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1.0. Introduction 
In the previous chapters we showed that a question about the formation of elementary particles 

and the appearance of its characteristics, in particular, mass and charge, is inseparably connected 
with the self-action of field of a particle. The self-action requires nonlinear description.  The 
physicists arrived not immediately at these conclusions. 

The theory of charge, mass and other characteristics of electron has arisen originally on the 
basis of classical electrodynamics and was developed by W. Kelvin, J. Larmor, H. Lorentz, M. 
Abraham, A. Poincare, and many others (see the reviews: (Pauli, 1958; Ivanenko and Sokolov, 
1949)).  

The first example of a theory (Coll. of articles, 1959) which unified electrodynamics and 
mechanics was H. A. Lorenz's attempt to explain the inertia of an electron on the basis of classical 
(linear) electrodynamics. Here, the electron was presented as a “clot” of electromagnetic field. 
The purpose of the theory was to show that the equation of an electron’s motion follows from the 
equation which describes the field of the electron.. Important results have been achieved within 
the framework of this theory. However, the description of an electron required the introduction of 
an additional non-electromagnetic field. Alternatively, self-action fields inside the electron could 
be introduced, but this requires the creation of a nonlinear theory of the electron. 

The idea of nonlinearity appeared as answer to the difficulties, emergent in the linear theory of 
electron (which was the first elementary particle). 

1.1. The general results and difficulties of the classical electron theory  
According to the hypothesis, which has been put forward in the end of the 19th century by J.J. 

Thomson and advanced by H. Lorentz, M. Abraham, A. Poincare, etc. (Lorentz, 1916; Ivanenko 
and Sokolov, 1949), the electron’s own energy (or its mass) is completely caused by the energy of 
the electromagnetic field of electron. In the same way it is supposed that the electron momentum 
is obliged to the momentum of the field. Since electron, as any mechanical particle, possesses the 
momentum and energy, which are together the 4-vector of the generalized momentum, the 
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necessary condition of success of the theory will be the proof that the generalized momentum of 
an electromagnetic field is a 4-vector. 

Thus, for the success of the field mass theory the following conditions should be satisfied at 
least: 

At first, it is necessary to receive final value of the field energy, generated by a particle, which 
could be precisely equated to final energy of a particle (i.e. product of the mass by the square of 
the light speed). 

At second, the value of a momentum of the field, generated by a particle, must not only be 
final, but also has the proper correlation with energy, forming with the last a four-dimensional 
vector. 

Thirdly, the theory should manage to deduce the equation of movement of electron. 
Fourthly, it is necessary to obtain of electron spin, as a spin of a field (that needs the quantum 

generalization of the theory of field mass, since a spin is quantum effect). 
All the parameters in classical electrodynamics can be expressed through the symmetrical 

energy-momentum tensor of electromagnetic field  (Tonnelat, 1959; Ivanenko and Sokolov, 

1949)   is determined by the following expressions: 
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were, indices 4,3,2,1, =νµ , ; 3,2,1, =ji 0=ijδ , when  ji =  and 1=ijδ  for . Moreover, a 
4-vector of the space-time has the form 

ji ≠
{ } { } { }ictzyxxrxxx i ,,,,, 44 ===

r
µ . 

The analysis shows, that there are two conditions, by which the generalized field momentum 
 is a 4-vector.  µG
In case of space without charges the size  

 )(4 dr
c
iG ∫= µµ τ ,    (7.1.4.) 

will represent a 4-vector if divergence of energy tensor of a field turns into zero: 

 0=
∂

∂

λ

µλτ
x

,    (7.1.5.) 

For example, the electromagnetic field, which is located in a space without charges, satisfies 
similar conditions. In particular, due to this fact, in the photon theory, EM field is characterized 
not only by energy, but also by momentum.  

2) The condition, by which the energy and momentum of an electromagnetic field form a 4-
vector at the presence of charges, is formulated by the Laue theorem. According to the last, at the 
presence of charges the size  is a 4-vector only in the case when in the coordinate system, 
relatively to which electron is in rest, for all the energy tensor components the following parity is 
observed 

µG

 ,    (7.1.6.) 0)(0 =∫ ordrµντ

except for the component , the integral of which is a constant and is equal to full energy of the 
field, generated by particle (here  is elementary volume in reference system, in which the 
electron is in rest). The equality (1.3) expresses a necessary condition, by which the whole particle 
charge should be in balance. 

