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Abstract 
When physics must be based on an axiomatic foundation then the law set of 

traditional quantum logic is a valid candidate. However, at first sight, these 

axioms do not treat physical fields and they do not treat dynamics. It only 

prescribes the static relations that exist between quantum logical propositions 

that treat static subjects. These subjects are considered to be physical subjects or 

their properties. Amongst these propositions statements exist that describe 

everything that can be said about the static condition of a given physical item. 

Such propositions represent that item.  

 

Traditional quantum logic is lattice isomorphic to the set of closed subspaces of 

an infinite dimensional separable Hilbert space Ң. That is why quantum 

mechanics is usually done with the aid of Hilbert space features.  

 

The representation of a physical field does not fit in a Hilbert subspace. Physical 

fields have a universe wide range and their presentation would cover all of a 

whole Hilbert space.  

 

Piron has shown that a candidate Hilbert space can be defined by using one of 

three division rings for the specification of the inner products. The choice 

comprises the real numbers, the complex numbers and the quaternions. The 

choice for the quaternions means that manipulations of the Hilbert space, such 

as Fourier transforms, in general use such multi-dimensional numbers.  

 

http://www.scitech.nl/
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According to Helmholtz decomposition theorem, the quaternionic Fourier 

transform can be divided in a complex longitudinal Fourier transform and a 

transverse Fourier transform. For quaternionic functions this means that they 

can be locally split into a one-dimensional rotation free part and a two-

dimensional divergence free part. 

 

This e-paper indicates that traditional quantum logic can be expanded to 

extended quantum logic, which includes the influences of physical fields in the 

form of potential propositions that concern virtual items. Dynamic extended 

quantum logic is lattice isomorphic with the set of subspaces of a set of Hilbert 

spaces. The fields take care of the coherence between these Hilbert spaces. 

 

In this complicated way the axioms of traditional quantum logic form the 

constraints of the dynamics of quantum physics. When the dynamics of the 

universe would be put to a hold, then the axioms of extended quantum logic 

would describe all static constraints that are put to that universe. In the 

developed model, dynamics means that universe steps from one static status quo 

to the next. After the step the conditions are changed and the static constraints 

are reestablished. If we find the laws that control the steps, then we have found a 

complete axiomatic foundation of physics. Classical physics forms another 

constraint of dynamical quantum physics. This e-paper studies what happens 

during the step. 

 

Solutions are given for coping with the inherent countability of the eigenspaces 

of operators in the separable Hilbert space and for coping with the apparent 

graininess of some physical quantities. A classification of skew Hilbert fields will 

be generated that corresponds closely to the Maxwell fields. Further, this e-paper 

investigates what happens in the infinitesimal steps that nature takes in order to 

arrive at the next static status quo. In this way the origin of dynamics and the 

origin of special relativity may be revealed. 

The e-paper unifies particle states with physical fields and treats the equivalent 

of the gravitation field as a derived curvature field. 
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Introduction 
The aim of this paper is to build upon a fundament consisting of a minimal set of 

axioms and then derive as much as is possible from fundamental physics by 

using only purely mathematical methods. 

 

Observations and measurements at low dose rates learn that ALL information 

that we receive comes to us in small packages that we call quanta. The 

distribution of the probability of these information carrying quanta determines 

the picture that we get from reality. 

 

The development of quantum physics in its early days went violently. The 

consequence is that many of the fundaments of this theory are not constructed 

carefully. Fundamental repair is required. 

This e-paper repairs the fundaments without disturbing the building. All 

equations of motion keep their validity. 

The fundament 
This e-paper builds on the following postulates: 

 

1. The rock fundament of physics is an ordered sequence of instances of 

traditional quantum logic. 

2. All physical information is transferred in the form of clouds of 

information carrying quanta.  

3. The shape of this cloud is determined by a probability amplitude 

distribution that generates a tendency to keep these quanta together. 

 

The first point suggests the name Hilbert book model for the model that is 

described in this paper. Each next page of the book describes a subsequent static 

status quo. 

Equations of motion 
All equations of motion are in fact continuity equations that treat the local 

information generation, annihilation and transfer. 

 

Total change within V = flow into V + production inside V 
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The logic of the model 
This e-paper is not about reality. It is about a model that could be a reflection of 

part of reality.  

 

When reasoning about physical reality, it is safe to follow the rules of classical 

logic. If one starts with a true statement and these rules are followed, then the 

path of reasoning stays with truth. Classical logic is based on about 25 

axioms1. A significant part of these axioms defines the structure of the logic as 

a half-ordered set and some other axioms expand this to define the set as a 

lattice. The other axioms have more to do with the rules that must be followed in 

order to reason logically. May be it is a good starting point to use logic itself as a 

fundament of physics. 

 

In the first decades of the last century it was discovered that nature itself cheats 

with classical logic. Numerous observations of the behavior of small particles 

revealed that some of the interrelations between these observations are in 

conflict with classical logic. Birkhoff and von Neumann interpreted this conflict 

and came to the conclusion that nature obeys its own kind of logic. They named 

this logic quantum logic.  

 

The model that is discussed here builds its foundation on traditional quantum 

logic. This e-paper is not about quantum logic. It uses quantum logic because 

traditional quantum logic2 defines the static framework in which 

quantum dynamics takes place. Traditional quantum logic prescribes the 

potential relations that may exist between quantum logical propositions. 

Amongst these propositions statements exist that describe everything that can be 

said about the static condition of a given physical item. Such propositions 

represent that item. These propositions form the top of a hierarchy of 

propositions that treat the current values of the properties of the considered 

item. It means that traditional quantum logic can represent physical items. 

 

Traditional quantum logic is lattice isomorphic to the set of closed subspaces of 

an infinite dimensional separable Hilbert space Ң. That is why quantum 

                                                      
1 Appendix: Quantum logic 
2 Appendix: History of quantum logic 
3 In this way the sandwich starts to resemble a club sandwich. 

2 Appendix: History of quantum logic 
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mechanics is usually done with the aid of Hilbert space features. The 

representation of a physical field does not fit in a Hilbert subspace. Physical 

fields have a universe wide territory and their presentation would cover all of a 

complete Hilbert space.  

 

Piron has shown that a candidate Hilbert space can be defined over one of three 

division rings. The choice comprises the real numbers, the complex numbers and 

the quaternions. The choice for the quaternions means that manipulations of the 

Hilbert space, such as the Fourier transforms, in general operate on these multi-

dimensional numbers. In the model the representations of physical fields are 

Hilbert fields. Hilbert fields are blurred Hilbert distributions. Hilbert 

distributions are sets of Hilbert vectors. The blur is a local field excitation that is 

attached to a Hilbert vector. The blur is characterized by a continuous spread 

function. This spread function represents a probability amplitude distribution. 

The values of this function may reach all Hilbert vectors. In this way these fields 

not only cover the whole separable Hilbert space, but they also become 

differentiable. 

 

Apart from Hilbert fields the much simpler Hilbert functions exist. Hilbert 

functions can be defined with the help of a normal operator. Using the 

eigenvalues and the inner products of the eigenvectors with a selected Hilbert 

vector that vector can be converted in a hyper complex function. Hilbert 

functions can be interpreted as sampled versions of continuous functions. They 

are not differentiable. The eigenspace of a quaternionic normal operator may 

consist of a number set that is everywhere dense in the quaternionic number 

space. For example it may consist out of all rational quaternions. When the 

eigenspace is granular it can still cover the whole quaternionic number space, 

but it will have a lattice structure and this lattice will show preferred directions. 

Another possibility is the eigenspace of the strand operator. It does not cover the 

whole quaternionic number space. It possesses horizons. Within the outer 

horizon and outside the inner horizons its chains can move freely through the 

imaginary part of the quaternionic number space. All these operators can be 

used to construct Hilbert functions. In order to represent the anchors of physical 

particles Hilbert fields seem to be better suited than Hilbert functions. By using 

suitable blurs the Hilbert fields are differentiable. The Hilbert functions are not 

differentiable. At the utmost they are quasi differentiable. Still Hilbert functions 

can act as Hilbert distributions that are used to form Hilbert fields.  
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As a consequence, the theory that is derived here is largely based on the 

properties of these multidimensional transforms and on the properties of Hilbert 

fields. Any Hilbert field can be split in a rotation free longitudinal part and a 

divergence free transverse part. The direction in which a field is rotation free 

may change with the values of the local coordinates. As long as the direction 

stays stationary, the corresponding coordinates can be considered as belonging 

to a complex plane that is embedded in a quaternionic space. Selection of 

another coordinate system gives a different topology of the field decomposition. 

 

The blurs that constitute the Hilbert fields do not fit inside the realm of an 

infinite dimensional separable Hilbert space, but their values can be temporary 

attached to Hilbert vectors. On the other hand the separable Hilbert space Ң can 

be embedded in a rigged Hilbert space Ħ in which the blurs of a Hilbert field get 

a better supported place. This picture extends the Gelfand triple to a Hilbert 

sandwich that apart from the Gelfand triple consists of a GPS coordinate system 

and a covering field. The combination of GPS coordinate system and the 

covering field decomposes the static covering field into a patch cover. The 

decomposition defines a curvature. That curvature defines a derived field which 

is also part of the sandwich3. The sandwich only represents a static status quo. 

 

Fourier transforms can be defined in a separable Hilbert space, but there they 

expose sampling characteristics that do not occur in a corresponding rigged 

Hilbert space Ħ. Similarly the notions of differentiation and integration are 

easily implemented in a rigged Hilbert space Ħ, but do not fit in the 

corresponding separable Hilbert space Ң. Without the blurring trick, 

differentiation is impossible in the realm of a separable Hilbert space Ң. 

 

However, the set of closed subspaces of a rigged Hilbert space Ħ is no longer 

lattice isomorphic with the set of propositions in a traditional quantum logic 

system. We do not want to offer the isomorphism with quantum logic in order to 

achieve differentiability of functions. This differentiability is already introduced 

by the blurs that are attached to the Hilbert vectors. This approach delivers a 

cleaner model that becomes even better comprehensible when later on we 

interpret the blur as a probability amplitude distribution. Further, nature has a 

                                                      
3 In this way the sandwich starts to resemble a club sandwich. 
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fundamental granular character, which fits naturally to a separable Hilbert 

space, but does not naturally match with a rigged Hilbert space. 

 

In a three dimensional vector space a Fourier transform of a vector field can 

locally be divided in a one-dimensional longitudinal, (locally) complex Fourier 

transform and a two-dimensional transverse Fourier transform. The longitudinal 

transform works only on the longitudinal part of the field that is being 

transformed. The transverse transform works only on the transverse part of the 

field that is being transformed. This also applies to the case where this vector 

space is formed by the imaginary quaternions and the fields have quaternionic 

values. 

 

The division in a longitudinal part and a transverse part of a function or a field 

has only a local validity. It holds as long as the longitudinal direction is sufficiently 

(= within accepted inaccuracy) stationary. The split is the subject of the 

Helmholtz decomposition theorem. Multi-dimensional Dirac delta functions 

show the same decomposition as the multi-dimensional Fourier transform. The 

splits lose their significance when the field gets too wild. 

 

The fact that this field categorization has only local validity and that it is related 

to an imaginary direction causes that the quaternionic Fourier transform must be 

considered to operate in a curved coordinate space. The differentiability of 

quaternionic functions and Hilbert fields also offers this categorization. 

Interestingly, Fourier transformation converts differentiation into multiplication 

with the canonical coordinate. 

 

For a given field this situation can be solved by using two coordinate systems. 

One in which the coordinates show a curvature of the field that is set by the 

longitudinal direction and one in which the field has no curvature. The field 

values stay the same, but the coordinates that act as parameters change. This 

concept can be extended to a covering field, which is the superposition of all 

Hilbert fields that exist in the Hilbert space. Using the coordinate system for 

which the covering field has no curvature the universe wide Fourier transform 

can be taken. 

 

For a given field and a given coordinate system it is possible to define a 

decomposition related local curvature. That curvature can be used to define a 
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derived field. We will call this partner field the curvature field of that 

combination.  

 

In a given coordinate system the fields can be categorized according to their 

symmetry properties. These categorizations must also cope with the curvature 

that is related to that coordinate system.  

 

In the described way, traditional quantum logic and the Helmholtz 

decomposition theorem together form a set of laws that define the relational 

static status quo that would exist in nature when dynamics could be put to a 

hold. This paper points out that traditional quantum logic can be expanded such 

that it includes the representation of static physical fields. 

 

The indifference of the properties of physical items for which picture is used, the 

Schrödinger picture or the Heisenberg picture4 indicates that time is not a 

property of physical items but instead it is a parameter that characterizes the 

progress of dynamics. This is the reason why dynamics can be included into the 

model by representing nature by a sequence of such extended quantum logics. 

The fields regulate the coherence between subsequent quantum logics. This also 

means that the model can include dynamics by representing nature by a 

sequence of Hilbert spaces. The blurs in the Hilbert fields regulate the coherence 

between subsequent Hilbert spaces. It means that the blurs are smooth functions 

of the progression step counter. The progression step counter is a global 

parameter! It differs from our common notion of time. The blur acts as a 

probability density distribution. When the parameter is a position coordinate, 

then the probability density specifies the chance that during the next change the 

current position changes to this new coordinate. The form of the probability 

density distribution is such, that this change is has a tendency to be minimal. 

The probability density is the squared modulus of the hyper complex probability 

amplitude. This last value contributes to the local field value. 

 

As a consequence of these blur properties, the subsequent Hilbert spaces do not 

differ much. The same holds for the configuration of the fields in sub-sequent 

stages of the static status quo. In fact the fields can be seen as a storage place for 

                                                      
4 Dynamics: Schrödinger or Heisenberg picture 
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the conditions that determine the relation between the past, the current and the 

future static status quo. 

 

In this view the fields represent relations between sets of potential propositions. 

These propositions are statements that say everything that can be said about the 

static condition of virtual items. The set of propositions in dynamic extended 

quantum logic is no longer isomorph with the set of closed subspaces of a single 

Hilbert space. It is isomorphic with the closed subspaces of a series of Hilbert 

spaces. One member of this set of Hilbert spaces is the currently actual Hilbert 

space. It contains the representatives of actual physical items. The other 

members are virtual Hilbert spaces. They contain the representations of virtual 

physical items. 

 

Each virtual Hilbert space corresponds to an instance of a virtual (traditional) 

quantum logic. These virtual quantum logics represent potential replacements of 

the actual traditional quantum logic. A virtual quantum logic differs from other 

virtual quantum logics in the fact that their propositions have a different 

configuration in terms of their atomic predicates or in terms of their sub-ordered 

propositions. In a similar sense they will differ from the actual quantum logic.  

 

The replacement will be made between logics that have a great resemblance with 

each other and the values of the predicates within equivalent propositions will 

be the same or close to each other. A replacement can be seen as a combined 

annihilation and creation. Annihilation must not be followed by creation and 

creation must not be preceded by annihilation. With other words annihilation 

and creation is done during progression steps. 

 

A redefiner, which steps from the actual Hilbert space to a virtual one, 

implements dynamics. The redefinition step exchanges the actual Hilbert space 

against a virtual Hilbert space whose selection is determined by the current 

fields. 

 

In order to be able to control the coherence between subsequent Hilbert spaces, 

the blurs that constitute the Hilbert fields act as probability density distributions. 

In fact, they are probability amplitude distributions whose squared modulus is a 

probability density distribution. These distributions have a form that minimizes 

change during the step from the current Hilbert space to its successor. As a 
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consequence physical quantities do not become observable as continuous objects. 

Observables become available in the form of information carrying quanta that 

form the outcome of stochastic processes. The form of the clouds of information 

quanta is described by the probability amplitude distributions that together form 

the Hilbert fields. 

 

Dynamics can be interpreted as a sequence of steps in which each step leads 

nature from the conditions of one static status quo to the conditions of the next 

static status quo. The laws that define the static status quo are fairly clear. 

During the steps several things happen. The laws that govern the dynamics are 

rather obscure. The steps couple the static ingredients into a dynamic mixture. 

For example, the step couples the longitudinal part of the field with its 

transverse part. The steps are taken universe wide. A redefiner with a universe 

wide domain controls these steps. The step counter presents a universe-wide 

progression parameter. This parameter must not be confused with our common 

notion of time, but it cannot be denied that it has some relation with it.  

 

During the step particles move forced by their own momentum and by the 

surrounding covering field to their new position. As a consequence their private 

fields get redistributed in space. Thus the covering field and its derived partner 

the curvature field will change. This delivers the preconditions for the next step. 

These activities are all infinitesimal.  

 

Inertia shows that fields do not interfere with uniform movement. However, 

acceleration goes together with an extra field contribution. The words "goes 

together with" mean that no causal relation exists. Inertia represents the 

influence of the whole universe on the condition of a local physical item. In fact 

it is a bilateral relation. Only the curvature field takes part in inertia. The 

primary fields have charges that compensate each other’s universe wide 

contributions. 

 

Thus, the changes of the curvature field go together with acceleration of the 

particles. It is already indicated that uniform movement causes a reconfiguration 

of the covering field. This is all that happens during the infinitesimal progression 

step.  

We must now analyze what acceleration and reconfiguration does during an 

infinitesimal progression step.  
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Inertia5 can guide the way. Roughly, the driving force comes from the difference 

  (   ) between the current curvature field and the previous curvature field. It 

is contained in an equivalent of the stripped version of one of Maxwell's 

equations6.  

 

(1) 

  (   )     
  

  
 

 

  is the gravitational constant. 

During the progression step, the described infinitesimal adventure happens to 

all particles. 

Please notice the switch from covering field to curvature field. It is essential!  

Recapitulation and extrapolation 

In summary: Traditional quantum logic is usually defined via its structure as an 

orthomodular lattice. This logic only defines part of the static skeleton of the 

frame in which quantum physics operates. It does not state anything about 

physical fields. The Helmholtz/Hodge decomposition theorem defines the 

structure of static physical fields. In that way this theorem plays a similar role as 

traditional quantum logic. However, the decomposition has only local validity, 

where quantum logic has global validity. Extended quantum logic encompasses 

both law sets. These law sets do not specify or even touch the source of dynamics. 

Dynamics couples the static fields. The coupling not only applies to parts of the 

same field. It also concerns different fields. For example dynamics couples 

electrostatic fields with magnetostatic fields into dynamical electromagnetic 

fields. The gravitation field describes the curvature of observable space that is 

caused by the decomposition properties of the other fields. Thus, instead of a 

separate field the gravitation field can be considered as the result of the rotation 

properties of the other fields. Inertia7 reveals the importance of the gravitation 

field. 

 

                                                      
5 Influence: Inertia 
6 Dynamics: Unitary transform: Inertia and the progression step 
7 Influence: Inertia 
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Both the propositions about a quantum physical system and physical fields are 

closely related. However, this relation only gets relevant when dynamics comes 

into play. Dynamics causes a continuing redefinition of the propositions. This 

converts the current static status quo into the next one. When one proposition is 

changed it interchanges its constituting atomic predicates with other predicates. 

The change can even involve the exchange of atomic predicates against atomic 

predicates that are of another type. It is also possible that the configuration of a 

complex system that consists of simpler components is altered.  

 

The static physical fields can be interpreted as storage of the preconditions for 

the next step. The physical fields are the representatives of the influences that go 

together with the sticky resistance of the set of propositions against the changes 

that occur due to the redefinitions of the propositions that describe physical 

items. This sticky resistance also occurs in propositions that are sub-ordered to 

other propositions. Inertia is a feature that shows this resistance explicitly. 

 

The propositions about quantum physical items can be represented by closed 

subspaces of a Hilbert space. The presence of dynamics means that the relations 

between these subspaces are not stationary. They change between subsequent 

Hilbert spaces. It is also possible to give the physical fields a representation by 

attaching them to the Hilbert spaces. Their values can be attached to Hilbert 

vectors. However, it must be clear that quantum physical items and physical 

fields are not the same stuff. Physical fields cannot be represented by closed 

Hilbert subspaces. They cover the whole universe and as a consequence they 

cover the whole Hilbert space. However, the strength of individual fields may be 

concentrated around separate excited places that are represented by single 

Hilbert vectors or a small set of Hilbert vectors. Such private fields diminish 

with distance. Together the private fields form a covering field. For a given 

coordinate system that covering field has a partner curvature field that can be 

interpreted as gravitational field. 

 

The actual physical items are distributed in space and are surrounded by 

potentials that act as a kind of blur. This is why quantum physics has much in 

common with optics8. The superposition of the separate blurs characterizes the 

information transfer quality of the corresponding field. For each particle a 

                                                      
8 Optics 



23 

 

separate blur characterizes the quantum generation properties of that particle. At 

not too short distances the electromagnetic fields have the same shape as 

gravitational field. Locally, the EM fields and the gravitation field are based on 

the same Hilbert distributions. As is indicated above, the gravitation field is a 

derived field. The main difference lays in the fact that the charges of 

electromagnetic fields have the same size but may have different sign such that 

they may partly compensate each other’s influence. The charge (mass) of the 

gravitational field is always positive, but it may differ in size. Another difference 

is that the gravitation field is the consequence of the decomposition properties of 

the other fields. Mass appears to be an expression of space curvature and on its 

turn this curvature is an expression of the rotation properties of the non-

gravitational fields. The curvature fields that correspond with private fields do 

not compensate each other’s influence. The masses of all physical items work 

together in order to create the immense potential that causes inertia. 

GPS coordinates 

One of the most intriguing facts is that a GPS operator9 that resides in the 

separable Hilbert space Ң cannot be used to define the position of particles. Due 

to the granularity of its eigenspace it would immediately introduce unnatural 

preferred directions. In contrast its equivalent, the GPS operator that resides in 

rigged Hilbert space Ħ is very useful as a coordinate system for determining the 

location of field values. In this way it can be used to locate the field excitations 

that go together with particles. This continuous GPS operator cannot be used 

directly in order to locate the Hilbert vectors that represent particles. Thus there 

exists no GPS like operator that can be used to locate particles in Hilbert space. 

An alternative is formed by the strand operator10. The strand operator uses 

the continuous GPS operator as a background coordinate system. Its eigenspace 

depends on the configuration of the covering field. 

Test proposition 
It is an elucidating experience to try to implement a complicated quantum 

logical proposition in the representation of quantum logic in Hilbert space. In 

that way we may discover how dynamics emerges in this static skeleton. For that 

                                                      
9 The Hilbert GPS 
10 Hilbert spaces: Strand operator 
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reason, we choose as an example a predicate with quantifiers rather than a clean 

proposition. 

 

The selected example proposition (♠) is  

 

“All items in universe influence each other’s position”.  

 

We will already give the final conclusion of this experiment here: A well-ordered 

replacement of atomic predicates in an enveloping proposition appears to occur 

without extra field activity, but any deviation of a well ordered replacement 

causes an extra field activity in the form of influence of the complete set of all 

propositions.  

 

This explains the interaction between fields and physical items. A local deviation 

of the uniformity of the distribution of physical items can still cause a slight 

influence of neighboring items. At small distances the influences can be large. 

The influence of fields can be implemented in the separable Hilbert space. Via an 

action = reaction game the interaction between fields and Hilbert subspaces form 

the source of dynamics. 

 

What further happens during the implementation of our example proposition (♠) 

is completely governed by mathematics. Thus, for our example no further 

extension of quantum logic is needed to transform it into a useful version of 

dynamic quantum logic. However, nothing is said yet of what occurs during the 

infinitesimal progression steps. During this step one static status quo is 

converted to the next static status quo. This will be the main subject of this e-

paper. 

Numbers 
As number spaces we use the 2n-ons of Warren Smith rather than the hyper 

complex numbers based on the Cayley-Dickson construction. Up to the 

octonions the corresponding number spaces are similar. (See 

http://www.math.temple.edu/~wds/homepage/nce2.pdf11). For 

higher n the 2n-ons behave in a nicer way. They keep more of their number 

characteristics. We use the quaternions (n=2) as the number space that is used to 

                                                      
11 Appendix: 2^n-on construction 

http://www.math.temple.edu/~wds/homepage/nce2.pdf
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define the inner product of the Hilbert space. However, we tolerate operators to 

have eigenvalues that are higher dimensional 2n-ons. We also use 2n-ons in order 

to set the values of physical fields. 

 

When we use these numbers as eigenvalues or as field values, then we apply 

their number characteristics as well as their storage capacity. A 2n-on contains 2n 

real numbers. We also tolerate that eigenvalues of operators and values of fields 

support multiple sign selections, such as the inversion of the real axis and the 

handedness (chirality) of external vector products for their eigenvalues. 2n-ons 

offer n sign selections and contain n independent imaginary base numbers. Each 

new independent base number introduces a new sign selection. The sign 

selections translate into an n-fold hyper complex conjugation and 2n different 

skew fields. 

 

With n > m, the 2n-ons act like 2m-ons in their lower m dimensions. Further, the 

2n-ons contain several subspaces of 2m-ons. We may use smoothly curved 

manifolds that are crossed by curves which form trails of 2n-on numbers and that 

are locally touched by tangent spaces that can be interpreted as 2n-on number 

spaces. 

 

When the members of a set 2n-ons approach zero, then in their mutual arithmetic 

actions they are getting more and more the characters of lower dimensional 2m-

ons. In the same sense, when two 2n-ons approach each other, their mutual 

arithmetic actions are getting more and more the characteristics the arithmetic of 

lower dimensional 2m-ons. 

 

The implementation of the proposition (♠) leads to a story of manipulators and 

manipulated observables. The number waltz feature (c=ab/a) of the 2n-ons that 

becomes a noticeable effect for n>1 seems to play a significant role in our model. 

If this model applies to quantum physics, then it may reveal why special 

relativity exists and brings clearness in the different notions of time that exist in 

quantum physics. The curvature introduced by the spatial variance of what the 

longitudinal direction is reveals how the mentioned influences can be 

implemented as component fields which are defined on a curved coordinate 

system. This holds for gravitational fields as well as for the other fields such as 

electromagnetic fields. 
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Implementing quantum physics in a complex Hilbert space hides these 

interesting features and diminishes the insight that higher dimensional 2n-ons 

can reveal. 

Prospect 
The article shows that there is a need to extend traditional quantum logic such 

that it not only includes the representations of fields but also includes axioms, 

which specify the dynamic underpinning of quantum physics. 

 

In the course of this project several fundamental aspects of physics get 

uncovered. 

Comments 

Version 3 

Version 3 builds on the content of previous versions. This new version stands on 

itself, but it reorganizes and extends the contents of versions 1 and 2. One reason 

is that the text in some paragraphs relies on the text of a series of other 

paragraphs, so that it is impossible to configure the paragraphs in a streaming 

order without repeating much of the content. Here we may take the solution to 

refer to future paragraphs and add a “back to XXX” reference after the target 

text. 

Project 

This project is far from finished. Most parts I have rewritten several times. Some 

ingredients are already included before they are finalized and before they are 

put at the proper position in the context. I try to make the whole paper 

consistent with its parts and I try to keep my goal to include nothing that did not 

follow directly or indirectly from the axioms of traditional quantum logic. I only 

tolerate mathematics as a valid tool and ingredient. I will not use or accept 

intuition as a reason to include a subject in the text. However, I will use 

indications retrieved from previous experiences. I will also not tolerate the 

usefulness of a concept or its acceptance in the physical community as a valid 

argument to include that concept. If you encounter places where I did not 

succeed in that goal, then you may conclude that I still have to work on that 

section. When the paper gets its final version, then no deviations of my goal 

should result. However, partly due to my progressed age (~70), I might never 

reach that condition. Then, you reader might take over and finish the job. But 
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first think of the possibility that we will succeed. What does it mean that all of 

fundamental physics is based on mathematics and on the ~25 axioms of traditional 

quantum logic?! Well, another input is the observation that ALL information about 

nature arrives in the form of clouds of information carrying quanta. The cloud as a whole 

carries secondary information. 

References 

This e-paper contains no lengthy reference list. References to other documents 

are usually presented inline and are mostly put in the form of hyperlinks. The 

appendix and a sometimes referenced toolkit12 contains a collection of stuff 

that otherwise must be grasped from internet. As is done in this article, much of 

the contents of the toolkit are directly or indirectly obtained from Wikipedia or 

from publicly accessible publications. In that case the text is adapted to the 

requirements of the papers that use this information. Most texts on internet are 

based on complex Hilbert spaces, so where necessary I have converted these 

texts into quaternionic versions. 

Equation editor 

This paper is prepared with MS Word 2010. This word processor version 

contains a rather capable equation editor and a large series of fonts including 

Cambria Math. However, the equation editor does not cooperate with the 

paragraph indexing in order to automatically enumerate the out of line 

equations. For that reason equations are enumerated manually and relative to 

the current paragraph header. References inside that paragraph just use the 

equation number. References from outside of the paragraph are hyperlinks that 

refer to the paragraph header. The hyperlink text may then include the equation 

number. In that case, you must move manually to the referred equation inside 

the target paragraph. 

EM fields 

This paper draws significantly from the book on electromagnetic field theory of 

Bo Thidé. That book has a different goal and uses different premises. The book 

does not use the quaternionic field approach as is done here, but its contents 

easily translate to quaternions. Further its formulation is very precise, it links 

                                                      
12 http://www.crypts-of-physics.eu/Toolkit.pdf  

file:///C:/web/NewWebSite/English/Science/Toolkit.pdf
http://www.crypts-of-physics.eu/Toolkit.pdf
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formulas to physical concepts and most of all it is online: 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf13. 

Strands 

I took many ideas from the research of Christoph Schiller as it is presented in his 

online book http://www.motionmountain.net/research.html . 
If strand theory is a valid approach to a model of physical reality and if the 

theory presented here is also a valid approach, then strands must be 

representable in this model. For that reason examples of possible embedded 

definitions are presented. First strands are specified as item type 

definitions14. There a single strand closely equals a photon type. Next a 

normal operator is defined that has eigenvalue sets in the form of 

strands15. 

Notation note  

This paper uses {} in order to indicate a set or a function.  

Depending on the context {|fs>}s means an ordered set of vectors |fs> where s is 

the ordering index. In other contexts {|fs>}s means a vector function |f(s)> where 

s is the (discrete or quaternionic) parameter. Continuous functions are presented 

in the normal way. 

f({qj}j) is a function f(q1, q2, q3, q4,… qn,) of the set of parameters ({qj}j, where j = 1, 2, 

…, n. The index constraint n might be infinity. Nature itself is finite, however it 

lives in a model that has an infinite scope. 

 

The appendix and the toolkit contain information about other notation and 

naming conventions that are used in this paper. 

  

                                                      
13 Hilbert field equations 
14 Logic: Item types: Strands as type definitions 
15 Hilbert space: Limitedness: Strand operator 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
http://www.motionmountain.net/research.html
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Acquired indications 
Several indications stimulated the development of the theory that is presented in 

this paper. They are listed in this section. 

Studying physics 
When I was studying physics I was triggered by two facts that have significant 

influence on my current insights. 

Classical versus quantum physics 

After finishing the semesters that treated classical physics I started taking lessons 

in quantum mechanics and I was immediately amazed by the large difference in 

the way that classical mechanics was handled and the way that quantum 

mechanics was done. Questioning the teachers did not bring much relief. Their 

explanation was that the difference is due to the superposition principle. 

Investigating this reply reveals quickly that this is an alternative description of 

the different way of working, but no explanation. So, I dived into the library and 

into scientific bookshops until I finally found a booklet from P. Mittelstaedt: 

(Philosophische Probleme der modernen Physik, BI Hochschultaschenbücher, Band 

50, 1963) that contained a chapter on quantum logic. I concluded that this 

produced the answer that I was looking for. Small particles obey a kind of logic 

that differs from classical logic. As a result their dynamic behavior differs from 

the behavior of larger objects. I searched further and encountered papers from 

Garret Birkhoff and John von Neumann that explained the correspondence 

between quantum logic and Hilbert spaces. In those years C. Piron wrote his 

papers that finalized my insight in this subject, but first I must explain the other 

fact that triggered me. 

The rediscovery of quaternions  

Quantum physics appeared to be done in the realm of Hilbert spaces. Operators 

in those spaces delivered the eigenvalues that played the role of values of 

observable quantities.  

I had problems with the fact that according to the in those days commonly 

accepted theory the operators, which deliver observable values as their 

eigenvalues or as their expectation values, had to be self-adjoint and as a 

consequence these operators could only deliver real valued eigenvalues. Nature 

has a clear 3+1 dimensional structure and there was no logical indication in the 

quantum theory that was lectured in those days that explained why four 
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observable values must cling together. I started searching for a number system 

that could deliver this extra connectivity and I quickly discovered a number 

system with 3+1 dimensions that supported addition, multiplication and 

division. It took me more time to discover that this number system was already 

discovered more than a century before by William Rowan Hamilton16 when he 

was walking with his wife over a bridge in Dublin. He was so glad about his 

discovery that he carved the corresponding formula into the sidewall of the 

bridge. The inscription has faded away, but it is now molded in bronze and fixed 

to the same wall. When an assistant professor told me the story I started to read 

papers on quaternions and discovered the work of Constantin Piron. 

Birkhoff and von Neumann already discovered that the set of propositions in a 

traditional quantum logic system is lattice isomorphic with the set of closed 

subspaces of an infinite dimensional separable Hilbert space Ң. Piron proved 

that the inner product of this Hilbert space must be specified with members of a 

division ring. There are only three division rings: the real numbers, the complex 

numbers and the quaternions. I went for the widest choice and started studying 

quaternionic Hilbert spaces. 

Representation restriction 
After discovering that traditional quantum logic can be represented inside an 

infinite dimensional separable Hilbert space, it is a disappointment to discover 

that this presentation does not cover physical fields and does not cover 

dynamics. 

Extended quantum logic 

However, it appears that it is possible to expand traditional quantum logic in a 

way that corresponds to adding blurs to a subset of the Hilbert vectors. The 

blurred subsets may represent particles. In this way the superposition of the 

blurs may represent the physical fields. This leads directly to the existence of 

Maxwell-like fields in the realm of such an extended Hilbert space. This also 

leads to an extended quantum logic that covers physical fields. 

Dynamic quantum logic 

Dynamics can be implemented by representing dynamic quantum logic as a 

sequence of extended traditional quantum logics that each represents a static 

                                                      
16 http://nl.wikipedia.org/wiki/William_Rowan_Hamilton 

http://nl.wikipedia.org/wiki/William_Rowan_Hamilton
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status quo. This dynamic step can be detailed further. See Progression step 

details17. With respect to the Hilbert space the dynamic model uses a sequence of 

extended Hilbert spaces. It can be compared to a book, where each page 

represents a static status quo. 

Curved space 

When quaternions are taken as the division ring, then Fourier transforms 

become quaternionic Fourier transforms. The ideal Euclidean formulation of the 

multi-dimensional Fourier transform cannot cope with a variable direction in 

which the Fourier analyzed function or field is rotation free. This can be 

circumvented by converting the field by a coordinate transformation such that 

the resulting field has a stationary direction in which it is rotation free. This 

corresponds with accepting the existence of a curved coordinate space. This 

curved space is subject of general relativity. With other words, extended 

quantum logic supports general relativity. 

Intensified imaging 
After finishing my study I started my career in the development laboratory for 

high-tech electronic appliances of a big electronics company. My task consisted 

of the analysis and measurement of the visual trajectory, starting from the 

radiation source and ending after interpretation of the image in the brain of the 

observer. At those times (~1975) this was fundamental research, because both the 

measuring methods and the modeling methodology in this area were still in 

their childhood. The target products for the laboratory were night vision devices 

and X-ray image intensifiers.  

Intensified imaging is required at low dose rates and in situations where the 

radiation detection capability of the human eye is unsuitable. This occurs with 

starlight scene imaging and with X-ray shadow imaging. The low dose rate is 

necessary due to the fact that no active scene lightning can be supplied or due to 

the fact that hazardous gamma ray effects must be avoided.  

When the snowing image produced by image intensifying equipment is 

observed, then it becomes immediately clear that this image is built up from a 

large number of separate spots that together form a rather noisy picture of the 

object.  

                                                      
17 Acquired indications: Progression step details  
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The research not only concerned perception experiments and measurement. We 

also had to devise the standards for the measurements as well. So we took part 

in the establishment of develop worldwide standards for the specification and 

measurement of the Optical Transfer Function (OTF) and its modulus the MTF. 

We also took part in the committees that created the standards for the Detective 

Quantum Efficiency (DQE). 

The fact that these standards were not only required but were also successful is 

in itself very astonishing. We needed these standards because we could model 

the visual trajectory as a chain of which the first elements consisted of a set of 

Poisson generators. The generators are characterized with their efficiency and a 

spatial, angular and chromatic distribution.  

Next in the chain are attenuating binomial processes. Statistically a blur can also 

be considered as a binomial process. The information is spread over a larger 

area. A Poisson process can be combined with a subsequent binomial process 

into a generalized Poisson process that has a lower efficiency. 

The chain also contains light lenses and particle lenses. Further, the equipment 

aided chain contains detection surfaces that convert radiation quanta into 

electrons or electrons into radiation. This chain might also contain scintillation 

layers that convert high energy X-ray quanta in large series of low energy light 

quanta. It might contain fiber optic plates that just transport images, usually 

from a curved to a flat surface. It might contain channel plates that convert single 

electrons into clouds that contain about hundred thousand electrons. It might 

contain image receivers that convert the image into an electric signal or into a 

photographic plate. 

The equipment aided chain may and the unaided chain will also contain the eye 

of a human observer. Intensified images are detected by the cones in the fovea. 

At very low light levels the adapted eye detects the images via the rods in the 

fovea. Rods have a much lower acuity than cones. Therefore they have a much 

longer integration time. In general, measures that reduce noise have both 

positive and negative effects on the information content of the signal. There is an 

optimum condition. My task was to find that condition. 
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After the detection in the fovea the received signal is handled by a large series of 

preprocessors that act in parallel as well as in sequence. The preprocessors 

associate the signals that are received by receptors that lay in each other’s 

neighborhood. The association tests a detail pattern that is typical for the 

considered preprocessor. The associated signal is only passed further when its 

signal to noise ratio surpasses a given boundary level. In this way the higher 

regions of the information processing are not disturbed by unnecessary noise.  

All preprocessors work in this way as noise filtering decision centers. The 

association results in a categorization of the encoded image. The signal that 

reaches the folded fourth layer of the visual cortex represents the completely 

coded version of the received image. In the human brain, a folded surface of 

about four square millimeters is devoted to each image receptor in the fovea. 

This code is interpreted further in the brain. As early as possible the filtering 

process stops noise and details of the image that do not carry useful information 

from proceeding further in the chain. 

Due to this design, already the unaided brain-eye combination is well suited to 

perceive and interpret images in a very large dynamic range of circumstances. 

Apart from the fact that the visual channel can adapt from somewhat above 

starlight conditions until bright daylight conditions, the visual trajectory appears 

to be optimized for handling signals that enter the eye in the form of clouds of 

quanta that are generated by Poisson processes. 

All vertebrate visual trajectories work according to the sketched principles. Over 

billions of years evolution has exploited the fact that information that comes to 

living species is generated by Poisson processes. The visual trajectory of 

vertebrates is optimized for handling this information for the benefit of the 

survival of the owner of this channel. See: http://www.crypts-of-

physics.eu/Howthebrainworks.pdf18 . 

This fact is a strong indication that all visual information comes to us in the form 

of clouds of quanta. When looking at low dose rates through an intensified 

viewer, it becomes clear that this assumption is valid. The perceived noisy image 

                                                      
18 Part three: How the brain works 

http://www.crypts-of-physics.eu/Howthebrainworks.pdf
http://www.crypts-of-physics.eu/Howthebrainworks.pdf
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is built from separate dots that represent the detected quanta. No radiation wave 

is visible. What you see is just a streaming cloud of quanta. 

The fact that visual information is generated by Poisson processes indicates a 

more general feature of physics. ALL information that is transferred by 

electromagnetic radiation can be considered to be generated by Poisson 

processes. This becomes apparent when measurements are done at very low 

dose rates. In the static model the Poisson processes represent a lateral 

distribution. In addition, taken over a sequence of Hilbert spaces the Poisson 

processes represent a temporal distribution. 

Granular GPS 
In separable Hilbert space a normal operator has a countable eigenspace. This 

allows to the usage of the rational quaternions as the eigenspace of a normal 

operator. However, nature appears to support a minimum for the distance 

between two positions. This renders a position related operator granular. In 

separable Hilbert space Ң the granularity of the eigenspace of a GPS-like 

coordinate operator presents problems with the fact that a dense packaging of 

the granules generates unrealistic preferred directions. Its equivalent in the 

corresponding rigged Hilbert space Ħ does not suffer this restriction. It can be 

used as coordinate system for fields, but it cannot be used to locate particles 

inside the separable Hilbert space Ң. The fields are attached to a subset of the 

Hilbert vectors and all Hilbert vectors touch their values. 

Progression step details 
After the former indications the theory reaches the stage that it becomes sensible 

that the model of nature, which takes its foundation on quantum logic, steps 

from one static status quo to the next. It dawns that this is the way that dynamics 

is implemented. What happens during these steps is still mysterious. The Hilbert 

space itself only suggests a Euclidean signature of observable space time. 

However, Einstein proved that observable spacetime has a Minkowski signature. 

This discrepancy must have its origin in what occurs inside the dynamic step. 

An early conclusion is that coordinate time does not play the role of the fourth 

dimension in the quaternionic eigenspace of a spacetime-like operator. It also 

differs from the role of the counter of the progression steps.  
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Both inertia and Feynman’s approach of the path integral may guide what 

happens during an infinitesimal dynamical step19. 

Release and removal of quanta 

During the step interactions take place and particles are emitted or absorbed. 

The information is carried by clouds of quanta. The quanta carry the information 

that they collect GPS and GMS related data in the dynamical step.  

An indication for this fact houses in the structure of the creation and annihilation 

operators. These operators consist of a part that relates directly to the GPS 

operator and a part that directly relates to the GMS operator. 

Fields and probability amplitude distributions 

Some subsets of Hilbert vectors represent elementary particles. It means that 

they are blurred. The blur is a probability amplitude distribution whose form is 

typical for the elementary particle type. Elementary particles combine to form 

more complex particles. 

The superposition of all probability amplitude distributions that correspond to 

the separate particles forms the covering field. 

A repositioning of a particle means a reconfiguration of the covering field and 

vice versa. 

A detailed list of indications and considerations 
1. All information comes to us in the form of clouds of quanta. 

2. These clouds get their shape via a combination of probability amplitude 

distributions. 

3. Each type of elementary particle is characterized by a set of Hilbert 

vectors and a particular kind of probability amplitude distribution. 

4. The information contained in the quanta and in the cloud is the only 

information that becomes observable. 

5. This information consists of the information that is carried by the 

separate quanta and by the probability distribution that describes the 

cloud. 

6. Each quantum in the cloud carries a set of information data. 

7. This set contains a 3D position, a 3D momentum and a binary chirality. 

                                                      
19 Dynamics: Unitary transform: Infinitesimal dynamical step 
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8. The information that is carried by the quanta becomes available via an 

interaction process. 

9. The information is measured in Planck units, eventually related via 

physical constants, such as the speed of light. 

10. The probability amplitude distribution that characterizes a particle 

becomes part of the field that exists in the surroundings of the particle. 

11. Physical fields consist from the superposition of the probability 

amplitude distributions of the separate particles. 

