ness that gave them birth. Since Special Relativity describes
an empty world (no gravity) it cannot form a basis for any
cosmology. This theoretical result is all the more interesting
owing to its agreement with observation. Arp [12], for in-
stance, has adduced considerable observational data which
is consistent on the large-scale with a flat, infinite, non-
expanding Universe in Heraclitian flux. Bearing in mind
that both Special Relativity and General Relativity cannot
yield a spacetime on the cosmological “large-scale”, there
is currently no theoretical replacement for Newton’s cos-
mology, which accords with deep-space observations for a
flat space, infinite in time and in extent. The all pervasive
rolê given heretofore by the relativists to General Relativity,
can be justified no longer. General Relativity is a theory of
only local phenonomea, as is Special Relativity.

Another serious shortcoming of General Relativity is its
current inability to deal with the gravitational interaction of
two comparable masses. It is not even known if Einstein’s
theory admits of configurations involving two or more mass-
es [13]. This shortcoming seems rather self evident, but app-
rently not so for the relativists, who routinely talk of black
hole binary systems and colliding black holes (e .g. [14]),
aside of the fact that no theory predicts the existence of black
holes to begin with, but to the contrary, precludes them.
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