0
44T
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We can equate this field energy to the particle’s own energy, expressing in this way the basic 
idea of a field hypothesis. According to the last: 

 )(1 0
4422 o
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cc
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∫== τε ,    (7.1.7.) 

Thus, the mass of a particle from the field point of view can be defined in two ways: 
1) proceeding from EM momentum of a field  it is possible to define mass as factor of 

proportionality between a field momentum and three-dimensional speed of a particle. 
1G

2) if we consider the electron’s own energy as equal or conterminous to the energy of a field, 

and mass as the ratio of a field energy 4G
i
c , to a square of light speed (i.e. as the fourth 

component of a generalized momentum). 
The attempts to execute this program, proceeding from classical linear Maxwell theory, have 

led to difficulties. In particular, it was not possible to prove the Laue theorem (Tonnelat, 1959).  
In the classical theory the dynamics (mechanics) and electrodynamics are completely independent 
from each other. Electromagnetic actions are characterized by component  of an energy-
momentum tensor of an electromagnetic field. It does not include the energy and momentum of 
the substance, which should be subsequently inserted. The attempts of Lorentz and Poincare to 
coordinate the theory on the basis of the assumption that energy of substance has an 
electromagnetic origin, have not led to a positive result. In Lorentz electron theory (linear in 
essence) existence of charges it is possible to explain only by introduction of forces of non-
electromagnetic origin. 

0
0T

Nevertheless (Sokolov and Ivanenko, 1949), there were also a number of successes, which 
carried a hope to solve this problem by some change of the theory. The most perspective change 
of Maxwell-Lorentz theory appeared to be its non-linear generalization by Gustav Mie.. 

2.0. The Gustav Mie non-linear electron theory  
Within the framework of classical physics, the first completely successful nonlinear theory was 

created by Gustav Mie (Mie, 1912a, 1912b, 1913, 2007; Pauli, 1958; Tonnela, 1959; Sommerfeld, 
1964). The most widely known variant of this theory was obtained by M. Born and L. Infeld 
(Born and Infeld, 1934b). Similar variant was also obtained by E. Schrödinger and others. 

Gustav Mie took  the first step in the direction of the generalization of Maxwell's equations and 
to the theory of the elementary particles in 1912 in his famous papers' "Foundations of a Theory 
of Matter". Their goal is no less than the generalisation of the Maxwell equations so that they 
include the existence of the electron. This generalisation is subjected from the start to the principle 
of relativity and derived from a "world function" (Lagrange function), which may depend only on 
Lorentz-invariant quantities. Here a distinction is made possibly for the first time in a consistent 
fashion - between entities of intensity and entities of quantity, i.e. the difference between 

( )EiBF
rr

−=    ,  and ( )ϕµ iAA   ,
r

= , on the one hand, and ( )DiHf
rr

−=    ,  and ( )ρυρµ ij  ,
r

=  on 
the other. Mie tested the invariants, which may be set up with the entities of intensity and the 
entities of quantity respectively.  

Mie set himself  the task to generalize the field equations and the energy-momentum tensor in 
the Maxwell-Lorentz theory in such a way that the Coulomb repulsive forces in the interior of the 
electrical elementary particles are held in equilibrium by other, equally electrical, forces, whereas 
the deviations from ordinary electrodynamics remain undetectable in regions outside the particles. 
In other words Mie introduced a uniform view of the field and substance, and got rid of Poincare–
Lorentz forces, which have a non-electromagnetic origin. 