12. Curvature and torsion of the path of the particle are secondary 

characteristics, which are introduced via the probability distributions that 

make up the field that exists in the direct environment of the particle. 

13. In contrast to torsion, curvature appears to be linked with gravity. The 

photon path has a helix structure. It has no mass. 

14. Curvature in the path of a particle is caused by the local rotation that 

exists in the surrounding field(s). 

15. The rotation properties of the field determine the local decomposition of 

the static field. 

16. This local decomposition determines a curvature of observable space. 

17. On its turn this curvature specifies a curvature field. 

18. The curvature field has all the characteristics of the gravitation field. 

19. The generation of a given kind of quantum has a typical probability. 

20. There exist anti-quanta. The generation of an anti-quantum is equivalent 

to the annihilation of the corresponding quantum. 

21. Creation and annihilation operators have probability amplitude 

distributions as their eigenfunctions. 

22. In their simplest form these probability distributions are Poisson 

distributions. 

23. The generation of shot noise is characterized by Poisson distributions. 

24. At high dose rates the Poisson distributions become Gaussian (normal) 

distributions. 
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25. For more complicated configurations the probability amplitude 

distribution must be considered rather than its squared modulus: the 

probability density distribution. 

26. Bosons are characterized by probability amplitude distributions that 

remain invariant under a rotation of 2π. 

27. The probability amplitude distribution of a two boson system is invariant 

under perturbation of the bosons. 

28. The creation and annihilation operators of bosons are characterized by a 

non-zero commutator. 

29. Photons form the simplest boson type. They have a helix form. 

30. The probability distribution of the corresponding quanta resembles a 

Poisson distribution. 

31. Fermions are characterized by probability amplitude distributions that 

change sign under a rotation of 2π. 

32. The probability amplitude distribution of a two fermion system changes 

sign under perturbation of the fermions. 

33. With each fermion type an anti-type exists. 

34. A quaternionic probability amplitude distribution can also contain 

chirality information. 

35. When chirality is taken into account then a probability amplitude 

distribution must be used rather than a probability density distribution. 

36. Electric charge is related to the chirality properties of the corresponding 

particle. 

37. The creation and annihilation operators of fermions are characterized by 

a non-zero anti-commutator. 

38. Creation and annihilation operators can be split in a part that resides in 

configuration space and a part that resides in Fourier space. 

39. A quant can be emitted (created), absorbed (annihilated) and it can be 

virtual. 

40. Virtual quanta belong to previous or future events. 

41. Only actual quanta deliver observable information. 
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42. Emitted and absorbed actual quanta belong to the current version of 

events. 

43. During each dynamical step information is collected both from 

configuration space related sources and from momentum space related 

sources. 

44. The part of the collected information that resides in configuration space 

delivers the 3D position information to the emitted/absorbed/virtual 

quant. 

45. The part of the collected information that resides in Fourier space 

delivers the 3D momentum information to the emitted/absorbed/virtual 

quant. 

46. The sum of an even function and its Fourier transform is invariant under 

Fourier transformation. 

47. The difference between an odd function and its Fourier transform is 

invariant under Fourier transformation. 

48. Apart from a scale factor, the functions that characterize linear and 

spherical harmonics are invariant under Fourier transformation.  

49. The scale factor is 1, i, -1 or –i. 

50. The harmonic functions are also related by creation and annihilation 

operators. 

51. The harmonic functions contain a factor that equals a Gaussian 

probability distribution. 

52. Any knot can be represented topologically by equations in Cartesian 

coordinates       of the form:    ( )    ( )    ( ), where  ( ), 

 ( ) and  ( ) are Fourier series with finitely many terms. 

53. Only in 3D space knots cannot all be unknotted. 

54. There exist three basic types of elementary particles that can be 

distinguished via the number of strands20 / Hilbert vectors involved. 

These basic types are the bosons, the quarks and the leptons. 

55. The bosons can be distinguished in four categories:  

                                                      
20 Strands 
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a. The photons have a helix form and no chirality. They have no 

mass and are involved in EM interaction. 

b. the    bosons have a knotted form (overhand knot) and possess 

chirality. They have mass and are involved in weak interaction.  

c. the Z bosons have a knotted form (figure eight knot) and no 

chirality. They have mass and are involved in weak interaction. 

d. The gluons have rectangle loop shape (∝) and no electric, but 

color charge. They have no mass and are involved in strong 

interaction. 

56. The quarks and the leptons can be distinguished in three generations. 

57. The particles are distinguished via the probability amplitude distribution 

of the corresponding quanta and the kind of information that is carried 

by these quanta. 

58. There exist three basic forms of interaction that are distinguished via the 

number of strands/Hilbert vectors that are involved in the interaction 

event. 

59. These basic forms of interaction can be related to Reidemeister moves. 

60. Particles become observable via their interactions, thus via the quanta 

that are generated due to these interactions. 

61. All motion observed in nature minimizes action. 

62. Uniform motion preferably occurs via a geodesic and obeys the geodesic 

equation. 

63. The visual trajectory of vertebrates is devised in order to cope with a 

huge dynamical range of light conditions ranging from starlight 

conditions up to bright daylight conditions 

64. Over billions of years, evolution has exploited the fact that information 

that comes to living species is generated by Poisson processes. The visual 

trajectory of vertebrates is optimized for handling this information for the 

survival of the owner of this channel.  

65. The Banach–Tarski theorem states that a spherical surface can be split in five 

pieces that can form two spheres of the same volume. The statement does not 

hold in the eigenspace of a coordinate operator that resides in separable Hilbert 

space. 
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66. In separable Hilbert space, at least one coordinate operator has lattice sampling 

properties. Its eigenspace shows preferred directions. 

67. At the lowest scale it is not clear how the granules of an eigenspace of a Hilbert 

position operator are geometrically arranged. On a larger scale they appear to be 

influenced by fields. 

68. The geometric sampling of normal operators between subsequent Hilbert spaces 

may differ. 

69. Particles can be considered as sources and drains of information carrying quanta. 

70. These sources and drains play their role in a continuity equation that treats 

information carried by quanta. 

71. The concept of measurement has no significance at Planck scales. 

The indications and considerations that are treated in this chapter will steer the 

development of the theory that is subject of this e-paper.  

First conclusion 
The standard model can be retrieved via categorization of the particle types and 

their interactions. This comes down to categorizing probability amplitude 

distributions and categorization of information packages that are carried by 

generated quanta. 
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Logic 

Logics 
Quantum logic differs from classical logic in one of its axioms. The set of 

propositions in classical logic is isomorphic with the set of Venn diagrams21. The 

set of propositions of traditional quantum logic22 is far more complex. This 

significant difference is due to the weakening of just a single one of the set of 

more than 25 axioms. It is lattice isomorphic with the set of closed subspaces of 

an infinite dimensional separable Hilbert space23 Ң. The isomorphism means 

that quantum logical propositions can be represented by closed subspaces of a 

Hilbert space. The inner products of that Hilbert space can be defined by using 

numbers of a 2n-on number space. Taking n>2 for that purpose raises numeric 

problems with the closure of the subspaces. Traditional quantum logic does not 

include any axioms that treat dynamics and it does not treat the influences of 

physical fields. It only specifies stationary relations that are possible between 

physical items and their properties.  

Example proposition 
In order to discover the emergence of dynamics we will implement a quantum 

logical proposition in Hilbert space and test its truthfulness. We will introduce in 

this example proposition physical fields as well as dynamics. 

 

The example proposition(♠) is: 

All items in universe influence each other’s position. (♠) 

 

It can be answered with either yes or no. And, if we succeed, it can be 

implemented in Hilbert space. So, in that case it is a valid quantum logical 

proposition. 

Proving ‘yes’ is cumbersome, but the ‘no’ is hardly less difficult. It requires 

finding an item of which the position is not influenced by at least one of the 

other items. For this purpose it is necessary to implement notions of items, the 

universe, influences and position in Hilbert space. 

 

                                                      
21 http://en.wikipedia.org/wiki/Venn_Diagram 
22 Appendix: Quantum logic 
23 Appendix: The separable Hilbert space 

http://en.wikipedia.org/wiki/Venn_Diagram
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The statement includes quantifiers (position) and dynamic operational elements 

(influence). The set of axioms of traditional quantum logic does not treat dynamic 

operational elements. At least it does not do that in a realistic way. As we will 

see, the influence of the universe of propositions (items) will put particular 

restrictions to the extension of quantum logic into the realm of an extended 

dynamic logic. This restriction is manifested in the occurrence of physical fields24 

and inertia25.  

 

Translated in physical terms inertia means that in contrast to a uniform movement, 

the acceleration of an item will go together with the action of a physical field. Notice 

that we use the words “goes together with” instead of “generates” or “causes”.  

 

Translated in logical terms a conclusion of the analysis of inertia runs:  

“During a redefinition of a proposition the exchange of atomic predicates in that 

proposition must be done in well-ordered and controlled steps. Otherwise the 

community of propositions will influence the considered proposition.“ 

 

Again it must be noticed that there is no causal relation between the event of 

being well-ordered and the event of influencing. With other words, the inertial 

interaction is instantaneous. 

 

When nature’s logic is put in axioms, then influences that correspond to physical 

fields must follow from the axioms. Together with the specification of the origin 

of dynamics this will then result in a dynamic version of quantum logic.  

 

I assume that this category of logic does not yet exist in mathematics. There 

exists a version of dynamic operational quantum logic26, but it does not cover or 

mention the effects of the representation of physical fields in logic and it does 

not specify the origin of dynamics. 

Atomic predicates 
Atomic propositions are statements that are either true or false and which cannot 

be broken down into other simpler propositions. When an atomic proposition 

                                                      
24 Functions and fields 
25 Influence: Inertia 
26 Discussion: Dynamic logic 
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concerns a property, then it may contain the value of that property. We will call 

that kind of atomic propositions atomic predicates. For example “The speed is 

5.” The identity or the category of the property is “speed”. The value of the 

property is 5 with a certain inaccuracy. The inaccuracy is typical for the category 

of the atomic statement. Only discrete properties can be observed without 

inaccuracy. The dimension of the value is “meter per second”, but that is another 

atomic statement and it is a fixed statement. Both the dimension and the 

inaccuracy form extra information that is part of the type definition of the atomic 

predicate category “speed”.  

 

In fact there exist no continuous properties. The smallest inaccuracy is set by 

Planck units. On the other hand the granularity of the properties must not cause 

a regular lattice structure of the property space. This need not lead to 

contradictions, but it leads to special solutions27 for the operators that deliver the 

value of the observable properties. 

 

The atomic predicates form a set with a particular lattice structure. In this set we 

only consider atomic predicates that are independent of all other atomic 

predicates. Several choices of such sets exist. A subset consisting of members of a 

chosen set may be canonical conjugates28 of members of another set. However, 

canonical conjugates are always dependent. So they cannot be member of the 

same selected set. 

 

In Hilbert space the type definitions of atomic predicates that concern numeric 

variables are represented by operators. The values of the properties in the atomic 

predicates correspond to the eigenvalues of the operators or they are expectation 

values. Expectation values are statistically determined via a probability 

characteristic that characterizes both the operator and a physical item. See Wave 

function29. In separable Hilbert space Ң the eigenspaces of all normal operators 

are granular. 

                                                      
27 Hilbert space: Limitedness: Investigating a special operator 
28 Functions and fields: Canonical conjugate 
29 Functions and fields: Characteristic function 
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Type definitions 
Type definitions are propositions that describe and categorize subjects without 

specifying their variable values. An atomic predicate type is the type definition 

of a category of atomic predicates and specifies the type of property that these 

propositions treat. The definition also contains the physical dimension (unit) of the 

property, the inaccuracy and the allowed range of the potential values of this 

property. For example, if that category is “speed”, then the definition contains 

the physical dimension meters per second. The minimum of the absolute value is 

zero and the maximum of the absolute value is c. Speed is an imaginary 

quaternion. 

 

When the type definition concerns a more complex object that can act as an 

individual the definition will be called an item type definition. Item type 

definitions use atomic predicate types.  

 

When that item cannot be broken into simpler objects that still can act as an 

individual, then the type definition is an elementary type definition. Elementary 

type definitions are constructed of type definitions of atomic predicates. 

The elementary types form (a rather small) subset of the whole set of type 

definitions. Elementary types appear to divide into two categories: bosons and 

fermions. The fermions can be divided in leptons and quarks. 

 

If the item is not an elementary type, then its type specification is a system or 

sub-system type definition. A (sub)-system type definition is constructed of 

elementary item type definitions and atomic predicate types.  

 

The type definitions form a set with a different lattice structure. Its structure is 

isomorph with the structure of classical logic.  

 

In Hilbert space no representation for item type definitions exists. However, in 

Hilbert space atomic predicate types are represented by operators. 

Strands as type definitions 

The notion of strand30 is introduced by Christoph Schiller. Apart from its 

crossing switch events, a strand is not observable. In strand theory the boson 

                                                      
30 Strands 
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types are all represented by a single strand. Reversely a strand is nearly 

equivalent to the type definition of the simplest boson, which is the photon. A 

photon has a helix shape. A strand does not need to have that shape. 

This e-paper defines a strand operator31 that has an eigenspace in which chains 

of granules reside. These chains come close to Schiller’s strands. In each chain 

one granule is special and is called the current granule. Only the current granule 

and its immediate neighborhood can deliver observable values.  

 

The shape of a chain has a direct relation with the configuration of the current 

covering field. Taken over an ordered sequence of Hilbert spaces the strand 

fluctuates under the influence of the changing field configuration. The current 

granule separates the chain in a “virtual past sub-chain” and a “virtual future 

sub-chain”. The words “past” and “future” are misleading while these parts do 

not really correspond to the actual past or future of the chain. They depend on 

the current field configuration, rather than on the past or future configuration. 

Items 
The first problem that is raised by constructing the representation of proposition 

(♠) is to determine what in this representation stands for an item. The simplest 

solution is to attach a subspace of the Hilbert space to the item. The 

corresponding proposition can be phrased as: “This is the item”. Something either 

belongs to the subspace or it is outside that subspace. Everything that can be 

attributed to the item can also be attributed to this subspace. Each of these 

propositions belongs to a hierarchy for which the mentioned proposition forms 

the top. All sub-ordered propositions correspond to subspaces of the item’s 

subspace. In this way the universe of items can be represented by a set of mutual 

orthogonal subspaces of the Hilbert space. Rays that are spanned by a single 

Hilbert vector and that are connected with a numeric value can be considered as 

atomic predicates. Subspaces spanned by such rays that are related to the same 

type of value can be considered as statements with a wider scope. The rays can 

be subspace of an items subspace. The subspace that corresponds to a 

conglomerate of elementary items also represents that conglomerate as an item. 

The configuration of the subspace that represents an item will change as a 

function of the parameter that measures the progression of the dynamic 

behavior of the item. It is possible that not only the values of the atomic 

                                                      
31 Hilbert space: Limitedness: Strand operator 
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predicates change. The types of these atomic predicates may change as well. This 

happens for example with atomic types that are each other’s canonical conjugate. 

It is also possible that the configuration of the subspace changes more 

drastically.  

 

In a set of subsequent Hilbert spaces the subspace that represents the item can be 

moved around with respect to a selected base consisting of eigenvectors of a 

normal operator. In this way it may be possible to implement the dynamics of 

items. This moving around does not mean that the vectors are moved around. It 

means that at each step of the move the set of vectors that span the considered 

subspace is redefined. The redefinition corresponds to a redefinition of the 

corresponding proposition. Alternatively, it is also possible to redefine the 

selected normal operator. Thus, redefinition and the laws that govern 

redefinition convert the static quantum logic into a dynamic version of quantum 

logic. It will be shown that physical fields play a significant role in this 

redefinition. 

 

With his bra-ket notation Dirac has provided us with a marvelous symbolism for 

vectors and even for operators. He did not provide us with symbols for 

subspaces. However, it is easy to extend his symbolism and indicate a subspace 

with a set of vectors that spans that subspace. For example {|fs>}s indicates a set 

of element vectors |fs> with enumerator s that span a closed subspace. This set 

identifies the subspace. Different sets may identify the same closed subspace. 

 

It is sensible to have one vector inside the item’s subspace that is considered as 

characteristic for the location of the representation of the item in Hilbert space. 

We reserve the name locator for this vector. When the item is redefined, that 

vector may be redefined as well. This characteristic vector can be used to obtain 

a precise location of the subspace in Hilbert space. The process via which the 

locator is determined depends on the requirements. The requirements may be 

set in relation to an operator. For example the vector that corresponds with the 

expectation value of the operator for that subspace can be chosen as the locator. 

In that case the state vector32 that corresponds with that operator may play the 

role of the locator. Two or more bosons can share the same locator. Fermions that 

possess the same property values cannot share the same vector as a locator. 

                                                      
32 States 
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Atomic predicates are not considered to be statements that fully describe a 

physical item. The statement “This is the item” forms the top of a hierarchy of 

statements that all say something about the item. The hierarchy contains 

statements that define the item’s type. Other members of the hierarchy specify 

the items constituents. Still other statements concern the item’s atomic variables 

that together with the type definition specify the item’s identity. For atoms the 

variables of the subsystems are hidden from the outside of the atom. This means 

that atoms can be considered as modules33. 

Representation of items 
A subspace in a single separable Hilbert space Ң cannot represent all properties 

of a physical item. The fact that the position of the item is known means that an 

eigenvector of the position operator resides within the subspace that represents 

the item. Say that this subspace covers position values in a certain region. 

Heisenberg’s uncertainty principle now states that the value of the momentum 

of the item is uncertain. Any values of this property must correspond with 

eigenvectors of the momentum operator that also reside in this subspace. For 

elementary particles the subspace will be too small in order to guarantee 

sufficiently sure property values. Sufficient information could be collected when 

the Hilbert space also contains past and future data, such that the momentum 

can be derived/estimated from those data. The physical fields contain such 

preconditions. For a free elementary particle the momentum can be derived from 

the Fourier transform of the probability amplitude distribution that controls the 

position of the particle. This probability amplitude distribution is the wave 

function of the particle. Together with the subspace that represents the particle, 

the wave function represents all information that can be retrieved from the 

particle. Since all particles have such probability amplitude distributions these 

private fields get intermixed. Thus in the neighborhood of other particles the 

superposition of the private fields must be reckoned rather than a single private 

field. 

Vacuum 
Multidimensional subspaces exist that do not represent a dynamical item. They 

can be considered as vacuum. It is still possible that the subspace represents a 

                                                      
33 Part four or http://www.cryps-of-

physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf 

file:///C:/web/NewWebSite/English/Science/ThereExistsATendencyInNatureToReduceComplexity.pdf
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ground state34. We will assume that on the average the ‘filled’ and the vacuum 

subspaces are evenly distributed over a connected part of the Hilbert space. The 

phrase “evenly distributed” means that the distance between the representations 

of items makes sense. Here we do not mean the distance related to the norm of 

Hilbert vectors, but the coordinate related distance.  

 

“Vacuum” does not say that these subspaces are empty. It is rather an indication 

that the subspace does not represent a dynamical object. Instead the subspace 

may represent a ground state.  

 

Vacuum does not generate observable information quanta. In vacuum the 

clouds of quanta are empty. 

  

                                                      
34 Functions and fields: Quaternionic Fourier transform split: Ladder operator: Ground 

state 
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Hilbert spaces 

Dual views of a Hilbert space 
In Hilbert space normal operators exist whose eigenvectors form an orthonormal 

base of the Hilbert space. The canonical conjugate of that normal operator has a 

set of eigenvectors that is completely disjoint of the former orthonormal base. 

This fact defines pairs of views of the same Hilbert space that are related via 

canonical conjugation. 

 

The corresponding orthogonal bases do not touch. Every base vector is a linear 

combination with non-zero coefficients of all members of “the other base”. All 

coefficients have the same norm. 

Position 
The original proposition (♠) speaks about the position of the item. The position 

must be related to something that is available in the separable Hilbert space. This 

Hilbert space is defined over a number space. Thus we might attach a number of 

this number space (or a higher 2n-on) to the Hilbert subspace that represents the 

item. That number must represent position. The natural way of attaching 

numbers to subspaces of a Hilbert space is via the concept of eigenvalues of 

normal operators. Any symmetry transform of a selected normal GPS coordinate 

operator might meet the requirements.  

 

However, there exists a significant drawback. The eigenspaces of all normal 

operators that reside in a separable Hilbert space Ң are countable. In addition 

the eigenspace of the GPS-like operator in Ң must be granular. The granularity 

means that the difference between two different positions must be larger than 

the Planck length. A GPS that is constructed from a dense package of fixed size 

granules generates preferred directions. If we want to avoid this, then we must 

use the equivalent operator that resides in the corresponding rigged Hilbert 

space Ħ. That operator has a continuum as its eigenspace. Apart from the real 

axis of the hyper complex number system it shows no preferred directions. So 

for position observations we must take rescue in rigged Hilbert space Ħ. But the 

eigenspace of this operator does not show a natural granularity. We can only use 

the corresponding GPS operator for providing a background coordinate system. 

The GPS operator is not a part of the separable Hilbert space Ң. It cannot be 

used to locate the vectors of the separable Hilbert space. However, we can use it 
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to give field values a location. What we have obtained are two GPS-like 

operators. One resides in separable Hilbert space and has a countable 

eigenspace. The other resides in rigged Hilbert space and has an uncountable 

eigenspace. This continuum is at least usable as a background coordinate system. 

The eigenspace of the first GPS-like operator forms a dense coverage of the 

second GPS-like operator. Both GPS-like operators do not support granularity. 

 

For a given field we may choose a position operator  , which resides in 

separable Hilbert space and has an equivalent  ̌ in rigged Hilbert space, such 

that for that field we can work with the ideal form of the quaternionic Fourier 

transform. That means that by using these coordinates as parameters, the field 

that will be analyzed has decompositions that run along straight lines in the 

eigenspaces of   and  ̌.  ̌ introduces a new coordinate system that is curved 

with respect to the original GPS-like coordinate system. 

 

The new coordinates are characterized by the fact that the considered field when 

formulated using these coordinates shows a decomposition into static parts that 

runs along straight coordinate lines. A Fourier transform taken in these 

coordinates has universe wide validity. The canonical conjugate   of operator   

also shows a similar behavior for the Fourier transform of the analyzed field that 

was first stated in   coordinates and after transformation is specified in   

coordinates. The same relation holds for operator  ̌ and the canonical conjugate 

 ̌. 

Physical coordinates 
Coordinates are not necessarily physical quantities. The physical coordinates of 

identifiable physical items are granular. The granularity means that at a given 

progression step they can only change with a step that either is zero or is equal 

to a Planck length. Coordinates that are eigenvalues of normal operators in 

separable Hilbert space Ң are countable. The set of rational quaternions is 

countable, but this set is not granular. In rigged Hilbert space Ħ the eigenspace 

of a normal operator may be uncountable. It means that this space forms a 

continuum. The set of all imaginary quaternions forms a continuum. In a given 

static status quo, only a countable and granular subset of these eigenvalues can 

be physical quantities. 
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We took the Planck length here as THE minimum distance between positions. 

The Planck length is derived via dimensional analysis. The important thing is 

that a minimum exists. Planck length is a proper name for it and the exact size is 

less important. 

Generating a Hilbert space GPS 
The first step is the introduction of a suitable GPS system in Hilbert space. This 

can be done by taking an orthonormal base of Hilbert vectors and add 

quaternion values to them. Due to the separability of the Hilbert space this 

number set must be countable. Let us take the rational quaternions as an 

example. This construction defines a normal operator Ϙ with countable infinite 

number of eigenvectors |ϙ> and corresponding eigenvalues ϙ. We will use the 

name coordinate space for the eigenspace of the coordinate operator Ϙ.  

 

The quaternions clearly have an origin. In contrast, the unit sphere of the Hilbert 

space, which contains all eigenvectors of Ϙ is an affine space. The eigenvectors of 

Ϙ form an orthonormal base. This singles out the eigenvector that belongs to the 

origin of the eigenspace. It indicates that Ϙ must only be used for relative 

locations.  
 

When we speak about the (Ϙ) coordinate distance between two vectors |f> and 

|g> in Hilbert space, then we mean the numerical distance between the values of 

<f|Ϙ f>/<f|f> and <g|Ϙ g>/<g|g>. 

 

Ϙ has an infinite but countable number of eigenvalues. A location in coordinate 

space represents a location on the unit sphere of Hilbert space. 

 
The fact that Ϙ must be bounded means that Ϙ has a boundary Ͽ at a finite distance 

from its origin. 

 

Every location in the eigenspace of Ϙ has a unique representation in the boundary Ͽ of Ϙ 

and vice versa. 

 

Take the polar decomposition of the normal coordinate operator Ϙ in a unitary 

part Ų and a positive operator Ņ. The eigenspace of Ų is the uni-coordinate 

space. Like the unit sphere of the Hilbert space, the uni-coordinate space is an 

affine space. Besides of that also no preferred direction should exist in this unit 

sphere. But that is not the case! 
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The eigenspace of Ϙ consists of all eigenvalues of Ϙ. The eigenspace is not a closed set 

and it does not include infinity. If the eigenspace of Ϙ was granular, then in order to be 

able to act as a kind of GPS the granules must have a fixed size. A dense packing of the 

granules would create preferred directions. It means that in that case Ϙ is not isotropic. In 

contrast, the unit sphere of the Hilbert space is isotropic. This sphere contains all 

eigenvectors of Ϙ. With granularity spread in a regulated order, the granularity raises 

preferred imaginary directions. As a consequence the size of an infinitesimal step will 

depend on direction. This does not generally correspond with physical reality. Only in 

condensed matter such conditions may occur. We can conclude that regulated spread 

granularity of the eigenspace of Ϙ leads to unphysical eigenvalues. Thus, let us restrict to 

countability. However, this restriction prohibits the use of sets of eigenvalues as 

parameters in differentiation operations. 

 

With artificial means the eigenspace of the coordinate operator may be closed by adding 

all limits of converging rows of eigenvalues. In this away a closed set of quaternions 

results. However, most members of this closed set are not eigenvalues of the coordinate 

operator Ϙ. The set is eigenspace of a corresponding coordinate operator  ̌ in a rigged 

Hilbert space Ħ. Still, the use of the separable Hilbert space Ң coordinate operator Ϙ will 

always prevent differentiation. Thus, for realistic physical conditions an alternative for 

this coordinate operator Ϙ must be sought. The coordinate operator  ̌ that has its 

residence in the rigged Hilbert space Ħ does not suffer from preferred imaginary 

directions and has an eigenspace that is a continuum. For that reason we can use it as a 

background coordinate operator. In the future we will indicate the background 

operator  ̌ as the (background) GPS operator. We will use the name GPS like 

operator for any operator that has an eigenspace that can be obtained via an invertible 

continuous transform or a reflection from the eigenspace of operator  ̌. 

Canonical conjugate 
The four dimensions of the quaternions enable the split of Ϙ into one Hermitian and three 

anti-Hermitian components. Via the inner product of the Hilbert space, each of these 

components gets a canonical conjugate. This creates a GMS-like operator. 

 

           ̃ (  )          
     

 (  )       (          ) 

 

          is the index of the dimension. 

 

           are imaginary base numbers. 

 

  
      

 

(1) 

(2) 
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The Hilbert vector      is eigenvector of operator    and corresponds with eigenvalue 

  . 

The Hilbert vector      is eigenvector of operator    and corresponds with eigenvalue 

  . 

 

The constant   relates to the size of the granules. 

For each dimension index   holds: 

 

   |                     |            (  ) 
 

                         
 

The definitions of the four canonical conjugates also define four (decoupled) complex 

Fourier transforms. The granularity decouples the Fourier transforms. 

The Hilbert space GMS 
The GMS operator  ̌ of the rigged Hilbert space Ħ is the canonical conjugate of 

the rigged Hilbert GPS operator  ̌. Both operators reside in the Gelfand triple 

that corresponds to the separable  Hilbert space Ң. The canonical conjugate   of 

  is formed from the combination of the four    operators. The same reasoning 

that is used for the   operator also holds for the   operator. It means that also 

the   operator has a countable eigenspace and it has a boundary Ͼ. Both 

boundaries have a one to one correspondence with the unit sphere ʘ of the 

Hilbert space, but none of the eigenvectors of the   operator coincides with an 

eigenvector of the   operator. 

 

GPS stands for Global Positioning System. 

GMS stands for Global Momentum System. 

 

Like with positions, in a given static status quo not all momentum eigenvalues of 

the GMS operator are physical quantities. Only a countable subset deserves that 

qualification.  

The fourth dimension 
Often time is perceived as the fourth dimension. However, Piron and Einstein 

prove that when space is occupying the imaginary part, our common notion of 

time is unfit to act as the fourth dimension of the hyper complex number space. 

Einstein’s special relativity indicates that a Minkowski signature characterizes 

the common spacetime concept. It means that a rectangular triangle relation 

(3) 

(4) 
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exists between the spacetime step, the space step and the coordinate time step, 

where the coordinate time steps acts as the hypotenuse. Thus the coordinate time 

step is not perpendicular to the space step as the fourth dimension in quaternion 

space would be.  

 

In combination with Garret Birkhoff and John von Neumann, Constantin Piron 

proved that the values of inner products of Hilbert vectors must belong to a 

division ring. When observables must stay expressible in such numbers, then 

they can maximally be quaternions. In that case, the real part of the quaternion 

of which the imaginary part represents a space coordinate, cannot be coordinate 

time.  

 

Another argument is the following. Neither traditional quantum logic nor the 

corresponding separable Hilbert space Ң can represent dynamics. Thus, time is 

not an observable that fits in this separable Hilbert space Ң. However, both 

traditional quantum logic and the corresponding Hilbert space may contain 

items that represent the precondition of change. 

 

Due to the fact that the Hilbert space is separable, the observable quantities must 

be countable. In fact most physical quantities are granular. For example the 

granularity of space is characterized by the Planck length    . The fourth 

dimension is supposed to be granular as well. 

 

Two quantities, other than space and time that are known to be granular are 

action and entropy. The granularity of action is characterized by the Planck 

constant. The granularity of entropy is characterized by the Boltzmann constant. 

Both are valid candidates for the fourth dimension. Energy is not a valid 

candidate, because it represents action per unit of time. Thus, it would introduce 

a notion of time via this backdoor. Action represents change. Entropy represents 

potential change. Field values represent preconditions of change. 

 

Another possibility is to use the spacetime step as the fourth dimension. This 

step is perpendicular to the space step. This interpretation immediately poses the 

question what then the physical significance is of this spacetime step.  

 

Until we encounter the requirement to fill it, the gap of the fourth dimension can 

be left open. One thing is for sure; coordinate time does not fit in that gap. 



55 

 

Time and dynamics 
Dynamics and its progression parameter time do not fit in a Hilbert space that 

can only represent a static status quo. That also means that this Hilbert space 

does not support the corresponding operator. However, the static representation 

of the preconditions of change is represented in this Hilbert space. Its 

interpretation is then as the precondition for the change that will follow in the 

next dynamical step.  

 

For example potential displacement is characterized by momentum, which is the 

canonical conjugate of space. A time step is required in order to determine the 

actual displacement. The time step occurs between the instants of validity of 

subsequent Hilbert spaces. As a consequence the displacement gets its 

significance by comparing subsequent Hilbert spaces.  

 

The move goes together with a reconfiguration of the fields. This on its turn may 

go together with an acceleration of the moving item.  

 

Action is change. In this respect its role is similar to the role of displacement. 

Also the action step gets its significance by comparing subsequent Hilbert 

spaces. Fields represent the preconditions for the next action step. 

 

When the smallest possible space step     √     
  and the smallest possible 

coordinate time step      √    
  are put into the Minkowski signature, 

                ⁄  then the corresponding spacetime step    is zero. 

 

The number of Planck time steps equals the number of global progression steps. 

The number of Planck length steps must always be lower than the number of 

Planck time steps. The photon never takes a non-zero spacetime step. The 

number of its space steps always equals the number of its time steps.  

 

Any particle that does not travel with light speed skips some of its space steps. 

Any particle can take a space step in a direction that differs from the direction of 

a previous step. 

Hilbert functions 
Coordinate operators enable the definition of a special type of functions. Take a 

coordinate operator Ϙ. Next take an arbitrary Hilbert vector    . Construct the 
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inner products of this vector with all eigenvectors      . of Ϙ. Use the 

eigenvalues     of Ϙ as variable. Now we have defined Hilbert function  ( ) as  

 
 ( )                            

 

Now the Fourier transform  ̃( ) of  ( ) is defined using the canonical conjugate 

  of Ϙ via: 

 

 ̃( )     ̃                       

 

This is again a Hilbert function, but it uses a different coordinate operator ( ). 

Hilbert functions are sampled functions. They are not differentiable. They can be 

approximated by a corresponding continuous function, which may be differentiable. 

 

The continuous approximation of  ( ) is indicated as  ⏞ ( ⏞). Both the function and its 

parameters are smooth. 

The sampled version of continuous function  ( ) is indicated as  ⃛( ⃛)  
 

The components of Hilbert functions are always decoupled. The same holds for their 

Fourier transforms. For Hilbert functions no divergence and no curl exists. 

 

The components of (quaternionic) continuous functions are always coupled. The same 

holds for their Fourier transforms. For continuous functions divergence and curl may 

exist. However, inside a separable Hilbert space Ң continuous functions only can act as 

Hilbert vectors. This is the case in ℓ² space35. 

Limitedness 

Countability 

The separable Hilbert space Ң has a countable dimension. It means that the 

eigenvalues of normal operators may offer a dense coverage of a connected part 

of the number space, but it is not a closed coverage. It does not include all limits 

of all convergent rows. At least the whole number space is densely covered by 

the set of eigenvectors. An eigenvector represents an atomic predicate that 

represents the corresponding attribute of the considered item. The eigenvector 

lies inside the subspace that represents the item. The corresponding atomic 

                                                      
35 http://en.wikipedia.org/wiki/Lp_space#Hilbert_spaces 

(1) 

(2) 

http://en.wikipedia.org/wiki/Lp_space#Hilbert_spaces
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predicate states that the corresponding attribute of the item lies inside the 

environment that is represented by the eigenvector. 

Granularity 

The fact that the separable Hilbert space Ң has a countable number of 

orthonormal base vectors does not on itself render the eigenspace of every 

normal operator granular. We could cover the whole quaternionic number space 

with a countable number of rational quaternions. However, the Planck length 

sets a minimum difference for positions and this renders the corresponding 

position operator granular. The way this granularity is distributed may cause 

particular features. For example dense packing causes preferred directions. 

Preferred directions do not commonly occur in nature. Such directions occur in 

condensed matter. Thus, dense packing or any other kind of organized packing 

does not generally occur in nature. This means that the physical use of a granular 

coordinate operator is restricted to specific situations. However, from the Ϙ 

operator a corresponding background GPS operator  ̌ can be derived that 

resides in the corresponding rigged Hilbert space Ħ. The set of closed subspaces 

of this rigged Hilbert space Ħ is not lattice isomorph with traditional quantum 

logic. Thus, it is not a proper model of that logic. Both   and  ̌ are not suitable as 

granular position operator. We must find a possible realization of a granular 

position operator that resides in the separable Hilbert space. 

Investigating an alternative operator 

The alternative operator cannot support an eigenspace that contains 

multidimensional subsets otherwise it would also generate preferred directions. 

Still it must deliver positions as eigenvalues. Part of the solution is that this new 

operator relates to a background GPS coordinate system.  

 

A corresponding continuous GPS coordinate operator that can deliver such a 

GPS background coordinate system can only reside in the rigged Hilbert space Ħ 

that corresponds to the considered separable Hilbert space. 

 

The eigenspace of the target operator may consist of  

 a set of separate points 

 a set of curves 

These elements are located with respect to the mentioned background 

coordinate system. 
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It must be possible to locate the current position of ALL physical particles with 

the eigenvalue set of the new operator. 

 

On the other hand, the operator must exhibit the granularity of the position 

attribute. At the same time, the position must not be related to a fixed lattice. As 

a consequence: Any position difference must be equal or larger than the Planck 

length.  

 

Between subsequent Hilbert spaces the position may stay stationary. However, 

when a difference occurs, it must again be equal or larger than the Planck length. 

On its turn this means that between subsequent Hilbert spaces the eigenspaces 

of the target operator must be related. 

 

The solution may be given by a set of chains of granules. Each chain has a sub-

chain of past granules, a current granule and a sub-chain of future granules. 

During the step to the next Hilbert space, the first granule in the future chain of 

the current Hilbert space becomes the current granule in the subsequent Hilbert 

space. The current granule turns into the last granule in the past chain. Another 

possibility is that during the step the position of the current granule does not 

change. 

 

In each chain only the current granules will deliver observable values. 

Fields take care that in each chain sufficient smoothness exists around the 

current granules. 

For that reason the field in the surrounds of the current granules acts like a 

probability amplitude distribution that regulates the position of that granule. 

The result of this investigation is a strand operator. 

 

Schiller’s strands 

Schiller’s approach takes another route. In his strand theory the fluctuations of 

strands determine the field that surrounds the strand. Here, in our model, we let 

the field determine the fluctuation of the chain. However, this relation plays its 

major role in the neighborhood of the current granule. 
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Schiller does not distinguish strongly between different fields. Here we consider 

all fields to be constituted from the same stuff. However, the curvature 

(=gravitation) field is derived from the superposition of the other fields. 

Strand operator 

The strand operator does not cause preferred directions. Thus, strands do not 

suffer the anomalies of the eigenspace of the Ϙ operator. The elements in its 

eigenspace have a direction, but that direction is related to local physical 

conditions.  

 

A strand operator Ҩ can be defined along the following steps: 

 Take a chain of granules.  

 All granules have the same size. 

 Each granule in this chain can be given an integer ordering number.  
 The background coordinate GPS operator can be used to give each granule in a 

strand a unique position. 
 Each chain consists of a past sub-chain, a current granule and a future sub-chain. 

The ordering number of the current granule is zero. 
 If the set of Hilbert spaces steps to the subsequent Hilbert space, then the 

position of the current granule stays stationary or it becomes the position of the 

last granule in the past sub-chain. In that case the current granule becomes the 

place of what was the first granule in the future sub-chain. 

 A probability amplitude distribution takes care that in each chain sufficient 
smoothness exists around the current granules. 

 Define a set of such chains. We will call them strands. 

 These measures leave a freedom that corresponds to a fluctuation of the strands 

over subsequent Hilbert spaces. 

 Taken over a small set of subsequent Hilbert spaces, the movement of the current 

granule reflects the influence of the probability amplitude distribution that 

controls the smoothness of the chain in the surround of the current granule.  

 This distribution describes the properties of a moving, rotating and diffusing 

cloud of virtual information carrying quanta. 

 Depending on how the distribution is viewed, the probability amplitude 

distribution describes the probability density of the information carried by these 

quanta. In any case the squared modulus of the probability amplitude distribution 

describes the probable position of the current granule. Taking the Fourier 

transform of the distribution reveals similar information about the canonical 

conjugated coordinate. 

 

Further: 
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1. The eigenspace of the strand operator can only house a finite number of 

strands. 

2. The eigenspace of the strand operator does not house surfaces. 

3. The eigenspace of the strand operator does not house volumes.  
 

Because the normal operator is bounded, a boundary surface exists at a finite distance 

from the origin of the background GPS coordinate system. We will call this boundary the 

outer horizon. 

 

The covered space has an outer horizon, but it may also contain closed inner horizons. 

Outside the outer horizon and inside the inner horizons no strands exist. 

 

A strand may be a closed chain. Closed chains reflect tangentially at the border of 

horizons.  

An open chain connects horizons. This may be one and the same horizon. Thus, the 

eigenspace does not contain lose ends of strands. 

 

Like the internal horizons, complex particles may act as creation and annihilation centers 

of chains. For example, field configurations that locally look like functions that are 

invariant under Fourier transformation appear to feature creation and annihilation 

operators.  

 

On the other hand a second particle may scatter or even reflect a passing particle. This 

will be reflected in the corresponding chains. 

 

The probability amplitude distribution that guides the current granule becomes part of the 

surrounding fields. It forms the basic constituent of the field. Its introduction extends the 

concept of separable Hilbert space. In a similar way it extends the concept of quantum 

logic. 

 

These rules only define the immediate neighborhood of the current granule of the strand. 

If required, the local direction of a strand near other granules in the chain is also guided 

by the local properties of the surrounding field(s). The covering field represents the 

combination of these fields. 

Strand interpretation 

In a single Hilbert space a strand may represent a piece of a potential past, 

present and future path of a particle. The present part of the path is formed by 

the direct surround of a single granule that acts as the current granule. In this 

single Hilbert space the granule corresponds to a Hilbert vector which is an 

eigenvector of the strand operator. In subsequent Hilbert spaces this potential 

path may differ. The path is determined by the current configuration of the 
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field(s) that influence(s) the path. As a consequence, when taken over a sequence 

of Hilbert spaces, the strands fluctuate. This gives strands a place in Hilbert 

space. 

 A boson is represented by a single strand. Thus, a boson corresponds 

with a single Hilbert vector in a Hilbert space.  

 A quark is represented by a pair of strands. Thus, a quark corresponds 

with a Hilbert vector pair in a Hilbert space.  

 A lepton is represented by a triple of strands. Thus, a lepton corresponds 

with a triple of Hilbert vectors in a Hilbert space.  

 

Taken over a sequence of Hilbert spaces the granules that represent the actual 

state of the strand represent the actual paths of the corresponding particle.  

 

Only the current state of the strand becomes observable. An event marks the 

observation. The event is characterized by a set of basic values:  

 The space step, measured in Planck lengths. 

 The progression step, measured in Planck times. 

 The change (action), measured in units of the size of the Planck constant. 

 The potential change measured in units of the size of the Boltzmann 

constant. 
 

This current state gets its values from the granules in the direct surround of the current 

granule. 

 

Secondary information can be derived from the field in the immediate surrounds of the 

current granule(s). 

Fundamental measures and units 
Events are instants of creation or annihilation of quanta. After creation the 

quantum becomes observable. After annihilation the quantum is no longer 

observable. 

A change is the stepwise variation of the information carried by a quantum. 

The information carried by a quantum is its position, its momentum and its 

chirality. 

 

The distance between two items equals the number of granules that fit between 

them. 
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The progression time between two events equals the number of progression 

steps between them. 

The action in a progression interval equals the number of steps in that interval 

during which a change took place. 

The entropy of a system equals the number of steps during which a change can 

take place in that system. 

 

In relation to the covering field36, a probability amplitude distribution provides 

secondary information. 

 

The basic measures of physics are: 

 

The Planck length,     √     
                  

 

The Planck (coordinate) time,      √    
                  

 

The unit of action is the constant of Planck,                 

 

The unit of entropy is the constant of Boltzmann,               

Numbers 

Sign selections 
Four possibilities exist due to the sign selections of the quaternions. One sign 

selection is covered by the conjugation a→a*. The other is caused by the 

handedness (chirality) a→a⊗. When both combine then the superscript a→a⊕ is 
used. It is also possible to use the extended quaternionic conjugation: 
 

       
 

 ⊗     
 

 ⊕     
 

    
  
  ⊗

⊗
         

                                                      
36 Functions and fields; Hilbert field; Covering field 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 



63 

 

 

This differs from the complex conjugation: 

 

     (  )
 
   

 

The effects of the quaternionic conjugation are visible in the base numbers 1, i, j, 

k: 

 
     

 

      
 

     
 

      
 

     
 

      
 

     
 

      
 

     
 

      
 

     
 

      
 

     
 

Thus k follows the rules of complex conjugation. This renders its direction to a 

special direction. This direction is called the longitudinal direction. The 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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directions of i and j are transverse directions. Apart from that they are mutual 

perpendicular and perpendicular to k, they have no preferred direction.  