2.1. The G. Mie theory Lagrangian 
Mie was the first who suggested that the theory should be constructed on the basis of a 

Lagrangian that depends on fundamental invariants.  
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It is possible to make some general statements about the form of the Lagrangian L, which is 
often called the world function. Independent invariants, which can be formed from the bivector 

(where are the tensor components of EM field strengths) and the vector-potential µνF Fµν

( ) ( ) ( ii AAAiAiA ,,, 4=== ϕϕµ

r
)  of an EM field, are the following: 

1. A square of the bivector : µνF µν
µν FFI

4
1

1 = ;  

2. A square of the pseudo-vector µν
µν

*
2 4

1 FFI = (where  is dual electromagnetic tensor).  µν*F

3. A square of a 4-vector of EM potential : ;  µA µ
µ AAI =3

4. A square of the vector : ;   ν
µν AF ρµσ

σµρ AFAFI =4

5. A square of the vector  : . ν
µν AF * ρµσ

σµρ AFAFI **
5 =

 Therefore, L can depend only on these five invariants. If L is equal to the first of these, the 
field equations are the ordinary equations of EM theory for a space without charges. Thus, L can 
differ substantially from  only inside material particles. Invariant 2 can be included into L only 
when squared, in order not to break the invariance related to spatial reflections. Invariants 3-5 
break the gauge invariance.  

1I

We cannot make further statements about the world function L. Thus, there is an infinite 
number of ways in which we can select L. 

Mie supposed  that only the invariants (1) and (3) need to be considered for the description of 
quasistationary processes and construct a world function (Lagrangian), such that at large distance 
from the electron the ordinary Maxwell equations apply, whereas the equations are modified at 
the electron and in its immediate neighbourhood. The entities of intensity are obtained from Mie’s 
world function by differentiation with respect to the entities of quantity. The Lagrangian is to be 
integrated over an arbitrary region of the four-dimensional world and to be varied in suitable 
manner. 

G. Mie accepted the following Lagrangian as the initial one: 

 ( )µ
µ

µν
µν AAfFFLMi ±−=

4
1 ,      (7.2.1’) 

or 

 ( ) ( )µ
µπ

AAfHELMi ±−−= 22

8
1 ,    (7.2.1’’) 

where  f  is some function, and HE
rr

,  are the strength vectors of the electric and magnetic fields, 
respectively. 

Using this Lagrangian, Gustav Mie obtained the final energy (or mass) of a charged particle as 
a value completely determined by the energy of the particle’s field. In this theory, Laue’s theorem 
of particle stability is satisfied, and the proper correlation between the energy and momentum of 
the particle is achieved. 

An attempt by Weyl should be mentioned here, in which he tries to make the asymmetry 
between the two kinds of electricity understandable from the point of view of Mie’s theory. If 
world function L  is not rational function of µ

µ AA , we can put 

 ( )µ
µ

µν
µν AAfFFL Mi +−=+

4
1 ,    (7.2.2’) 

 ( )µ
µ

µν
µν AAfFFL Mi −−=−

4
1 ,    (7.2.2’’) 
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where  denotes any function which is not even. For the statical case the field equations will not 
remain invariant for an interchange of  electrostatic potential 

f
ϕ  with ϕ−  (positive and negative 

electricity). Thus, if L is a multiple-valued function of the invariants, mentioned above, then it is 
possible to choose various single branches of this function as world function for positive 
electricity, and another for negative electricity. 

2.2. The Mie theory difficulties 
Mie assumes (Pauli, 1958) the field of the stationary electron to be static and spherically 

symmetry. But the latter assumption is admittedly not justified by our experimental knowledge 
alone, but recommends itself for its simplicity. We will then have to look for those solutions of the 
field equations which are regular everywhere — for 0=r  as well as for  ∞=r . 

A much more serious difficulty is caused by a fact already noticed by Mie. Once we have 
found a solution for the electrostatic potential ϕ  of a material particle of the required kind, 
ϕ +const. will not be another solution, because the field equations of Mie's theory contain the 
absolute value of the potential. A material particle will therefore not be able to exist in a constant 
external potential field. This seems to constitute a very weighty argument against Mie's theory. In 
the theories which we are going to discuss in the following sections, this kind of difficulty does 
not arise. 

3.0. Born-Infeld nonlinear theory 
The Born-Infeld field (Born and Infeld, 1934a, 1934b; Pauli, 1958; Tonnela, 1959; Ivanenko 

and Sokolov, 1949) theory can be considered as a revival of the old idea of the electromagnetic 
origin of mass. This non-linear field theory (Born, 1953) “is a modification of Maxwell's 
electrodynamics in which the self-energy of the electron is finite. Mie had shown already in 1912 
that the equations of the electromagnetic field can be formally generalized by replacing the linear 
relations between the two pairs of field vectors E, B and D, H by non-linear ones. Yet he did not 
specify these relations, and thus his formalism remained empty”. 