 

These properties hold locally, they are related to other properties of the 

operators or the fields that carry these properties. 

Product rule 

We use the quaternionic product rule. It has eight (16-8) versions. When either a 

or b is fixed, then the product has four versions: 

 

             〈   〉              
 

          〈   〉              
 

          〈   〉              
 

          〈   〉              
 

          〈   〉               
    

 

          〈   〉              
 

          〈   〉              
 

          〈   〉              
 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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          〈   〉               
    

 

          〈   〉              
 

          〈   〉               
    

 

Products of the form aa have two versions. 

 

                  
 

                          
 

      〈   〉 
 

                         
 

                
 

      〈   〉 

Product sub-terms 

The product ab contains two particular sub-terms: 

 

     〈   〉              
 

〈   〉                 
 

     (         )   (         )   (         ) 

 

The products     and     have two versions. 

The product 〈   〉 has two versions. 

The product     has two versions. 

The sum           has four versions. If either   or   is fixed it has two versions. 

(14) 

(15) 

(16) 

(17) 

(18) 

(1) 

(2) 

(3) 
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Operators 

The sign selections of operator    (    ) depend on the sign selections of 

position operator Q, which determines the sign selections for its eigenvalues 

   (    ).  

 

Normally we consider the sign selection for operators Q and ∇ fixed to operators 

   and   . Sometimes we chose instead operator   . 
 

Quaternionic conjugation is directly connected with the concepts of parity and 

spin. 

 

For quaternionic functions symmetry reduces the differences that are produced 

by conjugation and anti-symmetry stresses the differences. The same holds for 

operators. 

Matrices 

Another possibility is to present sign selections by matrices37. 

 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

Construction 
The Cayley-Dickson construction formula enables the generation of a quaternion 

from two complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

                                                      
37 http://www.vttoth.com/qt.htm 

(1) 

(2) 

(3) 

(4) 

(1) 

http://www.vttoth.com/qt.htm
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q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db*; a*d + cb) 

 

r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

Quaternionic conjugation   means the exchange of ri and rj. 

Colors 
In the following text, the consequences for the product of the sign choices of the 

conjugate    is indicated by blue color  . The consequence for the product of the 

choice of the handedness   of the cross product is indicated by red color  . The 

mixed conjugate   acts accordingly on both colors. 

 

The sign selections split the ring of quaternions in four different realizations. 

Path characteristics 
The Frenet-Serret frame is devised for describing curved paths of particles  

 

Let {αqt}t = α(q,t) describe a curved path consisting of infinitesimal steps through 

a landscape {αq}q = α(q) of imaginary quaternions αqt, such that     ̇( ( ))       

for all t.  

 

The 3D Frenet-Serret frame for the above path is given by: 

 

 ( ( ))    
  ( ( ))

  
  ( )   ̇( ) 

 

 ( )       ̇( )   

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 
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 ( )   ( )     ̇( ) 

 
 ( )     ( )     ( ) 

 
   ( )        ( )        ( )       

 

 ( )  is the tantrix of curve α(q(t)) at instance t. 

 ( ) is the principal normal of curve α(q(t)) at instance t. It is only defined when 

κ(t) ≠ 0. 

 ( ) is the binormal of curve α(q(t)) at instance t. 

 ( ),  ( )  and  ( )  are imaginary quaternions. 

κ(t)  is the curvature of curve at α(q(t)) at instance t. 

r(t) = 1/ κ(t)  is the radius of curvature at instance t. 

τ(t) is the torsion of curve α(q(t)) at instance t.  

 

[

 ̇( )

 ̇( )

 ̇( )

]   [

  ( )  
  ( )   ( )
   ( )  

] [

 ( )
 ( )
 ( )
] 

 
The Frenet-Serret curves have particular characteristics. The path may be curved 

and curled. The path is completely determined by its tantrix, curvature and 

torsion given by functions of t. Each coordinate of the quaternionic function 

α(q(t)) has its own set of characteristics. This means that for a given quaternionic 

function these characteristics are quaternions rather than real numbers and they 

are all functions of parameter t. 

Path equations  
The path equations are given by 

 

 ̇( )   ( )   ( ) 

 

 ̇( )    ( )   ( )   ( )   ( )    ( )   ( )   ( )   ( )   ( ) 

 

 ̇( )    ( )   ( )   ( )   ̇( )   ̇( )   ( ) 

 

  ( )   ( )   ( ) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 
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Curve length 
The curve length  (   ) is defined by: 

 

 (   )   ∫   ̇( ( )) 
   

   

   

 

The integration over the square of the modulus delivers the action S of the curve. 

 

 (   )   ∫   ̇( ( ))  
   

   

   

Reparameterization 
The path characteristics κ(t) and τ(t) together with the curve length and the 

curve action are independent of any reparameterization  ( ) of the progression 

parameter t. 

A natural reparameterization is given by  ( )   (    ). 

This turns the curve  ( ( )) into a natural curve  ( ( )): 

 

 ( ( ))   ( ( )) 

 

Curves on a surface which minimize length between the endpoints are called 

geodesics. 

The natural curve corresponds to a geodesic38. 

The consequence is that in three-dimensional space the corresponding 

movement obeys the geodesic equation39. The Lagrangian is an equivalent of this 

equation.  

  

                                                      
38 http://en.wikipedia.org/wiki/Geodesic 
39 Equations of motion; Lagrangian 

(1) 

(2) 

(1) 

http://en.wikipedia.org/wiki/Geodesic
http://en.wikipedia.org/wiki/Geodesic
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Functions and fields 

Distributions in quaternionic Hilbert space 

Using a compact normal operator 𝒬 and a second distribution operator ρ with 

the same eigenvectors {|𝓆>}q but with eigenvalues {ρq} we can generate a Hilbert 
distribution40. 
 

 (𝓆)     𝓆   𝓆    
 

Operator ρ need not be a compact normal operator. Its spectrum of eigenvalues 
may be confined to a discrete set of points. Its eigenvectors are used. Its eigenvalues 
need not be used. . If they are used, the eigenvalues may consist of any kind of hyper 
complex number. 
 
A Hilbert distribution is not differentiable. It can be seen as a combination of a set of 
Dirac delta functions that are multiplied with hyper complex numbers. If all 
numbers are quaternions, then it is a linear combination of Dirac delta functions 
that each represents a Hilbert vector. 
 
The Hilbert space is separable. This means that the set of eigenvalues of an operator 

is countable. Thus a Hilbert distribution ρ(𝓆) is always discrete: 

 

 (𝓆)  ∑𝓆   

 

   

 (𝓆 𝓆 ) 

 

The factors 𝓆   are hyper complex 2n-ons. 

 

Convolution of a Hilbert distribution with a blurring spread function can render 

the result (mostly) differentiable. In fact in the convolution the distribution is 

represented by a set of Dirac delta functions. Depending on the blur, the result 

may still be singular for example on the definition points of the Hilbert 

distribution. The blur may represent a probability distribution. Those blurs are 

well-formed.  
 
A Hilbert function is also a Hilbert distribution. (The reverse is not true). A special 
form of Hilbert distribution is the representation of a probability amplitude 
distribution as a Hilbert function. 

                                                      
40 http://en.wikipedia.org/wiki/Distribution_(mathematics)  

(1) 

(2) 

http://en.wikipedia.org/wiki/Distribution_(mathematics)
http://en.wikipedia.org/wiki/Distribution_(mathematics)
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A special kind of Hilbert distributions is formed by the elementary Hilbert 
distributions. These distributions contain a single or only a few Hilbert vectors. 
They form the anchor points under the private fields, which represent elementary 
particles. Private fields are special kinds of Hilbert fields. 
 
As stated before, every (quaternionic) Hilbert function can be split into four 
decoupled components. And every Hilbert function has a Fourier transform that 
consists of four decoupled Fourier transforms. 
 

As in the case of a Hilbert function, a Hilbert distribution can represent a very 

dense coverage. In that case the distribution may become quasi differentiable. 

Hilbert field 
By blurring the Hilbert distribution with a suitable spread function, the distribution 
can be transformed into a mostly continuous function. When the blur is the same for 
every element of the Hilbert distribution, then this converts the Hilbert distribution 
 ( ) into a skew Hilbert field41  ( ) via the convolution: 
 

 ( )   ( )   ( ) 
 
With a given Hilbert distribution  ( ), each blurring function  ( ) causes in this 
way a corresponding Hilbert field that is characterized by the blurring function 
 ( ).  
 
Mathematically this convolution is impossible in a separable Hilbert space, but the 
corresponding rigged Hilbert space Ħ is a suitable alternative. The vectors in an 
orthonormal base consisting of eigenvectors of the normal operator 𝒬 that resides 
in the separable Hilbert space Ң are represented in the rigged Hilbert space Ħ by 
corresponding Dirac delta functions. We only use the vectors that belong to the 
Hilbert distribution  ( ). The values of the result of the convolution can be attached 
to the same orthonormal base vectors of the separable Hilbert space Ң. This 
procedure attaches the field onto the separable Hilbert space Ң. In principle the 
field covers all unit sized vectors of the separable Hilbert field.  
 
When the blurs differ per element of the Hilbert distribution, then the Hilbert field can 

still be interpreted as the superposition of the contributing blurs, but it can no longer be 

considered as a convolution. Like with the convolution, the location of the blur must be 

reckoned in this superposition. 

 

                                                      
41 http://en.wikipedia.org/wiki/Skew_field  

(1) 

http://en.wikipedia.org/wiki/Skew_field
http://en.wikipedia.org/wiki/Skew_field
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When there are only a few types of blurs, then each type constitutes via convolution with 

a corresponding Hilbert distribution a type specific Hilbert field. The covering Hilbert 

field can then be interpreted as the superposition of the (blur) type specific Hilbert fields. 

 

The blurs are not hanging as a lose substance in the separable Hilbert space Ң. The blurs 

are spread over the Hilbert vectors. Each Hilbert vector in the domain of a blur touches 

this blur and carries the local value of that blur. 
 
Hilbert fields that correspond to the same Hilbert distribution form a Hilbert field 
set. 
 
A Hilbert field or type specific subfield can be categorized according to its: 

 Symmetries 
 Conjugation 
 Corresponding blur function 
 Corresponding Hilbert distribution 

 
Hilbert fields are differentiable. The dimension related components of a Hilbert field 
are coupled. The differential of a symmetric field or field part is anti-symmetric. 
The differential of an anti- symmetric field or field part is symmetric. 

Sampled Hilbert field 
A sampled Hilbert field consists of its values attached to the eigenvectors of a 
normal operator, whose eigenspace acts as a coordinate system. A sampled Hilbert 
field is NOT differentiable. Its dimension related components are decoupled. It 
closely approximates a corresponding Hilbert field. The granular eigenspace of the 
normal operator closely matches the corresponding continuous eigenspace of a 
coordinate operator that resides in rigged Hilbert space Ħ. 
 
It can be interpreted as the distributed superposition of a number of Hilbert 
functions. 

Blur function 
The blur is a spread function. It is the reason of the significant similarity between 
optics and quantum physics. On the other hand, the blur is a probability 
distribution. This is the source of quantum noise. The probability distribution can 
be a probability amplitude distribution or its squared modulus, which is a 
probability density distribution. A quaternionic probability amplitude distribution 
has the advantage that its squared modulus can specify the probability and the 
parameter can specify the full location, while the resulting factor represents related 
data in the form of a unitary quaternion. This quaternion can also carry its sign 
selection data, which includes its chirality and its parity. Compared to a complex 
amplitude distribution, this is a wealth of extra information. The shape of the blur 
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contains secondary information. For example the Fourier transform of the blur 
offers momentum related data and the rotation of the blur represents angular 
momentum related data. 
 
The simplest kind of blur that belongs to a particle relates to its ground state42. 
Hermite functions, which are eigenfunctions of the Fourier transformation, have a 
Gaussian blur. Coherent states43, which are eigenfunctions of creation or 
annihilation operators have a Poissonian blur. 
 
Quantum shot noise44 produces a Poisson distribution. When large numbers of 
quanta are produced the distribution approaches a Gaussian distribution. A 
binomial process that follow a noise generating Poisson process can be combined 
with that binomial process into a generalized Poisson process with a lower 
efficiency. The binomial process represents a weakening effect. Spatial blur can be 
interpreted as a binomial process. This is because it represents a spatial diffusion 
effect. In the static model the Poisson processes only represent a lateral 
distribution. Taken over a sequence of Hilbert spaces the Poisson processes 
represent an additional temporal distribution. The efficiency of the detection of 
quanta is characterized by the detective quantum efficiency45 (DQE) of the detector. 
Together with the Fourier transform of the spatial spread function this determines 
the signal to noise ratio in the information stream. The spread has an integrating 
(smoothing) effect. A sharper spread improves the signal, but also increases the 
noise. Any temporal integration reduces the noise. The effect of the lateral spread 
can be characterized by the Optical Transfer Function (OTF). 
 
When the quanta are given a direction, then the blur becomes the equivalent of a 
probability amplitude distribution. In strand theory the observable values of 
crossing switches of strands form probability amplitude distributions. See: 

http://www.motionmountain.net/research.html . 
 
The blur plays a role when canonical conjugate operators occur together or in 
sequence. An extra blur is caused by the inaccuracy of the combination of these 
operators. 
The blur has many functions and interpretations: 
 

 Convolution with a smooth spread function makes a Hilbert distribution 
differentiable. 

                                                      
42 Functions and fields; Quaternionic transform split; Ground state 
43 Functions and fields; Quaternionic transform split; Coherent state 
44 http://en.wikipedia.org/wiki/Quantum_noise  
45 http://en.wikipedia.org/wiki/Detective_quantum_efficiency  

http://en.wikipedia.org/wiki/Quantum_noise
http://en.wikipedia.org/wiki/Detective_quantum_efficiency
http://www.motionmountain.net/research.html
http://en.wikipedia.org/wiki/Quantum_noise
http://en.wikipedia.org/wiki/Detective_quantum_efficiency
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 The spread ensures the compactness of corresponding operators. It also 
reduces the frequency range that is covered by its Fourier transform. 

 The spread function represents a probability density distribution or more in 
detail a quaternionic probability amplitude distribution. 

 Each elementary blur has a Fourier transform 
 The probability distribution is characteristic for the inaccuracy of the 

expectation value of a category of operators, such as the GPS operator, the 
GMS operator, the Fourier transform, the creation/annihilation operators, 
the ladder operators and the number and ladder operators. 

 The ground state is characterized by a typical spread function. 
 The spread represents the probability that virtual items exchange roles with 

actual items. 
 The virtual items represent subspaces of virtual Hilbert spaces that are 

ready to exchange roles with the currently valid Hilbert space. 
 The virtual items represent virtual quantum logical propositions that may 

exchange roles with currently actual propositions. 
 The virtual quantum logical propositions are elements of a virtual 

traditional quantum logic that is ready to exchange roles with the currently 
actual traditional quantum logic. 

 The blur can be interpreted as a spatial quantum noise distribution. 
 The blur can be interpreted as a spatial distribution of crossing switches of 

strands. 
 The blur can be interpreted as a spatial distribution of generations or 

annihilations of quanta. The annihilation of a quant is equivalent to the 
generation of the corresponding anti-quant. 

 The blur works as storage of past, present and future conditions. 
 The blur can be squeezed in order to reflect the importance of momentum 

versus position. 
 A basic (ground) blur has in each direction a symmetric cut. An odd-times 

differentiated blur has in one direction an asymmetric cut. An even-times 
differentiated blur has in each direction a symmetric cut. 

 The blur represents the sticky resistance of the universe against unordered 
changes (= changes of uniform movement in a geodesic). This is proved by 
the existence of inertia46. 

 The blur represents the sticky resistance of the collection of all propositions 
against unordered redefinitions. 

 Blurs can be categorized according to the corresponding particle type. 
 The superposition of blurs forms a field. 
 A particle can be interpreted as the local excitation of this field. 

                                                      
46 Influence; Inertia 
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 During a progression step the blur may get distorted. 
 
In short: Without blur (quantum) physics is impossible! 

Bypassing granularity 
The fact that the Hilbert space is separable means that normal operators have a 

countable number of eigenvalues. That may still be an infinite number, but it 

means that the eigenspace of these operators is a countable set. It is not a 

continuum. It is possible to define a procedure that attaches an increasing 

natural number to each eigenvector and to each eigenvalue. It means that 

functions that are defined using such eigenvalues as parameters or as function 

values cannot be differentiated.  

 

This does not mean that differentiable functions cannot exist in Hilbert space. 

For example, ℓ²is isomorphic with a separable Hilbert space Ң and consists of 

integrable and differentiable functions, but, as with any separable Hilbert space, 

the eigenvalues of operators in ℓ² do not form a closed set. The mentioned 

functions act as Hilbert vectors. They are NOT Hilbert functions. 

 

It is possible to use a trick that enables differentiation of fields that are defined as 

functions with eigenvalues of a normal operator as their parameter values. The 

trick consists of blurring all or a subset of the corresponding eigenvectors. When 

the blur is differentiable, then the field becomes differentiable as well. Still, if the 

blur extends wide enough, all members of an orthonormal base of Hilbert 

vectors touch a value of this field. 

 

The blur does not fit IN the considered separable Hilbert space Ң. It anchors 

onto a vector of this separable Hilbert space Ң. In addition, all members of an 

orthonormal base of the Hilbert space touch a value of the blur. 

 

The fact that differentiable quaternionic functions have an isotropic multi-

dimensional parameter space (in the imaginary part of the quaternions) means 

that in contrast to the eigenspaces of coordinate operators in separable Hilbert 

space Ң this parameter space is coherent. All its dimension related components 

are coupled. Instead in the canonical conjugated coordinate space a decoupling 

exists along not necessarily straight radial lines that decompose rotation free and 

divergence free parts of the quaternionic functions. 
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In our model the real part of quaternions that are applied as parameters appears 

to play a rather minor or at least a quite different role. For that reason, in most 

cases the results of differential geometry are more applicable than the theory of 

regular quaternionic functions. 

 

Differential geometry also decomposes local space into three independent 

coordinate directions. These dimensions are selected according to the divergence 

and rotation properties of the analyzed functionality. This is similar to the 

approach in the Helmholtz or Hodge decomposition theorem. For example, the 

Frenet-Serret frame47 features three mutually perpendicular directions. 

The basic constituent and private field 
There is only one basic type of constituent to Hilbert fields. That constituent type 

is a probability amplitude distribution. A small subset of Hilbert vectors forms 

an elementary Hilbert distribution48. It is possible that a corresponding private 

field is formed from the convolution of a single basic constituent with this 

elementary Hilbert distribution. In that case the Hilbert vectors in this 

distribution are represented by Dirac delta functions. It is also possible that for 

each of the Hilbert vectors the basic constituent differs. In that case the private 

field is the superposition of the basic constituents. In this superposition the 

separate anchor points of the basic constituents must be reckoned. In both cases 

the basic constituents anchor on the Hilbert vectors. 

 

The basic constituent covers the whole Hilbert space. This means that every 

member of an orthonormal base of the Hilbert space touches a value of the 

constituent. Via the anchor points and via the touching values the private fields 

are embedded in separable Hilbert space Ң. The private field represents an 

elementary particle and the physical fields that belong to that particle. The 

anchor points are eigenvectors of a strand operator. The corresponding 

eigenvalues are taken from a background coordinate system, which is in fact the 

eigenspace of a GPS-like operator that resides in the rigged Hilbert space that 

belongs to the separable Hilbert space. The strand operator resides in separable 

Hilbert space and has an equivalent in rigged Hilbert space. In this rigged 

Hilbert space the eigenvectors of the strand operator get their GPS-value. The 

                                                      
47 Path characteristics 
48 Functions and fields; Elementary Hilbert distribution 
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eigenspace of the strand operator contains a set of chains of granules. In each 

chain one granule is singled out and represents the current granule. It forms the 

anchor point of the chain’s basic constituent.  Depending on its type each 

elementary particle owns one or more of these anchor points. 

 

The strand operator possesses an outer horizon. This guarantees its compactness. 

 

The private field is a continuous function with parameters that are taken from a 

selected coordinate system. The field itself is independent of the selection of this 

coordinate system. Thus, only the when the field is taken as a function of the 

coordinates it depends on the coordinate selection. The selected coordinate 

system is related to a corresponding orthonormal base of the Hilbert space. That 

base consists of eigenvectors of a normal operator that resides in separable 

Hilbert space. Its eigenvalues are spread dense in the background coordinate 

system. That background coordinate system corresponds to the eigenspace of a 

GPS-like operator, which resides in rigged Hilbert space. This eigenspace is a 

continuum. 

 

We assume that in the context of this e-paper all private fields are differentiable. 

Due to the fact that the basic constituent has divergence and curl, its dimension 

related components are intermixed. The field can be decomposed in rotation free 

part and a divergence free part. As a consequence it has intermixed dimension 

related Fourier transforms. However by redistributing the eigenvalues of the 

coordinate system a new coordinate system can be established for which the 

decomposition runs along straight coordinate lines. An appropriate reorientation 

of this coordinate system puts the decomposition in the canonical conjugated 

coordinate system along straight radial lines. In this coordinate system the ideal 

form of the Fourier transform can be applied to the considered configuration of 

the field. 

 

When subsequent Hilbert spaces are considered, the private fields move49 

together with the corresponding elementary Hilbert distribution. Apart from a 

linear movement the private fields may rotate. When a given Hilbert distribution 

contains just one Hilbert vector, then the constituent can rotate free around that 

point. If it contains two vectors, then one axis is fixed with respect to the anchor 

                                                      
49 Dynamics 
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points. If it contains three independent vectors, then the basic constituent can 

only rotate together with these anchor points. The movements are stochastic and 

have average characteristics such as position, speed, rotation axis, rotation phase 

and chirality. At each position within the private field these data may differ. 

Also the relative position of the carrying Hilbert vectors with respect to each 

other may change. The basic constituent can be interpreted as the probability 

amplitude distribution whose squared modulus describes the probable location 

of the carrying Hilbert vector. The private field does that for all its anchor points. 

The granularity of the eigenspace of the position operator determines the 

minimal distance that can exist between the carrying vectors. It also describes the 

maximal change in average position that can occur during a single progression 

step. 

 

It is sensible to select the coordinate system such that the members of the 

elementary Hilbert distribution are eigenvectors of the corresponding position 

operator. When a Fourier transform is taken, then this can no longer be valid. In 

that case the members of the elementary Hilbert distribution must be linear 

combinations of the eigenvectors of the canonical conjugate of the original 

coordinate operator. 

 

The Hilbert vectors that are member of a given elementary Hilbert distribution 

can be interpreted as eigenvectors of a strand operator. The corresponding 

eigenvalue is the value of a granule that is the current granule of the chain.  

Covering field 
Physical fields are not identifiable physical items. In our model, physical fields 

are represented by Hilbert fields50. For each Hilbert field, every member of an 

orthonormal base of the Hilbert space corresponds to a value of the field. If for 

this base the set of eigenvectors of a normal operator is selected, then in this way 

this field can be coupled to a coordinate system that is formed by the 

corresponding eigenvalues.  

 
These coordinates are not necessarily physical quantities. The physical coordinates of 

identifiable physical items are granular. They can only change with steps that are equal 

to a Planck length. Coordinates that are eigenvalues of normal operators in separable 

Hilbert space are countable. The set of rational quaternions is countable, but this set is 

                                                      
50Distributions and fields; Hilbert fields  
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not granular. In rigged Hilbert space the eigenspace of a normal operator may be 

uncountable. It means that this space forms a continuum. The set of all imaginary 

quaternions forms a continuum. In a given static status quo, only a countable and 

granular subset of these eigenvalues can be physical quantities. 

 

Each elementary particle corresponds to a private field. A covering field is 

formed by the superposition of these private fields. Each private field that 

belongs to an elementary particle is characterized by a blur function whose 

characteristics are typical for the particle type. That blur function can be 

interpreted as a probability amplitude distribution. This blur function anchors on a 

small number of Hilbert vectors, which together span a Hilbert subspace. These 

vectors form an elementary Hilbert distribution. The number of Hilbert vectors 

on which this elementary Hilbert distribution is based depends on the type of 

the elementary particle. The anchor points correspond to current granules of 

chains that reside in the eigenspace of the strand operator. 

 

The blurs of elementary particles are smooth and fade out at long distances. As a 

consequence the covering field is smooth as well and its squared modulus can be 

considered as a single - very wide spread - probability distribution. The simplest 

form of blur is a Poisson distribution. 

 

Depending on the type of the constituting particles the covering field can be 

divided in subfields. Each type has its own subfield. 

 

Depending on the coordinate operator that is selected for the background 

coordinate system, the parameters of the probability distributions are GPS 

related or GMS related. 

Decomposition 
The imaginary part of a Hilbert field can be decomposed in a rotation free part 

and a divergence free part.  

 

The Helmholtz decomposition splits the static vector field   in a (transversal) 

divergence free part    and a (one dimensional longitudinal) rotation free part 

  .  

 
               

 
(1) 



80 

 

Here   is a scalar field and   is a vector field. In quaternionic terms   and   are 
the real and the imaginary part of a quaternionic field.   is an imaginary 
quaternion.51 
 

The significance of the terms “longitudinal”and “transversal” can be understood 

by computing the three-dimensional Fourier transform of the vector field  , 

which we call  ̃. Next decompose this field, at each point  , into two 

components, one of which points longitudinally, i.e. parallel to  , the other of 

which points in the transverse direction, i.e. perpendicular to  .  

 ̃( )   ̃ ( )   ̃ ( )  

〈   ̃ ( )〉    

   ̃ ( )    

The Fourier transform converts gradient into multiplication and vice versa. Due 

to these properties the inverse Fourier transform gives: 

         

〈    〉    

        

so this split indeed conforms to the Helmholtz decomposition. 

If we take the covering field as the subject, then the above picture no longer fits. 

The covering field is a superposition of a very large number of constituents that 

each bear on their own anchor point. These anchor points disturb the ideal 

picture. As a result the   lines are no longer straight lines but they get curved in 

the neighborhood of anchor points. The curvature of these lines can be used to 

define a local curvature value. 

The decomposition depends on the choice of the selected coordinate system. In 

general such decomposition runs along curved lines. However, for a fixed field 

configuration it is possible to select a coordinate system for which the 

                                                      
51 See next paragraph 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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decomposition runs along straight lines. For this coordinate system it is possible 

to define a globally valid multidimensional Fourier transform. With respect to 

this coordinate system, other coordinate systems possess a locally defined 

curvature. 

Decomposition and quaternionic Fourier transform 

The above relations are the consequence of the properties of the quaternionic 

Fourier transform with respect to differentiation. The quaternionic 

differentiation of a quaternionic field runs; 

 

 ( )  ∇ ( )   ∇   ( )  〈   ( )〉  ∇  ( )      ( )  (    ( )) 

 

The colored   and   signs refer to the sign selections of quaternionic 

multiplication.  

In Fourier space differentiation becomes multiplication with the canonical 

conjugate coordinate and therefore the equivalent equation becomes: 

 

 ̃( )    ̃( )       ̃( )  〈   ̃( )〉     ̃( )     ̃ ( )  (    ̃( )) 

 

For the imaginary parts holds: 

 

 ( )    ∇  ( )      ( )  (    ( )) 

 

 ̃( )      ̃( )     ̃ ( )  (    ̃( )) 

 

For the static part (∇  ( )   ) holds: 

 

 ( )      ( )  (    ( )) 

 

 ̃( )     ̃ ( )  (    ̃( )) 

 

Since  

 
     ( )    

 

and 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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〈     ( )〉 = 0 

 

this conforms to the previous paragraph52. 

Curvature field 
The decomposition properties of the covering field determine the curvature of a 

secondary coordinate system with respect to the original GPS coordinate system. 

That curvature on its turn defines a secondary field which we will call curvature 

field. In this view the curvature field is derived from the covering field, which is 

built via superposition from the private fields of the separate particles. 

 

The curvature that is caused by the blur of an elementary distribution represents 

a private curvature field and is independent of any electric charge (or color 

charge) of the elementary distribution. The curvature of the private curvature 

field is non-negative. It can be thought of being distributed over the domain of 

the private curvature field or its equivalent “charge” value being located at a 

center point. This “charge” is called mass and the center point is the center of 

mass. 

 

At each location the local curvature can also act as a guide for the local direction 

of strands in that environment. 

About the field concept 
It is common practice to treat the EM fields and the gravitation field as different 

and independent subjects. In this interpretation, the gravitation field generates 

the curvature of the coordinate system in which the other fields must operate.  

 

This paper takes a different approach. It puts the reason for the curvature of the 

coordinates in the properties and configuration of the covering field. The 

curvature that exists in this way is used to derive the curvature field. The wave 

function is also interpreted as a constituent of the covering field. In this way it 

also contributes to the curvature field. This picture unifies all fields. 

                                                      
52 http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf ;Formulas:F.104, F.105 

(8) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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Functions in quaternionic Hilbert space 
Due to their definition the Hilbert functions are only defined for an infinite but 

countable number of parameter values that lay dense in quaternion space. The 

Hilbert functions are close to a corresponding differentiable function that resides 

in the corresponding rigged Hilbert space Ħ. In contrast to what holds for the 

Hilbert function, the dimension related components of the differentiable 

function are coupled. 

 

A locatable probability distribution can be described by the convolution of a 

Dirac delta function that corresponds to the Hilbert vector, which represents the 

location of the weighted center of that distribution and a function f(q) that 

describes the distribution relative to that location. In this way a blurred Hilbert 

vector is defined. This means that a blurred Hilbert vector can be closely 

approximated by a Hilbert function that is defined by the combination of a sharp 

locator Hilbert vector and a sharp shape Hilbert vector. We will use the addition 

“Hilbert” to the name of a continuous function for the Hilbert function that 

closely approximates that continuous function. 

Thus, in Hilbert space the representative of the blurred locator Hilbert vector by 

a Hilbert function is a Hilbert blur or more specifically a Hilbert probability 

amplitude distribution.  

 

It is also possible to use an elementary Hilbert distribution53 as the anchor of the 

continuous probability amplitude distribution. This construct may represent an 

elementary particle. It is closely approximated by a private Hilbert field that is 

formed by the superposition of the Hilbert functions that are formed by a small 

set of locator Hilbert vectors and a single shape Hilbert vector. 

 

Pure states54 are characterized by blurred elementary Hilbert distributions. 

Elementary Hilbert distribution 
An elementary Hilbert distribution is a discrete distribution in which a single or 

a small number of Hilbert vectors participate. Together these Hilbert vectors 

span a closed subspace that represents an un-blurred elementary item. 

 

                                                      
53 Functions and fields; Elementary Hilbert distribution 
54 States; State definition; Pure states 
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A unary distribution uses only one Hilbert vector that is eigenvector of the 

position operator. 

A binary distribution uses two Hilbert vectors that are different eigenvectors of 

the position operator. 

A ternary distribution uses three Hilbert vectors that are different eigenvectors 

of the position operator. 

 

If the eigenvectors are selected such that they belong to mutually perpendicular 

imaginary (base) eigenvalues, then the elementary distributions are restricted to 

the mentioned three classes. 

 

When the Hilbert vectors in an elementary distribution are blurred with the 

same spread function then the resulting subfield gets a typical elementary 

spread function. 

Characteristic functions 
Now the position is connected to eigenvectors of the strand operator. The 

physical item is connected to a subspace rather than to a single vector. This 

subspace is spanned by the eigenvectors. So we can use a localizer that 

represents the (weighted) average position as a more precise indicator of the 

position of the physical item. On the other hand physical items are characterized 

by a state.  

 

A state is either a wave function55 or a probability density operator. Both use 

background coordinate position as their parameter. The wave function is a 

probability amplitude distribution. Each wave function can be approximated by 

a Hilbert function. The squared modulus of the wave function indicates the 

probability of finding the position of the localizer.  

 

The probability density operator is a weighted projection operator that is related 

both to the subspace that represents the item and to the position operator. It 

represents the probability that after measuring the position the parameter of the 

density distribution is found as the result. 

Differentiation 
Let  ̌ be the selected coordinate operator. 

                                                      
55 States 
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The nabla operator ∇ is directly related to operator  ̌. Thus, the sign selections 

for  ̌ transfer to the sign selections for operator ∇  Due  o  i n  e e  ion four nab a 
operations exist when the field is held fixed. With a fixed nabla operator there may 
exist four results. 

 

 ( )  ∇ ( )   ∇   ( )  〈   ( )〉  ∇  ( )      ( )  (    ( )) 

 

 ̅( )  ∇  ( )   ∇   ( )  〈   ( )〉  ∇  ( )      ( )  (    ( )) 

 

∇ turns a symmetric field f(q) into an anti-symmetric field ∇f(q) and an anti-

symmetric field into a symmetric field. 

 

The fact that ∇ ( )    means that  ( ) is constant or that at location q function 

 ( ) is in a maximum, a minimum, a saddle point or an asymmetric plateau. The 

consequence of this restriction is: 

 

∇   ( )   〈   ( )〉  ∇  ( )      ( )   (    ( )) 

 

The fact that ∇  ( )    leads to different equations. 

 

∇   ( )   〈   ( )〉  ∇  ( )      ( )   (    ( )) 

 

The quaternionic Laplace operator Δ is defined by  

 

 ( )     ( )  ∇ ∇ ( )  ∇∇  ( )  ∇ 
  ( )     ( ) 

 

A quaternionic function that fulfills   ( )    is a harmonic function. 

A quaternionic function that fulfills    ( )    is a spatial harmonic function. 

  

(1) 

(2) 

(3) 

(4) 

(5) 
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Canonical conjugate 
Remember that the operator  ̌ that resides in rigged Hilbert space Ħ is defined 

such that the decomposition of the covering field runs along straight lines. At 

least we suppose that for the environment that we investigate an operator exists 

that does this with sufficient accuracy. First we restrict to a selected longitudinal 

direction. This restricts to a complex subspace of the full quaternionic number 

space. 

 

The canonical conjugate of the operator  ̌ is the operator  ̌. It is defined by using 

a complex subspace of a quaternionic number space that is used to specify inner 

products. It is defined by specifying the function that defines the inner products 

of the eigenvectors |q> of  ̌ and |p> of  ̌ with real eigenvalues q and p. 

 

         ̃( )             ( )       (       ) 

 

The constant ħ is Planck’s constant and relates to the granularity of the 

eigenspaces. The imaginary base number k belongs to a complex subspace of the 

quaternionic number space.  

 

Due to its specification, the canonical conjugate operator  ̌ can be interpreted as 

a generator of displacement of the eigenvalues of  ̌. For this purpose the 

considered function  ( ) must be differentiable. 

 

 ̌         
 

  
 

 

    ̌           
 

  
 ( ) 

 

This interpretation of the operator  ̌ shows that the complex canonical 

conjugate shown here corresponds with the imaginary direction in which the 

differentiated function  ( ) is rotation free. 

 

The definition leads to the commutator: 

 

   ̌  ̌     ̌ ̌   ̌ ̌        

 

(1) 

(2) 

(3) 

(4) 
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The sign selections of  ̌ depend on the sign selections of  ̌. 

Complex Fourier transform  

The specification of the complex canonical conjugate also defines a complex 

Fourier transform.  

 

Also here the imaginary direction must correspond to the direction in which 

the analyzed function is rotation free. 

 

Let |f> be the generator of a quaternionic function that is generated with the help 

of the eigenvectors and eigenfunctions of operator  ̌ with canonical conjugate  ̌. 

 

The Fourier transform Ƒȋ = Uqp converts the base {|q>}q into the base {|p>}p. The 

inverse Fourier transform Upq does the reverse. These transforms reside in rigged 

Hilbert space Ħ. 

 

                   ( )     ∑(           )

 

  

 
 ∑    (     )      

 
   ∑             

 

  ∑          

 

 

 

         ∑(           )

 

 

 

   ∑          

 

 

 

The complex Fourier transform of a symmetric (complex) function is a cosine 

transform. It is a real function. 

 

The complex Fourier transform of an anti-symmetric (complex) function is a sine 

transform. It is an imaginary function. 

(1) 

(2) 
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Through complex Fourier transformation the operators  ̌ and  ̌ exchange roles. 

 

The Hilbert function  ̃( )        denotes the Fourier transform of the Hilbert 

function  ( )        

Heisenberg’s uncertainty 

The Heisenberg’s uncertainty principle is a consequence of the definition of the 

combination of the canonical conjugate and the definition of the Hilbert field. It 

means that a small spread of q values goes together with a large spread of p 

values and vice versa. 

 

Δq·Δp ≥ ħ/2 

 

A squeezed coherent state56 is any state such that the uncertainty principle is 

saturated. That is: 

 

Δq·Δp = ħ/2 

 

See: http://en.wikipedia.org/wiki/Squeezed_coherent_state. 

For animations: http://gerdbreitenbach.de/gallery/.  

The quaternionic displacement generator 

The formula that defines  ̌ as a complex displacement generator: 

 

    ̌           
 

  
 ( ) 

 

can more generally be written as a quaternionic displacement generator for 

eigenvalues of operator  ̌. 

 

  | ̌        ∇   |       ∇  
 ( )  

 

    ∫∇            

 

 ∫            

 

 

                                                      
56 Functions and fields: Quaternionic Fourier transform split: Functions invariant under 

Fourier transform: Coherent states 

(1) 

(2) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Squeezed_coherent_state
http://gerdbreitenbach.de/gallery/
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This means that for all   and its canonical conjugated   holds: 

 
∇                

 

Here     is the eigenvector belonging to eigenvalue   and     is the 

eigenvector belonging to eigenvalue  . ∇  represents quaternionic differentiation 

with respect to eigenvalues of operator  ̌. 

 

It is shown57 that locally the operator ∇  splits field   ( ) in a longitudinal 

rotation free part and a transverse divergence free part. 

Idealized field conditions 

Only in a complex subspace of the quaternionic number space the relation (3) 

between the canonical conjugates   and   can be simplified to: 

 

       e  (    
 

 
)) 

 

The longitudinal direction runs in   space. The above simplification can only be 

valid when the longitudinal direction runs along straight radial lines. This 

simplification also enables the specification of a complex Fourier transform that 

is based on this formula (1). 

 

It behaves as if the analyzed function is constant in dimensions that belong to 

other quaternionic imaginary directions. It is well-known that the Fourier 

transform of a constant delivers a Dirac delta function. Thus, the complex 

longitudinal Fourier transform equals a cut through the quaternionic Fourier 

transform of the full 3D imaginary quaternionic function or field. 

 

This is similar to the cut through the 2D optical transfer function that is obtained 

when the Fourier analysis of the imaging device is confined to the image of a 

thin slit. 

 

The configuration of the analyzed field determines whether the conditions are 

sufficiently ideal. Otherwise the field configuration induces at every location a 

local curvature of the actual background coordinate system that is defined using 

                                                      
57 Decomposition: Decomposition and quaternionic Fourier transform 

(3) 

(1) 



90 

 

operator  ̌ The eigenspace of the actual operator  ̌ is curved with respect to the 

eigenspace of the idealized operator  ̌. 

 

The position operator  ̌ is defined such that when the analyzed function or field 

is specified with  ̌ coordinates the longitudinal direction is stationary. It runs 

along straight radial lines. The construction of such an idealized position 

operator is possible for a given configuration of the analyzed field. When the 

analyzed field is the static covering field, then it holds for that field and not for a 

part of this field or the covering field that belongs to another static status quo. 

 

In this paper, when nothing else is indicated, we confine Fourier analysis to the 

ideal quaternionic Fourier transform. When nothing is indicated we presume  ̌ 

coordinates and analysis of the covering field. 

 

Formula (3) of the previous paragraph specifies the relation between canonical 

conjugated coordinates when field conditions are not idealized. 

Affine space 
The eigenvectors of a normal operator form an orthonormal base of the 

separable Hilbert space Ң. This orthonormal base defines an affine unit sphere. 

Apparently, the correspondence with a  ̌ type GPS operator that is equipped 

with an origin in its eigenspace is not natural thing for this affine Hilbert unit 

sphere. On the other hand, like this Hilbert unit sphere, the imaginary 

eigenspace of the  ̌ type GPS operator has no preferred direction. 

 

If a field covers all vectors of an orthonormal base, then it covers all of Hilbert 

space. The orientation along the longitudinal direction of the (covering) field is 

not natural for the Hilbert space, but it is natural for the combination of the field 

and a position operator that keeps the longitudinal lines straight. Apart from a 

shift of the origin, the position operator  ̌ is fully determined by the properties 

of the field. 

 

The origin of the eigenspace of the  ̌ operator may be interpreted as the position 

of the observer. That selection would consume the last freedom for this operator. 

 

There exists a point to point relation between an arbitrary  ̌ type GPS operator 

and the  ̌ operator. This point to point relation defines the curvature field. 
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Quaternionic Fourier transform split 
The longitudinal Fourier transform represents only part of the full quaternionic 

Fourier transform. It depends on the selection of a radial line  ( ) in p space that 

under ideal conditions runs along a straight line. 

 

  ( ( ))    ( ( )  ( )) 

 

Or 

 

  ( ( ))    (  ( ))  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

 ( ( ))    ̃( ) 

 

The inverse Fourier transform runs: 

 
   ( ̃( ))    ( ) 

 

The split in longitudinal and transverse Fourier transforms corresponds to a 

corresponding split in the multi-dimensional Dirac delta function. 

 

We consider a field  ( ) that equals the quaternionic differentiation of another 

field   with respect to a selected coordinate system  .  

 
 ( )   ∇   

 

We use the results of the paragraph on decomposition. We only use the static 

and imaginary version of field  ( ). 

 

For the static imaginary part  ( ) holds: 

 

 ( )      ( )  (    ( ))    ( )    ( ) 

 

In Fourier space differentiation becomes multiplication with the canonical 

conjugate coordinate   and therefore the equivalent equation becomes: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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 ̃( )    ̃ ( )  (    ̃( ))   ̃ ( )   ̃ ( ) 

 

Since  

 
     ( )        ( )    

 

and 

 
〈     ( )〉    〈    ( )〉    

 

Now we take 

 

  | ̌        ∇   |       ∇  
 ( )     ( ) 

 

   ∫            

 

 

 

The static imaginary part is 

 

  | ̌            |          
 ( )     ( ) 

 

    (∫            

 

)  ∫   (           )

 

 

 

 ∫  (            )

 

 ∫  (            )

 

 

 

 ∫  (       ̃ ( ))

 

 ∫  (       ̃ ( ))

 

 

 

The left part is the longitudinal inverse Fourier transform of field  ̃( ). 

The right part is the transverse inverse Fourier transform of field  ̃( ). 

For the Fourier transform of  ( ) holds the split: 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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 ̃( )   ∫   (        ( ))

 

 ∫  (        ( ))

 

 

 

  ∫   (       ( ))

 

 

 

The longitudinal direction is a one dimensional (radial) space. The 

corresponding transverse direction is tangent to a sphere in 3D. Its direction 

depends on the field  ( ) or alternatively on the combination of field   and the 

selected coordinate system  . 

Alternative transverse plane 
The Cayley-Dickson construction, as well as Warren Smith’s construction 

formula shows that the transverse part can be considered as a complex number 

space multiplied with a fixed imaginary quaternionic base number. The selection 

of the imaginary base number i is arbitrary as long as it is perpendicular to k. 