The idea which Born applied to Mie plan is, as he note,  “a special case of what Whittaker 
has called the principle of impotence. If research leads to an obstacle which in spite of all 
efforts cannot be removed, theory declares it as insurmountable in principle… Examples are 
relativity, where the impossibility of material and signal velocities larger than the velocity of 
light is declared, and the uncertainty relations of quantum mechanics, which forbid the 
simultaneous determination of position and velocity and of similar pairs. 

In the case of the electromagnetic field the self-energy can be made finite by prohibiting 
the increase of E the electric vector beyond a certain limit, the absolute field. This can be 

done by imitating relativity where the classical Lagrangian of a free particle 2

2
1 υmL =  is 

replaced by 

  ( ) ⎥⎦
⎤

⎢⎣
⎡ −−=

21222 11 cmcL υ ,   (7.3.1) 

from which c<υ  follows. In a similar way the Lagrangian density of Maxwell's 
electrodynamics can be replaced by a square root expression. Thus a finite self-energy of a 
point charge is obtained which represents not only the inertial mass but also, as Schrödinger 
has shown, the gravitational mass”. 

To obtain the laws of nature Born and Infeld use a variation principle of least action of the 
form 
 ,  ,    (7.3.2) ∫ = 0' τδ dL ( ) 4321' dxdxdxdxd =τ

and postulate that  the action integral has to be an invariant. The problem to find the form of L  
satisfying this condition arises here. 
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Born and Infeld consider a covariant tensor field . The question is to define kla L  to be such a 
function of kla  that (7.3.2) is invariant. The well-known answer is that L  must have the form 

 klaL = ;   ( kla  = determinant of ),                  (7.3.3) kla

If the field is determined by several tensors of the second order, L  can be any homogeneous 
function of the determinants of the covariant tensors of the order ½ . 

Each arbitrary tensor  can be split up into a symmetrical and anti-symmetrical part: kla

 klklkl fga += ;    ;  lkkl gg = lkkl ff −= ,     (7.3.4) 

The simplest simultaneous description of the metrical and electromagnetic field is the 
introduction of one arbitrary (unsymmetrical) tensor ; it can be identified its symmetrical part 

with the metrical field, its antisymmetrical part with the electromagnetic field. 
kla

klg
The quotient of the field strength expressed in the conventional units divided by the field 

strength in the natural units may be denoted by . This constant of a dimension of a field strength 
may be called the absolute field. 

b

The Born-Infeld field equations are formally identical with Maxwell's equations for a 
substance which has a dielectric constant and a susceptibility, being certain functions of the field 
strength, but without a spatial distribution of charge and current. 

As Born and Infeld in the summary write (Born-Infeld, 1934b), “The new field theory can be 
considered as a revival of the old idea of the electromagnetic origin of mass.  The field equations 
derive from the postulate  that there exists an "absolute field" b which is the natural unit for all 
field components and the upper limit of a purely electric field. The field equations have the form 
of Maxwell's equations for a polarizable medium for which the dielectric constant and the 
magnetic susceptibility are special functions of the field components. The conservation laws of 
energy and momentum can be derived. The static solution with spherical symmetry corresponds 
to an electron with finite energy (or mass); the true charge can be considered as concentrated in 
a point, but it is also possible to introduce a free charge with a spatial distribution law. The 
motion of the electron in an external field obeys a law of the Lorentz type where the force is the 
integral of the product of the field and the free charge density”. 