The resulting plane is spanned by axes i and ik. When base number i is divided 

away, then a normal complex number space results.  

Also here a complex Fourier transform can be defined in a way that is similar to 

the longitudinal Fourier transform. It must be reckoned that the sign selections 

for these directions differ.  

Alternative approach to Fourier transform 
The following draws from the work of S. Thangavelu58. 
 

Let us take the non-abelian group ℍ1 which is ℝ ⊗ ℝ ⊗ℝ with the group law 

 

(     )(        )    (                             ) 
 

Then it is clear that ℍ1 is non-abelian and the Lebesgue measure dx dy dt is both 

left and right invariant Haar measure on ℍ1. With this measure we can form the 

Hilbert space L2(ℍ1). Let Γ = ℤ ⊗ ℤ ⊗ ℤ. Then it is easy to check that Γ is a 

subgroup of ℍ1 so that we can form the quotient M = Γ/ℍ1 consisting of all right 

cosets of Γ. Functions on M are naturally identified with left Γ-invariant 

functions on ℍ1. As the Lebesgue measure dx dy dt is left Γ-invariant we can 

                                                      
58 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(1) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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form L2(M) using the Lebesgue measure restricted to M. As a set we can identify 

M with [0, 1)3 and we just think of L2(M) as L2([0, 1)3). 
 

Fourier expansion in the last variable allows us to decompose L2(M) into a direct sum of 

orthogonal subspaces. Simply define ℋk to be the set of all f ∈L2(M) which satisfy the 

condition 

 

 (         )    e  (         )  (     ) 
 

Then ℋk is orthogonal to ℋj whenever k ≠ j and any f ∈ L2(M) has the unique expansion 

 

     ∑   

 

    

     ∈  ℋ  

 

In quaternionic terms, the split sees ik as imaginary quaternion k and the quaternionic 

Hilbert space is split in components according to the imaginary direction of k, where the 

choice is between three mutually perpendicular directions.  

 

For the moment, we are mainly interested in ℋ1 which is a Hilbert space in its own right. 

It is interesting to note that functions in ℋ1 are also invariant under the left action of Γ. 
 

Our next example of a unitary operator is the following. Consider the map J : ℋ1 → ℋ1 

given by  

 

 (     )    (            ) 

 

  (     )    (           ) 

 

         

 
  (     )     (             )    (        ) 

 
       

 
 (     )    (     ) 

 
   (     )     ( (      ))     (            ) 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Weil-Brezin transform  

Next consider the Weil-Brezin transform V: 

 

   (     )       (       ) ∑   (     ) e  (         )

 

 

 

∫     (     )     ∫ ∑    (     )  
   

    

 

   

 

   

   

 

∭    (     )            ∫    ( )    
 

 

 

 

 

  

V is unitary.  

See also Zak transform 

Fourier transform 

We define the Fourier transform F by: 

 

           

 

         ; for every   ∈    (ℝ)  

     ( )     (  ); for almost every   ∈  ℝ 

 ‖   ‖    ‖ ‖  

 

For   ∈    (ℝ)     (ℝ) the Fourier transform is given by 

 

 f( )    ∫ f( )  e  (       )  
  ∈ ℝ

 

 

If we further assume that    ∈    (ℝ) then for almost every x we have 

 

 f( )    ∫  f( ) e  (         )  
  ∈ ℝ

 

 

Functions invariant under Fourier transform 
In this section we confine to a complex part of the Hilbert space. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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See http://en.wikipedia.org/wiki/Hermite_polynomials.  

There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

  
    ( )  (  ) e  (   ) 

  

   
 e  (    ). 

  

 

2. The physicist’s Hermite polynomials 

 

  
    ( )  (  ) e  (  )

  

    
 e  (   )

 e  (   ) (  
 

  
)  e  (    ) 

 

These two definitions are not exactly equivalent; either is a rescaling of the other: 

 

  
    ( )         

    
( √ ) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

The Gaussian function φ(z) defined by  

 
 ( )       (     ) 

 

is an eigenfunction of F. It means that its Fourier transform has the same form. 

As        any λ in its spectrum   ( )  satisfies λ4 = 1: Hence,  

 

  ( )                .  

We take the Fourier transform of the expansion: 

   (                 )     ∑    (     )   ( )  
    

 

   

 

First we take the Fourier transform of the left hand side: 

  
    ( )

        
    
( √ ) 

(1, 2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Hermite_polynomials
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√  
 ∫    (       )    (    

              )
 

    

    

     (     
                

 ) 

   ∑    (     
 )   (  ) (    )

    

 

   

 

The Fourier transform of the right hand side is given by 

 

√  
 ∑  ∫    (       )     (    

 )   ( )  
    

 

    

 

   

    

Equating like powers of c in the transformed versions of the left- and right-hand 

sides gives 

 

√  
 ∫ e  (       )     (    

 )   ( )  
    

 

    
     

  (  )  e  (     
 )   (  ) 

  

  
 

Let us define the Hermite functions   ( ) 

 
  ( )                e  (    

 )   ( )  

 
              (  )

  

 

with suitably chosen cn so as to make 

 
‖  ‖

       
 

   
 

√    √ 
 

 

The importance of the Hermite functions lie in the following theorem. 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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“The Hermite functions ψn; n  N form an orthonormal basis for L2(R)” 

 

Consider the operator  

 

      
  

   
        

 

Apply this to ψn(z): 

 
    ( )   (     )   ( )  

 

Thus, ψn is an eigenfunction of H. 

 

Let f         be any of the Hermite functions. Then we have 

 

 ∑  (     )  e  (         (   ))

 

    

 

 

  (  )   ∑  (     )    (         )

 

    

 

 
Proof: As  

 

           
 

the equation  

 

     (  )   
 

translates into 

 

   (       )   (  )    (       ) 

 

With the definition of V and t = xy: 

 

   (     )       (       ) ∑   (     )    (         )

 

 

 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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QED. 

 

The vectors |ψn> are eigenvectors of the Fourier transform operator with 

eigenvalues (-k)n. The eigenfunctions ψn(x) represent eigenvectors |ψn> that span 

the complex Hilbert space Ңk. 

For higher n the central parts of   ( ) and    ( ) 
  become a sinusoidal form. 

 
A coherent state59 is a specific kind of state60 of the quantum harmonic oscillator 

whose dynamics most closely resemble the oscillating behavior of a classical 

harmonic oscillator system. The ground state is a squeezed coherent state61. 

  

                                                      
59 http://en.wikipedia.org/wiki/Coherent_state 
60 States 
61 Canonical conjugate: Heisenberg’s uncertainty 

http://en.wikipedia.org/wiki/Coherent_state


100 

 

Ladder operator 

The Hermite functions    represent Fock states62. 

 

Boson ladder operators are characterized by 

 

       √          

 

        √            

 

  
 

√ 
(  
 

  
    )      ̌√

 

       
  ̌√

   

   
 

 

   
 

√ 
(   

 

  
    )     ̌√

 

       
  ̌√

   

   
 

 

In the Heisenberg picture, the operators have the following time dependence: 

 

 ( )   (  ) e  (     (    )) 

 

  ( )    (  ) e   (    (    )) 
 

We can also define an enumeration operator N which has the following 

property: 

 

         

 
                

 

In deriving the form of   , we have used the fact that the operators X and Px, 

which represent observables, are Hermitian. These observable operators can be 

expressed as a linear combination of the ladder operators as 

 

                                                      
62 http://en.wikipedia.org/wiki/Fock_state 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Fock_state
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 ̌( )    √
 

     
   (  ( )   ( )) 

 

 ̌( )      √          (  ( )   ( )) 

 

The  ̌ and  ̌ operators obey the following identity, known as the canonical 

commutation relation: 

 

[ ̌  ̌]       

 

Using the above, we can prove the identities 

 

        (        )       (     ) 

 

           

 

Now, let |fE>denote an energy eigenstate with energy E. The inner product of 

any ket with itself must be non-negative, so 

 

                         
              

 

Expressing     in terms of the Hamiltonian H: 

 
     (  (   )     )       (  (   )     )      

 

so that 

 

         .  

 

Note that when              (is the zero ket i.e. a ket with length zero), the 

inequality is saturated, so that  

 
         

 

It is straightforward to check that there exists a state satisfying this condition; it 

is the ground state 

 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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                   (     )  

 

Using the above identities, we can now show that the commutation relations of 

  and    with H are: 

 
              

 
[    ]          

 

Thus, provided          is not the zero ket,  

 
                            

 
                   

 
                    

 
  (       )        

 

Similarly, we can show that 

 

             (       )   
      

 

In other words,   acts on an eigenstate of energy E to produce, up to a 

multiplicative constant, another eigenstate of energy E – ħ ω, and      acts on an 

eigenstate of energy E to produce an eigenstate of energy E + ħ ω. For this 

reason, a is called a "lowering operator", and     "raising operator". The two 

operators together are called ladder operators. In quantum field theory,   and 

   are alternatively called "annihilation" and "creation" operators because they 

destroy and create particles, which correspond to our quanta of energy. 

Given any energy eigenstate, we can act on it with the lowering operator  , to 

produce another eigenstate with ħ ω-less energy. By repeated application of the 

lowering operator, it seems that we can produce energy eigenstates down to E = 

−∞. However, this would contradict our earlier requirement that E ≥ ħ ω/2.  

Ground state 

Therefore, there must be a ground-state energy eigenstate, which we label 

|fground>, such that 

(16) 

(17) 

(18) 

(19) 

(20) 
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                    (zero ket). 

 

In this case, subsequent applications of the lowering operator will just produce 

zero kets, instead of additional energy eigenstates. Furthermore, we have shown 

above that 

 
              (     )           

 

Finally, by acting on           with the raising operator and multiplying by 

suitable normalization factors, we can produce an infinite set of energy 

eigenstates  

 

                                ,  

 

such that 

 
              (    )       

 

which matches the energy spectrum. 

This method can also be used to quickly find the ground state wave function of 

the quantum harmonic oscillator.  

Indeed  

 
                   

 

becomes 

 

       ( )    ( )                     
 

   
 
 

  
   ( ) 

 

so that 

 

    ( )    ( )  
 

   
         n(  ( ))    

   

  
            

 

After normalization this leads to the following position space representation of 

the ground state wave function. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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  ( )    √
   

  

 
    
   
  
    

 

Coherent state 

A coherent state is a specific kind of state63 of the quantum harmonic oscillator64 

whose dynamics most closely resemble the oscillating behavior of a classical 

harmonic oscillator system.  

 

The coherent state |α> is defined to be the 'right' eigenstate of the annihilation 

operator  . Formally, this reads: 

 
             

 

Since   is not Hermitian, α is a hyper complex number that is not necessarily 

real, and can be represented as 

 
      e   (   ) 

where   is a real number.     is the amplitude and   is the phase of state |α>. 

This formula means that a coherent state is left unchanged by the annihilation or 

the creation of a particle. The eigenstate of the annihilation operator has a 

Poissonian65 number distribution A Poisson distribution is a necessary and 

sufficient condition that all annihilations are statistically independent. 

The coherent state's location in the complex plane (phase space66) is centered at 

the position and momentum of a classical oscillator of the same phase θ and 

amplitude. As the phase increases the coherent state circles the origin and the 

corresponding disk neither distorts nor spreads. The disc represents Heisenberg’s 

uncertainty. This is the most similar a quantum state can be to a single point in phase 

space. 

                                                      
63States  
64 Functions invariant under Fourier transform 
65 http://en.wikipedia.org/wiki/Poissonian 
66 http://en.wikipedia.org/wiki/Phase_space 

(8) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
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Phase space plot of a coherent state. This shows that the uncertainty (blur) in a 

coherent state is equally distributed in all directions. The horizontal and vertical 

axes are the X and P quadratures of the field, respectively. Oscillations that are said 

to be in quadrature, if they are separated in phase by π/2 radians. The red dots on the 

x-axis trace out the boundaries of the quantum noise. Further from the origin the 

relative contribution of the quantum noise becomes less important. 

 

The representation of the coherent state in the basis of Fock states is: 

 

     e  (      )∑
  

√  

 

   

      e  (      ) e  (    )      

 

where |n> are Hermite functions (eigenvectors of the Hamiltonian). This is a 

Poissonian distribution. The probability of detecting n photons is: 

 

 ( )  e  ( 〈 〉)
〈 〉 

  
 

 

Similarly, the average photon number in a coherent state is  

 

(3) 

(4) 
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〈 〉  〈   〉        
 

and the variance is 

 

(  )     (   )        

Squeezing 

The squeezing operator can squeeze a state more or less in the direction of either 

P or Q. The operator is defined as: 

 

  ( )  e   ( (       )) 

 
    e   (   ) 

 

The ground state is a saturated squeezed coherent state where  

 

      an  Δq·Δp = ħ/2 

Base transforms 

Now we have discovered the following base transforms: 

Position⟺momentum: 

 

        
 

√   
 e   (
     

 
) 

 

Position⟺Fock state: 

 

        √
  

  

  

√     
 e   ( 

  

  
   )  ( √

  

 
) 

 

Fock state⟺coherent state: 

 

        
 

√  
    e   (      ) 

(5) 

(6) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Squeezing_operator
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Harmonic oscillating Hilbert field  

Take the ingredients of the complex harmonic oscillator and interpret these as 

similar ingredients of a harmonic oscillating Hilbert field that is based on a 

Gaussian blur. The blur delivers the conditions of the ground state. 

 

  ( )    √
   

  

 
    
   
  
    

 

This means that the ground state corresponds with a Gaussian charge 

distribution. Higher states correspond to a blurred current. We indicate this 

current as vector potential  . Its time derivative  ̇ is perpendicular to  . The 

other ingredients are P, Q,   and   . 

 

 ⟺       √
 

   
(     

 
) 

 

     
 
   

 

 ⟺   ̇    ̇  √
   

 
(      

 
) 

 

     
 
   

 

 ⟺            √
  

  
(  

 ̇

 
)  √

  

  
(      

 ̇ 

 
) 

 

  ⟺      
 
     

 
 √
  

  
(  

 ̇

 
)  √

  

  
(      

 ̇ 

 
) 

 

The   field and the  ̇ field are mutually perpendicular. If both fields are 

subjected to a synchronized quantum harmonic oscillation, then an oscillating 

wave results. We take the same ground state for each of the fields. These ground 

states correspond to a spherical symmetric Gaussian blur.  

 

When bounds of the cavity are removed or relaxed, then the higher order modes 

may differ in a phase shift. The sign selections set the eigenvalues of the spin 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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operator. The result is an elliptically polarized wave that moves in directions 

along    ̇.  

 

  no longer stands for a single position, but instead for a Gaussian distribution 

of positions. Similarly  ̇ does not stand for a single moving particle, but for a 

moving Gaussian cloud of virtual particles. 

 

 
 

Annihilator and creator 

The annihilator   and the creator    are examples of boson operators. This is a 

consequence of their commutation relations. 

 

         

 

        ̇ 

 
            ̇ 

 

             ̇ 

 

[ ( )   ( )]        

 
  ( )  ( )    

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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[  ( )   ( )]    

 

The corresponding fermion operators are: 

 

{ ( )   ( )}        

 
  ( )  ( )    

 

{  ( )   ( )}    

 

The fermion operators can be represented by imaginary quaternionic base 

numbers: 

 

       
 

       
 

    (   ) 

 

     (   ) 
 

(    ) (    )                  

 

             

Rotational symmetry 

In case of rotational symmetry in the imaginary part of quaternion space, the 

exponential function must be replaced by a Bessel function. The corresponding 

Fourier transform then becomes a Hankel transform67. 

The spherical harmonics are eigenfunctions of the square of the orbital angular 

momentum operator        and therefore they represent the different 

quantized configurations of atomic orbitals. 

                                                      
67 http://en.wikipedia.org/wiki/Hankel_transform 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

http://en.wikipedia.org/wiki/Hankel_transform
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Quantized
http://en.wikipedia.org/wiki/Atomic_orbitals
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Spherical harmonics 

The following draws from the work of S. Thangavelu68. 

In this subsection we look for eigenfunctions of the Fourier transform which 

have spherical symmetry. As in the one dimensional case we consider functions 

of the form  

 
 ( )    ( ) e  (      ) 

 

This will be an eigenfunction of   if and only   satisfies 

 

∫  (      ) e  (       )   
ℝ 

      ( ) 

 

Here in quaternion terms   an     represent two mutually perpendicular 

imaginary numbers while   an    are parallel. Thangavelu uses complex 

numbers. We keep as close as is possible to his text. 

 

If (2) is true for all  ∈ ℝ  then we should also have 

 

∫  (   ) e  (       )   
ℝ 

      (  ) 

 

Integrating in polar coordinates the integral on the left is 

 

∫       (∫  (       )   ( )
    

)
 

   

    (     )         

 

where   ( ) is the normalised surface measure on the unit sphere     . 

 

If   is homogeneous of degree m then  

 
 (   )       ( )  

 

and hence for such polynomials the equation 

 

                                                      
68 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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∫  (   ) e  (       )   
ℝ 

         (  ) 

 

will be satisfied for 

 
    (  )   

 

if   has the mean value property 

 

∫  (       )  ( )   ( )
    

 

 

Such functions are precisely the harmonic functions satisfying  

 
       

 

Thus we have proved: 

 

Let  

 
 ( )    ( )    (       ) 

 

where   is homogeneous of degree m and harmonic. Then  

 
      (  )    

 

Let    stand for the finite dimensional space of homogeneous harmonic 

polynomials of degree m:  

 

The above theorem says that the finite dimensional subspace of   (ℝ ) 

consisting of functions of the form 

 
 ( ) e  (       )    ∈      

 

is invariant under the Fourier transform. 

We claim that the following extension is true. 

Let  

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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  ∈    (ℝ   

 

be of the form  

  
 ( )     ( ) (   )     ∈      

Then  

 

   ( )     ( ) (| |) 
 

Thus the subspace of functions of the form  

 
 ( )     ( ) (   )     ∈      

 

is invariant under the Fourier transform. 

 

Let  
  ∈    (ℝ )  

 

be of the form  

 
 ( )     ( ) (   )     ∈      

 

Then  

 
   (f)   ( i)

             

 

The above result is known as the Hecke-Bochner formula for the Fourier 

transform.  

 

We conclude our discussion on invariant subspaces with the following result 

which shows that the Fourier transform of a radial function reduces to an 

integral transform whose kernel is a Bessel function. This relates to the Hankel 

transform. 

 

Let    stand for the Bessel function of type        

If  

 
 ( )     (   )  

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

http://en.wikipedia.org/wiki/Hankel_transform
http://en.wikipedia.org/wiki/Hankel_transform
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is radial and integrable then 

  

   (f)( )      ∫  (r)  
  
 
  
(    r    )

(    r    )
 
 
  
 r     

 

 

   

Spherical harmonics eigenvalues 

See: http://en.wikipedia.org/wiki/Spherical_harmonics for more details. 

Spherical harmonics are best presented in polar coordinates. There exists a 

corresponding polar Fourier transform. This Fourier transform also has invariant 

functions. Like in the rectangular case, they form the basis for spherical 

harmonics. 

 

Laplace's equation in spherical coordinates is: 

 

∇         
 

  
 (   

  

  
)   

 

     ( )
 
 

  
 ( in( ) 

  

  
)   

 

      ( )
 
   

   
     

 

Try to find solutions in the form of the eigenfunctions of the Fourier transform.  

By separation of variables, two differential equations result by imposing 

Laplace's equation: 

 
 (     )    ( )   (   ) 

 

   
 

  
 (  
  

  
)     

 
 

  in( )

 

  
 ( in( )

  

  
)   

 

   in ( )

   

   
       

 

The second equation can be simplified under the assumption that   has the form  

 
 (   )    ( ) ( ) 

 

Applying separation of variables again to the second equation gives way to the 

pair of differential equations 

 

(21) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Spherical_harmonics
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 ( )

   ( )

   
       

 

   in ( )   
 in( )

 ( )

 

  
[ in ( )

  

  
]        

 

for some number m. A priori, m is a complex constant, but because   must be a 

periodic function whose period evenly divides      is necessarily an integer 

and   is a linear combination of the complex exponentials e  (      ). The 

solution function  (   ) is regular at the poles of the sphere, where      . 

Imposing this regularity in the solution   of the second equation at the 

boundary points of the domain is a Sturm–Liouville problem69 that forces the 

parameter   to be of the form    (   ) for some non-negative integer with 

     ; this is also explained below in terms of the orbital angular momentum. 

Furthermore, a change of variables        transforms this equation into the 

Legendre equation, whose solution is a multiple of the associated Legendre 

function70.   
 (   ( )). Finally, the equation for R has solutions of the form 

 ( )                 ; requiring the solution to be regular throughout ℝ  

forces    . 

Here the solution was assumed to have the special form  

 
 (   )    ( )  ( )  

 

For a given value of  , there are      independent solutions of this form, one 

for each integer m with       . These angular solutions are a product of 

trigonometric functions, here represented as a complex exponential, and 

associated Legendre functions: 

 
  
 (   )     e  (     )   

 (   ( )) 

 

which fulfill 

 
   ∇   

 (   )      (     )   
 (   ) 

 

                                                      
69 http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem 
70 http://en.wikipedia.org/wiki/Associated_Legendre_function 

(7) 

(8) 

(9) 

(10) 

http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem
http://en.wikipedia.org/wiki/Associated_Legendre_function
http://en.wikipedia.org/wiki/Associated_Legendre_function
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Here   
  is called a spherical harmonic function of degree   and order m,    

  is 

an associated Legendre function, N is a normalization constant, θ represents the 

colatitude and φ represents the longitude. In particular, the colatitude71 θ, or 

polar angle, ranges from 0 at the North Pole to π at the South Pole, assuming the 

value of π/2 at the Equator, and the longitude72  , or azimuth73, may assume all 

values with       . For a fixed integer  , every solution  (   ) of the 

eigenvalue problem 

 

   ∇        (     )   
 

is a linear combination of   
 . In fact, for any such solution,     (   ) is the 

expression in spherical coordinates of a homogeneous polynomial that is 

harmonic, and so counting dimensions shows that there are      linearly 

independent of such polynomials. 

The general solution to Laplace's equation in a ball centered at the origin is a 

linear combination of the spherical harmonic functions multiplied by the 

appropriate scale factor   , 

 

 (     )    ∑ ∑   
     

 (   )

 

    

 

   

 

 

where the   
  are constants and the factors·     

  are known as solid harmonics74. 

Such an expansion is valid in the ball 

 

           i 
   
        

         

 

Orbital angular momentum 

In quantum mechanics, Laplace's spherical harmonics are understood in terms of 

the orbital angular momentum75 

 

                                                      
71 http://en.wikipedia.org/wiki/Colatitude 
72 http://en.wikipedia.org/wiki/Longitude 
73 http://en.wikipedia.org/wiki/Azimuth 
74 http://en.wikipedia.org/wiki/Solid_harmonics 
75 http://en.wikipedia.org/wiki/Orbital_angular_momentum 

(11) 

(12) 

(13) 

http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Azimuth
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
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The spherical harmonics are eigenfunctions of the square of the orbital angular 

momentum 

 

         ∇    (  
 

  
    )   

 

  
 

 

  
 

 in( )
 
 

  
  in( )

 

  
  

 

 in ( )
 
  

   
 

 

Laplace's spherical harmonics are the joint eigenfunctions of the square of the 

orbital angular momentum and the generator of rotations about the azimuthal 

axis: 

 

          ( 
 

  
   
 

  
)      

 

  
 

 

These operators commute, and are densely defined self-adjoint operators on the 

Hilbert space of functions ƒ square-integrable with respect to the normal 

distribution on ℝ : 

 

(   ) 
 
 ∫   ( )  

ℝ 
e  (       )      

Furthermore,    is a positive operator. 

If   is a joint eigenfunction of    and   , then by definition 

 
           

 
           

 

for some real numbers m and  . Here m must in fact be an integer, for   must be 

periodic in the coordinate   with period a number that evenly divides    . 

Furthermore, since 

 
       

      
      

  

 

and each of           are self-adjoint, it follows that     . 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Denote this joint eigenspace by     , and define the raising and lowering 

operators by 

 
               

 
              

 

Then    and    commute with   , and the Lie algebra generated by          is 

the special linear Lie algebra, with commutation relations 

 
            

 
             

 
              

 

Thus                  (it is a "raising operator") and                  (it is a 

"lowering operator"). In particular,   
                must be zero for k 

sufficiently large, because the inequality      must hold in each of the 

nontrivial joint eigenspaces. Let  ∈      be a nonzero joint eigenfunction, and 

let k be the least integer such that 

 

  
         

 

Then, since 

 

         
     

      

 

it follows that 

 

         
       (   (     )    (     ))   

 

Thus      (   ) for the positive integer        . 

Spherical harmonics expansion 

The Laplace spherical harmonics form a complete set of orthonormal functions 

and thus form an orthonormal basis of the Hilbert space of square-integrable 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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functions. On the unit sphere, any square-integrable function can thus be 

expanded as a linear combination of these: 

 

 (   )  ∑ ∑   
   
 (   )

 

    

 

   

 

 

This expansion holds in the sense of mean-square convergence — convergence 

in L2 of the sphere — which is to say that 

 

 i 
   
∫ ∫ | (   )  ∑ ∑   

   
 (   )

 

    

 

   

|
 

 

 

 in( )       
  

 

 

 

The expansion coefficients are the analogs of Fourier coefficients, and can be 

obtained by multiplying the above equation by the complex conjugate of a 

spherical harmonic, integrating over the solid angle  , and utilizing the above 

orthogonality relationships. This is justified rigorously by basic Hilbert space 

theory. For the case of orthonormalized harmonics, this gives: 

 

  
  ∫ (   )

 

  
  (   )   ∫   ∫     in ( )

 

 

  

 

  (   )   
  (   ) 

 

If the coefficients decay in ℓ sufficiently rapidly — for instance, exponentially — 

then the series also converges uniformly to ƒ. 

A real square-integrable function ƒ can be expanded in terms of the real 

harmonics Yℓm above as a sum 

 

 (   )  ∑ ∑   
   
 (   )

 

    

 

   

 

 

Convergence of the series holds again in the same sense. 

Spin weighted spherical harmonics 

Regard the sphere    as embedded into the three-dimensional imaginary part of 

the quaternionic number field. At a point x on the sphere, a positively oriented 

orthonormal basis of tangent vectors at x is a pair a, b of vectors such that 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Lp_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
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(   )    (   )    (   )      

(   )    (   )      

〈       〉      

where the first pair of equations states that a and b are tangent at x, the second 

pair states that a and b are unit vectors, a and b are orthogonal, and the         

is a right-handed basis of ℝ . 

  

θ

a·sin(θ)

a·cos(θ)

b·cos(θ)

-b·sin(θ)

θ

a·sin(θ)

a·cos(θ)

b·cos(θ)
-b·sin(θ)

ψ

ψ

c

d

da = ca·cos(θ) –cb·sin(θ) 

db = ca·cin(θ) –cb·cos(θ)

 
Figure 3: θ and the parameters a and b of the spin-weight function f. 

 

A spin-weight s function ƒ is a function accepting as input a point x of S2 and a 

positively oriented orthonormal basis of tangent vectors at x, such that 

  

 (       ( )       ( )      ( )        ( ))   e  (     )  (     ) 

for every rotation angle  . 

(1) 

(2) 

(3) 

(4) 
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Following Eastwood & Tod (1982), denote the collection of all spin-weight s 

functions by B(s). Concretely, these are understood as functions ƒ on        

satisfying the following homogeneity law under complex scaling 

 

 (     ̅  ̅)   (
 ̅

 
)

 

 (   ̅) 

 

This makes sense provided s is a half-integer. 

Abstractly, B(s) is isomorphic to the smooth vector bundle underlying the 

antiholomorphic vector bundle O*(2·s) of the Serre twist on the complex 

projective line    . A section of the latter bundle is a function g on        

satisfying 

 

 (     ̅  ̅)   ( ̅)
  
  (   ̅) 

 

Given such a g, we may produce a spin-weight s function by multiplying by a 

suitable power of the Hermitian form 

 
 (   ̅)      ̅ 

 

Specifically,        is a spin-weight s function. The association of a spin-

weighted function to an ordinary homogeneous function is an isomorphism. 

Eth 

The spin weight bundles B(s) are equipped with a differential operator  ð (eth). 

This operator is essentially the Dolbeault operator76,  

 
            

 

Thus for   ( ), 

 
             (    ) 

 

defines a function of spin-weight    . 

                                                      
76 http://en.wikipedia.org/wiki/Dolbeault_operator 

(5) 

(6) 

(7) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Dolbeault_operator
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Spin-weighted harmonic functions 

See http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics for more 

details. 

Just as conventional spherical harmonics are the eigenfunctions of the Laplace-

Beltrami operator on the sphere, the spin-weight s harmonics are the 

eigensections for the Laplace-Beltrami operator acting on the bundles  ( ) of 

spin-weight s functions. 

The spin-weighted harmonics can be represented as functions on a sphere once a 

point on the sphere has been selected to serve as the North Pole. By definition, a 

function η with spin weight s transforms under rotation about the pole via  

 
    e  (     )   

 

Working in standard spherical coordinates, we can define a particular operator ð 

acting on a function η as: 

 

       in  ( )  
 

  
 
 

 in( )
 
 

  
   in  ( )    

 

This gives us another function of   and  . [The operator ð is effectively a 

covariant derivative operator in the sphere.] 

An important property of the new function    is that if η had spin weight      

has spin weight      . Thus, the operator raises the spin weight of a function by 

1. Similarly, we can define an operator which will lower the spin weight of a 

function by 1: 

 

 ̅      in  ( ) {
 

  
 
 

 in( )

 

  
}  ( in ( )    

 

We extend the function   
  to   

 
 
  according to 

 
  
 

 
  (   )     

 (   ) 

 
                          

 

The spin-weighted spherical harmonics are then defined in terms of the usual 

spherical harmonics as: 

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics
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  √

(   ) 

(   ) 
      

             

 

  
 

 
   √

(   ) 

(   ) 
   (   )       

             

 
  
 

 
                 

 

The functions   
 

 
  then have the property of transforming with spin weight s. 

Other important properties include the following: 

 

 (   
 

 
 )    √(   ) (       )   

 
   
  

 

 (   
 

 
 )    √(   ) (       )   

 
   
  

Special Fourier transform pairs 

Functions that keep the same form through Fourier transformation are: 

 
 ( )  e   (     ) 

 

 ( )   
 

   
 

 
 ( )      ( )  

 

The comb function consists of a set of equidistant Dirac delta functions. 

 

Other examples of functions that are invariant under Fourier transformation are 

the linear and spherical harmonic oscillators and the solutions of the Laplace 

equation. 

Complex Fourier transform invariance properties 
Each even function  ( )  ⟺  ̃( ) induces a Fourier invariant: 

 

 ( )  √    ( )    ̃( ). 

 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 

(1) 
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 ̃( )   √    ( )  
 

Each odd function  ( )  ⟺  ̃( ) induces a Fourier invariant: 

 

 ( )  √    ( )    ̃( ). 
 

A function  ( ) is invariant under Fourier transformation if and only if the function   
satisfies the differential equation  

 
   ( )

   
    ( )     ( ), for some scalar  ∈  . 

 

The Fourier transform invariant functions are fixed apart from a scale factor. 

That scale factor can be 1, k, -1 or –k. k is an imaginary base number in the 

longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is,       in the 

Heisenberg’s uncertainty relation. 

 

For proves see: http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf.  

Fourier transform properties 

Parseval’s theorem 

Parseval’s theorem runs: 

 

∫  ( )   ( )       ∫ ̃
 ( )   ̃( )      

 

This leads to 

 

∫  ( )        ∫| ̃( )|
 
     

Convolution 

Through Fourier transformation a convolution changes into a simple product 

and vice versa. 

 

 ( ( )   ( ))    ̃( )   ̃( ) 

(2) 

(3) 

(4) 

(1) 

(1) 

(1) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
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Differentiation 

Fourier transformation converts differentiation into multiplication with the 

canonical conjugated coordinate. 

 
 ( )  ∇ ( ) 

 

 ̃( )    ̃( ) 

Vacuum expectation value 
The vacuum expectation value (also called condensate or simply VEV) of an 

operator is its average, expected value in the vacuum77. The vacuum corresponds 

to a ground state. The vacuum expectation value of an operator O is usually 

denoted by 〈 〉. 

Hilbert field equations 
Despite the obvious similarity, Hilbert field equations are not Maxwell field 

equations. First of all, the Hilbert field is a skew field and it carries the properties 

of the quaternions and the properties of the quaternionic Fourier transform. Next 

Hilbert fields are mathematical (skew) fields, while Maxwell fields are physical 

fields in a 3D geometry. Finally the Hilbert fields are constituted from a 

collection of member fields. 

Statics and dynamics 

In this section we mix statics and dynamics. When we confine to the static status 

quo we get the two sets of equations. The first set concerns the rotation free part 

of the field. The second set concerns the divergence free part. When dynamics is 

supported as well, then these parts get coupled. A single separable Hilbert space 

Ң only meets the static parts of the Hilbert field. This means that in this Hilbert 

space the two parts do not couple. Coupling only takes place during the step 

from one Hilbert space to the next member in the sequence. Continuity 

equations describe the coupling between the parts. 

 

The parameter that controls dynamics in these differential equations is the 

progression parameter. This parameter stands for the counter of the progression 

steps. For mathematical convenience we take an approach that is similar to the 

move from a separable Hilbert space Ң to a rigged Hilbert space Ħ. We move 

                                                      
77 http://en.wikipedia.org/wiki/Vacuum_state 

(1) 

(2) 

http://en.wikipedia.org/wiki/Vacuum_state
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from a fundamentally granular progression step counter to a continuous 

progression parameter. This progression parameter is not our common notion of 

time. The derivative of the field   for this parameter is defined as ∇  .  

In order to make the step from the integer progression step to the continuous 

progression parameter possible there must be a mechanism that reduces change, 

such that no violent steps are taken. On the other hand the mechanism must not 

be so strong that only a few steps are taken after which the universe is put to an 

eternal hold. How this in practice is regulated is shown by the phenomenon 

inertia78. Inertia is installed by the community of all particles. Locally this 

community generates an enormous potential. This potential works the same in 

all directions, so when nothing happens it has no influence on a local particle. A 

uniform movement of a local particle corresponds with the existence of a local 

vector potential. Also this vector potential does not apply any action. However, 

when the particle accelerates, then this goes together with the existence of a 

vector field that counteracts the acceleration. Thus, inertia does not counteract 

uniform movement. This uniform movement causes redistribution of the 

particles and with it a reconfiguration of the field. This disturbance of the static 

status quo is the motor that keeps dynamics going. The tolerance with respect to 

uniform movement is the reason that the movement does not get killed. 

The quaternionic nabla 

According to the definition of quaternionic differentiation the split of 

quaternionic nabla operator in a real part and an imaginary part is defined by: 

 
 ( )  ∇ ( )    ( )   ( ) 

 
  ( )   ∇   ( )  〈   ( )〉 

 

 ( )    ∇  ( )      ( )  (    ( )) 

 
   ∇  ( )     ( )    ( ) 

 

The second term on the right treats imaginary divergence. The last term treats 

the rotation. The first term is raised due to the dynamic coupling of the static 

fields. 

 

                                                      
78 Influence:Inertia 

(1) 

(2) 

(3) 
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In Fourier space the equivalent equation are: 

 
 ̃( )    ( )   ̃ ( )   ̃( ) 

 

 ̃ ( )      ̃ ( )  〈   ̃( )〉 

 

 ̃( )       ̃( )     ̃ ( )  (    ̃( )) 

 

     ̃( )   ̃ ( )   ̃ ( ) 

Blurring the charges 

We may represent the members of the Hilbert distribution with Dirac delta 

functions. These Dirac delta functions can be multiplied with a hyper complex 

number. Such a distribution raises problems with the nabla operator. 

However, since these members represent anchor points and since each anchor 

point attaches to a probability amplitude distribution, it has more sense to start 

directly with these blurred points. We introduce the quaternionic function  ( ) 

that represent the presence of one or more blurred anchor points in its real part 

and represent the flow of these blurred anchor points in its imaginary part. This 

leads to integral and differential continuity equations. 

 

Not all anchor points must be equal. When this is true, it is better to categorize 

them and treat each category separately. Each member of such a category 

represents a charge that is typical for that category.  

 

The probability amplitude distribution  ( ) can be interpreted as the 

combination of a scalar potential   ( ) and a vector potential  ( ). 

Continuity equation for charges 

When   ( ) is interpreted as a probability density distribution, then the 

conservation of the corresponding charge is given by the continuity equation: 

 

Total change within V = flow into V + production inside V 

 
 

  
∫     

 

 ∮ ̂      
 

 ∫     

 

 

 

(4) 

(5) 

(6) 

(1) 

(2) 
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∫∇      

 

 ∫〈   〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S,  ( ) is 

the velocity at which the charge density   ( ) enters volume V and    is the 

source density inside V.   stands for      . The conversion from formula (2) to 

formula (3) uses the Gauss theorem79. This results in the law of charge 

conservation  

 

  ( )  ∇   ( )  〈  (  ( ) ( )     ( ))〉  ∇   ( )  〈   ( )〉 

 

The blue colored ± indicates quaternionic sign selection through conjugation   

or  . 

In Fourier space this becomes: 

 
 ̃ ( )     ̃ ( )  〈   ̃( )〉 

 

This equation represents a balance equation for charge (or mass) density. 

Here   ( ) is the charge distribution,  ( )is the current density and a(q) is an 

arbitrary differentiable vector function.  

 

The law of charge conservation (4) resembles equation (2) of the paragraph on 

the quaternionic nabla. This only treats the real part of the full equation. The full 

equation runs: 

 
 ( )  ∇ ( )    ( )   ( ) 

 

  ( )  ∇   ( )  〈  (  ( ) ( )     ( ))〉  ∇   ( )  〈   ( )〉 

 

 ( )    ∇  ( )      ( )  (    ( )) 

Another interpretation of ρ 
The probability amplitude distribution  ( ) can be used to define a charge 
probability density and probability current density. See 
http://www.vttoth.com/qt.htm.  

 

                                                      
79 http://en.wikipedia.org/wiki/Divergence_theorem 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

http://www.vttoth.com/qt.htm
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 ( )      ( ) 

 

By using in   the matrix80 form of the sign selections81 we get the Dirac equation: 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

Compare Dirac82: 

 
∇   (       )  

 

Where    corresponds to    . See http://www.vttoth.com/qt.htm . 

There exist also a relation between          and the Pauli83 matrices          : 

 

    ([
    
  
]  [ 
   
  

]  [
  
   

]) 

 
                          

 
   ( )  ∇    ( )   〈   ( )〉 

Example potential 

Spatial Harmonic functions84 are suitable spread functions. 
For a harmonic function  ( ) holds: 
 

  ( )  ∇∇  ( )     
If there is a static spherically symmetric Gaussian charge density ρ (r): 

                                                      
80 Numbers; Sign selections; Matrices 
81 Numbers; Sign selection 
82 Equations of motion: Dirac equation 
83 Equations of motion; Pauli equation 
84 http://en.wikipedia.org/wiki/Harmonic_function  

(1) 

 (2) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(17) 

 (18) 

(1) 

http://www.vttoth.com/qt.htm
http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Harmonic_function
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 ( )   
 

√    
 e  (    

 (   )⁄ ) 

where Q is the total charge, then the solution φ (r) of Poisson's equation85, 

 

∇  ( )   
 ( )

 
 

 

is given by 

 

 ( )  
 

      
erf (
   

√  
) 

 

where erf(x) is the error function.  

 

In fact the quaternionic Poisson’s equation represents two separate equations: 

 

(∇ 
    )  ( )   

  ( )

 
 

 

(∇ 
    ) ( )   

 ( )

 
 

 

Note that, for     much greater than σ, the erf function approaches unity and the 

potential φ (r) approaches the point charge potential 
 

      
, as one would expect. 

Furthermore the erf function approaches 1 extremely quickly as its argument 

increases; in practice for     > 3σ the relative error is smaller than one part in a 

thousand86.  

 

The definition of the quaternionic potential ϕ(q) is based on the convolution of a 

quaternionic distribution ρ(q) with the real function  ( ) See Newton potential 

and Bertrand’s theorem in Wikipedia. The real part ρ0(q) of the distribution ρ(q) 

can be interpreted as a charge distribution. The imaginary part ρ(q) can be 

interpreted as a current distribution. 

                                                      
85 http://en.wikipedia.org/wiki/Poisson%27s_equation 
86 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density
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The convolution blurs the distribution such that the result becomes 

differentiable. 

 

In configuration space holds: 

 

 ( )    ( )  
 

   
  

 

Reversely, according to Poisson’s equation: 

 
 ( )        ( ) 

 

The real part of ϕ(q) presents a scalar potential. The imaginary part presents a 

vector potential.  

 
 ( )     ( )   ( ) 

 

The scalar potential is a blurred charge distribution.  

The vector potential is a blurred current distribution.  

Current is moving charge. 

Mass is a form of charge. 

 
(The selected blurring function has striking resemblance with the ground state of the 

quantum harmonic oscillator87). 

 

In Fourier space holds: 

 

 ̃( )    ̃( )  
 

   
    ̃ ( )   ̃( ) 

 

In Fourier space the frequency spectrum of the Hilbert distribution is multiplied 

with the Fourier transform of the blurring function. When this falls off when the 

frequencies go to infinity, then as a consequence the frequency spectrum of the 

                                                      
87 Functions and fields:Functions invariant under Fourier transformation:Ladder 

operator:Ground state 

(7) 

(8) 

(9) 

(10) 
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potential is bounded. This is valid independent of the fact that the frequency 

spectrum of the Hilbert distribution might be unbounded. 

 

The equation for the conservation of charge: 

 
  ( )  ∇   ( )  〈   ( )〉 

 

Translates in the source free case   ( )    into: 

 
∇   ( )   〈   ( )〉 

 

And in the Lorentz Gauge condition88: 

 

∇   ( )   〈   ( )〉 
 

 ( )  ∇ ( ) 
 

   ( )   ∇   ( )  〈   ( )〉    
 

In the source divergence free case    ( )    this means: 

 
∇    ( )    〈   ( )〉 

 

∇    ( )    〈   ( )〉 
 

 〈   ( )〉       ( )     ( ) 
 

Due to the fact that there are other charges present, the divergence of the scalar 

potential need be in the direction of the current ρ(q), which for a spherical 
symmetric blur is also in the direction of the vector potential ϕ(q). However, a 

tendency exists to minimize that difference. Thus ∇    ( ) is parallel to  ( ).  
With other words: 
 

 ( )   〈   ( )〉    

 

                                                      
88 http://en.wikipedia.org/wiki/Lorenz_gauge_condition 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Reckoning the sign selections for the sign ± of the conjugation and the 

handedness ± of the cross product will provide four different sets of equations. 

This will provide four different Hilbert fields.  

Discrete distribution 

If ρ(q) is discrete, such that  

 
  ( )  ∑       (    ) 
 

where   
  is a point charge at location q′, then the contribution to the field E(q) 

that is generated by a point charge at location qi is given by: 

 

   ( )      
    

|    |
       ∇  

 

|    |
 

Differential potential equations 

The gradient and curl of ϕ(q) are related. In configuration space holds: 

 
∇ ( )   ∇   ( )  〈   ( )〉  ∇  ( )      ( )     ( ) 

 
 ( )       ( ) 

 
 ( )       ( ) 

 
 ( )  ∇ ( )     ( )   ( )    ( )  ∇  ( ) 

 
  ( )   ∇   ( )  〈   ( )〉 

 
 ( )     ( )    ( )  ∇  ( ) 

 
〈   ( )〉        ( )      ( ) 

 

   ( )   ; Rotation free field 

 

〈   ( )〉    ; Divergence free B field  

 

   ( )   〈   ( )〉     ( )   〈   ( )〉   ( )  ∇ 
  ( ) 

 

   ( )   ∇    ( )   ( )  ∇ 
  ( ) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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  ∇  ( )   ( )  ∇ 
  ( ) 

 

Since ∇  ( )is supposed to be parallel to    ( ), it is sensible to define  ( )as 

the total field in longitudinal direction: 

 
 ( )      ( )  ∇  ( )   ( )  ∇  ( ) 

 

And 

 
 ( )   ( ) 

 

With this definition: 

 
   ( )    ∇  ( ) 

 
〈   ( )〉    

 
   ( )    ( )  ∇  ( ) 

In Fourier space 

In Fourier space holds: 

 

 ̃( )      ̃ ( )  〈   ̃( )〉     ̃( )     ̃ ( )     ̃( ) 

 

 ̃( )    ̃( )     ( )   ̃( )    ̃( )     ̃( ) 

 

 ̃ ( )      ̃ ( )  〈   ̃( )〉 
 

 ̃( )     ̃ ( ) 
 

 ̃( )     ̃ ( )     ̃( ) 

 

 ̃( )      ̃( ) 

 

 ̃( )     ̃( )    ̃( )     ̃( ) 

 

〈   ̃( )〉       ̃ ( )     ̃ ( ) 
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(13) 

(14) 

(15) 

(16) 
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   ̃( )   ; Rotation free field 

 

〈   ̃( )〉    ; Divergence free B field  

 

   ̃( )   〈   ̃( )〉     ̃( )   〈   ̃( )〉   ̃( ) 
 

 

   ̃( )       ̃ ( )   ̃( )      ̃( )   ̃( ) 
 

If the distribution ρ(q) is differentiable, then the same equations that hold for 

fields ϕ(q) and  ̃( ) hold for the non-blurred distributions ρ(q) and  ̃( ). 

Maxwell equations 

First it must be noted that the above derived field equations hold for general 

quaternionic fields. 

The resemblance with physical fields holds for electromagnetic fields as well as 

for gravitational fields and for any fields whose blurring function approximates  

 

 ( )   
 

   
.  

 

In Maxwell equations, E(r) is defined as: 

 

 (   )       (   )  
  (   )

  
  (   )  

  (   )

  
 

 

Further: 

 

〈   (   )〉        (   )  
 〈   (   )〉

  
 

 

 
  (   )

  
 
 〈   (   )〉

  
 

 

In Maxwell equations, B(r) is defined as: 

 
 (   )      (   )   (   ) 

(8) 

(9) 

(10) 

(11) 
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Further: 

 

   (   )    
  (   )

  
 

 

〈   (   )〉    
 

   (   )     (    
  

  
) 

 

Differentiable distribution 

If the distribution ρ(q) is differentiable, then the same equations that hold for 

fields ϕ(q) and  ̃( ) hold for the non-blurred distributions ρ(q) and  ̃( ). 

Using: 

 
  ∇     (∇    ∇   )   (∇    ∇   )   (∇    ∇   ) 

 

gives 

 
∇   ( )   ∇   ( ) 

 

∇   ( )    (∇   ( )  ∇   ( )) 

 

∇   ( )    (∇   ( )  ∇   ( )) 

 
∇   ( )  〈   ( )〉  ∇   ( )  ∇   ( )  ∇   ( ) 

 

And correspondingly in Fourier space 

 

   ̃ ( )      ̃ ( ) 

 

   ̃ ( )    (   ̃ ( )     ̃ ( )) 

 

   ̃ ( )    (   ̃ ( )     ̃ ( )) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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   ̃ ( )  〈   ̃( )〉     ̃ ( )     ̃ ( )     ̃ ( ) 

Conservation laws 

Flux vector 

The longitudinal direction k of  ( ) and the direction i of  ( ) fix two mutual 

perpendicular directions. This generates curiosity to the significance of the 

direction    . With other words what happens with  ( )   ( ).   
 

The flux vector   ( ) is defined as: 

 
  ( )    ( )   ( ) 

 

Conservation of energy 

Field energy density 

 
〈   ( )〉  〈 ( )    ( )〉  〈 ( )    ( )〉 

 
  〈 ( ) ∇  ( )〉  〈 ( )  ( )〉  〈 ( ) ∇  ( )〉 

 
   ∇ (〈 ( )  ( )〉  〈 ( )  ( )〉)  〈 ( )  ( )〉 

 

The field energy density is defined as: 

 
      ( )   (〈 ( )  ( )〉  〈 ( )  ( )〉)     ( )    ( ) 

 

 ( ) can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 
∇       ( )  〈   ( )〉    〈 ( )  ( )〉      ( )〈 ( )  ( )〉 

 

This means that 〈 ( )  ( )〉 can be interpreted as a source term. 

  ( ) ( ) represents force per unit volume. 

  ( )〈 ( )  ( )〉 re re en   work per unit volume, or, in other words, the 

power density. It is known as the Lorentz power density and is equivalent to the 

(9) 

(1) 

(1) 

(2) 

(3) 
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time rate of change of the mechanical energy density of the charged particles that 

form the current  ( ). 

 
∇       ( )  〈   ( )〉   ∇            ( ) 

 
∇             〈 ( )  ( )〉    ( )〈 ( )  ( )〉 

 

∇ (       ( )              ( ))   〈   ( )〉 

 

Total change within V = flow into V + production inside V 

 
 ( )        ( )             ( )    ( )    ( )             ( ) 

 

                                       ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source s0 is zero. 

How to interprete Umechanical 

            is the energy of the private field (wave function) of the involved 

particle(s). 

Conservation of linear momentum 

Field linear momentum 

 ( ) can also be interpreted as the field linear momentum density. The time 

rate change of the field linear momentum density is: 

 
∇  ( )        ( )  ∇   ( )   ( )   ( )  ∇  ( ) 

 

 (   ( )   ( ))    ( )   ( )     ( ) 

 
 ( )    (     )  〈     〉  〈   〉    〈    〉  〈   〉 

 
   (  )    〈    〉  〈    〉  

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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   (      〈    〉)  〈    〉  

 
 ( )    (     )    (      〈    〉)  〈    〉  

 
 ( )     (      〈    〉) 

 
∇  ( )   ( )   ( )   ( )    ( ) 

 
  ( )   ( )   ( )    ( )  〈    〉  〈    〉  

 
  ( )   ( )   ( )    ( )    ( )  ( ) 

 
  ( )   ( )   ( )   ( )   ( ) 

 

 ( ) is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V surrounded by surface 

S is: 

 

       ∫         

 

 ∫        

 

 ∫  〈∇   〉    ∮〈 ̂   〉  
 

 

 

 
 ( )   ( )    ( )    ( )  ( ) 

 

Physically,  ( ) is the Lorentz force density. It equals the time rate change of the 

mechanical linear momentum density            . 

 
           ( )      ( ) ( ) 

 

The force acted upon a single particle that is contained in a volume V is: 

 

  ∫    
 

 ∫(         )   
 

 

 

Brought together this gives: 

 

∇ (      ( )             ( ))    〈   ( )〉 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction that passes a 

surface element in the j-th direction per unit time, per unit area. 

 

Total change within V = flow into V + production inside V 

 
 ( )        ( )             ( ) 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sg = 0. 

Conservation of angular momentum 

Field angular momentum 

The angular momentum relates to the linear momentum. 

 
 (  )  (    )   ( ) 

 
      (  )  (    )        ( ) 

 
           ( )  (    )             ( ) 

 

 (  )  (    )   (q) 

 

This enables the balance equation for angular momentum: 

 

∇ (      (  )             (  ))    〈   (  )〉 

 

Total change within V = flow into V + production inside V 

 

                     ∫    
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(13) 

(14) 

(15) 
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∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds for the 

mechanical torsion: 

 

 (  )  ∫(     )   (  )  

 

 

 

 ∫(     )  (ρ (  ) (  )    (  )     (  ))  

 

 

 
  (    )  ( ( )    ( )    ( )) 

 
      (  )        ( )      ( ) 

 

Using 

 

〈    〉    
   

   
   

 

〈    〉    
   

   
   

 

holds 

 

      ( )  ∫ 
   (  )  

 

 ∫    (  )     (  )   

 

 

 

 ∫(   〈(  )  〉  〈     (  )〉)   

 

 

 

 ∫   〈(  )  〉  
 

 

(7) 
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(10) 
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 ∫      

 

 ∫〈       〉  
 

 ∫(    )〈   〉  
 

 

Spin 

Define the non-local spin term, which does not depend on qʹ as: 

 

       ∫ ( )   ( )  

 

 

 

And 

 

      ( )  ∫ 
  〈(  )  〉  

 

 ∫        
 

 

 

Using Gauss: 

 

∫〈   〉   
 

∮〈 ̂  〉  
 

 

And 

 
   〈   〉 

 

Leads to: 

      ( )               ( )  ∮〈 ̂   
   〉  

 

 

Spin discussion 

The spin term is defined by: 

 

       ∫ ( )   ( )  

 

 

 

In free space the charge density ρ0 vanishes and the scalar potential ϕ0 shows no 
variance. Only the vector potential ϕ may vary with q0. Thus: 
 

      ∇    ∇   
 

(13) 

(14) 

(15) 

(16) 

(17) 

(1) 
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       ∫(∇  ( ))   ( )  

 

 

 

If 
 ( )

  ( ) 
 can be interpreted as tantrix (  ) ) and 

∇  ( )

 ∇  ( ) 
 can be interpreted as the 

principle normal  (  ), then 
(∇  ( ))  ( )

 (∇  ( ))  ( ) 
 can be interpreted as the binormal 

 (  ).  
From these quantities the curvature and the torsion89 can be derived. 

 

[

 ̇( )

 ̇( )

 ̇( )

]   [

  ( )  
  ( )   ( )
   ( )  

] [

 ( )
 ( )
 ( )
] 

 
Depending on the selected field Σfield has two versions that differ in their sign. These 
versions can be combined in a single operator: 

 

        [
       
       

] 

States 
Where a unique closed Hilbert subspace represents a given physical item, its state 

characterizes the probabilistic properties of that item. In quantum physics, a 

quantum state is a set of mathematical variables that as far as is possible 

describes the corresponding physical item. For example, the set of 4 numbers {n, 

l, ml, ms} define part of the state of an electron within a hydrogen atom and are 

known as the electron's quantum numbers. The observables that determine the 

state are mutually compatible. The position of the electron within the atom is a 

hidden property. If two operators are each other’s canonical conjugate, then only 

one of them can participate in the state, or the state must contain an account of 

the combination of both values. An example of such a combination is the ladder 

operator. 

Quantum states can be either pure or mixed. Pure states cannot be described as a 

mixture of others. Mixed states correspond to a random process that blends pure 

states together. Realizations of elementary types are characterized by pure states. 

                                                      
89Path characteristics  

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Quantum_system
http://en.wikipedia.org/wiki/Quantum_number
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This indicates that the notion of state is closely related to the basic constituents of 

Hilbert fields. Stated in other words:  

The probability amplitude distribution that represents the private field of an 

elementary particle also represents the state of that particle. 

In relation to the concepts defined earlier, a pure state corresponds to the blur of 

an elementary Hilbert distribution, while the blur itself can be interpreted as a 

probability amplitude distribution. The state then also corresponds to the 

squared modulus of this probability amplitude distribution, which is a 

probability density function. The blur is defined with respect to a coordinate 

operator. This coordinate operator can be a GPS operator or a position operator 

( ̌ or  ̌), or it is represented by the canonical conjugate, the GMS operator or the 

momentum operator ( ̌ or  ̌). With other words, several different states 

correspond with the same physical item. 

When performing an observation on a quantum state, the result is generally 

described by a probability distribution, and the form that this distribution takes 

is completely determined by the quantum state and the operators that are related 

to the observation of the quantum state. The result of an observation is only 

determined probabilistically. Even when the observed quantity is quantized it 

still can take a range of values, each with a corresponding probability. In relation 

to the observables that determine the state, a pure state is characterized by the 

blur of a single elementary Hilbert distribution and that distribution corresponds 

in relation to these observables to a mathematical object known as a wave 

function. If another observable concerns the canonical conjugate, then the 

corresponding Fourier transform of the wave function must be considered. 

 

The result of a sharp observation equals one of the eigenvalues that corresponds 

to the set of eigenvectors over which the probability distribution is non-zero. It 

means that the observable must have the same eigenvectors as the operator that 

is used to define the wave function. The probability of getting this vector and the 

corresponding value is given by the probability density that corresponds to the 

wave function value. The probalistic nature of observations reflects a core 

difference between classical and quantum physics. The granularity of 

observables that are afflicted with Planck limits forbids that differences are 

measured with precise accuracy. 
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Linear combinations (superpositions) of states can describe interference 

phenomena. A mixed state cannot be characterized by a single blurred 

elementary Hilbert distribution. Instead, it is described by its associated density 

operator. It is still represented by a (blurred) closed Hilbert subspace, but that is 

no longer the subspace that is spanned by a single elementary Hilbert 

distribution. 

Pure states can be represented by a single blurred elementary Hilbert 

distribution. 

State definition 
A measure   on the closed subspaces of a Hilbert space obeys the rule: 

 

 ( )  ∑   
   
   , for each set      of closed subspaces 

 

Each Hilbert vector     generates a measure   ( ) via the projection    of     

on A 

 
  ( )  ‖  ( )‖

  

 

Gleason’s theorem states:  

Let  ( ) be a measure on the closed subspaces   of a separable Hilbert space Ң 

with dimension ≥ 3, then there exists a positive definite self adjoint operator T of 

the trace class, such that 

 
 ( )       (   ) 

 

Given a state P on a space of dimension ≥ 3, there is an Hermitian, non-negative 

operator ρ on Ң, whose trace is unity, such that 

 

    ∈Ң  ( )            , where x is a ray spanned by |x> 

 

With each compact normal operator Q corresponds an orthonormal base of 

eigenvectors        with eigenvalues q. As a consequence a notion of state is 

attached to each physical item combined with one or more mutually compatible 

compact normal operators      . 

 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
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In Hilbert space a state, or probability function, is a real function P on the Hilbert 

subspaces, with the following properties: 

1.  ( )    

 

2.   ∈Ң  ( )    , y is a Hilbert subspace 

 

3. ∑  (  )   , where      form an orthonormal base of Ң and xj  is the 

ray spanned by |xj> 
 

4.  ( )  ∑  (  )
 
    where   are mutually orthogonal rays spanning 

subspace y 

Pure state 

In particular, if some ray x0 satisfies P(x0) = 1, then according to Born’s rule: 

 
    ∈Ң  ( )           

   

 

This happens when |x0> represents an unary pure state. 

Item state 

The state  (     )  is connected to a wave function  (     ), where  

 

 (     )    | (     )|
 
  

 

and       are the eigenvalues of eigenvector       of the operators      . Two 

operators A and B are compatible when their commutator is zero: 

 
                   

 

If the state is characterized by a set of independent properties, then each of these 

properties corresponds with a corresponding operator. These operators must be 

normal, but they need not be compact. It must be possible to construct a spectral 

decomposition for each of the operators. Further, the operators that together 

determine the state must be mutually compatible. The wave function is then the 

product of the probability amplitudes that correspond to the separate operators. 

Thus the resulting wave function is a characteristic that represents the 

(1) 

(1) 

(2) 
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probability amplitudes of a set of mutually compatible observables that 

correspond to the normal operators that determine the state. 

 

The squared modulus of the probability amplitude is the probability density. 

The wave function will also be a function of a progression parameter. Position 

can be a state characterizing observable. However, like the progression 

parameter, spacetime does not occur as an eigenvalue of a Hilbert space 

operator. The operators may vary. For example an operator may be replaced by 

its canonical conjugate. In that case, care must be taken that the operators that 

form the changed state are still compatible. Thus, even with the same physical 

item, the wave function is not unique. 

 

For the operator   with eigenfunctions |q> and eigenvalues q the probability 

amplitude function ψ(q) is given by the smoothed version of       

 
 ( )          

 

When   is a compact normal operator then the smoothed version of ψ(q) is a 

continuous function. In that case the eigenvalues of the corresponding operator 

 ̌ that resides in rigged Hilbert space Ħ are used. Then ψ(q) has a Fourier 

transform φ(p), where the operator  ̌ with eigenvectors |p> and eigenvalues p is 

the canonical conjugate of  ̌. Like ψ(q),  the function φ(p) is also a function that 

characterizes the corresponding item and |φ> is a characterizing vector. The 

parameters q and p may be quaternionic. 

 

 ( )   ̃( )          

 

With respect to the correspondence with traditional quantum logic, it is wrong 

to take any characteristic vector including the locator or any function including 

the wave function as the representative for the item. It is ridiculous to expect that 

a single vector carries all properties of a complex physical item, such as a DNA 

molecule or an elephant.  

 

In usual quantum mechanics the wave function can be interpreted as the 

combination of a stationary vector and a progression operator. The progression 

operator has the form A·exp(S/ħ). This was introduced by Dirac. A is Hermitian 

(3) 

(4) 

http://en.wikipedia.org/wiki/Compact_operator_on_Hilbert_space
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and positive. S is anti-Hermitian. Both operators are a function of parameter t. 

This is reflected in the Hamilton-Jacobi equation. 

 

In contemporary quantum field theory the fields replace the wave function. Thus 

a field may be interpreted as the amplitude of the probability to find something 

at the location of the field value. For bosons that something may be interpreted 

as a virtual particle. For fermions that something may be interpreted as a pair of 

virtual particles. Each type of virtual particle has its own type of field. 

 

There are some questions left with wave functions:  

 Can it have non-zero values outside the subspace that represents the 

physical item?  

o Answer: Yes. The private field covers the whole Hilbert space. 

 Is the wave function a regular function?  

o Answer: When universe is restricted by an outer horizon, then the 

wave function is regular. 

 What happens to the representing subspace and to the wave function 

when a measurement on a particle is performed? 

o Answer:  

 When the coordinate space stays the same, then both the 

subspace and the wave function will not be affected. 

 When the coordinate space changes into the canonical 

conjugate, then the subspace changes to other base vectors 

and the wave function is Fourier transformed into a new 

form. 

 Has a system a wave function? 

o Answer: In general a system must not have a wave function, but it 

has a density operator. 

Probability density 

Gleason’s theorem90 states that a probability measure μ(P) on the lattice L(Ң) of 

projections P on closed subspaces of a Hilbert space Ң corresponds to a non-

negative Hermitian operator ρ with trace 1, such that μ(P) = tr(ρP). When the 

projections Pq correspond to the rays formed by the eigenvectors |q> of operator 

Q and μi(Pq) corresponds to the considered physical item, then μi(Pq) =  <q, ρi q> 

                                                      
90 http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure 

http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
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corresponds to the square of the modulus of the wave function ψi(q). ρi is the 

probability density operator91 corresponding to μi. The probability measure μ is 

a regular function.  

 

The probability density function92 P(q) = |ψ(q)|2 of an absolutely continuous 

random variable q is a function that describes the relative chance for this random 

variable to occur at a given point in the Q observation space. The probability for 

a random variable to fall within a given set is given by the integral of its density 

over the set. 

The probability density operator93 ρ is positive-semi-definite (  f ∈ Ң {<f|ρ f> ≥ 0}), 

self-adjoint (ρ = ρϯ), and has trace one (tr(ρ) = 1). For the operator Q with 

eigenfunctions |q> and eigenvalues q with probability amplitude ψ(q), the 

density operator ρ is given by 

   ∑                    

Von Neumann entropy94 is defined using the density operator of physical items. 

The entropy S(ρ) describes the departure of the system from a pure state. In 

other words, it measures the degree of mixture (entanglement95) of the state |ψ>. 

The operator A can be decomposed 

 
    ∑          

 

For the state |ψ> the expectation value 〈 〉 for the observable A is 

 
 〈 〉             ∑                       (  )  

 

A Hilbert field is a blurred Hilbert distribution. The blur represents a probability 

amplitude distribution.  

                                                      
91 Functions and fields:characteristic functions 
92 http://en.wikipedia.org/wiki/Probability_density_function 
93 http://en.wikipedia.org/wiki/Density_operator 
94 http://en.wikipedia.org/wiki/Von_Neumann_entropy 
95 http://en.wikipedia.org/wiki/Quantum_entanglement 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Density_operator
http://en.wikipedia.org/wiki/Positive-semidefinite_matrix
http://en.wikipedia.org/wiki/Self-adjoint_operator
http://en.wikipedia.org/wiki/Trace_class
http://en.wikipedia.org/wiki/Von_Neumann_entropy
http://en.wikipedia.org/wiki/Quantum_entanglement
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States and blurs 

Apparently a state is the same stuff as the basic constituent of a Hilbert field. 

Both can be characterized as probability amplitude distributions. The squared 

modulus of a probability amplitude distribution96 is a probability density 

distribution. The state corresponds with a wave function or with a probability 

density operator.  

 The state of a physical item can be interpreted as the probability of 

finding the parameter value when an observation is done that 

corresponds to the corresponding coordinate operator. 

 The squared modulus of the blur can be interpreted as the probability of 

detecting a quantum at the location specified by the parameter value that 

corresponds to the corresponding coordinate operator. 

Blurs are the building stones of Hilbert fields. In a similar way wave functions 

must be interpretable as the building stones of fields. 

Blurs are private fields of elementary Hilbert distributions. Thus, wave functions 

must also be related to elementary Hilbert distributions. 

  

                                                      
96 http://en.wikipedia.org/wiki/Probability_amplitude; the quaternionic version is used. 

http://en.wikipedia.org/wiki/Von_Neumann_entropy
http://en.wikipedia.org/wiki/Probability_amplitude
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Observables and field values 
In Hilbert space observables are represented by operators. The observed value is 

represented by an eigenvalue or by the expectation value of the operator that 

represents the observable. Scalar physical fields have numeric values. Vector and 

tensor fields consist of vectors and tensors that are constructed using numbers. 

Both the eigenvalues of operators and the values of fields may be hyper complex 

2n-ons97. 

Numbers 
The Hilbert space can be specified by using a number space that allows the 

mutual orthogonalization and the closure of subspaces. The real’s, the complex 

numbers and the quaternions can perform that job. Horwitz showed that even 

the octonions with some trouble can achieve this (see: http://arxiv.org/abs/quant-

ph/9602001). The real’s, the complex numbers, the quaternions and the octonions 

are the only normed division algebras and they are the only alternative division 

algebras. In general the octonions are not associative, but the product of two 

octonions that belong to the same quaternionic subfield is associative. The 

alternative property of the octonions admits the closure of the subspace 

generated by (successively associated) products of the vector with octonion 

elements to order seven, i.e., after multiplication seven times by octonions, the 

subspace no longer grows. 

Neither all quaternions nor all octonions commute. However, within complex 

subspaces the numbers commute. In general holds for 2n-ons that they behave 

like 2m-ons in their lower m dimensions. 

 

We might take the following freedom. The fact that a given number space is 

used for specifying linear combinations of Hilbert space vectors does not mean 

that eigenvalues of operators must also be restricted to that same number space. 

In this sense a Hilbert space specified over the quaternions may allow 

eigenvalues of operators that are taken from the octonions or even higher 2n-ons. 

The problem with higher dimension 2n-ons is that their number characteristics 

deteriorate with n. However, as long as the (full) eigenvalues are not used to 

construct linear combinations of vectors, or to specify the inner products of the 

Hilbert space, there is no problem. All higher dimensional 2n-ons contain several 

                                                      
97 see http://www.math.temple.edu/~wds/homepage/nce2.pdf or the appendix 

file:///C:/web/NewWebSite/English/Science/Toolkit.pdf
http://arxiv.org/abs/quant-ph/9602001
http://arxiv.org/abs/quant-ph/9602001
http://www.math.temple.edu/~wds/homepage/nce2.pdf
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subspaces that are lower dimensional 2m-on number spaces. Further, 2n-ons 

behave like 2m-ons in their lower 2m dimensions.   

 

In general the elements of curves or curved manifolds are themselves not 

numbers. So, in general they cannot be used as eigenvalues. However, locally the 

elements of a curved manifold may resemble numbers of a 2n-on number space. 

Smoothly curved trails of objects that locally resemble 2n-ons can be treated with 

the Frenet-Serret frame toolkit. Number spaces can be attached as tangent spaces 

to smoothly curved manifolds. In that way the elements of the curves and the 

manifolds obtain number characteristics in a small enough environment. 

Sequences or sets of operators can locally have eigenvalues that are numbers 

which can be considered as member of smooth curves or of the tangent space of 

a curved manifold at that location. In that way the elements of smooth curves or 

of curved manifolds can be related to the corresponding eigenvalues. 2n-ons are 

ideally suited for this purpose. This means that the eigenspaces of the 

subsequent operators in a trail need not overlap. These eigenspaces are only 

used locally. When curvature and bending of the operator trail diminish, the 

dimension of the local number space can be lower. When the curvature and the 

bending increase, the dimension must be higher. This will be reflected in the 

dimensionality of the local eigenvalues. Apart from the application as 

eigenvalues of operators the 2n-ons are suited as values of physical fields. 

 

We will restrict to the 2n-ons as extensions of the quaternions. As we stated, the 

higher dimension numbers created with the Cayley-Dickson construction are not 

so well behaved. Alternatives are the use of Clifford algebras, Jordan algebras or 

Grassmann algebras. We will show that in the Hilbert space the 2n-ons for n > 1 

automatically introduce these latter algebras through their number waltz. 

 

The niners are the most extensive 2n-on numbers that still keep a reasonable set 

of number characteristics. More precisely said the 2n-ons, even those that have a 

higher dimension than the octonions, keep reasonable number characteristics in 

the space spanned by their coordinates that have an index lower than nine. The 

real numbers, the complex numbers, the quaternions and the octonions 

completely fall within these boundaries. The above hyperlink describes exactly 

what characteristics the niners retain.  
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The subspace of the 2n-on field that is spanned by the first 2m dimensions acts as 

a 2m-on number space. Thus in a dynamic situation, an octionic operator acts 

locally as a quaternionic operator. In a smaller or more flat region it acts as a 

complex operator and at “nano”-locality as a real (or as an imaginary) operator. 

2n-on construction 

The 2n-ons use the following doubling formula 

 

 (a, b) (c, d) = (a·c – (b·d*)*,(b*·c*)* + (b*·(a*·((b-1)*·d*)*)*)*) 

 
Up until the 16-ons the formula can be simplified to 

 
(a, b) (c, d) = (a·c – b·d*, c·b + (a*·b-1)·(b·d)) 

 
Up to the octonions the Cayley Dickson construction delivers the same as the 2n-

on construction. From n>3 the 2n-ons are ‘nicer’ than the Cayley Dickson 

numbers. They keep more useful number characteristics. The 2n+1-ons contain the 

2n-ons as the sub-algebra of elements of the form (a, 0) 

Waltz details 

The 16-ons lose the continuity of the map x => xy. Also, in general holds  xy·x ≠ 

x·yx for 16-ons. However, for all 2n-ons the base numbers fulfill eiej·ei = ei·ejei. All 

2n-ons feature a conjugate and an inverse. The inverse only exists for non-zero 

numbers. The 2n-ons support the number waltz  

 

c = a·ba-1. 

 

Often the number waltz appears as a unitary number waltz 

 

c = u*·bu 

 

where u is a unit size number and u* is its conjugate u·u* = 1. 

 

In quaternion space the quaternion waltz a·b·a-1can be written as 

  
a·b·a-1 = exp(2·π·ĩ·φ)·b·exp(-2·π·ĩ·φ) 

(1) 

(2) 

(1) 

(2) 

(3) 
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= b – b┴ + exp(2·π·ĩ·φ)·b┴·exp(-2·π·ĩ·φ) 

  
= b – b┴ + exp(4·π·ĩ·φ)·b┴ 

  
∆b = (exp(4·π·ĩ·φ) – 1)·b┴ 

  
= (cos(4·π·φ) + ĩ·sin(4·π·φ) – 1)·b┴ 

  

= exp(2·π·ĩ·φ)·2·ĩ·sin (2·π·φ)·b┴ 

  

||∆b|| = ||2·sin(2·π·φ)·b┴|| 

 
Another way of specifying the difference is:  
 

∆b = (a·b – b·a)/a = 2·(a×b)/a 

 

||∆b|| =2·||a×b||/ ||a||  

 

(4) 

(5) 

(6) 

(7) 
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a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 
Figure 1. The rotation of a quaternion by a second quaternion. 

 

Infinitesimal number transformation 

The number v is close to 1. Thus v = 1 + Δs. Let us investigate the transform c = 

v*·b·v.  

 

c = (1 + Δs*)·b·(1 + Δs)  

= b + Δs*·b + b·Δs + Δs*·b· Δs  

≈ b + Δs*·b + b·Δs 

= b + Δs0·b + 2·b×Δs 

 

Δb = Δs0·b + 2·b×Δs 

 

This comes close to the effect of an infinitesimal number waltz, especially when 

Δs0 = 0 In that case Δb0 = 0 and Δb is perpendicular to Δs. 

(1) 

(2) 
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For 2n-ons with n > 1, a·ba-1 in general does not equal b. This effect stays 

unnoticed when quantum mechanics sticks to a complex Hilbert space. 

 

 

b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 
Figure 2: The difference after rotation 

Sign selections 

The paper that describes 2n-ons does not describe the choice for right or left 

handedness of the external vector product. So, we do it here. The generally 

accepted convention is to let the handedness depend on the orientation of the 

underlying ℝn space. However, when numbers are constructed via the Cayley-

Dickson construction or the 2n-on construction then the handedness follows from 

the applied construction formula. We want to get rid of these restrictions, 

because we want to give operators the freedom to select the handedness and 

other sign selections of their eigenvalues.  

 

The 2n-ons have n independent binary base numbers and n sign selections. The 

real numbers do not offer a sign selection. The complex numbers offer the 

selection of the sign of the real or the imaginary axis. This is inherited by all 
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higher 2n-ons. The quaternions have two independent imaginary base numbers 

and offer an extra sign selection that represents the handedness of its external 

product. The octonions have three independent imaginary base numbers and 

offer an extra sign selection for the handedness in external products that involve 

this new base number. 

Need for spinors 

In the number waltz the current manipulator only needs an argument α in order 

to turn the subject over 2α. This is typical behavior for spinors. Spinors also have 

a storage place for the handedness of rotations. By using the number waltz and 

the sign selections the 2n-ons can perform the same act as the spinors. Spinors are 

only required when quantum mechanics is restricted to complex Hilbert spaces. 

Spinors are the carriers of the spin phenomenon. Thus, in our model the sign 

selections in combination with the number waltz form the carriers of spin.  

 

The approach taken in this paper might cause a revival of the importance of the 

hyper complex numbers that turned in oblivion when Gibbs introduced his 

vector analysis.  
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Influence 
The original example proposition (♠) talks about influencing the position of an 

item. This implies that the position of the item changes due to the mentioned 

influence. Thus when the influence occurs, the eigenvector that represents the 

position of the item is exchanged against another eigenvector. That other 

eigenvector corresponds to another environment inside the eigenspace of the 

position operator. The eigenvectors of the position operator move with respect to 

the vector that characterizes the subspace of the item. The movement is relative 

and takes place inside the Hilbert space. Another possibility is that the 

eigenvectors stay, but the corresponding eigenvalues change while the Hilbert 

subspace moves. See Heisenberg picture versus Schrödinger picture98.  

 

Thus, there is a way to implement influence in Hilbert space. The influence 

causes a move of the item’s subspace relative to one or more eigenvectors of the 

position operator. The original proposition (♠) claims that this movement is 

caused by other items. We must check whether this is true. 

 

If this is true then influences are the motor behind the dynamics of the items. 

The universe of items 
The original proposition (♠) states that all items influence each other’s position. 

This includes that all items influence the considered item. Part of the items 

compensates each other’s influences on the currently considered item. It will be 

shown that this holds for the largest part. 

Inertia 
The influence may decrease with distance according to some function f(r) of the 

distance r. However the number of contributing items increases with the 

distance. Depending on function f(r) the most probable result is that the 

strongest influence comes from the cooperative activity of the most distant items. 

Due to the enormous number of items in the universe, any variation of the 

influences of the distant items averages away. This also holds for the density 

distribution of the items. So there exists a fairly uniform background influence 

caused by the universe of items. What will happen, can be deduced from an 

                                                      
98 Dynamics: Schrödinger or Heisenberg picture 
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equivalent of Denis Sciama’s analysis99. We will take his analysis as a guide. 

Sciama’s analysis uses a different setting: the (observed) 3D space and 

coordinate time. This setting raised critique because the approach involves 

instantaneous action on large distances. In Sciama’s setting this is in conflict with 

special relativity. In our setting we do not (yet) encounter special relativity. We 

use the coordinate space defined by an appropriate coordinate operator and the 

progression parameter   that relates to the progression step counter as our 

setting. A location in coordinate space represents a location on the unit sphere of 

Hilbert space. This last location is taken by the eigenvector that corresponds to 

the first location. As stated before, the unit sphere of Hilbert space is an affine 

space. This means that we must treat position as relative data. With other words, 

the eigenspace of the coordinate operator has no absolute origin. 

 

The most important aspects of the analysis are: 

 

The total potential   at the location of the influenced subject is100 

 

    ∫
 

 
  

 

    ∫
  

  
 

 

This conforms to a Gaussian blur101 as a representative of the average blur 

function. The integral is taken over the coordinate space volume V. Indirectly, 

the integral is taken over the unit sphere of Hilbert space. This is an affine space. 

The parameter r is the length of the vector from the actor to the location of the 

subject. The considered subject is located somewhere in the affine coordinate 

space. All other subjects have positions relative to that considered subject. At 

large distances, the density ρ of the contributing items can be considered to be 

uniformly distributed. Also any variance in strength other than the dependence 

on r becomes negligible because the differences are blurred and averaged away. 

We already assumed that the average blur of the distributed matter in universe 

is a Gaussian blur. We take the average of the strength as the significant 

parameter. We combine it with ρ. Therefore the average of ρ can be taken out of 

                                                      
99 See: http://arxiv.org/abs/physics/0609026v4.pdf and "On the origin of inertia", by Denis 

Sciama (http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
100 See: http://en.wikipedia.org/wiki/Newtonian_potential 
101 Hilbert field equations: example potential 

(1) 

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://en.wikipedia.org/wiki/Newtonian_potential
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the integral. Thus, apart from its dependence on the average value of ρ, Φ is a 

huge constant. (Sciama relates Φ to the gravitational constant). As a consequence 

we can consider the universe as a very large rigid body. If nothing else happens 

then all influences compensate each other. 

 

In the following equations we use imaginary quaternions rather than 3D vectors. 

In this way we can avoid the distracting factor i. 

 

If the considered subject moves relative to the universe with a uniform speed v, 

then a vector potential A is generated. 

 

     ∫
   

   
  

 

 

 

Both ρ and v are independent of r. Together with the constant c they can be 

taken out of the integral. Thus 

 

A = Φ·v/c 

 

What we have here is the reverse of the definition of the potential that goes 

together with a charge distribution. When we defined a Hilbert field we started 

in fact from a charge distribution and a current distribution and we considered 

the influence of these distributions on the universe. Here we consider the 

influence of the universe on a local charge or current. For this purpose we use 

the same volume integrals!  

 

The field that we treat in studying inertia is a curvature field rather than a 

covering field. The curvature field derives from the covering field by taking the 

curvature that is caused by the decomposition of the covering field as its charge. 

 
The notions of charge and current correspond to equivalent notions in Noe her’  

theorem102. Here we talk about inertia and curvature fields. Thus charge may 
symbolize mass. 

 

                                                      
102 http://en.wikipedia.org/wiki/Noether%27s_theorem 

(2) 

(3) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
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Here the progression parameter t plays the role of “time”. Be aware, this is not 

our usual notion of time. 

 

According to Helmholtz theorem the Hilbert field derived from the above 

potentials can be split into a divergence free part and a rotation free part. The 

Helmholtz decomposition theorem only concerns the static versions of the 

derived field. It is related to the fact that the Fourier transform of a vector field 

can be split in a longitudinal and a transversal version. There also exists a 

corresponding split of the multi-dimensional Dirac delta function in a 

longitudinal and a transversal version. If we use the position operator  ̌ as the 

coordinate operator, then the decomposition runs along straight lines. If we use 

the GPS operator  ̌ then the decomposition runs along curved lines. In curved 

manifolds the Helmholtz decomposition theorem should be replaced by the 

Hodge decomposition theorem. 

 

A variation of v goes together with a variation of A. On its turn this goes 

together with a non-zero field  ̇(   ) which is a dynamical part of the derived 

Hilbert field.  

 

Sciama uses a Maxwell equation to explain the relation between ∂v/∂t and 

 ̇(   ). Our setting differs, but the main reasoning is the same. 

 

 (   )      (   )   
 

 
  ̇(   )  

 

 ̃(   )       ̃(   )   
 

 
   ̃(   )  

 

If we exclude the first term because it is negligible small, we get: 

 

 (   )    
 

  
 
  

  
   

  

  
 

 

Remark: As soon as we turn to the dynamic version (4) an extra component  ̇ of 

field E appears that corresponds to acceleration ∂v/∂t. (See for derivation of 

Maxwell equations e.g. the online book http://www.plasma.uu.se/CED/Book; 

formula 3.25 or the section on Hilbert field equations in this e-paper) 

 

(4) 

(5) 

(6) 

http://www.plasma.uu.se/CED/Book
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As already claimed, in our setting the component    of the field E is negligible. 

With respect to this component the items compensate each other’s influence. 

This means that if the influenced subject moves with uniform speed v, then E ≈ 0. 

However, a vector potential A is present due to the movement of the considered 

item. Any acceleration of the considered item goes together with an extra non-

zero E field. In this way the universe of items causes inertia in the form of a force 

that acts upon the accelerating item’s charge. 

 

We have used the coordinate space as a playground to implement an equivalent 

of Sciama’s analysis. The analysis uses the fact that every item in universe causes 

an influence and that this influence reduces according to f = –k/r. (Compare this 

with Bertrand’s theorem103 in Wikipedia) 

 

A uniform movement in Hilbert space does not on itself generate a reaction of 

the universe of items. Any alteration of that uniform movement will cause as 

reaction a field. The physical name for this reaction is action. It usually gets the 

symbol S. When the path of the item coincides with a geodesic, then it can be 

travelled field free. 

 

Uniform movements do cause displacement of charges. On its turn it changes 

the configuration of the local field. Thus, indirectly the field will also act on 

uniform displacements. As we see from inertia, any field change goes together 

with a corresponding acceleration. 

 

It must be noticed that the original analysis of Sciama uses observable position 

space rather than Hilbert space, coordinate space or action space and it uses a 

different notion of time. However, the general conclusion stays the same. 

Sciama’s analysis is criticized because it uses infinite speed of information 

transfer. Since we do not work in observable position space, we do not encounter 

coordinate time. So for us, this criticism is misplaced. 

 

Coordinate time104 relates to observations of position. It is a local player in the 

game, where the progression parameter is a global player. 

 

                                                      
103 http://en.wikipedia.org/wiki/Bertrand's_theorem 
104 Dynamics; Relativity 

http://en.wikipedia.org/wiki/Bertrand's_theorem
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The situation with electromagnetic fields is different, because with this field 

positive and negative charges compensate each other’s long range influence. For 

that reason there exists no electromagnetic background influence or it is far less 

important. The masses of the gravitational and inertial fields only compensate 

each other’s long range influences through geometrical circumstances. Still in 

combination, they create gigantic potentials. 

Nearby items 
Items that are located nearby have a different effect. In general their influence 

will not have its strength equal to the average strength. Further these items are 

not uniformly distributed. Still their influence depends on inter-distance as f = –

k/r. As a consequence their influences form a landscape of which the effects will 

become sensible in the action of the fields that surround the considered item. 

This landscape will form a curved action space. The considered item will try to 

follow a geodesic through that curved space. 

Rotational inertia 
Besides linear inertia there exists rotational inertia. In a non-rotating universe 

hold near the origin A = 0 and Φ = -c2/G. We choose units such that c=G=1. In a 

universe rotating slowly with angular speed ω hold 

 

Ax = ω·y 

 

Ay =  ω·x 

 

Az = 0 

 

    √  (   )   

 

A constant angular movement meets the fields that correspond to a centripetal 

force. 

 

The field E has the form 

 

    
   

√       
 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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An added uniform speed v meets the fields corresponding to a Coriolis force.  

 
            

 
          

 

The forces are usually considered as fictitious but they are actually caused by 

inertia. Sciama treats them in section 5 of his paper. Like fields of linear inertia 

these rotation related fields correspond to actions of the manipulator. 

Storage, sign selections and virtual items. 
The static fields act as storage media for the location and the speed of the charges 

of the physical items.  

 

When the values of the fields are stored in hyper complex numbers, then the 

sign choices for these numbers will also be reflected in these fields. For example 

the handedness will show in the transverse fields. A right handed and a left 

handed version of the field will exist. The sign selection of the real part of the 

hyper complex numbers may also cause extra versions of fields.  

 

The fields can be interpreted as reflections of the presence of virtual items that 

are ready to exchange roles with actual items. 

The proposition 
This finding indicates that when our interpretation of Sciama’s analysis is 

correct, the original proposition  

All items in universe influence each other’s position. 

is not generally true. The universe of items does not influence position. It 

counteracts acceleration of individual items. Position is only influenced in an 

indirect way and presupposes an observation. If the item moves in a geodesic 

with uniform speed, then the position changes while the influences of all other 

items compensate each other. In such cases the summed influence is zero. 

 

We may alter the original proposition (♠). If our analysis is correct, then the 

proposition  

All items in universe influence each other’s acceleration. 

is true.  

  

(6) 

(7) 
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The origin of dynamics 
If we want to discover the origin of dynamics, we must first determine what the 

static structure of nature is. We already found an important ingredient of this 

skeleton: the lattice structure of quantum logic and the corresponding lattice 

structure of the closed subspaces of a Hilbert space. Both structures are only 

defined in a static way. Nothing is said about their dynamics. Besides of these 

static relations the concept of wave functions and density operators offer insight 

in the probability and information content of these relations. These subjects 

correspond to private fields, which are the constituents of a covering field. This 

covering field can be seen as the superposition of all private fields. For a selected 

coordinate system the static covering field can be decomposed into a rotation 

free and a divergence free part. Depending on the configuration of the anchors of 

the private fields the decomposition does not run along straight coordinate lines. 

This defines a local curvature that depends on the selected coordinate system. 

That curvature can be used to define a curvature field. This together defines the 

ingredients of the static status quo. It all fits in a model that we call extended 

quantum logic or equivalently extended Hilbert space. 