3.1. Born-Infeld field and Lagrangian 
As in Maxwell's electromagnetism the Born-Infeld field  is derived from a potential 

. This condition cancels the rotor of the electric field 
µνF

µννµµν AAF ∂−∂= E
r

 and the divergence 

of die magnetic field B
r

: 
 0=∂+∂+∂ µνλνλµλµν FFF ,    (7.3.5) 

The Born-Infeld field differs from the Maxwell field in the dynamic equations, which are written 
in terms of the tensor 

 

4

2
2

2
1

*
2
2

21

~

b
I

b
I

F
b
I

F
F

−+

−
=

µνµν

µν ,    (7.3.6) 

where S and P are the scalar and pseudoscalar field invariants: 
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(  is the dual field tensor, i.e. the tensor resulting from exchanging the roles of  µνF* E
r

 and B
r

− ). 
Born-Infeld dynamical equations are 

             ,              (7.3.9) 0=∂ µν
ν F

 which is obtained from the Born-lnfeld Lagrangian 

 ⎟
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or:  
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The constant  in equations (7.3.6), (7.3.10) and (7.3.11) is a new universal constant with 
units of held that controls the scale for passing from Maxwell's theory to the nonlinear Born-
Infeld theory, in the same way as the light speed c is the velocity scale that indicates the range of 
validity of Newtonian mechanics. The Maxwell Lagrangian and its related dynamical equations 
are recovered in the limit , or in regions where the held is small compared with b . 
Besides. Born-Infeld solutions having S = 0 = P ('free waves') also solve Maxwell's equations. As 
it follows from Born-Infeld solution the constant b   is a maximum electric field of an electron 

. Thus, if we consider

b

∞→b

0Eb ≡ E   and B  as wave functions, then the ratios bE  and bB  can be 
considered as the normalized wave functions. 

3.2. The point and non-point solutions of Born-Infeld’s nonlinear theory   
The results presented above led them to the following Lagrangian considered as a function of 

invariants  and :  1I 2I

   ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ⋅
−

−
−−= 4

0

2

2
0

222
0 11

4 E
HE

E
HEELBI

rr

π
,    (7.3.12) 

where  is a maximum electric field of an electron. 0E

Using 0=H
r

, ϕgradE −=
r

, )()()( strx −=− δδξρ rr , where δ is the Dirac fuction, we can 
find the following Lagrangian form: 
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Then, with the help of the variation principle, we can obtain: 
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4
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where  is an electrical induction vector (D-field): D
r
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which corresponds to equation: 
   )(4 reDdiv r

rr
δπ=  

Solution of this equation, which corresponds to linear Maxwell theory, is as follows: 
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As we can see, from the point of view of D-field, the electron should be considered as a point 
particle. 

For the electric field (E-field), we obtain: 
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where 
0

0 E
er = . Thus,  from the point of view of electric field (E-field),  the electron is not the 

point particle.  
In comparison to a linear theory, these results present very important specifics of a nonlinear 

theory. This can explain why experiments on dispersion of electron can be interpreted so that the 
non-point electron can look as a point particle. 

We can obtain the potential’s value at the center of a particle as follows: 

  
00

0 ...8541.1
r
edrEr∫

∞

==ϕ  

The charge’s density distribution of the non-point electron can be found in the following way: 

 2/34
0

4

4
0

)(24 rrr
erdivE
+

==
ππ

ρ ,    (7.3.15)  

For ,  , therefore diminishing very rapidly as  0rr >> 7−∝ rρ r  increases. For 0rr < , 
r1∝ρ , therefore ∞→ρ , but  .  It easy to verify that the space integral of  02 →ρr ρ  is equal 

to . For a full charge we have: e

 ( )∫ ∫∫ ====
∞→

erErEdsdEdivd
r

 lim
4
1

4
1 2

π
τ

π
τρ

r
       

The charge can be considered as distributed in a sphere of radius , since, because of the 
condition , the density will quickly go to zero. Therefore, the size  can be considered as 
an effective radius of an electron.  

0r

0rr >> 0r

The value of an electromagnetic mass of an electron can be found based on the equality 
condition: 

 
0
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2
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Using experimental values for the mass and the charge of an electron, it is possible to obtain 
for an effective electron radius the value of  cm, which is practically equal to the 

classical radius of an electron. In this case, we have for the electron energy . 

13
0 1028,2 −⋅=r

2
44 cmd EM== ∫ ττε

Also, it is easy to find the maximal field of an electron, which is in the center of an electron at  
: 0=r

  
m
VCGS

r
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0
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As is known two types of fields and two definitions for the charge density, corresponding to 
them, present in theory of dielectrics. The ratio of D

r
 to E

r
 can be considered as a dielectric 

constant dδ : 

 4

4
0

4

r
rr

E
D

d
+

==δ ,       (7.3.16) 

which in this case is the function of a position. On large distances from the charge, when 00 →
r
r , 

dε  is equal to one, the same as in conventional electrodynamics. We can say that instead of the 

energy expression  2

2

r
e  the value of 2

2

 r
e

dδ
 is used, and that the reduction of r  is compensated by 

the increase of dδ , so that the full energy remains final. 
Thus, we proved that it is possible to obtain the final self-energy (or the mass) of the charged 

particle as a value completely conditioned by the energy of the field of this particle, when one 
uses a certain formally irreproachable hypothetical nonlinear generalization of electrodynamics as 
the basis. Furthermore, the Laue theory of stability is valid within this theory, so that a correct 
relationship between the energy and the particle’s momentum is established. 

Thus, basing on some formal hypothetical nonlinear generalization of electrodynamics, it 
appeared possible (Ivanenko and Sokolov, 1949):  

1. to prove the theorem of stability, i.e. to prove, that in the nonlinear theory the electron is 
stable without introduction of forces of non-electromagnetic origin;  

2. to receive the final energy (mass) of a particle;  
3. to receive the final size of an electric charge;  
4. to receive the final size of an electromagnetic field. 

4.0. Schrödinger variant of Born-Infeld theory without root 
As E. Schrödinger has noted (Schrödinger, 1935), Born's theory starts from describing the field 

by two vectors (or a "six-vector"), EB
rr

 , , the magnetic induction and electric field-strength 
respectively. A second pair of vectors (or a second six-vector) DH

rr
 , , is introduced, merely an 

abbreviation, if you please, for the partial derivatives of the Lagrange function with respect to the 
components of B

r
 and E

r
 respectively (though with the negative sign for E

r
). H

r
 is called 

magnetic field and  dielectric displacement. It was pointed out by Born that it is possible to 
choose the independent vectors in different ways. Four different and, to a certain extent, 
equivalent and symmetrical representations of the theory can be given by combining each of the 
two "magnetic" vectors with each of the two "electric" vectors to form the set of six independent 
variables. Every one of these four representations can he derived from a variation principle, using, 
of course, entirely different Lagrange functions physically different, that is, though their analytic 
expressions by the respective variables are either identical or very similar to each other. 

D
r

In studying Born's theory E. Schrödinger cams across a further representation, which is 
entirely different from all the aforementioned, and presents curious analytical aspects. The idea is 
to use two complex combinations of DHEB

rrrr
 , , ,  as independent variables, but in such a way that 

their "conjugates," i.e., the partial derivatives of L~ , equal their complex conjugates. Choosing the 
following pair of independent variables 

 DiBF
rr

−=~  , HiEG
rr

+=
~ ,                 (7.4.1) 

(which form a true six-vector) the appropriate Lagrangian works out 
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~~ 22 −
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and one has 

 
F
LG

G
LF ~

~    ,~
~ **

∂
∂

=
∂
∂

= ,   (7.4.3) 

The * indicates the complex conjugate. The derivative with respect to a vector is short for: a 
vector, of which the components are the three derivatives with respect to the components of that 
vector. The units are "natural" units, Born's constant b being equalled to 1 (in other units L~  would 
take the factor ). 2b

What is so very surprising with E. E. Schrödinger’s idea (Schrödinger, 1935) is that the square 
root, which is so characteristic for Born's theory, has disappeared. The Lagrangian is not only 
rational, but homogeneous of the zeroth degree. 

As Schrödinger show, the treatment of the field by the Lagrangian (7.4.2) is entirely equivalent 
to Born's theory. Therefore it cannot yield any new insight which could not, virtually, be derived 
from Born's original treatment as well. Moreover, for actual calculation the use of imaginary 
vectors will hardly prove useful. Yet for certain theoretical considerations of a general kind I am 
inclined to consider the present treatment as the standard form on account of its extreme 
simplicity, the Lagrangian being simply the ratio of the two invariants, whereas in Maxwell's 
theory it was equal to one of them. 