 

In the previous part of the paper the added component of the static structure of 

nature is investigated: the static structure of the influences. It appears that this 

structure is identical with the structure of static Hilbert fields. Both the analysis 

of inertia and the study of Hilbert fields showed the static relation between 

divergence free fields and rotation free fields. These analyses also showed the 

influence of dynamics on the coupling of these static fields. The analysis of 

Hilbert fields explained how these fields change as a function of the progression 

parameter q0. Inertia showed how these fields get coupled when the uniform 

movement of a physical item is disturbed. We also explained that uniform 

movement may cause a reconfiguration of the field. On its turn, this change may 

initiate movement.  

 

Next we try to find a more precise formulation for these origins of dynamics. 

Extended quantum logic 
Wave functions represent the probability of finding properties of actual items. 

For example if a GPS type coordinate system is selected as its parameter space, 

then this property can be the position of the item. If it is a GMS type system, then 

the property can be momentum.  
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In quantum theory the values of fields are treated in equations of motion in a 

similar way as the wave functions of actual items are treated in such equations. 

In fact the wave function itself can be interpreted as part of the field.  

 

When fields in general can be considered as representations of the probability of 

finding properties of actual as well as virtual items, then the fields get an 

interesting interpretation. In quantum logic the realistic physical item is 

represented by a proposition in the form of a statement that says everything 

about that item. For virtual items the new interpretation would mean that in 

extended quantum logic the virtual items are represented by potential 

propositions that are ready to become actual propositions or that were actual 

propositions in the past. 

 

This would mean that traditional quantum logic is embedded in extended 

quantum logic such that it apart from propositions about actual physical items 

also contains potential proposition that represent virtual particles. 

 

In this way, the set of propositions of extended quantum logic is much larger 

than the set of propositions of quantum logic.  

Interpretation in logical terms 
The results of the analysis of inertia mean that when the redefinition of the set of 

vectors that belongs to the representation of the item occurs such that this 

corresponds to a uniform movement of the physical item, then the influences of 

the universe of items tend to compensate each other. Otherwise, the universe of 

items reacts with a corresponding field. Besides of the universe wide response, a 

local variance in the distribution of items causes a variation in the influences. 

This local variance can partly be the consequence of a uniform displacement of 

particles. 

 

It seems that quantum logic and Helmholtz decomposition together define an 

important part of the static relations that exist in physics. The fields appear to 

resist the disturbance of the interrelations in the lattice of quantum propositions. 

In dynamical sense this lattice might step from one static status quo to the next. 

After a step new conditions are established that again must fulfill the laws that 

govern the static situation. If this is a proper interpretation, then it is likely that 



166 

 

the progression step is taken universe wide. After each step the positions of the 

physical items relative to the fields have changed, thus when the fields are not 

uniformly distributed, the items meet a different field configuration. The next 

step is taken with and due to these new conditions. 

 

Quantum logic only defines a static skeleton in which the dynamics of quantum 

physics takes place. To make it a dynamic logic, the set of axioms must be 

extended. The new axioms must state that all propositions influence each other. 

The influence depends on their mutual (coordinate) distance. In stationary 

conditions, which include uniform motion, these influences compensate each 

other. When an atomic predicate that concerns an element of an ordered set is 

replaced in a non-ordered fashion, meaning that the distance between the 

replaced elements does not stay the same, then the universe of all propositions 

will react such that the influences of the other propositions no longer 

compensate each other. The disordered influences counteract the disordered 

replacement.  

 

Besides of that the local variance in the distribution of the propositions, which 

corresponds to a variance of the distribution of the corresponding physical 

items, also cause a variation in the influences that propositions have with respect 

to each other. 

 

In Hilbert space these influences are implemented in the actions of Hilbert fields. 

In quantum physics the influence appears as a set of physical fields. 

Minkowski signature 
One important step must still be taken. In physics observed spacetime has a 

Minkowski signature. Further we observe that space corresponds with the 

imaginary part of a position quaternion for which the real part seems to have no 

direct physical meaning. We must find an explanation for these facts. The 

Minkowski signature defines the following time-like relation between the space 

time step Δs, the space step Δq and the coordinate time step Δt 

 
(  )     (  )  (  )   ⁄  

 
(1) 
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During inertial motion this corresponds for the proper time105   to 

 
(  )     (  )  (  )   ⁄  

 
              

 

This is a triangle relation where    is at the hypotenuse. 

If we substitute the Planck length for    and the Planck time for    then    

equals the Planck time times the square root of 2. If we instead substitute the 

Planck time for    then    equals zero. 

   

                                                      
105 http://en.wikipedia.org/wiki/Proper_time 

(2) 

(3) 

http://en.wikipedia.org/wiki/Proper_time
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Dynamics 

Schrödinger or Heisenberg picture 
For global rotations around its origin the Hilbert unit sphere acts as an affine 

space. It does not matter whether the eigenvectors of operators or the subspace 

that represents the item is moved. We can take the picture in which the subspace 

stays fixed, while the vectors move and the operators change with them. This is 

the Heisenberg picture. 

We can also take the picture in which the vectors and operators stay fixed and 

the subspace moves. This is the Schrödinger picture. 

 

We are only interested in the consequences. These are determined by the relative 

movement, not by the absolute movement. For a given physical item, in both 

pictures the expectation values of the operators vary in the same way. 

Unitary transform 
A unitary transform is a bounded normal operator. Unitary transforms keep the 

value of inner products untouched. If a unitary transform is applied to two 

vectors, then their inner product stays the same.  

 

Unitary transforms need not have eigenvectors. For example Fourier transforms 

do not possess eigenvectors. In the rigged Hilbert space Ħ functions exist that 

apart from a scaling factor are invariant under Fourier transformation. These 

functions are not vectors. They define linear combinations of members of an 

orthonormal base that consists of eigenvectors of an operator. The corresponding 

eigenvalues form the parameters of the function. 

 

If a unitary transform has eigenvectors then it has unit sized eigenvalues and to 

each of these eigenvalues correspond one or more eigenvectors that are mutually 

orthogonal. Unitary transforms are completely determined by their vector 

replacement characteristics, their eigenvectors and the corresponding 

eigenvalues. An extra characteristic is for example the smoothness of their 

eigenspace. 

 

When a unitary operator   is applied to the eigenvector     of an operator   

with eigenvalue  , then the eigenvector is transferred into another vector      . 
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In general       is not another eigenvector of  . The expectation value for 

       is no longer  , but  

 

                        

 
Or, with other words the operator   is redefined to     .  

 

The norm of the expectation value            for an arbitrary vector     

does not depend on  . It only depends on   and    . 

Trail of infinitesimal transforms 

The effect of a single unitary transform   can also be achieved by a trail of 

infinitesimal unitary transforms      . This also holds for a set of unitary 

operators that operate in parallel.  

 

The situation sketched above can be refined for any instant t occurring after t=0. 

We can treat it more generally by chopping the path from         to          

into a trail of infinitesimal steps of size    that is achieved by a set of 

infinitesimal transforms        , where  

 
       ∏          

 

and 

 
           

 

The parameter   acts as the trail progression parameter. It is not identical with 

our common notion of time. If it has anything to do with time it will be 

confronted with a lower limit, which is set by the Planck time. The infinitesimal 

transforms     work in parallel as well as in sequence.      represents the 

current local infinitesimal action step. It is an imaginary operator. Like time the 

action step also has a lower limit that is determined by a corresponding Planck 

unit. 

 

The Heisenberg picture conforms to the description with unitary transforms 

where operators are redefined. When this is done in small steps, then the 

redefined operator becomes a function of progression parameter t. 

(1) 

(1) 

(2) 
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Unitary transform with full set of eigenvectors 

When a unitary transformation U is applied to an arbitrary vector    , which is 

not an eigenvector, then that vector is transferred into another vector      

      , which has the same norm. If     is an eigenvector of U then     is not 

transferred to a different vector, but it is multiplied with the corresponding 

eigenvalue. Also in this case the norm stays the same. 

 

If a unitary transform contains a full set of eigenvectors, then multidimensional 

subspaces usually contain one or more eigenvectors of that unitary transform. In 

that case the transfer of a multidimensional closed subspace requires a set of 

parallel unitary transforms.  

 

If we take a set of vectors         that together span a closed subspace, then a set 

of suitable unitary transforms      , can in parallel transfer all vectors of this set 

such that after the transform                the set         spans the new 

subspace. Each of the members    of the set       can be split in a trail.        

Fourier transform as unitary transform 

Unitary transforms exist that have no eigenvectors. For example in Hilbert space 

a Fourier transform has no eigenvectors and no eigenvalues. It does not leave a 

single Hilbert vector untouched.  

 

The Fourier transform converts an orthonormal base into another orthonormal 

base, which is the canonical conjugate of the first.  

 

Hilbert fields exist that apart from a scaling factor are invariant under Fourier 

transformation. They keep their form through Fourier transformation. For that 

reason they are often called eigenfunctions, but they do not correspond to 

eigenvectors. The Hermite functions106 are notorious examples of Fourier 

“eigenfunctions”. Even and odd functions have an indirect relation to functions 

that are invariant under Fourier transformation.  

 

An invariant function is not an eigenfunction. In extended separable Hilbert space, 

every Fourier transform causes a resampling of the analyzed field or function. 

 

                                                      
106 Functions and fields; Functions that are invariant under Fourier transform. 
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Each Fourier transform means a complete replacement of the current 

orthonormal base. For that reason, a Fourier transform that resides in separable 

Hilbert space can never be an infinitesimal unitary transform. Stated in different 

words this means: The transform            is not a Fourier transform. 

However, Fourier transforms    and reverse Fourier transforms   
  can be 

member of a trail of unitary transforms, where each trail step contains a move up 

and down to Fourier space, while in Fourier space only an infinitesimal action is 

taken. 

 

       ∏        
 

      

 

Stepping through the Fourier space has the advantage that there derivation turns 

into multiplication and multiplication with a factor close to unity reduces to 

addition. 

Single infinitesimal step 

The success of the Feynman path integral formalism107 gives us guidance in the 

analysis of what happens during a single infinitesimal step. We analyze an 

arbitrary trail consisting of infinitesimal trajectory steps: 

 

            
        {∏(   

 |           |   )

    

    

}           

 

During a single step the system moves from position    o  ’        ? 

Let us evaluate                  for a single trajectory. Here     is an 

infinitesimal unitary transform. It is a member of the set of parallel unitary 

transforms that act on a target subspace. In the following text we leave the 

parallel trajectory index s in     unspecified. We concentrate on the sequence 

index  , which represents the progression parameter. The infinitesimal sequence 

step comprises three sub-steps: 

 

1. Goto Fourier space. This is achieved by part       . 

2. Perform the action. This is done by       
  . 

3. Go back to configuration space. This is achieved by      . 

                                                      
107 http://en.wikipedia.org/wiki/Path_integral_formulation 

(1) 

(1) 

http://en.wikipedia.org/wiki/Path_integral_formulation
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The sense behind the first and the last part is a travel to and back from Fourier 

space. Step two means that in Fourier space the action of the operator is just a 

multiplication with factor e  (   ). 

 

      
   e  (   )     

 

First we split       . 

 

               e  (
     

 
)        (  

     

 
) 

 
                

 
      e  (   )        

 

       (  
     

 
) (     )        

 
               

  

 

This is a quaternionic rotation of the central term   , which is close to unity. The 

quaternionic rotation manipulators stands for the route to Fourier space and the 

route back from Fourier space. The central term    stands for what is done 

during a single step by the action in Fourier space. 

 

   (  
     

 
) (      )    

     

 
           

 

   
     

 
     

 
                 

 
          〈    〉                      

 

We study the step    somewhat deeper. Since   and   are considered to be 

imaginary, we skip the parts containing     or     

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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              〈    〉          

 

We introduce  . It characterizes the infinitesimal step. 

 

     
  

  
      ̇ 

 

Both    and   are functions of progression parameter t. 

 
                 〈    〉 

 

      〈
  

  
  〉   〈 ̇  〉 

 
                                

 

     
   
  
  
  

  
        ̇    ̇     

 

The steps     and     depend on the step Δt of the trajectory parameter t that is 

used to chop the unitary transform       .  

In the trail the imaginary part of   is rotated. 

If    is zero then 

 

     
   
  

 

 

   is never zero. If    equals the Planck time, then      is either zero or it equals 

the Planck length. In that case  

 

|
  

  
|    

Ray tracing 

Following a trail has much in common with ray tracing in optics. However in 

optics the use of characteristics that have their base in Fourier analysis seems to 

be more fruitful than ray tracing. Ray tracing follows the path of a sharp particle, 

while Fourier analysis is capable of following the life path of a blurred particle 

and include more of the influences of the environment in the analysis. It is 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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sensible to expect that the advantages of Fourier analysis also hold for wave 

mechanics. As shown here, to a certain extent the path integral approach also 

makes use of Fourier analysis. 

Relativity 

Einstein’s own explanation of the origin of relativity was: "There is no logical way 

to the discovery of these elementary laws. There is only the way of intuition." Read 

more in: 

http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15Nlhp

WDu 
 

Thus, Einstein never gave a proper explanation for the existence of special 

relativity. He just provided a set of formulas that work properly. He left us the 

choice of finding the origin of special relativity or otherwise to follow his 

intuition. Let us give it a try: 

 

The position operator   is modified by the unitary operators of the trail into 

another operator    that has different eigenvectors and different eigenvalues. 

 

             
  

 
         

 

  
        

 
                   

 
 〈 〉  〈     〉  〈  〉                    

 

This indicates that the step  〈 〉 in the expectation value 〈  〉 of    is 

perpendicular to both    and    . The steps  〈 〉 and     form a right angular 

triangle with a hypotenuse:      , such that: 

 
       〈 〉      

 

Here we introduced a new imaginary variable   . 

With            the Minkowski signature of a new “observable” spacetime 

becomes visible. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15NlhpWDu
http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15NlhpWDu
http://en.wikipedia.org/wiki/Spacetime
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 〈 〉

 
    

 
        〈 〉   

 
           

    〈 〉      
 

Thus, the analysis of what occurs during a single infinitesimal step gives us an 

indication how relativity enters physics. However, it asks for the introduction of 

a local notion of time         that differs considerably from the (global) 

progression parameter t. This new parameter is the coordinate time108   . 

Proper time 

In relativity, proper time109    is time measured by a single clock between events 

that occur at the same place as the clock. It depends not only on the events but 

also on the motion of the clock between the events. An accelerated clock will 

measure a proper time between two events that is shorter than the coordinate 

time measured by a non-accelerated (inertial) clock between the same events. 

 

|   |
 
      

    〈 〉      

 

   
   
 
        

 

Thus, proper time    is, via the action step     related to our notion of 

progression parameter t. 

For a photon the proper time step is always zero. This also holds in the realm of 

general relativity. In the vicinity of a black hole this leads to the fact that the 

radial velocity of a photon approaches zero when the photon approaches the 

border of the black hole. The border is located at the Schwarzschild radius     

 

         
  

 

We use polar coordinates and the expression for the metric near the black hole 

                                                      
108 http://en.wikipedia.org/wiki/Coordinate_time 
109 http://en.wikipedia.org/wiki/Proper_time 

(7) 

(8) 

(9) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Coordinate_time
http://en.wikipedia.org/wiki/Proper_time
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|   |
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  (
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Take     . Then with       

 
  

   
  (  

   
 
) 

 

Discussion 

We have successfully introduced special relativity into our model. 

By introducing relativity the way we did we played a few tricks.  

 We neglect the real part of the position observable. In our model it plays 

no essential part in dynamics. 

 We shift from Hilbert space via quaternionic 1+3D coordinate space to 

observed space, thereby losing one dimension. 

 Clocks do not count progression steps. Instead they tend to measure 

coordinate time. 

 We may shift from the global progression parameter t to the local 

coordinate time   . 

 We may combine the resulting observed space with coordinate time into 

a Minkowski/Lorentzian space.  

 

As a consequence  

 We then shift from 2n-on/Riemannian space to Minkowski/Lorentzian 

space. 

 Most physicists will use Clifford, Jordan and Grassmann algebras rather 

than 2n-on algebras. 

 With these algebras they can use complex analysis instead of the more 

complicated 2n-on analysis. 

 But if they do so, they are confronted with unintuitive selection features.  

 In the new space the quaternion waltz becomes an odd operation. 

 Spinors can help in order to cope with these changes. 

Can we do without relativity? 

Yes.  

 Skip coordinate time.  

(4) 

(5) 
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 Use clocks that measure the progression parameter. 

However, you would have to fight existing conventions. Specifying causality 

might become a problem. 

Inertia and progression step  
The covering field represents the influence of the universe of all particles. 

According to the findings about inertia110, the change    since the last 

progression step of the corresponding curvature field   determines the 

acceleration that a local particle senses during the current progression step. 

This results in the acceleration 
  

  
 of the particle. 

 

  (   )     
  

  
 

Redefinition 
If we want to use the Schrödinger picture, rather than the Heisenberg picture, 

then it is better not to use unitary transforms, because they change the operators 

by acting on the eigenvectors of the operators. Instead the subspace should be 

redefined without touching eigenvectors. 

 

Let us suppose that there exists a dynamical equivalent of the traditional 

quantum logic. The equivalent of a move of a physical item in the lattice of 

propositions is a redefinition of a subset of the propositions. The redefinition 

occurs in terms of atomic predicates that describe the properties of the physical 

items. In the Hilbert space this corresponds with a redefinition of a relevant part 

of the Hilbert subspace in terms of the eigenvectors that belong to the new 

eigenvalues.  

 

The redefinition concerns the Hilbert space which represents the current static 

status quo. The step transforms the current version of the Hilbert space into a 

past version of the Hilbert space and it transforms a future version of the Hilbert 

space into the new current version. This is interesting in the light that a Hilbert 

field exists that controls the relation between the past, the current and the future 

versions of the Hilbert fields. For that reason we will call this special Hilbert field 

the adventure field. A transform that controls dynamics converts a future 

Hilbert space into the new current Hilbert spaces and it converts the current 

                                                      
110 Influence; Inertia 

(1) 
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Hilbert spaces into a past Hilbert space. This transform will be called 

progression transform. The local blurs that characterize the adventure field form 

boundary conditions for the local transfer characteristics of the progression 

transform. Each item type is surrounded by a characteristic blur. 

 

A progression transform that moves Hilbert subspaces without touching the 

eigenvectors of normal operators will be called a redefiner. The effect of the 

action of the redefiner on expectation values of operators must be similar to the 

effect of the trail of parallel unitary transforms treated in the previous 

paragraphs. While the set of parallel trails of unitary transforms act in the 

Heisenberg picture, the redefiner acts in the Schrödinger picture. As indicated 

earlier, the redefiner has an equivalent in the dynamic version of quantum logic. 

 

In order to achieve the same effect as the Heisenberg picture, the Hilbert 

subspace redefiner must to a large degree have similar properties as the trails of 

parallel infinitesimal unitary transformations that are used to move the subspace 

in the Heisenberg picture. The redefinition keeps the inner products of vectors 

intact. Where unitary transforms rotate vectors around the origin of a Hilbert 

space, the redefiner takes subspaces of a potential future Hilbert space in order 

to redefine them into subspaces of the new current Hilbert space. In contrast to a 

unitary transform the redefiner does not change the eigenvectors of normal 

operators. Thus, it leaves the operators untouched. Like the trails of unitary 

transforms the redefinition works in infinitesimal steps. These infinitesimal 

actions also form trails. In this way the manipulated subspace can move close to 

continuously through Hilbert space. Where the redefiners act on subspaces, the 

trails of unitary transforms redefine operators. 

 

During this process the subspace may change its configuration. This may include 

a change that corresponds to the change of type definitions of atomic predicates. 

The redefiner steps from one stationary situation to the next. The Schrödinger 

picture conforms to the description with a redefiner. The result for the position 

of the locator must be the same as it was under the influence of the set of parallel 

infinitesimal unitary operators in the Heisenberg picture. The redefiner moves 

the subspace such that the new locator position is similar to the value as was 

established by the redefined position operator. It means that during the redefiner 

step the position of the locator undergoes an infinitesimal number transform that 

is equivalent to the infinitesimal transform that is established by the redefined 
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position operator. That redefinition was caused by the parallel infinitesimal 

unitary transforms. 

Trails 

In fact the    step characterizes the redefinition step. The subsequent 

replacement of vectors and the replacement of the corresponding eigenvalues 

can be interpreted as a rather continuous movement of the corresponding 

characteristic subjects. Here we encountered ten different trails.  

1. The trail of subsequent manipulators (infinitesimal unitary transforms or 

infinitesimal redefiners) that each perform an infinitesimal action. 

2. The trail of subspaces, which with respect to the manipulators are 

characteristic for the considered item. 

3. The trail of corresponding “action values” of the redefiner. 

4. The trails of corresponding “action values” of the unitary transforms. 

5. The trail of eigenvectors |qt>  

6. The trail of corresponding observables Qt. 

7. The trail of corresponding observed expectation values qt. 

8. The trail of values ψ(qt) of a wave function. 

9. This, on its turn corresponds to a trail of a state in coordinate space  

10. And a trail of that state in Hilbert space. 

Cycles 

It is quite possible that locally subsequent steps are done in cycles of two or 

more steps. It is obvious that movements inside an item are cyclic. In ideal 

circumstances these movements are harmonic. 

Redefiner 

The concept of dynamic manipulator gives us reason to introduce a new type of 

actuator: the redefiner Ɽ. This actuator moves subspaces, but leaves vectors 

untouched. It works in infinitesimal steps. In the Hilbert book model its activity 

fits in the conversion from an actual Hilbert space to the next Hilbert space. It is 

easily interpreted as a function Ɽt of the progression parameter t. Its scope spans 

the subsequent Hilbert spaces. The effect of each step on an item is similar to the 

effect of a set of parallel infinitesimal unitary transforms {Uts}s. The current 

“action value” of the redefiner is a number, which is close to unity. It is an 

“average” of the “actions values” of the parallel infinitesimal uniforms that are 

active in the same step. The redefiner accepts 2n-ons as “action values”. 
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The redefiner has an equivalent in a dynamic quantum logic, where it redefines 

propositions that concern the same objects as are represented by the closed 

subspaces of the Hilbert space that are moved by Ɽt. There seems to be no 

objection against the assumption that Ɽt has a global scope. If we take that point 

of view, then the progression parameter t also has a global scope. 

 

With this interpretation, the redefiner is a universe-wide stepper. It transforms 

the universe from one static situation to the next static situation. These static 

situations are governed by extended quantum logic, which combines traditional 

quantum logic, the blur of representations of physical items and the 

Helmholtz/Hodge decomposition theorems. After each step a new static status 

quo of subspaces and fields is established. After the step the conditions have 

been changed. After each step the position of the physical item relative to the 

fields has changed, thus when the fields are not uniformly distributed, the item 

meets a different field configuration. On the other hand the fields represent the 

blurs of the individual items. Thus, when the position or the type of the item has 

changed, then the local configuration of the field has changed. This is the way 

that macroscopic dynamics takes place in quantum physics. 
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Equations of motion 

Private continuity equation 
Existence, transport, generation and annihilation of information carrying quanta is 

governed by a continuity equation. In short this equation runs: 

 

Total change within V = flow into V + production inside V 

 

This integral equation corresponds to differential equations in which an information 

quantum density ρ , an information quantum current   and an information quantum 

source   will play a role. 

Particles act as sources and drains. Private fields represent the currents and the static 

density distributions. Wave functions are private fields that represent the situation in the 

direct environment of particles. 

 

The rotation free part of the private field corresponds to the divergence of the 

information probability amplitude distribution, whose squared modulus corresponds to 

the probability density. The transverse part of the private field corresponds to curl of the 

information current probability amplitude distribution, whose squared modulus 

corresponds to the information current. Together the private fields form the covering 

field. The covering field is the superposition of all private fields. The curvature field is 

derived from the decomposition properties of the covering field. 

Particles 
Fields are superpositions of probability amplitude distributions. These probability 

amplitude distributions are typical for corresponding particles and are attached to one or 

a small set of Hilbert vectors.  

 

Four boson types exist: photons, gluons, W type and Z type bosons. Bosons are attached 

to a single Hilbert vector. They all have spin ±1. However, apart from the W type, 

bosons do not carry a charge. They are the messengers that transfer interactions. Photons 

and gluons are massless bosons. Z and W type bosons have mass. They mediate weak 

field forces. The photons mediate EM field forces. The gluons mediate color (strong) 

field forces. 

 

Six quark types exist: up, down, charm, strange, top and bottom. They all have spin ±½ 

and fractional charge (color charge). They are massive. In the strand model the quarks 

are attached to two Hilbert vectors. 

 

Six lepton types exist. All leptons have spin ±½. The three neutrino types have no charge 

and relative little mass. The electron, the muon and the tau particle are all massive 

particles. According to the strand model the leptons are attached to three Hilbert vectors. 

(1) 
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Together these anchor points carry a centralized probability distribution that represents 

the influence of a single charge. 

Interactions 
Probability amplitude distributions, which represent particles, move and rotate. That is 

interpreted as a movement / rotation of the corresponding item. Interactions may change 

the form of the probability amplitude distributions. Three types of change are discerned: 

 

In strand theory the first Reidemeister move, or type I move, or twist, is the 

addition or removal of a twist in a corresponding strand. In Hilbert space it involves the 

approach of a single Hilbert vector into the realm of a particle. The twist, is related to the 

electromagnetic interaction. Two twist directions are possible. The twists form an SU(1) 

group. 

 

In strand theory the second Reidemeister move, or type II move, or poke, is the 

addition or removal of a bend of one strand under (or over) a second strand. In Hilbert 

space it involves the interaction of two Hilbert vectors in the realm of a particle, where 

one Hilbert vector approaches the particle. The poke is related to electro-weak 

interaction. Three basic pokes exist. The pokes form an SU(2) group. 

 

In strand theory the third Reidemeister move, or type III move, or slide, is the 

displacement of one strand segment under (or over) the crossing of two other strands. In 

Hilbert space it involves the simultaneous interaction of three Hilbert vectors in the realm 

of a particle, where one Hilbert vector approaches the particle. The slide is related to 

electro-strong interaction. The slides form an SU(3) group. 

 

Each Reidemeister move generates a single corresponding observable quant or 

annihilates a single potentially observable quant. 

Schrödinger equation 
When the spin has a constant direction: 

The first term on the left side signifies the quantum generation rate per time 

step. 

The second term indicates the influence of the electric field on this rate. 

The first term on the right signifies the generation rate per path length. 

The second term indicates the influence of the vector potential on this rate. 

The square dependence indicates the increasing alignment of spin with the 

movement. 

 

(       ̃) ̃(   )   (       ̃) ̃(   ) 
 

(1) 
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(         )    
 

  
 (         )   

Pauli equation 
When the spin has no constant direction: 

The density  (   ) and the Euler angles       define the Pauli equation:  
 

 (   )   √   
  
   [
 o (
 

 
)  
  
 

   in (
 

 
)   
  
 

] 

 
Due to the half angles, the two-component matrix is not a vector, but a spinor. 
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Pauli’s equation for the evolution of a free quantum particle with spin ½ is: 

 

          
  

  
 (  )    

 

(         )    
 

  
 (         )     

  

  
     

 

The last term shows the influence of spin. 

Dirac equation  
The final and most detailed description of elementary fermions, the Dirac equation, 

results from combining all three ingredients:  

1. the relation between the quantum of action and the phase of the wave function,  

2. the relativistic mass–energy relation, 

3. spin 1/2. 
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   [
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 (   ) is the probability density. 

  is a phase which represents the relative importance of particle and antiparticle density. 
          are Euler angles. They describe the average local orientation and phase of the 

spin axis. 

(this defines a rotating spin vector) 

 (   ) is the average local Lorentz boost. 

   is an abbreviation for the boosted and rotated unit spinor.(quantum) 

 

The probability amplitude   moves and rotates and individually the quanta carry 

position, momentum and angular momentum (including spin) information. 

Fields 
It is clear that the physical fields  play an important role in nature. They form an 

indispensable ingredient in the establishment of dynamics. Each physical item 

follows a path through a set of universe wide fields. The static gravitational field, 

the electrostatic field and the electromagnetic field are all subjected to the 

Helmholtz decomposition theorem. The difference between the gravitational 

field and the electromagnetic field is that the masses are non-negative and the 

electric charges are, apart from a sign, always the same. All other fields also have 

charges that on the long range will compensate each other. The gravitation field 

can be seen as being derived from the curvature set by the decomposition of the 

covering field. The covering field is the superposition of all fields but the 

gravitation field.  

When the path with respect to the gravitation field corresponds to a unit speed 

curve then that field executes no action onto that item. Only the gravitation field 

keeps its long range because its charges do not compensate each other’s 

potentials. They only compensate each other’s forces. 

More fields 

There exists a list of fields with shorter ranges than the range of the gravitation 

field and the range of the electromagnetic fields. The electro-weak field and the 

electro-strong field are not treated here in detail.  

(3) 

(4) 
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The action represented by a complete Lagrangian indicates how fields appear in 

the argument of a manipulator. See Lagrangian of the world111 for a complete 

survey of terms. Mendel Sachs112 has also found a way to bring all terms under 

the same hood. 

Lagrangian 
 

     ̅(          )   
 

    
    

    ∑   
   
  

 

   

  ∑   
   
  

 

   

 

 

Where           
The first term concerns the affected particle. 

The second term concerns electromagnetic interactions. Reidemeister twists. SU(1). 

The third term concerns unbroken weak interactions. Reidemeister moves. SU(2). 

The fourth term concerns unbroken strong interactions. Reidemeister slides. SU(3). 
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  is the private field of the affected particle. 

  ,   
  and   

  are vector potentials of the corresponding subfields 

  is the gauge coupling constant113. The quantity      is the structure constant114 

of the gauge group. 

Path through field 
The text in this section is borrowed from Wikipedia. 

In a Riemannian manifold115 M with metric tensor116  , the length of a 

continuously differentiable curve           is defined by 

                                                      
111 Appendix; Thoughts; The world’s action 
112 Appendix; Thoughts; Representing multiple fields 
113 http://en.wikipedia.org/wiki/Coupling_constant 
114 http://en.wikipedia.org/wiki/Algebra_over_a_field#Structure_coefficients 
115 http://en.wikipedia.org/wiki/Riemannian_manifold 
116 http://en.wikipedia.org/wiki/Metric_tensor 
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(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Coupling_constant
http://en.wikipedia.org/wiki/Algebra_over_a_field#Structure_coefficients
http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
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 ( )  ∫ √  ( )( ̇( )  ̇( ))   
 

 

 

The distance  (   ) between two points   and   of   is defined as the 

infimum117 of the length taken over all continuous, piecewise continuously 

differentiable curves           such that  ( )    and  ( )   . With this 

definition of distance, geodesics in a Riemannian manifold are then the locally 

distance-minimizing paths, in the above sense. 

The minimizing curves of L in a small enough open set118 of M can be obtained 

by techniques of calculus of variations119. Typically, one introduces the following 

action120 or energy functional121 

 

 ( )   ∫   ( )( ̇( )  ̇( ))   
 

 

 

 

It is then enough to minimize the functional E, owing to the Cauchy–Schwarz 

inequality122 

 

 ( )   (   )  ( ) 
 

with equality if and only if         is constant. 

The Euler–Lagrange123 equations of motion for the functional   are then given in 

local coordinates by 

 

    

   
      

  
   

  
 
   

  
   

 

where    
 are the Christoffel symbols124 of the metric. This is the geodesic 

equation. 

                                                      
117 http://en.wikipedia.org/wiki/Infimum 
118 http://en.wikipedia.org/wiki/Open_set 
119 http://en.wikipedia.org/wiki/Calculus_of_variations 
120 http://en.wikipedia.org/wiki/Action_(physics) 
121 http://en.wikipedia.org/wiki/Energy_functional 
122 http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality 
123 Appendix; Derivation of the one dimensional Euler Langrange equation 
124 Equations of motion; Path through field; Christoffel symbols 
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http://en.wikipedia.org/wiki/Infimum
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
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Calculus of variations 

Techniques of the classical calculus of variations125 can be applied to examine the 

energy functional E. The first variation126 of energy is defined in local coordinates 

by 

 

  ( )( )  
 

  
|
   
 (     ) 

 

The critical points127 of the first variation are precisely the geodesics. The second 

variation is defined by 

 

   ( )(   )  
  

   
|
   

 (        ) 

 

In an appropriate sense, zeros of the second variation along a geodesic γ arise 

along Jacobi fields128. Jacobi fields are thus regarded as variations through 

geodesics. 

By applying variational techniques from classical mechanics129, one can also 

regard geodesics as Hamiltonian flows130. They are solutions of the associated 

Hamilton–Jacobi equations131, with (pseudo-)Riemannian metric taken as 

Hamiltonian132. 

Affine geometry 

A geodesic on a smooth manifold M with an affine connection133 ∇ is defined as a 

curve  ( ) such that parallel transport134 along the curve preserves the tangent 

vector to the curve, so 

 

                                                      
125 http://en.wikipedia.org/wiki/Calculus_of_variations 
126 http://en.wikipedia.org/wiki/First_variation 
127 http://en.wikipedia.org/wiki/Critical_point_(mathematics) 
128 http://en.wikipedia.org/wiki/Jacobi_field 
129 http://en.wikipedia.org/wiki/Classical_mechanics 
130 http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows 
131 http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation 
132 http://en.wikipedia.org/wiki/Hamiltonian_mechanics 
133 http://en.wikipedia.org/wiki/Affine_connection 
134 http://en.wikipedia.org/wiki/Parallel_transport 
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http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/First_variation
http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Jacobi_field
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows
http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Affine_connection
http://en.wikipedia.org/wiki/Parallel_transport
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∇ ̇ ̇( )    

 

at each point along the curve, where  ̇ is the derivative with respect to t. More 

precisely, in order to define the covariant derivative of  ̇ it is necessary first to 

extend  ̇ to a continuously differentiable imaginary Hilbert field in an open 

set135. However, the resulting value of the equation is independent of the choice 

of extension. 

Using local coordinates136 on M, we can write the geodesic equation (using the 

summation convention137) as 

 

    

   
      

  
   

  
 
   

  
   

 

where xμ(t) are the coordinates of the curve  ( ) and    
  are the Christoffel 

symbols138 of the connection ∇. This is just an ordinary differential equation for 

the coordinates. It has a unique solution, given an initial position and an initial 

velocity.  

From the point of view of classical mechanics, geodesics can be thought of as 

trajectories of free particles in a manifold. Indeed, the equation ∇ ̇ ̇( )    means 

that the acceleration of the curve has no components in the direction of the 

surface (and therefore it is perpendicular to the tangent plane of the surface at 

each point of the curve). So, the motion is completely determined by the bending 

of the surface. This is also the idea of the general relativity where particles move 

on geodesics and the bending is caused by the gravity. 

Christoffel symbols 

If xi, i = 1,2,...,n, is a local coordinate system on a manifold M, then the tangent 

vectors 

 

     
 

   
             

 

                                                      
135 http://en.wikipedia.org/wiki/Open_set 
136 http://en.wikipedia.org/wiki/Local_coordinates 
137 http://en.wikipedia.org/wiki/Summation_convention 
138 http://en.wikipedia.org/wiki/Christoffel_symbol 

(1) 

(2) 

(1) 

http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Local_coordinates
http://en.wikipedia.org/wiki/Summation_convention
http://en.wikipedia.org/wiki/Christoffel_symbol
http://en.wikipedia.org/wiki/Christoffel_symbol
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define a basis of the tangent space of M at each point. The Christoffel symbols 

   
  are defined as the unique coefficients such that the equation 

 

           
     

 

holds, where    is the Levi-Civita connection139 on M taken in the coordinate 

direction   . 

The Christoffel symbols can be derived from the vanishing of the covariant 

derivative of the metric tensor gik: 

 

            
    

   
        

 
          

 
   

 

By permuting the indices, and re-summing, one can solve explicitly for the 

Christoffel symbols as a function of the metric tensor: 

 

   
 
         (

    

   
   
    

   
   
    
   
)  

 

where the matrix (   ) is an inverse of the matrix (   ), defined as (using the 

Kronecker delta, and Einstein notation for summation)  

 

          
  

 

Although the Christoffel symbols are written in the same notation as tensors 

with index notation, they are not tensors, since they do not transform like 

tensors under a change of coordinates. 

Under a change of variable from (x1, …., xn) to (y1, …., yn), vectors transform as 

 

 

   
   
   

   
 
 

   
 

 

and so 

 

                                                      
139 http://en.wikipedia.org/wiki/Levi-Civita_connection 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Levi-Civita_connection
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where the underline denotes the Christoffel symbols in the y coordinate frame. 

Note that the Christoffel symbol does not transform as a tensor, but rather as an 

object in the jet bundle. 

At each point, there exist coordinate systems in which the Christoffel symbols 

vanish at the point. These are called (geodesic) normal coordinates, and are often 

used in Riemannian geometry. 

The Christoffel symbols are most typically defined in a coordinate basis, which is 

the convention followed here. However, the Christoffel symbols can also be 

defined in an arbitrary basis of tangent vectors    by 

 

           
     

 

The action along the live path 
The integrated action Sab is performed over a distance along the action trail or 

equivalently over a period of coordination time 

 

        ∫    
    

 

 

              

 

    ∫      √    (
 

 
)
 

                
  

  

 

 

  ∫     
  

  

 

 

m is the mass of the considered item.  

v is the speed in Q space.  

  is the Lagrangian. 

 

The first line of this formula can be considered as an integral along the trail in 

coordinate space or equivalently over the trail in Hilbert space. The next lines 

(8) 

(1) 
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concern integrals over the corresponding path in observed space combined with 

coordinate time. It must be noticed that these spaces have different signature. 

 

          
  

  
 + matter terms 

 

In general relativity, the first term generalizes (includes) both the classical kinetic 

energy and interaction with the Newtonian gravitational potential. It becomes: 

 

     
  

  
      √      ̇    ̇  

 

    is the rank 2 symmetric metric tensor which is also the gravitational 

potential. Notice that a factor of c has been absorbed into the square root. 

The matter terms in the Lagrangian   differ from those in the integrated action 

Sab. 

 

               ∫        
 

 

 

 o her  a  er  er   

 

The matter term in the Lagrangian due to the presence of an electromagnetic 

field is given by: 

 

          
  

  
     ̇     + other matter terms 

 

   is the electromagnetic 4-vector potential.  

  

(2) 

(3) 

(4) 

(5) 
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Optics 
The optical Fourier transform (OTF) is an objective imaging quality characteristic 

for imaging devices in a similar way as the frequency transfer function qualifies 

the signal transfer function of a linearly operating electronic device. The transfer 

quality of a chain of linear signal transforming devices is characterized by the 

product of the frequency transfer functions of the elements of the chain. In a 

similar way the OTF of a chain of imaging devices is given by the product of the 

OTF’s of the elements of the chain. However, this is a profound simplification of 

reality. The product rule only holds when the transfer characteristics of the 

imaging devices are spatially uniform over the complete input field of the 

separate imaging components. Further, the conditions in which the OTF’s of the 

components are determined must be similar to the conditions in the chain. More 

in detail, this means that the angular distribution, the chromatic distribution and 

the homogeneity of the radiation must be identical. 

 

In optics, the image sided spread function equals the convolution of the object 

sided spread function and the point spread function (PSF, the image of a point). 

The Fourier transform of the image sided spread function is equal to the product 

of the Fourier transform of the object sided spread function and the optical 

Fourier transforms (OTF’s) of the imaging devices. When several imaging 

devices work in sequence, then the total optical transfer function of the imaging 

system equals the product of the transfer functions of the components.  

 

If we restrict to a static situation and include the “depth” of the image, the static 

PSF is a three parametric function. Thus the OTF must have the same number of 

parameters. Like the PSF the three dimensional OTF has a longitudinal 

component and a two dimensional transverse component. In most cases only the 

transverse component is used as an imaging quality characteristic. On-axis the 

transverse component is rotationally symmetric. Off-axis its modulus, the MTF, 

is symmetric but not rotationally symmetric. On-axis the MTF is presented as a 

one parametric curve in which only the positive axis is given. Off-axis the two 

extremes of the MTF are given. They correspond to radial and tangential 

directions. 

 

Due to the fact that Hilbert fields are blurred Hilbert distributions, wave 

mechanics has much in common with wave optics. For each compact normal 

operator the Hilbert subspace that represents a physical item corresponds to a 
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spread in Hilbert space and a corresponding spread in the eigenspaces of that 

normal operator. The distribution of this spread is represented in a wave 

function, or more correctly, in a probability distribution. For example the wave 

function that has the position as a variable corresponds to the triple consisting of 

a physical item, its Hilbert subspace representation and the position operator.  

 

After a move of a physical item its position related wave function has much in 

common with the spread function that characterizes the blur of the image sided 

pictures in a linear operating imaging system. The physical fields that influence 

the physical item have an equivalent in the chain of imaging devices that 

transfers the image. 

 

The product formula for the transfer functions relies on several preconditions. 

First of all it relies on the fulfillment of the requirement for sufficient spatial 

uniformity of the transfer. At all places where information is passed, the transfer 

characteristics must be sufficiently identical. The product formula has only 

validity in the spatial area where this requirement is fulfilled. 

 

The transfer characteristics will be different for each Fourier component. Their 

quality will reduce with higher spatial frequencies. 

 

The final result can be computed in longitudinal direction by multiplication. In 

lateral direction these regions are restricted to areas where the transfer is locally 

sufficiently uniform. In the summation that is used to compute a sensible 

average the angular and chromatic distribution of the transferred information 

play a role. These distributions determine the summation coefficients. The extent 

of the region in which the considered transfer function is considered valid 

depends on the accuracy that is required for the result of the computation. Sign 

selections inside the radiation determine the polarization. Often in optics this 

feature and its influence is ignored. Coherence plays a role as well, but in 

practice optical imaging uses either nearly completely incoherent light or nearly 

completely coherent light. 

 

In wave mechanics the wave function, which is taken just before the item moves, 

gets the role of the object. After a movement through a region of the fields the 

wave function has been changed. Its Fourier transform then equals the product 

of the Fourier transform of the original wave function and the wave transfer 
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functions (WTF’s) of the fields that influence the item. If several steps are taken 

in sequence, then the transfer functions of the passed field pieces must be 

multiplied in order to get the overall result. This transfer is affected in a similar 

way by spatial non-uniformity as the optical case. 

 

In cylindrical imaging systems Seidel aberrations take their toll. When the 

system is folded or when lenses are not perfectly in line, also non-cylindrical 

influences will influence the imaging quality. The measurement and the 

specification of the OTF must cope with the spatial non-uniformity of the 

imaging characteristics of the imaging devices and with the angular and 

chromatic distribution of the radiation. The OTF also depends on the 

longitudinal location of the object and where the image is detected. This also 

occurs with the WTF of physical fields. Both in optics and in wave mechanics the 

precise locations of the “object” and the “image” are often not well determined. 

They are defined by spatial distributions in three dimensions. In both cases the 

angular and chromatic distributions of the contributing radiation influence the 

transfer. The final result is constituted by the weighted sum of all contributions. 

 

With inhomogeneous (= incoherent) imaging the phases are ignored. These facts 

indicate the difference between the particle view and the wave view. From optics 

it is known that the modulation transfer function (MTF) is a proper imaging 

qualifier for inhomogeneous light imaging. In inhomogeneous imaging the 

imaging process can be properly described by ray tracing. Ray tracing has much 

similarities with the application of the path integral. However, ray tracing 

normally does not use arbitrary paths. In inhomogeneous imaging phases are 

scrambled. For holographic imaging the phase transfer function (PTF) or the 

whole OTF is the better measure. With holographic imaging the phases carry the 

depth information. Feynman’s path integral can cover arbitrary paths because, 

according to Feynman’s claim, interference via the phases eliminates the 

contributions of non-realistic paths. That is why in the path integral the angular 

distribution of the radiation plays no role. 

In optics the image space is often a surface. In optics the OTF depends on the 

position in the object space. Off axis the OTF is not rotationally symmetric. The 

OTF also depends on the angular distribution and the chromatic distribution of 

the radiation. These dependencies also hold for the WTF in wave mechanics.  



195 

 

A longitudinal displacement of the image spread function with respect to the 

object spread function corresponds to an extra phase term in the longitudinal 

component of the Fourier transform of the image spread function. A lateral 

displacement corresponds to an extra phase term in the transverse component of 

the Fourier transform. In wave mechanics this holds for the respective 

components of the Fourier transform of the wave function after the move. 

The resemblance between optics and wave mechanics becomes striking when the 

discrete lens pack is replaced by a medium with a continuously varying 

refraction. In optics this happens with electron optical lenses that are used in 

imaging with charged particles. 

When the point spread function is a function of three-dimensional position, then 

the OTF is also a three-parametric function of spatial frequency. The MTF is a 

symmetric function. However, the MTF is not rotationally symmetric (in 2D) or 

spherical symmetric (in 3D). On its vertical axis the MTF indicates the part of the 

energy of the radiation that is transferred by a given spatial frequency.  

Veiling glare and halo 
Due to reflections on refracting surfaces some of the energy of the radiation loses 

much of its spatial information content. As a consequence the MTF shows a 

sharp peak near zero spatial frequency. This phenomenon is called veiling glare. 

When the drop is not so fast the phenomenon is called halo. 

 

Equivalents of veiling glare and halo can also occur in wave mechanics. In this 

way spurious radiation and a spurious halo can enter space. This can happen in 

the form of energy or in the form of matter. Spurious radiation contains no 

spatial information. 
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Strands 
A strand is a notion introduced by Christoph Schiller140. In this e-paper I try to 

embed the notion of a strand into the context of a sequence of Hilbert spaces or 

similarly into the context of a sequence of traditional quantum logics. The strand 

interpretation used in this e-paper is a mixture of the interpretation of Christoph 

Schiller and my personal interpretation. Any difference with the original 

interpretation is for my account. The reader must take Schiller’s interpretation as 

the most original. See also braid theory141. 

 

In my interpretation: 

Strands are chains of granules in the eigenspace of a strand operator. 

One of the granules represents the current state of the chain. That 

granule is the anchor location of a probability amplitude distribution. 

All granules in the chain obtain a position from a background 

coordinate system that is defined in the Gelfand triple. The anchor point 

coincides with a Hilbert vector, which is also an eigenvector of the 

strand operator. 

Schiller’s strands 
The fundamental principle of the strand model is: 

 
Planck units are defined through crossing switches of strands. 

 

An alternative fundamental postulate is: 

 
An event is the switch of a crossing between two strand segments. 

 

The original interpretation of strands can be found in Motion Mountain, volume 

VI142. In Schiller’s words: 

 
Strands are one-dimensional curves in three-dimensional space that are 

closed or reach the border of space (or a horizon). 

Strands exist in relation to a 3D background coordinate system. 

Strands are fluctuating. 

                                                      
140 http://www.motionmountain.net/research.html 
141 http://en.wikipedia.org/wiki/Braid_symmetry 
142 http://www.motionmountain.net/research.html 

http://www.motionmountain.net/research.html
http://en.wikipedia.org/wiki/Braid_symmetry
http://www.motionmountain.net/research.html
http://www.motionmountain.net/research.html
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The one-dimensional strand curve fluctuates and as a consequence the 

fields in its surround exist. Fluctuation of a strand becomes apparent 

when the strand is averaged over a short time range. In this way the 

strands cause a blur. That blur represents the field that goes together 

with the strand. 

 

Simple elementary types are bosons. All tangles made of one strand are elementary 

particles of spin 1, thus, they are elementary vector bosons. Conversely, all elementary 

spin-1 particles are made of one strand, because other tangles do not reproduce the spin-1 

behavior under rotations: only one-stranded tangles return to the original strand after a 

core rotation by 2π. 

 

According to the strand model no Higgs boson are required. 

 
The strand model predicts that apart from the six quarks and the graviton, no other two-

stranded elementary particles exist in nature. 

 

Leptons correspond with triples of tangled strands. The strand model predicts that 

apart from the six leptons, no other elementary particles made of three strands exist in 

nature.  

 

More complex types are composed of the above mentioned elementary types.  

 

Interaction is caused by one of three processes.  

 The first process involves a single strand. It corresponds with normal 

electromagnetic interaction. It is characterized by the first Reidemeister 

move. 

 The second process involves two strands. It corresponds with the electro-

weak force. It is characterized by the second Reidemeister move. 

 The third process involves three strands. It corresponds with the electro-

strong force. It is characterized by the third Reidemeister move. 

 

These interactions play in the direct environment of strand cores. According to 

Schiller, gravitational forces have their origin in the tails, relative far away of the 

cores. That is also the region where masses get their influence. 
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Strands and their fluctuations are unobservable. The only things that become 

observable from a strand are its crossing switches with itself or with other 

strands. Drawings of strands are made in order to clarify strand behavior. In that 

case strands are pictured in 3D space and the rotations are represented by 

rotating cores or knots. 

 

The tangle function – the (short) time average of strand crossings – corresponds 

with a complex probability amplitude distribution. 

 

The strand theory does not say anything about the transfer of information to 

quanta. 

Planck values 
Schiller: Up to a numerical factor, the limit for every physical observable 

corresponds to the Planck value. (The limit values are deduced from the 

commonly used Planck unit values simply by substituting    for  .) According 

to Schiller these limit values are the true natural units of nature. In fact, the ideal 

case would be to redefine the usual Planck values for all observables to these 

extreme values, by absorbing the numerical factor 4 into the respective 

definitions. In the strand model, Schiller calls the limit values the corrected 

Planck units and assumes that the factors have been properly included. 

Strand basics 
A crossing between two strands has a position and a direction. It is the position where 

the distance between the strands has a minimum. The distance is measured in terms of a 

selected background coordinate system. The distance is measured in corrected Planck 

length units. 

 

A crossing switch is a turn of the crossing over π radians. Via its infinitesimal geometry 

the crossing switch defines the action    , the corrected Planck length    , the corrected 

Planck time     and the Boltzmann constant  . 
 

Events are observable crossing switches of unobservable strands. Every event in nature 

is characterized by the corrected Planck time, the corrected Planck length, the Planck 

entropy, i.e., the Boltzmann constant  , and Planck’s quantum of action   (for a full turn) 

 

The distance between two particles is the maximum number of crossing switches that 

could appear between them. Length measurement is thus defined as counting corrected 

Planck lengths. 
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The time interval between two events is the maximum number of crossing switches that 

could appear between them. Time measurement is thus defined as counting corrected 

Planck times. 

 

The physical action of a physical system evolving from an initial to a final state is the 

number of crossing switches that take place. Action measurement is thus defined as 

counting crossing switches. Physical action is thus a measure for the change that a 

system undergoes. 

 

The entropy of any physical system is related to the total number of crossing switches 

that are possible. Entropy measurement is thus defined through the counting of potential 

crossing switches. The strand model thus states that any large physical system – be it 

made of matter, radiation, empty space or horizons – has entropy. 

Strand table 
Typical strand configurations: 
Physical system Strands  Tangle type 

Vacuum  many infinite unknotted 

strands 

unlinked 

Dark energy many fluctuating infinite 

strands  

unlinked 

Elementary vector boson  one infinite strand  knotted or unknotted curve 

Quark two infinite strands rational tangle 

Lepton three infinite strands braided tangle 

Meson,baryon  three or more infinite strands  rational tangle 

Higher-order propagating 

fermion 

two or more infinite strands  locally knotted or prime 

tangle 

Virtual particles open, unlinked and closed 

strands  

trivial tangles, knots, links 

Composed systems many strands separable tangles 

Graviton two infinite twisted strands specific rational tangle 

Gravity wave  many infinite twisted strands many graviton tangles 

Horizon many tightly woven infinite 

strands 

web-like tangle 

Earliest form of the universe Single closed strand No tangles 

 

See the Toolkit for more details on strands.   

file:///C:/Users/Hans/AppData/Roaming/Microsoft/Word/Toolkit.pdf
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Unique aspects of the model 

Fundament 
 The model takes as basis the axioms of traditional quantum logic. 

 It exploits the isomorphism between the set of propositions in this logic 

and the set of closed subspaces of an infinite dimensional separable 

Hilbert space Ң in which the inner product is defined over the division 

ring of the quaternions. 

 A proposition that treats everything that can be said about a physical 

item represents that item. Thus, the model represents physical items. 

 Traditional quantum logic and its partner the separable Hilbert space Ң 

cannot represent physical fields and they cannot represent dynamics. 

 However, this basic model can be extended such that fields are attached 

to it. However, this extended model only represents a static status quo. 

 A sequence of such extended models can represent dynamics. 

 The separable Hilbert space Ң does not contain a useable GPS coordinate 

operator. Due to the granularity of its eigenspace, such a normal operator 

would introduce preferred directions in the imaginary part of that 

eigenspace. 

 Instead the corresponding continuous GPS operator that resides in the 

corresponding rigged Hilbert space Ħ can act as a background coordinate 

operator. Its eigenspace can be used to indicate the location of the field 

values. However, this operator cannot directly be used in order to locate 

the Hilbert vectors that represent particles. 

 Instead a special normal operator whose eigenspace contains a set of 

freely located chains of granules can deliver the position observables. 

This operator is a strand operator. 

 In each chain one granule represents the current position. It divides the 

chain in a past part and a future part. 

 A probability amplitude distribution takes care of the smoothness in the 

surround of the current granule. This attachment extends the separable 

Hilbert space. 
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 Particles are represented by a single Hilbert vector or by a small set of 

Hilbert vectors. These vectors are eigenvectors of the strand operator 

they correspond with the current granule of a corresponding chain and 

are blurred by a spread function that can be interpreted as a probability 

amplitude distribution. The blur of the set of Hilbert vectors represents 

the private field of the particle and describes the cloud of quanta that 

carry the observable information about the particle. The quanta represent 

positions where the particle can be detected. 

 The particle acts as the source or as the drain of these quanta. The cloud 

moves and rotates around a rotation axis. 

 The superposition of all private fields constitutes a covering field.  

 For a given coordinate system the static decomposition of the covering 

field into a rotation free part and one or two divergence free parts runs 

along curved lines. The local curvature value can be used to define a 

derived partner field of the covering field. This curvature field has all the 

characteristics of the gravitation field. 

 The private fields of bosons are attached to a single unit size Hilbert 

vector and touch all other unit size Hilbert vectors. 

 The private fields of quarks are attached to a pair of unit size Hilbert 

vectors and touch all other unit size Hilbert vectors. 

 The private fields of leptons are attached to a triple of unit size Hilbert 

vectors and touch all other unit size Hilbert vectors. 

 In interactions bosons take care of the transfer.  

 Each electromagnetic interaction involves only one extra Hilbert vector. 

 Each weak interaction involves an internal and an extra Hilbert vector. 

 Each strong interaction involves two internal and one extra Hilbert 

vector. 

 There are no more elementary kinds of interactions.  

 The progression parameter that counts the subsequent Hilbert spaces is 

not our common notion of time, but it has certainly some relation with it.  
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Insights 
 The Minkowski signature of spacetime must have its explanation in what 

occurs during a progression step.  

 The Minkowski signature of spacetime forbids that coordinate time acts 

as the fourth dimension that goes together with 3D coordinate space. 

 Momentum acts as a precondition of the next displacement step. 

 The fourth dimension must be as granular as the 3D displacement.  

 Fields act as a precondition for the next action step. 

 The displacement, measured in Planck length units, the progression step 

measured in Planck time units, the action step measured in Planck 

constant sized units and the entropy step in Boltzmann constant sized 

units form the basic steps during an observable event. 

 Action represents change. Entropy represents potential change. 

 A five-fold coverage of the separable Hilbert space exists 

o A double coverage is done by the two extra members of the 

Gelfand triple that forms the corresponding rigged Hilbert space. 

This coverage delivers the background coordinate system. 

o Another double coverage is done by the primary fields. Together 

they form the covering field. However, the static covering field 

can be decomposed into a rotation free part and a divergence free 

part.  

o For a given coordinate system a curvature field can be derived 

from this covering field. This delivers the fifth cover. 

Together these six elements deliver a sandwich that can characterize a static 

status quo of the universe. 
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Discussion 

Macro and micro 
Up to so far, the treatise confines to macroscopic dynamics. Micro dynamics 

concerns movements that occur inside the representation of small physical items. 

For each small physical item, it concerns the movements that occur inside the 

subsequent subspaces that represent this item.  

In order to stay inside the item, the internal movements must be quasi 

periodical. They can be combinations of oscillations and rotations. The 

harmonics oscillator and the spherical harmonics are well known examples. 

The local manipulator can be seen as a complicated (Fourier?) transform. The 

functions, which describe quantum harmonic movements, seem to be invariant 

under the action of this manipulator. Thus it appears that micro dynamics occurs 

via a different process than macro dynamics. 

Dynamic logic 
The current trend in quantum logic development is to add axioms that change 

the static character of quantum logic in a more dynamic and operational logic. 

Logic of quantum actions (LQA143) adds unitary transforms as the source of 

dynamics. As we see in this article these transforms are not the real fundamental 

causes of dynamics. The fields that accompany the physical items form the more 

fundamental reason for the existence of dynamics. They control the redefinition 

of the actual propositions. To my knowledge the influences of physical fields are 

not yet covered by any dynamic logic theory. 

  

                                                      
143 http://www.vub.ac.be/CLWF/SS/BethPaper_Final.pdf 

http://www.vub.ac.be/CLWF/SS/BethPaper_Final.pdf
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Conclusion 
The fact that the set of propositions in traditional quantum logic is lattice 

isomorphic with the set of closed subspaces of an infinite dimensional separable 

Hilbert space Ң offers the possibility to study with mathematical means what 

happens with the propositions.  

 

Quantum logic is only a partial description of the fundamentals of quantum 

physics. It only describes the static skeleton in which the quantum dynamics 

takes place. It does not treat physical fields. However, traditional quantum logic 

can be extended into a wider logic, such that fields are also included. When this 

is done, the task of the fields appears to bring coherence between past, current 

and future versions of extended quantum logics and dynamics can simply be 

considered as the simultaneous step from a future version, to a current version 

and from the current version to a past version.  

 

An important ruler of quantum dynamics is the influence that is exposed by the 

universe of items in the phenomenon inertia. It indicates the laws that govern 

the exchange of atomic predicates from enveloping propositions. It characterizes 

the fields as the sticky resistance of the universe of quantum logical propositions 

against unordered redefinition of their members. This shapes the dynamics of 

the logic that describes dynamic quantum physics.  

 

The fields consist of basic constituents that can be interpreted as probability 

amplitude distributions. The covering field is the superposition of these basic 

constituents and the gravitation field is a curvature field that can be derived 

from the static decomposition characteristics of the covering field. This picture 

carries on the assumption that the configuration of the covering field causes the 

curvature of the coordinate system. 

 

Blurred Hilbert distributions form Hilbert fields. Blurred elementary Hilbert 

distributions form the private fields of corresponding elementary particles. The 

blurs can be interpreted as probability distributions and as such they describe 

the sources of quantum noise. This means that the blurs also represent the 

probability of the generation, presence and annihilation of actual and virtual 

elementary particles.  
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The dynamics of the life path of an item can be described by a geodesic equation. 

The live environment can be considered as sets of 2n-ons that locally resemble 

quaternion spaces or in a still smaller region resemble complex number spaces. 

These numbers constitute the values of the fields that influence the dynamics of 

the items. The analysis of the local infinitesimal dynamic step also reveals the 

origin of special relativity. 

 

In our model a universe wide progression stepper exists. This is the progression 

parameter clock. Due to this fact the redefinitions are universe wide 

synchronized. It also means that in the model universe is controlled by a single 

dynamic redefiner. However, its actions are locally influenced by fields, which 

are directly connected to the items that are present in this environment. 

 

Inertia influences macroscopic dynamics. Microscopic movements are governed 

by a different process. They are directly controlled by the local manipulator and 

relate to its invariant functions. 

 

Trying to implement a complex quantum logical proposition in Hilbert space is 

indeed an elucidating experience. 

 

In the Hilbert book model, fields have several functions and interpretations: 

 

 From the analysis of inertia you can derive that they represent the sticky 

resistance of the community of propositions/physical-items against 

unordered change. A uniform movement is still considered as a well 

ordered change. Acceleration is considered as unordered change and 

goes together with field activity. 

 Fields are constituted of blurred sets of Hilbert vectors. With other words 

Hilbert fields are blurred Hilbert distributions.  

 The blur renders the field differentiable.  

 The blur can be interpreted as a probability amplitude distribution.  

 Wave functions are probability amplitudes. No difference with private 

fields exists.  

 Blurs can be squeezed and can be looked at in another coordinate 

representation, such as the canonical conjugated coordinates. 
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 Fields can be interpreted as the storage place of the conditions of future, 

present and past Hilbert spaces or equivalently as the storage place of the 

conditions of future, present and past versions of quantum logic systems.  

 Like the Hilbert spaces and the quantum logics, the static fields describe 

a static status quo. 

 Fields can be interpreted as the housing of annihilation and creation 

operators that act on actual or virtual particles. 

 The probalistic nature of the fields invites their interpretation as clouds of 

quanta. These quanta represent potential realizations of Hilbert vectors 

that on their turn represent the anchor points of actual or virtual particles 

in past, present or future versions of traditional quantum logic 

propositions. 

 In the view that uses the canonical conjugated coordinates the quantum 

cloud can be interpreted as a wave package. 
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Appendix 

History of quantum logic 
Around 1930 John von Neumann and Garrett Birkhoff were searching for an 

acceptable explanation of the results of experiments that showed that the 

execution of an observation of a very small object can completely destroy the 

validity of an earlier observation of another observable of that object. The 

Schrödinger equation that agreed with the dynamic behaviour of the particles 

already existed. Not much later Heisenberg’s matrix formulation became 

popular as well. Quite soon the conclusion was made that something was 

fundamentally wrong with the logic behind the behaviour of small particles. 

These small objects show particle behaviour as well as wave behaviour and they 

show quantization effects. It was found that the distribution axiom of classical 

logic had to be changed. Soon it became apparent that the lattice structure of 

classical logic must be weakened from an orthocomplementary modular form to 

an orthocomplementary weakly modular lattice. The quantum logic was born. 

The next step was to find a useful mathematical presentation of this new logic. A 

historic review of what happened can be found in: “Quantum Theory: von 

Neumann” vs. Dirac; http://www.illc.uva.nl/~seop/entries/qt-nvd/. It includes 

extensions of the concept of Hilbert space and application of these concepts to 

quantum field theory. Another source is: 

http://www.quantonics.com/Foulis_On_Quantum_Logic.html.  

Quantum logic 
Elementary particles behave non-classical. They can present themselves either as 

a particle or as a wave. A measurement of the particle properties of the object 

destroys the information that was obtained from an earlier measurement of the 

wave properties of that object.  

With elementary particles it becomes clear that that nature obeys a different logic 

than our old trusted classical logic. The difference resides in the modularity 

axiom. That axiom is weakened. The classical logic is congruent to an 

orthocomplemented modular lattice. The quantum logic is congruent to an 

orthocomplemented weakly modulare lattice. Another name for that lattice is 

orthomodular lattice. 
  

http://www.illc.uva.nl/~seop/entries/qt-nvd/
http://www.quantonics.com/Foulis_On_Quantum_Logic.html
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Lattices 

A subset of the axioms of the logic characterizes it as a half ordered set. A larger 

subset defines it as a lattice. 

A lattice is a set of elements        that is closed for the connections ∩ and ∪. 

These connections obey: 

  

 The set is partially ordered. With each pair of elements     belongs an 

element  , such that       and      .  

 The set is a ∩half lattice if with each pair of elements     an element   

exists, such that       ∩   .  
 The set is a ∪half lattice if with each pair of elements     an element   

exists, such that       ∪   .  
 The set is a lattice if it is both a ∩half lattice and a ∪half lattice. 

 

The following relations hold in a lattice:  

 

  ∩        ∩    
 

(  ∩   )  ∩        ∩  (  ∩   ) 
 

  ∩ (  ∪   )      

 

  ∪        ∪    
 

(  ∪   )  ∪        ∪  (  ∪   ) 
 

  ∪ (  ∩   )      

 

The lattice has a partial order inclusion  : 

 

a   b ⇔ a   b = a 

 

A complementary lattice contains two elements   and   with each element a an 

complementary element a’ such that: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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  ∩   ’     
 

  ∩        
 

  ∩        

 

  ∪   ’     
 

  ∪        
 

  ∪        

 

An orthocomplemented lattice contains two elements   and   and with each 

element   an element    such that: 

 

  ∪         
 

  ∩         
 

(  )      
 

                
 

  is the unity element;   is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

  ∩ (  ∪   )    (  ∩   )  ∪  (   ∩   ) 
 

  ∪ (  ∩   )    (  ∪   )  ∩  (  ∪   ) 
 

A modular lattice supports: 

 

(  ∩   )  ∪ (  ∩   )      ∩ (  ∪  (  ∩   )) 
 

A weak modular lattice supports instead: 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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There exists an element   such that 

 

      ⇔  (  ∪   )  ∩        ∪ (  ∩   )  ∪ (  ∩   ) 
 

where   obeys: 

 

(  ∪   )  ∩        
 

  ∩        
 

  ∩        
 

 (     )     (     )  ⇔        

 

In an atomic lattice holds  

 
                              

 
               (          ∩   )    (               ∩   )  

 

  is an atom 

 

Both the set of propositions of quantum logic and the set of subspaces of a 

separable Hilbert space Ң have the structure of an orthomodular lattice. In this 

respect these sets are congruent. 

In Hilbert space, an atom is a pure state (a ray spanned by a single vector). 

 

Classical logic has the structure of an orthocomplemented distributive modular 

and atomic lattice. 

Quantum logic has the structure of an orthomodular lattice. That is an 

orthocomplented weakly modular and atomic lattice. The set of closed subspaces 

of a Hilbert space also has that structure.  

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, one which 

affirms or denies a predicate of a subject. Propositions have binary values. They 

are either true or they are false. 

Propositions take forms like "This is a particle or a wave". In quantum logic "This is 

a particle." is not a proposition. 

In mathematical logic, propositions, also called "propositional formulas" or 

"statement forms", are statements that do not contain quantifiers. They are 

composed of well-formed formulas consisting entirely of atomic formulas, the 

five logical connectives144, and symbols of grouping (parentheses etc.). 

Propositional logic is one of the few areas of mathematics that is totally solved, 

in the sense that it has been proven internally consistent, every theorem is true, 

and every true statement can be proved. Predicate logic is an extension of 

propositional logic, which adds variables and quantifiers. 

In Hilbert space a vector is either inside or not inside a closed subspace. A 

proper quantum logical proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds with a subspace that is 

spanned be a single vector. 

Predicates may accept attributes and quantifiers. The predicate logic is also 

called first order logic. A dynamic logic can handle the fact that predicates may 

influence each other when atomic predicates are exchanged. 

Observation 

In physics, particularly in quantum physics, a system observable is a property of 

the system state that can be determined by some sequence of physical 

operations. This paper distinguishes between measurements and observations. 

 

 With an observation the state is considered as a linear combination of 

eigenvectors of the observable. An observation returns the statistical 

expectation value of the eigenvalue of the observable.  

                                                      
144 http://en.wikipedia.org/wiki/Logical_connective 

http://en.wikipedia.org/wiki/Logical_connective
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 A measurement transforms the observed state to one of the eigenvectors 

of the observable. What happens depends on the characteristics of the 

measuring equipment. The measurement can be seen as a combination of 

a transformation and an observation. 

 

Depending on the characteristics of the measuring equipment a measurement 

and a clean observation can give the same result. 

 

With this interpretation of the concept of observation it is possible to let states 

observe other states. A state might do a transformation before doing an 

observation but in general it fails the equipment to arrange that transformation. 

In nature observations are far more common than measurements. 

Quaternion coordinates 
This part of the appendix describes candidates for the coordinates on the 

coordinate sphere. 

Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is (aτ, ax, ay, az) 

 

a = aτ + i·ax + j·ay ± i·j·az  

 

The equivalent to polar coordinates in quaternion space is  

 
     ‖ ‖    ( )  

 
     ‖ ‖    ( )    ( )    ( )  

 
     ‖ ‖    ( )    ( )    ( )  

 
     ‖ ‖    ( )    ( ) 

 

   ( ), where   (   ), is known as the (imaginary) amplitude of the 

quaternion. Angle   (   ) is the (co-)latitude and angle   (    ) is the 

longitude.  

For any fixed value of     and   parameterize a 2-sphere of radius    ( ), 

except for the degenerate cases, when   equals   or  , in which case they 

describe a point. 

(1) 

(2) 

(3) 

(4) 

(5) 
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This suggests the following structure of the argument   

 
    ‖ ‖    (    )  

 
  ‖ ‖ (   ( )        ( )) 

 
     ‖ ‖      ( )        

 

The imaginary number ĩ may take any direction.  

3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold without boundary. 

It is also simply-connected. What this means, loosely speaking, is that any loop, 

or circular path, on the 3-sphere can be continuously shrunk to a point without 

leaving the 3-sphere. The Poincaré conjecture145 proposes that the 3-sphere is the 

only three dimensional manifold with these properties (up to 

homeomorphism)146. 

The round metric on the 3-sphere in these coordinates is given by 

             ( ) (         ( )   ) 

The volume form is given by 

       ( )    ( )              

 

The 3-dimensional volume (or hyperarea) of a 3-sphere of radius r is 

 
         

 

                                                      
145 http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture 
146 http://en.wikipedia.org/wiki/3-sphere 

(6) 

(7) 

(8) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
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The 4-dimensional hypervolume (the volume of the 4-dimensional region 

bounded by the 3-sphere) is 

         

The 3-sphere has constant positive sectional curvature equal to     . 

 

The 3-sphere has a natural Lie group structure SU(2) given by quaternion 

multiplication. 

The 3-sphere admits non-vanishing vector fields (sections of its tangent bundle). 

One can even find three linearly-independent and non-vanishing vector fields. 

These may be taken to be any left-invariant vector fields forming a basis for the 

Lie algebra of the 3-sphere. This implies that the 3-sphere is parallelizable. It 

follows that the tangent bundle of the 3-sphere is trivial. 

There is an interesting action of the circle group   on    giving the 3-sphere the 

structure of a principal circle bundle known as the Hopf bundle. If one thinks of  

   as a subset of   , the action is given by 

(     )     (         )        

The orbit space of this action is homeomorphic to the two-sphere   . Since    is 

not homeomorphic to      , the Hopf bundle is nontrivial. 

Hopf coordinates 

Another choice of hyperspherical coordinates, (       ), makes use of the 

embedding of    in   . In complex coordinates (     )   
  we write 

 
      (    )    ( ) 

 
        (    )    ( ) 

 

Here   runs over the range 0 to    , and    and    can take any values between 0 

and   . These coordinates are useful in the description of the 3-sphere as the 

Hopf bundle 

 
   →   →    

(4) 

(5) 

(1) 

(2) 

(3) 
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For any fixed value of η between 0 and    , the coordinates (     ) parameterize 

a 2-dimensional torus. In the degenerate cases, when   equals 0 or    , these 

coordinates describe a circle. 

The round metric on the 3-sphere in these coordinates is given by 

            ( ) (   
      ( )     

 )  

and the volume form by 

        ( )    ( )            

Group structure 

Because the set of unit quaternions is closed under multiplication,    takes on 

the structure of a group. Moreover, since quaternionic multiplication is smooth, 

   can be regarded as a real Lie group. It is a non-abelian, compact Lie group of 

dimension 3. When thought of as a Lie group    is often denoted   ( ) or 

 (  ℍ). 

It turns out that the only spheres which admit a Lie group structure are   , 

thought of as the set of unit complex numbers, and   , the set of unit 

quaternions. One might think that   , the set of unit octonions, would form a Lie 

group, but this fails since octonion multiplication is non-associative. The 

octonionic structure does give    one important property: parallelizability147. It 

turns out that the only spheres which are parallelizable are   ,   , and   . 

By using a matrix representation of the quaternions, ℍ, one obtains a matrix 

representation of   . One convenient choice is given by the Pauli matrices: 

(                       )  [
                  
                   

] 

This map gives an injective algebra homomorphism from H to the set of 2×2 

complex matrices. It has the property that the absolute value of a quaternion q is 

equal to the square root of the determinant of the matrix image of q. 

                                                      
147 http://en.wikipedia.org/wiki/Parallelizability 

(4) 

(5) 

(1) 

http://en.wikipedia.org/wiki/Parallelizability
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The set of unit quaternions is then given by matrices of the above form with unit 

determinant. This matrix subgroup is precisely the special unitary group SU(2). 

Thus,    as a Lie group is isomorphic to SU(2). 

Using our hyperspherical coordinates (       ) we can then write any element of 

SU(2) in the form 

[
e  (    )   in( ) e  (    )   o ( )
 e  (    )   o ( ) e  (     )   in( )

] 

Another way to state this result is if we express the matrix representation of an 

element of SU(2) as a linear combination of the Pauli matrices. It is seen that an 

arbitrary element U  SU(2) can be written as 

          ∑      
       

 

The condition that the determinant of U is +1 implies that the coefficients     are 

constrained to lie on a 3-sphere. 

Versor 

Any unit quaternion   can be written as a versor: 

 
     (    )     ( )         ( ) 

 

This is the quaternionic analogue of Euler's formula. Now the unit imaginary 

quaternions all lie on the unit 2-sphere in Im ℍ so any such ĩ can be written: 

 
         ( )    ( )        ( )    ( )        ( )  

Symplectic decomposition 

Quaternions can be written as the combination of two complex numbers and an 

imaginary number k with unit length. 

2n-on construction 
The 2n-ons use the following doubling formula 

 
(   )(   )   (     (    )  (    )  (  (  ((   )   ) ) ) ) 

 

(2) 

(3) 

(1) 

(2) 

(1) 
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Up until the 16-ons the formula can be simplified to 

 
(   )(   )    (                 (      ) (   )) 

 
Up to the octonions the Cayley Dickson construction delivers the same as the 2n-

on construction. From n>3 the 2n-ons are ‘nicer’. 

2n-ons 

Table of properties of the 2n­ons. See 

www.math.temple.edu/~wds/homepage/nce2.ps.  
Type name Lose 

1­ons Reals.    

2­ons Complex 

numbers 

z
*
 = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 0}. 

4­ons Quaternions commutativity ab = ba;  

the algebraic closedness property that every univariate polynomial  

equation has a root.   

8­ons Octonions associativity ab · c = a · bc.  

16­ons (not 

Sedenions!) 

right­alternativity x · yy = xy · y;  

right­cancellation x = xy · y
-1

 ;  

flexibility x · yx = xy · x; left­linearity  (b + c)a = ba + ca;  

anti­automorphism ab = ba, (ab)
-1

 = b
-1

 a
-1

 ;  

left­linearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

32­ons  generalized­smoothness of the map x → xy;  

right­division properties that xa = b has (generically) a solution x, and 

the uniqueness of such an x;  

the “fundamental theorem of algebra” that every polynomial having a 

unique “asymptotically  dominant monomial” must have a root; 

Trotter's formula: 

  i    [ 
       ]

 
   i    (  

   

 
)
 

       

 
Type name Retain 

2
n
­ons  Unique 2­sided multiplicative & additive identity elements 1 & 0; 

Norm­multiplicativity |xy|
2
 = |x|

2
·|y|

2
 ;  

Norm­subadditivity |a + b| ≤ |a| + |b|; 

2­sided inverse a
-1

 = a
*
/|a|

2
 (a # 0);  

a
**

 = a;  

(x ± y)* = x
*
 ± y

*
; 

(a
-1

) 
-1

 = a;  

(2) 

http://www.math.temple.edu/~wds/homepage/nce2.ps
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(a
*
) 

-1
 = (a

-1
)

*
 ;  

|a|
2
 = |a|

2
 = a

*
a;  

Left­alternativity yy · x = y · yx;  

Left­cancellation x = y
-1

 · yx;  

Right­linearity a(b + c) = ab + ac;  

r
th

 power­associativity a
n
 a

m
 = a

n+m 
;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s real); 

Power­distributivity  (ra
n
 + sa

m
)b = ra

n
 b + sa

m
 b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) of the product for 

pure­imaginary 2
n
­ons a,b regarded as  (2

n
  - 1)­vectors; 

xa,b = a,x*b, xa,xb = |x|2·a,b and x,y = x*,y* 

Numerous weakened associativity, commutativity, distributivity, 

antiautomorphism, and Moufang and Bol  properties including 9­coordinate 

``niner'' versions of most of those properties; contains 2
n-1

­ons as subalgebra. 

 

The most important properties of 2n-ons 

If a,b,x,y are 2n-ons, n ≥ 0, and s and t are scalars (i.e. all coordinates are 0 except 

the real coordinate) then 

unit: A unique 2n-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2n-on 0 exists, with 0 + x = x + 0 = x and 0·x = x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

 x exists with x + ( x) = x   x = 0. 

norm: |x|2 = xx* = x*x. 

norm-multiplicativity: |x|2·|y|2 = |x·y|2. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x-1 exists, obeying x-1·x = x·x-1 = 1. It is x-1 = x·|x|-

2. 

left-alternativity: x · xy = x2·y. 

left-cancellation: x · x-1·y = y. 

effect on inner products: x·a,b = a, x*·b, x,y = x*, y*,  x*·a, x-1·b = a,b,  

and x·a,x·b = |x|2·a,b. 

Conjugate of inverse: (x-1)* = (x*)-1. 

Near-anticommutativity of unequal basis elements: ek2 =  1 and ek·el* =  el·ek*  if 

k ≠ l.  

(Note: the case k; l > 0 shows that unequal pure-imaginary basis elements 

anticommute.) 
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Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · ek·ek, and ek·ek ·el = ek · 

ek·el. (However, when n ≥ 4 the 2n-ons are not flexible i.e. it is not generally true 

that x·y · x = x · y·x if x and y are 16-ons that are not basis elements. They also are 

not right-alternative.) 

Quadratic identity: If x is a 2n-on (over any field F with charF ≠ 2), then x2 + |x|2 

= 2·x re x 

Squares of imaginaries: If x is a 2n-on with re x   0 (“pure imaginary”) then x2 = 

 |x|2 is nonpositive pure-real. 

Powering preserves imx direction 

Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. The index starts 

with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px-1, px · p-1 = p · xp-1. 

9-right-alternativity xp · p = x · p2, px · x = p · x2. 

9-right-cancellation xp-1 · p = x, px-1 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|2x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2n-ons 

If p, x = re p = re x = 0 then px =  xp. 

9-reflection If |a| = 1 and the geometric reflection operator is defined below then 

 (refl[a](y))0;:::;8 = (a · y*a)0;:::;8, and  {refl[a](y)}*0;:::;8 = (a*y · a*)0;:::;8, and 

if either a or y is a niner then  refl[a](y) = a · y*a and  refl[a](y) = a*y · a*. 

 

ref   ⃗ ( ⃗)     ⃗   
 〈 ⃗  ⃗〉

  ⃗  
 ⃗ 

What holds for the niners, also holds for the octonions. 

 

Regular quaternionic functions 
See: http://www.zipcon.net/~swhite/docs/math/quaternions/analysis.html and 

http://world.std.com/~sweetser/quaternions/ps/Quaternionic-analysis-memo.pdf 

). 

The differential    is given by 

(3) 

http://www.zipcon.net/~swhite/docs/math/quaternions/analysis.html
http://world.std.com/~sweetser/quaternions/ps/Quaternionic-analysis-memo.pdf
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A regular function   obeys: 

 
  

   
  
  

   
  
  

   
  
  

   
   

 

In addition the regular function   obeys: 

 

∫    
 

   

 

where C is any smooth closed 3-manifold in ℍ.    is the quaternion representing an element δC 

of the 3-manifold, its magnitude being equal to the volume of δC and its direction being normal to 

δC. 

 

 ( )   
 

   
 ∫ {
(   )  

      
    ( )}

 

 

 

where   is a domain in ℍ in which   is regular and   is a point inside  . 

 
                                                             

                    

 
 (         )        ( ) 

 
                                                  

 
Here       is the external vector product between vectors a and b. It is not the 

quaternionic external product. 

 
 (    )     

 

 [
(   )  

      
]    ( )     (

 

      
)  ( )                       

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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where   is the Laplacian on ℝ  and                       is the standard volume 

4-form. Since 
 

      
 is the Green’s function for the Laplacian in ℝ , (4) follows 

from (9). 

 

    
   

   
 
  
   

   
 
  
   

   
 
  
   

   
 
 

 

If   is regular in an open set U, then it has a power series expansion about each 

point of U. Thus, point-wise differentiability, together with the four real 

conditions (2) on the sixteen partial derivatives of  , is sufficient to ensure 

analyticity. 

 

The set of homogeneous regular functions of degree n forms a quaternionic 

vector space of dimension (n   )(n   )  ;  

This is true for any integer n if for negative n it is understood that the functions 

are defined and regular everywhere except at 0. The functions with negative 

degree of homogeneity correspond to negative powers of a complex variable, 

and occur in the quaternionic Laurent series which exists for any regular 

function which is regular in an open set except at one point. 

 

On the unit sphere in ℍ the homogeneous regular functions form a group 

isomorphic to SU(2). The harmonic analysis of these functions bears the same 

relation to quaternionic analysis as the theory of complex Fourier series does to 

complex analysis. 

 

Because the quaternions are four-dimensional, there is no counterpart to the 

geometrical description of complex analytic functions as conformal mappings. 

The zeros of a quaternionic regular function are not necessarily isolated, and its 

range is not necessarily open; neither of these sets needs even be a sub-manifold 

of ℍ. 

 

Definition: A function    ℍ   ℍ is quaternion-differentiable on the left at   if 

the limit 

 
  

  
  i 
   

 (     )   ( )

 
 

(10) 

(11) 
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exists. 

 

Theorem: Suppose the function   is defined and quaternion-differentiable on the 

left throughout a connected open set U. Then on U,   has the form: 

 
 ( )           

 

for some    ∈ ℍ. 

 
Even if   is quaternion-differentiable, it will not in general satisfy Cauchy’s theorem in the form  

 

∫          

 
where the integral is round a closed curve; in fact the only functions satisfying this equation for all 

closed curves are the constant functions. 

 
Definition 2: A function f   ℍ   ℍ is left-regular at  ∈ ℍ if it is real-differentiable at   and 

there exists a quaternion   
 ( ) such that 

 
 (         )          

 ( ) 

 
It is right-regular if there exists a quaternion   

 ( ) such that 

 
 (         )       

 ( )  : 

 
Clearly, the theory of left-regular functions will be entirely equivalent to the theory of right-

regular functions. For definiteness, we will only consider left-regular functions, which we will call 

simply regular. We will write 

 
   ( )      

 ( )  

 
and call it the derivative of   at  . 

 
Theorem2: (about the Cauchy-Riemann-Fueter equations) 

A real-differentiable function   is regular at   if and only if 

 
  

   
  
  

   
  
  

   
  
  

   
   

 

(12) 

(13) 

(14) 

(15) 

(16) 
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This is formula (2) 
Theorem 3: A differentiable function   is regular at   if and only if 

 
            

 

Theorem 4: If   is regular at every point of the 4-parallelepiped C, 

 

∫    
 

     

 

This is equivalent to formula (3). 

 

 ( )   
   

    
  

 

Note that 

 

 ( )       
 

    
     

 

    
 

 

It follows that  ̅      , i.e.   is regular except at 0. 

 

Theorem 5: A function which is regular in an open set U is real-analytic in U 

This follows from (4). 

 

Theorem 6: (Cauchy’s theorem for a differentiable contour) 

Suppose   is regular in an open set U, and let C be a differentiable 3-chain in U, 

which is homologous to 0 in the differentiable singular homology of U, i.e    

     for 

some differentiable 4-chain     in U. Then 

 

∫    
 

     

 

In order to state the general form of the integral formula, we need an analogue of 

the notion of the winding number of a curve round a point in the plane. 

 

(17) 

(18) 

(19) 

(20) 

(21) 
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Definition 3: Let q be any quaternion, and let   be a closed 3-chain in ℍ      Then 

  is homologous to a 3-chain            , where   is the unit sphere with center 

 . 

The wrapping number of   about   is the degree of the map   . 

 

Theorem 7: (The integral formula for a differentiable contour) 

Suppose   is regular in an open set U. Let  ∈  , and let   be a differentiable 3-

chain 

in       which is homologous, in the differentiable singular homology of      , 

to 

a 3-chain whose image is    for some ball    . Then 
 

 

   
 ∫ {
(   )  

      
    ( )     ( )}

 

 

 

where n is the wrapping number of   about  . 

 

Formulas (21) and (22) also hold for a rectifiable 3-chain C. 

 

Since regular functions are harmonic, they satisfy a maximum-modulus 

principle and a Liouville theorem. As with functions of a complex variable, 

Liouville’s theorem follows immediately from the Cauchy-Fueter integral 

formula. 

 

Theorem 8: (Morera’s theorem) Suppose that the function   is continuous in an 

open set   and that 

 

∫    
 

     

 

for every 4-parallelepiped   contained in  . Then   is regular in  . 

 

Theorem 9: Let   be a real-valued function defined on a star-shaped open set 

 ∈ ℍ. 

If   is harmonic and has continuous second derivatives, there is a regular 

function   defined on   such that       . 

 

(22) 

(21) 
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This shows that there are as many regular functions of a quaternion variable as 

there are harmonic functions of four real variables. However, these functions do 

not include the simple algebraic functions, such as powers of the variable, which 

occur as analytic functions of a complex variable. 

The separable Hilbert space Ң 

Notations and naming conventions 

{fx}x means ordered set of fx . It is a way to define functions. 

  

The use of bras and kets differs slightly from the way Dirac uses them. 

  

|f> is a ket vector, f> is the same ket 

<f| is a bra vector, <f is the same bra 

  

A is an operator. |A is the same operator 

A† is the adjoint operator of operator A. A| is the same operator 

| on its own, is a nil operator 

|A| is a self-adjoint (Hermitian) operator 

  

We will use capitals for operators and lower case for quaternions, eigenvalues, 

ket vectors, bra vectors and eigenvectors. Quaternions and eigenvalues will be 

indicated with italic characters. Imaginary and anti-Hermitian objects are often 

underlined and/or indicated in bold text. 

  

∑k means: sum over all items with index k. 

∫x means: integral over all items with parameter x. 

Quaternionic Hilbert space 

The Hilbert space is a linear space. That means for the elements |f>, |g> and |h> 

and numbers a and b: 

Ket vectors 

For ket vectors hold 

 

|f> + |g> = |g> + |f> = |g + f> 

 

(|f> + |g>) + |h> = |f> + (|g> + |h>) 

(1) 

(2) 
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|(a + b) f > = |f>·a + |f>·b 

 

(|f> + |g>)·a = |f>·a + |g>·a 

 

|f>·0 = |0> 

 

|f>·1 = |f> 

 

Depending on the number field that the Hilbert space supports, a and b can be 

real numbers, complex numbers or (real) quaternions. 

Bra vectors 

The bra vectors form the dual Hilbert space Ң† of Ң . 

  

<f| + <g| = <g| + <f| = |g + f> 

 

 (<f| + <g|) + <h| = <f| + (<g| + <h|) 

 

<f (a + b)> = <f|·a + <f|·b = a*·<f| + b*·<f| 

 

 (<f| + <g|)·a = <f|·a + <g|·a = a*·<f| + a*·<g| 

 
0·<f| = <0| 

 

1·<f| = <f| 

Scalar product 

The Hilbert space contains a scalar product, also called inner product, <f|g> that 

combines Ң and Ң† in a direct product that we also indicate with Ң. 

The scalar product <f|g> satisfies: 

 

<f|g + h> = <f|g> + <f|h> 

 

<f|{|g>·a}g = {<f|g>}g·a 

  

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 
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With each ket vector |g> in Ң belongs a bra vector <g| in Ң† such that for all bra 

vectors <f| in Ң† 

 

<f|g> = <g|f>* 

 

<f|f> = 0 when |f> = |0> 

 

<f|a g> = <f|g>·a = <g|f>*·a = <g a|f>* = (a*·<g|f>)* = <f|g>·a 

 

In general is <f|a g> ≠ <f a|g>. However for real numbers r holds <f|r g>   <f r|g> 

 

Remember that when the number field consists of quaternions, then also <f|g> is 

a quaternion and a quaternion q and <f|g> do in general not commute. 

 

The scalar product defines a norm: 

 

||f||   √(<f|f>) 

 

And a distance: 

 

D(f,g) = ||f – g|| 

 

The Hilbert space Ң is closed under its norm. Each converging row of elements 

of converges to an element of this space. 

Separable 

 In mathematics a topological space is called separable if it contains a countable 

dense subset; that is, there exists a sequence        
  of elements of the space 

such that every nonempty open subset of the space contains at least one element 

of the sequence. 

Every continuous function on the separable space Ң is determined by its values 

on this countable dense subset. 

Base vectors 

The Hilbert space Ң is separable. That means that there exist a countable row of 

elements {fn>} that spans the whole space. 

  

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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If <fn|fm> = δ(m,n) = [1 when n = m; 0 otherwise]  

then {|fn>} forms an orthonormal base of the Hilbert space. 

A ket base {|k>}of Ң is a minimal set of ket vectors |k> that together span the 

Hilbert space Ң. 

Any ket vector |f> in Ң can be written as a linear combination of elements of 

{|k>}. 

  

|f>   ∑k (|k>·<k|f>) 

  

A bra base {<b|}of Ң† is a minimal set of bra vectors <b| that together span the 

Hilbert space Ң†. 

Any bra vector <f| in Ң† can be written as a linear combination of elements of 

{<b|}. 

  

<f|   ∑b (<f|b>·<b|) 

  

Usually base vectors are taken such that their norm equals 1. Such a base is 

called an othonormal base. 

 

Operators 

Operators act on a subset of the elements of the Hilbert space.  

Linear operators 

An operator Q is linear when for all vectors |f> and |g> for which Q is defined 

and for all quaternionic numbers a and b: 

 

|Q·a f> + |Q·b g> = |a·Q f> + |b·Q g> = |Q f>·a + |Q g>·b = 

  
Q (|f>·a + |g>·b) = Q (|a f> + |b g>) 

 

B is colinear when for all vectors |f> for which B is defined and for all 

quaternionic numbers a there exists a quaternionic number c such that: 

 

|B·a f> = |a·B f> = |B f> c·a·c-1 

(1) 

(2) 

(1) 

(2) 

(3) 
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If |f> is an eigenvector of operator A with quaternionic eigenvalue a, then is |b f> 

an eigenvector of A with quaternionic eigenvalue b·a·b-1. 

A| = A† is the adjoint of the normal operator A. |A is the same as A. 

  

<f A| g> = <fA†|g>* 

 

A† † = A 

 

(A·B) † = B†·A† 

  

|B| is a self adjoint operator. 

| is a nil operator.  

 

The construct |f><g| acts as a linear operator. |g><f| is its adjoint operator. 

 

∑n {|fn>·an·<fn|}, 

 

 where a n is real and acts as a density function. 

 

The set of eigenvectors of a normal operator form an orthonormal base of the 

Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

 

{<q|f>}q is a function f(q) of parameter q.  

{<g|q>}q is a function g(q) of parameter q. 

  

When possible, we use the same letter for identifying eigenvalues, eigenvalues 

and the corresponding operator. 

So, usually |q> is an eigenvector of a normal operator Q with eigenvalues q.  

  

{q} is the set of eigenvalues of Q.  

{q}q is the ordered field of eigenvalues of q. 

{|q>}q  is the ordered set of eigenvectors of Q. 

{<q|f>}q is the Q view of |f>. 

Normal operators 

The most common definition of continuous operators is: 

(4) 

(5) 

(6) 

(7) 
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A continuous operator is an operator that creates images such that the 

inverse images of open sets are open.  

  

Similarly, a continuous operator creates images such that the inverse 

images of closed sets are closed. 

  

A normal operator is a continuous linear operator. 

A normal operator in Ң creates an image of Ң onto Ң. It transfers closed 

subspaces of Ң into closed subspaces of Ң.  

  

Normal operators represent continuous quantum logical observables.  

  

The normal operators N have the following property. 

  

N: Ң  Ң 

  

N commutes with its (Hermitian) adjoint N† 

  

N·N† = N†·N 

  

Normal operators are important because the spectral theorem holds for them.  

Examples of normal operators are 

  

 unitary operators: U† = U−1 , unitary operators are bounded; 

 Hermitian operators (i.e., self-adjoint operators): N† = N;  

 Anti-Hermitian or anti-self-adjoint operators: N†   −N;  

 Anti-unitary operators: I†   −I   I−1 , anti-unitary operators are bounded;  

 positive operators: N = MM†  

 orthogonal projection operators: N = N† = N2  

Spectral theorem 

For every compact self-adjoint operator T on a real, complex or quaternionic 

Hilbert space Ң, there exists an orthonormal basis of Ң consisting of 

eigenvectors of T. More specifically, the orthogonal complement of the kernel 

(null space) of T admits, either a finite orthonormal basis of eigenvectors of T, or 

a countable infinite orthonormal basis {en} of eigenvectors of T, with 

(1) 

(2) 

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Countable_set
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corresponding eigenvalues {λn}   R, such that λn → 0. Due to the fact that Ң is 

separable the set of eigenvectors of T can be extended with a base of the kernel in 

order to form a complete orthonormal base of Ң. 

 

If T is compact on an infinite dimensional Hilbert space Ң, then T is not 

invertible, hence σ(T), the spectrum of T, always contains 0. The spectral theorem 

shows that σ(T) consists of the eigenvalues {λn} of T, and of 0 (if 0 is not already 

an eigenvalue). The set σ(T) is a compact subset of the real line, and the 

eigenvalues are dense in σ(T). 

 

 A normal operator has a set of eigenvectors that spans the whole Hilbert space 

Ң.  

In quaternionic Hilbert space a normal operator has quaternions as eigenvalues.  

 

The set of eigenvalues of a normal operator is NOT compact. This is due to the 

fact that Ң is separable. Therefore the set of eigenvectors is countable. As a 

consequence the set of eigenvalues is countable. Further, the eigenspace of 

normal operators has no finite diameter.  

 

A continuous bounded linear operator on Ң has a compact eigenspace. The set 

of eigenvalues has a closure and it has a finite diameter.  

Eigenspace 

The set of eigenvalues {q} of the operator Q form the eigenspace of Q 

Eigenvectors and eigenvalues 

For the eigenvector |q> of normal operator Q holds  

 

|Q q> = |q q> = |q>·q 

 

<q Q†| = <q q*| = q*·<q| 

 

      ∈ Ң                              
          

           

 

The eigenvalues of 2n-on normal operator are 2n-ons  

  

(1) 

(2) 

(3) 

(4) 
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   ∑     

   

   

 

 

The    are self-adjoint operators. 
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Generalized Trotter formula 

For bounded operators      hold: 

 

 i 
   
(∏     
 

   

)

 

  e  (∑  

 

   

)    i 
   
(  
∑   
 
   

 
)

 

 

In general  

 

e  (∑  

 

   

)    ∏   

 

   

 

Unitary operators 

For unitary operators holds: 

  

U† = U−1 

Thus 

  

U·U† = U†·U =1 

 

Suppose U = I + C where U is unitary and C is compact. The equations U U* = 

U*U = I and C = U − I show that C is normal. The spectrum of C contains 0, and 

possibly, a finite set or a sequence tending to 0. Since U = I + C, the spectrum of U 

is obtained by shifting the spectrum of C by 1. 

The unitary transform can be expressed as: 

 

U = exp(Ĩ·Φ/ħ) 

 

ħ = h/(2·π) 

 

Φ is Hermitian. The constant h refers to the granularity of the eigenspace. 

Unitary operators have eigenvalues that are located in the unity sphere of the 2n-

ons field.  

The eigenvalues have the form: 

  

u = exp(i·φ/ħ) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 
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φ is real. i is a unit length imaginary number in 2n-on space. It represents a 

direction.  

u spans a sphere in 2n-on space. For constant i, u spans a circle in a complex 

subspace.  

Polar decomposition 

Normal operators N can be split into a real operator A and a unitary operator U. 

U and A have the same set of eigenvectors as N. 

  

N = ||N||·U = A·U 

 

N = A·U = U·A  

 

= A· exp(Ĩ·Φ)/ħ) 

 

= exp (Φr+ Ĩ·Φ)/ħ)  

 

Φr is a positive normal operator. 

Ladder operator 

General formulation 

Suppose that two operators X and N have the commutation relation: 

 [N, X] = c·X 

for some scalar c. If |n> is an eigenstate of N with eigenvalue equation, 

 

|N n>   |n>·n 

 

then the operator X acts on |n> in such a way as to shift the eigenvalue by c: 

 

|N·X n> = |(X·N + [N, X]) n> 

= |(X·N + c·X) n> 

= |X·N n> + |X n>·c 

= |X n>·n + |X n>·c 

(1) 

(2) 

(1) 

(2) 

(3) 
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= |X n>·(n+c) 

 

In other words, if |n> is an eigenstate of N with eigenvalue n then |X n> is an 

eigenstate of N with eigenvalue n + c.  

The operator X is a raising operator for N if c is real and positive, and a lowering 

operator for N if c is real and negative. 

If N is a Hermitian operator then c must be real and the Hermitian adjoint of X 

obeys the commutation relation: 

[N, X†] = - c·X† 

In particular, if X is a lowering operator for N then X† is a raising operator for N 

and vice-versa. 

Unit sphere of Ң 

The ket vectors in Ң that have their norm equal to one form together the unit 

sphere  of Ң. 

Base vectors are all member of the unit sphere. The eigenvectors of a normal 

operator are all member of the unit sphere.  

The end points of the eigenvectors of a normal operator form a grid on the unit 

sphere of Ң. 

 Closure 

The closure of Ң means that converging rows of vectors converge to a vector of 

Ң. 

  

In general converging rows of eigenvalues of Q do not converge to an 

eigenvalue of Q. 

Thus, the set of eigenvalues of Q is open.  

At best the density of the coverage of the set of eigenvalues is comparable with 

the set of 2n-ons that have rational numbers as coordinate values. 

With other words, compared to the set of real numbers the eigenvalue spectrum 

of Q has holes. 

The set of eigenvalues of operator Q includes 0. This means that Q does not have 

an inverse. 

  

(4) 
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The rigged Hilbert space Ħ can offer a solution, but then the direct relation with 

quantum logic is lost. 

 

Canonical conjugate operator P 

The existence of a canonical conjugate represents a stronger requirement on the 

continuity of the eigenvalues of canonical eigenvalues.  

Q has eigenvectors {|q>}q and eigenvalues q. 

P has eigenvectors {|p>}p and eigenvalues p. 

For each eigenvector |q> of Q we define an eigenvector |p> and eigenvalues p of 

P such that: 

  
                     (       ) 

 

      (  ) is a scaling factor.       is a quaternion. ȋ is a unit length 

imaginary quaternion. 

Displacement generators 

Variance of the scalar product gives: 

 
                       

 
                       

 

In the rigged Hilbert space Ħ the variance can be replaced by differentiation.  

Partial differentiation of the function <q|p> gives: 

 
                          

 
                           

Derivation of the one dimensional Euler Lagrange equation 
This is taken from Wikipedia148. 

Equation 

The Euler–Lagrange equation is an equation satisfied by a function,  , of a real149 

argument,  , which is a stationary point of the functional150 

                                                      
148 http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange 

(1) 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Functional_(mathematics)
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 ( )  ∫  (   ( )  ̇( ))
 

 

    

where: 

  is the function to be found:  

 
        ℝ    
                           ̇( ) 

 

such that   is differentiable,  ( )      , and  ( )      ; 

 ̇ is the derivative of  :  

 
 ̇         ( )  

                  ̇( ) 

 

   being the tangent bundle of   (the space of possible values of derivatives of 

functions with values in  ); 

  is a real-valued function with continuous151 first partial derivatives152:  

 
             ℝ 
                              (     ) 

 

The Euler–Lagrange equation, then, is given by 

 

  (   ( )  ̇( ))  
 

  
  (   ( )  ̇( ))  

  

  
 
 

  

  

  
   

 

where    and    denote the partial derivatives of   with respect to the second 

and third arguments, respectively. 

If the dimension of the space   is greater than 1, this is a system of differential 

equations, one for each component: 

 

                                                                                                                                                
149 http://en.wikipedia.org/wiki/Real_number 
150 http://en.wikipedia.org/wiki/Functional_(mathematics) 
151 http://en.wikipedia.org/wiki/Continuous_function 
152 http://en.wikipedia.org/wiki/Partial_derivatives 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Tangent_bundle
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Partial_derivatives
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Derivation 

Given a functional 

 

  ∫  (   ( )   ( ))   
 

 

 

on   (     ) with the boundary conditions  ( )      and  ( )     , we proceed 

by approximating the extremal curve by a polygonal line with   segments and 

passing to the limit as the number of segments grows arbitrarily large. 

Divide the interval       into       equal segments with endpoints    

                     and let               . Rather than a smooth function 

 ( ) we consider the polygonal line with vertices (     )   (         ), where 

      and           . Accordingly, our functional becomes a real function of n 

variables given by 

 

 (        )  ∑ (             
  
)  

 

   

 

 

Extremals of this new functional defined on the discrete points            

correspond to points where 

 
  (        )

   
   

 

Evaluating this partial derivative gives 

 
  

   
   (             

  
)      (                 

  
)

   (             
  
) 

 

Dividing the above equation by Δt gives 

 
  

     
   (             

  
) 

(1) 

(2) 

(3) 

(4) 

(5) 
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   (                 

  
)    (             

  
)

  
 

 

and taking the limit as      of the right-hand side of this expression yields 

 

   
    

  
   

 

The left hand side of the previous equation is the functional derivative153 
  

  
 of 

the functional  . A necessary condition for a differentiable functional to have an 

extremum on some function is that its functional derivative at that function 

vanishes, which is granted by the last equation. 

  

                                                      
153 http://en.wikipedia.org/wiki/Functional_derivative 

(6) 

http://en.wikipedia.org/wiki/Functional_derivative
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Zak transform 
(See also http://eom.springer.de/Z/z130030.htm) 

Definition 

The Weil-Brezin-Zak transform   ( ) of a function f is defined by  

     (   )     (   )  √ ∑  (        ) e  (      )

 

    

 

Where α > 0 and t and ω are real. When α =1, one denotes     by   . 

If f represents a signal, then its Zak transform can be considered as a mixed time-

frequency representation of f , and it can also be considered as a generalization of 

the discrete Fourier transform of f in which an infinite sequence of samples in the 

form  (        ), k   0, ±1, ±2,…, is used  

Elementary properties. 

1)  (linearity): for any complex numbers α and β, 

 
     ( )     ( ) (   )        ( ) (   )        ( ) (   ) 

 

2)  (translation): for any integer m,  

 
                     (   ) (   )   e  (         )      (   ) 

 

in particular,  

 
                  (   )(     )  e  (        )   (   ) 

3)  (modulation):  

 
                      e  (         )  (   )   e  (         )(   )(   ) 

 

4)  (periodicity): The Zak transform is periodic in with period one, that is,  

 
                    (   )(     )  (   )(   ) 

 

 

(1) 

(2) 

(3,4) 

(5) 

(6) 

http://eom.springer.de/Z/z130030.htm
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5)  (translation and modulation): By combining 2) and 3) one obtains 

 

      
   e  (         ) (   ) (   )  e  (         )e  (         )(   )(   ) 

 

6)  (conjugation):  

 

                  (   ̅)(   )  (   )̅̅ ̅̅ ̅̅ ̅(    ) 

 

7)  (symmetry): If f is even, then  

 
                    (   )(   )  (   )(     ) 

 

and if f is odd, then  

 
                    (   )(   )   (   )(     ) 

 

From 6) and 7) it follows that if f is real-valued and even, then  

 

(   )(   )  (   )̅̅ ̅̅ ̅̅ ̅(    )  (   )(     )  

 

Because of 2) and 4), the Zak transform is completely determined by its values 

on the unit square              . 

8)  (convolution): Let  

 

                     ( )  ∫  (   )  ( )  
 

  
 

then  

                    (   )(   )  ∫ (   )(     ) (   )(   )
 

 
    

Analytic properties. 

If f is a continuous function such that 

 
 ( )   ((     )    ) a      for  o e     

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(1) 
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Then     is continuous on Q. A rather peculiar property of the Zak transform is 

that if     is continuous, it must have a zero in Q. The Zak transform is a unitary 

transformation from   (ℝ) onto   ( ). 

Inversion formulas. 

The following inversion formulas for the Zak transform follow easily from the 

definition, provided that the series defining the Zak transform converges 

uniformly:  

 

 ( )  ∫ (   )(   )   
 

 

        

 ̃(      )  
 

√   
∫    (          ) (   )(   )   
 

 

 

 

and  

 

 (     )  
 

√   
∫    (          ) (   ̃)(   )   
 

 

 

 

where  ̃ is the Fourier transform of f, given by  

 

 ̃( )  
 

√   
∫   ( ) e  (     )   
 

  

 

Applications. 

The Gabor representation problem can be stated as follows: Given  ∈   (ℝ) and 

two real numbers, α, β, different from zero, is it possible to represent any 

function  ∈   (ℝ) by a series of the form  

 

  ∑ ∑    
 
           

 
     , 

 

where        are the Gabor functions, defined by: 

 
      ( )  e  (       )  (    ) 

 

and     are constants? And under what conditions is the representation unique? 

 
Fix a coordinate x in a line ℝ; the family of functions in ℝ 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 
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   ( )    √ 
 
 e    (   (     )             ) 

 

are called Gabor functions. Here λ = (p, θ) is a point in the phase space Φ = ℝ ⊗ℝ ′ 

 

The operators 

 

    
 

   
 
 

  
     

 

      
 

   
 
 

  
     

 

in    are adjoint one to another. They are called the annihilation and the creation 

operators. 

 

Any Gabor function is an eigenvector of the annihilation operator: 

 
           

 

where  

 
    (   ) 

 

and  

 
         

 

For any φ in the domain of the operator a we have 
 

  (  )        

 

    
 

   
   (
 

  
  
 

  
)      

Thoughts 
The following texts represent collections of thoughts that still have to be brought 

in proper order and in mutual consistency. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Spin and dyadic product 

As factors of the dyadic product we consider imaginary quaternionic numbers or 

vectors in ℝ3. The product corresponds to a matrix. This matrix acts as an 

operator. 

 

 ⊗   [

  
  
  
]          [

            
            
            

] 

 

The product of quaternions contains sign selections. For the imaginary parts this 

selection has to do with the handedness of the external product. Dyadic products 

are well suited to store the product such that the sign selections are stored as 

well. The sign selection plays its role in the dyad ij, which consists of two 

imaginary base numbers. The dyad ij = ji, and k can be ± ij. Let us apply this to 

the definition of Sz. 

 

       [

           

           

   

]    [

        

       

   

] 

 

This shows that the definition of Sz via the dyadic product reflects the choice in 

handedness of the external product of ex and ey. 

Wave package 

The linear momentum is interpretable as a displacement operator. This operator 

is better treated in Fourier space than in configuration space. In Fourier space a 

particle becomes a wave package. The Fourier transforms of the fields describe 

the wave package. 

Operator P has eigenfunctions  ̃( ) with eigenvalues p: 

 

         ̃( )             ( )  e  (  
   

 
)) 

 
            

 

A pure particle can be represented by a single Hilbert vector |f>. Its wave 

function is given by: 

 
 ( )         

(1) 

(2) 

(1) 

(2) 

(3) 
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Or by: 

 

 ̃( )         

 

A mixed particle takes a Hilbert distribution154 in order to define its presence. 

 
 ( )         

 

A blurred Hilbert distribution is a Hilbert field. 

 
 ( )   ( )   ( )  

 

A different type of blur gives a different type of Hilbert field. 

The wave functions155 and private Hilbert fields represent particles. Their Fourier 

transforms represent wave packages. A very particular Hilbert field is a 

probability density that is based on a probability density operator156. 

A single wave mode represents a plane wave. Look at the linear momentum of 

the field contained in a volume V surrounded by surface S: 

 

 

 

       ∫         

 

 ∫        

 

 ∫  〈∇   〉    ∮〈 ̂   〉  
 

 

 

 

For each temporal Fourier mode of the field in free space (vanishing charge 

density ρ0, no variance of scalar potential ϕ0), where Eϕ falls off rapidly, we can 

neglect the first and the third term. 

 

       ∫  〈    〉   

 

 

 

Further: 

                                                      
154 Functions and fields; Distributions in quaternionic Hilbert space 
155 States 
156States; State definition; Probability density  

(4) 

(5) 

(6) 

(7) 

(8) 
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      ∇    ∇   

 

        ∫  〈   ∇  〉   

 

 

 

 ∫  〈  ̃ ∇  ̃〉    
  

 

 

 ∫   〈 ̃ ∇  ̃〉    
  

 

 

 ∫ ( )  〈 ̃  ̃〉    
  

 

 

If the function 〈 ̃( )  ̃( )〉 gives the probability density for eigenvalue p. Then, 

this gives reason to interpret  〈 ( )  ( )〉 as probability density for the position 

q of the particle. 

Fourier mode 

A Fourier mode is a single frequency wave. It can be interpreted as a “particle” 

or as a train of particles whose charge is blurred by a very wide spread function. 

The corresponding current is blurred by that same spread function. It means that 

the divergence along the wave reduces to zero. 

 

Often waves of the same frequency that belong to different mutually 

perpendicular fields combine to form polarized waves. The waves may differ in 

their phase shifts. The combination then forms a polarized wave. Depending on 

the phase difference it may be an elliptical polarized wave, a circular polarized 

wave or a linearly polarized wave. 

Systems 

A system is a local assembly of physical items that act as a single physical item. 

Its state157 is mixed. When a redefinition of physical items in terms of atomic 

predicates goes together with influences between items in the form of fields, 

                                                      
157 States 

(9) 

(10) 
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then a redefinition of a system in terms of its components will certainly also have 

such effects. The redefinition may take different forms. It may be represented by 

an emission or absorption of a component or it may be a reshuffling of the 

components. The simplest case of reshuffling is a permutation of items that 

belong to the same category. A more complex situation is a periodic movement 

of one or more components within the realm of a system. In addition each 

sequence of creation and annihilation is a form of redefinition. 

 

The system has its own characteristic vectors. The wave function may depend on 

the permutation state of the system. For example for fermions an odd 

permutation changes the sign of the (position related) wave function. For bosons 

a permutation does not affect the wave function. Permutations of different 

categories of components go together with their own type of influence. Thus, 

there are fermionic fields and there are bosonic fields. Each of these fields has its 

own type of creation and annihilation. Being fermion or boson relates to the spin 

type of the component. The annihilation and creation operators are closely 

related to the type of components involved and are also closely related to the 

type of fields involved. The annihilation/creation operators of fermions anti-

commute and the annihilation/creation operators of bosons commute. 

Entropy 

A system is a local assembly of physical items158 that act as a single physical item. 

The Density operator ρ relates to the currently considered observable Q. A pure 

state is a ray spanned by an eigenvector of the operator Q.  

 

The von Neumann entropy159 S(ρ)  of a physical system that is characterized by a 

state160 |ψ> is given by 

  ∑{|      |}  

 

∑{     }

 

 

          

           
  

                                                      
158 Logic; Items 
159 http://en.wikipedia.org/wiki/Von_Neumann_entropy 
160 States 

(1) 

(2) 

http://en.wikipedia.org/wiki/Von_Neumann_entropy
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 ( )       ∑{    n(  )}

 

 

 

The entropy S(ρ) describes the departure of the system from a pure state. In 

other words, it measures the degree of mixture (entanglement161) of the state |ψ>. 

Some properties of the von Neumann entropy: 

 S(ρ) is only zero for pure states. 

 S(ρ) is maximal and equal to log2N for a maximally mixed state, N being 

the dimension of the Hilbert space. 

 S(ρ) is invariant under changes in the basis of ρ, that is, S(ρ) = S(UρUϯ), 

with U a unitary transformation. 

 S(ρ) is concave, that is, given a collection of positive numbers λq which 

sum to unity (Σqλq= 1) and density operators ρq, we have 

 (∑  
 

  )  ∑  
 

 (  ) 

 S(ρ) is additive. Given two density matrices ρA,ρB describing independent 

systems A and B, then 

 (  ⊗  )   (  )   (  )  

 

Instead, if ρA,ρB are the reduced density operators of the general state ρAB, then 

  (  )   (  )   (   )   (  )   (  ) 

While in Shannon's theory the entropy of a composite system can never be lower 

than the entropy of any of its parts, in quantum theory this is not the case, i.e., it 

is possible that S(ρAB) = 0 while S(ρA) > 0 and S(ρB) > 0. 

Intuitively, this can be understood as follows: In quantum mechanics, the 

entropy of the joint system can be less than the sum of the entropy of its 

                                                      
161 http://en.wikipedia.org/wiki/Quantum_entanglement 
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http://en.wikipedia.org/wiki/Quantum_entanglement
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components because the components may be entangled162. The left-hand 

inequality can be roughly interpreted as saying that entropy can only be 

canceled by an equal amount of entropy. If system A and system B have different 

amounts of entropy, the lesser can only partially cancel the greater, and some 

entropy must be left over. Likewise, the right-hand inequality can be interpreted 

as saying that the entropy of a composite system is maximized when its 

components are uncorrelated, in which case the total entropy is just a sum of the 

sub-entropies. 

 The von Neumann entropy is also strongly sub-additive. Given three 

Hilbert spaces, A,B,C, 

 (    )   (  )    (   )   (   ) 

Isolated systems 

With isolated systems we mean systems in a geometrically compound 

environment where influences from the environment compensate each other, 

possibly including the influences on the environment that are caused by the 

system under consideration. This includes e.g. the gravitation field. The 

gravitation potential cannot be zero, but the influence of other items can be 

negligible. Internal influences are internally compensated such that they are not 

felt by other systems. For example the sum of the charges, which are related to 

electromagnetic fields is zero. It means that the Fourier transforms of the local 

fields consist of linear combinations of discrete terms. This holds for the 

electrostatic fields and the magneto-static fields. It holds for rectangular 

components as well as for polar components. These components are the germs of 

quanta and are the source of creations and annihilations. 

For example consider the vector potential A. Its Fourier transform can be written 

as: 

 
 (   )   

 

 ∑ ∑ {      ( )  e  ( (   ))    ̅   ̅  ( )  e  (  (   ))}

      

 

 

 

 

                                                      
162 http://en.wikipedia.org/wiki/Quantum_entanglement 

(7) 

(1) 

http://en.wikipedia.org/wiki/Quantum_entanglement
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Where eμ are unit sized polarization vectors. They depend on the orthonormal 

vectors ex and ey that represent quaternionic imaginary base numbers. The index 

μ labels the photon spin. The product eμ·aμ represents a quaternionic imaginary 

number. The number i can be interpreted as a base imaginary number in the 

direction of k. 

 

   
  

√ 
(       ) 

 

    
 

√ 
(       ) 

 
(    )    

 

(    )    

 

[  ( )    ( 
 )]    

 

[   ( )  
 
  ( 

 )]    

 

[  ( )  
 
  ( 

 )]            

 

Here the √
 

     
  ( ) are the operator equivalents of the coefficients     and ω   

c |k| = ck. 

This results in: 

 

 (   )  ∑√
 

     
{  ( )    (   )  e  ( (   ))    ̅ ( )   

 
 (   )  e  (  (   ))}

   

 

 

 (   )    ∑√
 

     
{  ( )    (   )  e  ( (   ))    ̅ ( )   

 
 (   )  e  (  (   ))}

   

 

 

  (   ) is an annihilation operator and    (   ) is a creation operator. 

 

   (   )           √    

(2) 
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(4) 
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   (   )          

 

  (   )           √  

 
  (   )        

 

[  ( ) ( 
 
 ( ))

 
]  (  ( ))

 
 

 

The Hamiltonian is: 

 

 ( )    ∑{  
 (   )    (   )   }

   

 

 

The number operator Nμ gives the number of quanta: 

 

  (   )     
 (   )    (   ) 

 

The quanta discussed here are bosons. With the electromagnetic field they are 

photons. Photons have integer spin 1. With the dyadic product ⨂ follows: 

 

      (  ⊗     ⊗  ) and cyclically for x → y → z → x 

 

[     ]       

 
           

 

Fermions have half integer spin. With fermions the creation and annihilation 

operators a and aϯ have different commutation relations. Instead of commuting, 

these operators anti-commute. 

Measurement 

We differentiate between a measurement using a piece of equipment and an 

observation as is done between items in universe. In the particle view the 

measuring equipment scrambles the phases. After that scrambling an 

observation is done. In the wave view the measuring equipment takes care that 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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the phases stay intact, while the amplitudes are ignored during the next 

observation. 

 

In measurement terms the scramble of the phases is called de-coherence. In the 

same sense the care to keep phases pure and the neglecting of the amplitudes 

could be called re-coherence. Both actions can be related with the Fourier 

transforms that convert the wave view into the particle view or vice versa. 

Measurement preparation 

In a measurement the observation follows after a preparation phase by the 

measuring equipment. Such a preparation may squeeze the shape of the private 

field that represents the item. For example, a preparation for precise position 

measurement may squeeze the private field and change the item’s subspace such 

that its range of covered position eigenvectors becomes very short and that its 

range of covered momentum eigenvectors extends very far. Similarly, when a 

preparation is made for precise momentum measurement then the item’s private 

field is squeezed and its subspace is changed in the other direction, such that it 

covers a huge range of position eigenvectors and a very short range of 

momentum eigenvectors. A Fourier transform does not change the item’s 

subspace. It changes the private field of the item from position based coordinates 

to momentum based coordinates or vice versa. 

 

Changing the item’s subspace such that its range of covered position 

eigenvectors becomes very short and that its range of covered momentum 

eigenvectors extends very far is called decoherence. In case of a system it 

reduces the entanglement of that system. 

Hamilton-Jacobi 

The Hamilton-Jacobi equation shows how the Hamiltonian relates to the action S 

of the current manipulator. In this section we consider t to be the manipulator 

time! 

 

            
   
  
  

 

For the eigenvalues holds 

 
             

(1) 

(2) 
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Thus, we can put 

 

         (
   
  
)      

 

      (
   
  
) 

 

For the expectation values    of the action operator    holds  

 

      
   

  
              

   

 
        

  
       

 
  

 

        
  
           
  

    (   ) 

 

This derivation is completely independent from the observation of Q. Thus    

has nothing to do with the Minkowski metric that appears during observations 

of position.  

The Lagrangian 

The Lagrangian is equivalent to the local geodesic equation. 

The Lagrangian    is related with the action   . 
 

    ∫     
 

 

 

 

The integral is taken over the trail with the observed path. The index   of the 

action    is the trail progression parameter. The integration parameter stands for 

the coordinate time. The right side of the equation plays in Lorentzian space. 

 

The Euler Lagrange equations explicitly use observations. For that reason the 

Lagrangian is considered to be a function of the observed  , the velocity   ̇  and 

the coordinate time τ. The velocity is measured with the coordinate time. 

 
      (     ̇) 

 

(3) 

(4) 

(5) 

(1) 

(2) 
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 ̇   
  

  
 

 

The Euler-Lagrange equations are: 

 
   (     ̇)

   
  
 

  

   (     ̇)

  ̇ 
   

 

for i = x, y, z 

 

When the Lagriangian does not vary with one or more of its parameters, then 

this corresponds with a corresponding symmetry of the system. By Noether's 

theorem163, such symmetries of the system correspond to conservation laws164. In 

particular, the invariance of the Lagrangian with respect to time τ implies the 

conservation of energy. 

By partial differentiation of the above Lagrangian, we find: 

   (     ̇)

   
  
  

   
    

 
   (     ̇)

  ̇ 
    ̇     

 

where the force is F   −∇U (the negative gradient of the potential, by definition of 

conservative force), and p is the momentum. By substituting these into the 

Euler–Lagrange equation, we obtain a system of second-order differential 

equations for the coordinates on the particle's trajectory, 

   
 (  ̇ )

  
     ̈    ̇ 

                                                      
163 http://en.wikipedia.org/wiki/Noether%27s_theorem 
164 http://en.wikipedia.org/wiki/Conservation_law 
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http://en.wikipedia.org/wiki/Noether%27s_theorem
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which is Newton's second law. 

The world’s action 

The action    represents the influences that the rest of the world via unitary 

operator    release onto the state {|f>s}s. 

 

In his book about quantum gravity Rovelli writes: 

"In the general relativistic parlance 'matter' is anything which is not the 

gravitational field. As far as current physics knows, the world is made up of the 

gravitational field, Yang Mills fields, fermion fields and, presumably, scalar 

fields."165 

 

All these fields give a contribution to the action S. 

 

S(e, ω, A, ψ, φ)  

 
= SGR[e, ω] + Smatter[e, ω, A, ψ, φ] = SGR[e, ω] + SYM[e, A] + Sf(e, ω, A, ψ) +Ssc[e, A, φ) 

 

e is the gravitational field. 

A(q) is the electromagnetic field. 

ω(q) is the spin connection. It is a one form in the Lie algebra of the Lorentz 

group so(3,1) 

ψ(q) is a scalar field, possibly with values in the representation of the Yang Mills 

group. 

φ(q) is a field in the spinor representation of the Lorenz group. 

A(q) has a non Abelian connection to the Yang Mills group. 

 

The local characteristics of these fields must be represented in the eigenvalue of 

the current manipulator. 

Representing multiple fields 

Professor Mendel Sachs recently wrote a few books in which he promotes the 

inclusion of more terms in the metric than Einstein did. Sachs uses a four vector 

with quaternionic coefficients in order to specify the metric. Sachs uses all 

sixteen terms, while Einstein skipped six due to symmetry considerations. The 

argument of Sachs is that the symmetry is broken due to the characteristics of the 

                                                      
165 Carlo Rovelli, book: Quantum gravity, 2004, chapter 2, paragraph 2.1.2 

(1) 
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quaternion number space. See: 

http://www.compukol.com/mendel/publications/publications.html.  

 

16-ons contain the required 16 real numbers that can be arranged as a four vector 

with quaternion coefficients. Sachs still uses the Minkowski metric. So, his view 

concerns observed spacetime.  

  

http://www.compukol.com/mendel/publications/publications.html
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Planck limits for all physical observables 
This is taken from: http://www.motionmountain.net/research.html . 

Basic measures 

The basic measures of physics are: 

 

The Planck length,     √     
                  

 

The Planck time,      √    
                  

 

The Planck energy is given by:       √  
            

Fundamentals 

A large part of modern physics can be summarized in four simple and 

fundamental statements on motion: 

 
quantum theory on action:       
thermodynamics on entropy:       
special relativity on speed:       
general relativity on force:  

   
   

  
  

 

These limits are valid for all physical systems, whether composite or elementary, 

and for all observers. Note that the limit quantities of special relativity, 

thermodynamics, quantum theory and general relativity can also be seen as the 

right-hand sides of the respective indeterminacy relations: 

 
length   and acceleration              
the displacement   and momentum   

       
 

 
 

temperature   and energy   
 
 

 
    

 

 
 

Energy flow   and size   
      

  

  
 

 
By combining the three fundamental limits, we can obtain limits on a number of physical 

observables.The following limits are valid generally, for both composite and elementary 

systems: 

 

(1) 

(2) 

(3) 

http://www.motionmountain.net/research.html
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time interval: 

    √
   

  
                

time-distance product: 
     

   

  
                  

acceleration: 

     √
  

   
                   

angular frequency: 

       √
  

   
                 

 

Adding the knowledge that space and time can mix, we get: 

 
distance: 

    (
   

  
)
   

                

area: 
    
   

  
                  

volume: 
    (

   

  
)
   

                   

curvature: 
    

  

   
                  

mass density: 
    

  

     
                   

 

Elementary particles 
A particle is elementary if the system size   is smaller than any conceivable dimension, 

thus for elementary particles:  

    
 

  
 

 

Using this limit, we find the well-known mass, energy and momentum limits, valid only 

for elementary particles: 

 

    √
   

  
                               e     

 

    √
    

  
                             e  

 

 

(1) 

(2) 

(3) 



259 

 

    √
    

  
                           e     

Virtual particles 

Virtual particles do not obey the mentioned limits. 

EM limits 
Our discussion of limits can be extended to include electromagnetism. Using the 

(lowenergy) 

electromagnetic coupling constant  , we get the following limits for physical 

systems interacting electromagnetically: 

 
electric charge     √                       

electric field 

     √
  

        
 
  
  

   
                 

magnetic field 

    √
  

        
 
  
  

   
               

Voltage 

     √
  

       
    √

   

  
               

Inductance 

     
 

     
√
   

  
  
 

  
√                       

 

With the additional assumption that in nature utmost one particle can occupy one Planck 

volume, we get 

 
charge density 

     √
    

    
  

 
    √

  

      
                   

Capacitance 

         √
   

  
     √ 

  

   
                 

 

For the case of a single conduction channel, we get 

 
electric resistance 

    
 

      
                  

electric conductivity               
              

electric current 

    √
     

 

 
     √

  

   
                

(4) 
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Indeterminacy relations: 
 

  capacity and   potential difference           
Electric current   and time             

 

Derived limits 

The ratio of angular momentum   to energy   times length   has the 

dimensions of inverse speed. Since speeds are limited by the speed of light, we 

get 

 

          
 

 
    

 

The action limit 

 
         

 

is not exceeded in any physical process. 
Since action values in nature are limited from below by  , we get a limit for the speed of 

a system: 

 

            
  
 

  
 

 

This is not a new result; it is just a form of the indeterminacy relation of quantum theory. 

Thanks to the connection         between action , force  , distance   and time  , 

we can deduce 

 

          
 

  
  
 

  
  

 
The power   emitted by a system of size   and mass   is limited by 

 

   
  

 
                

 

  
  

 
In 1973 Bekenstein discovered a famous limit that connects the entropy   of a physical 

system with its size and mass. No system has larger entropy than one bounded by a 

horizon. The larger the horizon surface, the larger the entropy.  

 

(1) 

(2) 

(3) 

(4) 

(5) 



261 

 

 

      
    

 

      
  

 

which gives 

 

     
  

   
     

 

where   is the surface of the system. Equality is realized only for black holes. 

We assume that the limits for vacuum are opposite to those for matter. We can 

then write  

 
             

 

for the vacuum. 

Using 
 

         
    

 

         
  
 

         
  
         
 
  

 

we get 

 

    
   

 
      

    

 
    

 

This is called Bekenstein’s entropy bound. 

 
A lower limit for the temperature   of a thermal system can be found using the idea that 

the number of degrees of freedom of a system is limited by its surface, or more precisely, 

by the ratio between the surface and the Planck surface. We get the limit 

 

    
   

   
  
 

  
  

 
Lower limit for the electric field  : 

 

        
  

    
  

 
Lower limit for the magnetic field  : 
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Cosmological limits 

Cosmology is characterized via the cosmological constant   by the inequality: 

 

    
 

 
  

 

For single particles, the absolute lower speed limit, the cosmological speed limit, 

is given by: 
 

            
√     

         
                √            

        

 
The negative energy volume density          corresponds to a force value  

 

    
   

  
                 

 
This is also the gravitational force between two corrected Planck masses 

located at the cosmological distance √     . 

 
In nature there is a minimum time interval,            , the Planck time. 

 

A recent prediction derived from the standard model of elementary particles 

give as an upper limit for the electron dipole moment    a value of 

 
    

 
             

 

The mass m of any elementary particle is constrained by the Planck mass     

 

    
 

     
   √

  

 
                 

                         .  

 

The maximum possible value for mass density     is 

 

(13) 
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Within a factor of order one, we find 

 

    
  

  
                     

 
as a limit for the surface curvature   in nature. In other words, the universe has never 

been a point, never had zero age, never had infinite density, and never had infinite 

curvature. 

Limit quality 
Nature provides two limits for each observable: a Planck limit and a cosmological limit.  

All measurements are limited in precision. 

Because of the fundamental limits to measurement precision, the measured values of 

physical observables do not require the full set of real numbers. In fact, limited precision 

implies that observables cannot be described by the real numbers. 

At Planck scales it is impossible to distinguish between matter and vacuum. Vacuum and 

matter do not differ at Planck scales. Similarly, at the Planck length it is impossible to 

distinguish between positive and negative time values: so particles and antiparticles are 

not clearly distinguished at Planck scales. 

 

The strictest upper limits are those with the smallest exponent for length, and the strictest 

lower limits are those with the largest exponent of length. 

The accuracy of time measurements is limited by the Planck time    . 
The accuracy of length measurements is limited by the Planck length    . 
All measurements – be they measurements of position, speed, mass or any other 

observable – are electromagnetic. In other words, all measurements in nature are 

detection of photons. And in strand theory photon absorption and detection are intimately 

related to the crossing switch. 

All electromagnetic information is communicated by directed information carrying 

quanta in the form of shot noise. However, secondary information can be derived from 

the shape of the quantum cloud. 

References: 
More useful stuff is collected in the toolkit 

Axiomatic Quantum Theory, W. Lücke, http://arxiv.org/PS_cache/quant-

ph/pdf/9510/9510024v2.pdf  

An overview of gravity theories: 

http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.4672v2.pdf.  
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multi-dimensional, 93 
Dirac equation, 187 

discrete distribution, 135 
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Gaussian distribution, 74 
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dynamics, 31 

time and dynamics, 56 
eigenspace, 236 

eigenvalue, 236 
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electromagnetic field theory, 28 

elementary Hilbert distribution, 85 
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unit of entropy, 63 
equations of motion, 13, 185 
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Euler Lagrange equation, 240 

example proposition, 42 

expectation value, 152 

extended quantum logic, 31, 168 

fermions, 45 

Feynman path integral, 175 

field, 188 

covering field, 80 
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field angular momentum, 143 

field energy current density, 140 

field energy density, 139 

field equations 

Hilbert field equations, 127 
field linear momentum, 141 

field linear momentum 
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141 
field linear momentum flux tensor, 141 

flux vector, 139 
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