It is not difficult to observe that the 10 components  of µντ  (see above) are identical in form 

with the components of Maxwell’s vacuum tensor, , GF~ ~  being substituted for EH
rr

 , .  
By investigating the transformations of the real tensor µντ , it is easy to find a frame of 

reference, in which the physical meaning of our "condition of conjugateness" is readily disclosed.   
What distinguishes a Maxwell tensor from the general symmetrical tensor is only that its roots or 

eigenvalues have the form ρ± , each double. The first part of   µντ , viz., ( )GF

i
~~
µντ

 is precisely of 

this type. At that the value ρ  works out to 

 1~
2

2

−⎟
⎠
⎞

⎜
⎝
⎛±= Liρ ,            (7.4.4) 

by considering that in Maxwell's case ρ  is known to be ( ) ( )2222 4
2
1 EHEH

rrrr
+−± (see the 

proof  in (Lightman, A.P., et al., 1975)). 

4.1.  Other Lagrangians of nonlinear theories 
It was noted (Ivanenko and Sokolov, 1949), that various and arbitrary variants of formal 

nonlinear electrodynamics lead to close values of coefficients, if we take into account that the 
electron radius is equal to a classical radius of an electron. For example, in this way E. 
Schrödinger obtained similar results using the following Lagrangian: 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= 2

0

222
0 1ln

8 E
HEELSch π

,    (7.4.5) 

The only serious deficiency in these nonlinear theories is that they are not quantum. 

5.0. The vacuum polarization as cause of formation of electron 

As is known (Wikipedia, Vacuum polarization; Peskin and Schroeder, 1995) in quantum field 
theory, and specifically quantum electrodynamics, vacuum polarization describes a process in 
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which a background electromagnetic field produces virtual electron-positron pairs that change the 
distribution of charges and currents that generated the original electromagnetic field. It is also 
sometimes referred to as the self energy of the gauge boson (photon). Vacuum polarization was 
observed experimentally in 1997 using the TRISTAN particle accelerator in Japan. 

According to quantum field theory, the ground state of a theory with interacting particles is not 
simply empty space. Rather, it contains short-lived "virtual" particle-antiparticle pairs which are 
created out of the vacuum and then annihilate each other. 

Some of these particle-antiparticle pairs are charged; e.g., virtual electron-positron pairs. Such 
charged pairs act as an electric dipole. In the presence of an electric field, e.g., the electromagnetic 
field around an electron, these particle-antiparticle pairs reposition themselves, thus partially 
counteracting the field (a partial screening effect, a dielectric effect). The field therefore will be 
weaker than would be expected if the vacuum were completely empty. This reorientation of the 
short-lived particle-antiparticle pairs is referred to as vacuum polarization. 

The vacuum polarisation firstly was discussed 1912 by G. Mie in his classical nonlinear 
electromagnetic theory of electron. One of the first a student of Werner Heisenberg and Arnold. 
Sommerfeld - Dr. Erich Bagge - connected the task of the forming the elementary particle (in 
particular, electron) with the polarization of physical vacuum 

In the simplest case the formulation of problem of formation of an (spherical) electron looks as 
follows (Bagge, 1951). 

The fact of the formation of the electron pairs by high energy light quanta can be considered  
as deep polarization of vacuum that leads to the breaking of the electric dipole under the action of 
EM field of light wave. This makes it possible to examine the presence of this polarization also in 
the case, when field energetically cannot cause a pair formation. This leads to interaction of light 
by light, as this showed Heisenberg, Euler and Kockel (Euler.and Kockel, 1935; Euler, 1936; 
Heisenberg and Euler, 1936) in quantum field theory. 

Maybe Peter Debye (Debye, 1934) was first, who note, that this approach can be developed 
also in the framework of Dirac’s theory: “If Dirac's picture of pair production in 'hole theory' is 
correct, then at lower energies a kind of vacuum polarisation should be prepared similar to the 
polarisation effect in a dielectric medium shortly before an electric discharge occurs." 

E. Bagge has shown (Bagge, 1951; 1988; 1990, 1993) that with the reasonable choice of the 
function ( trV , )δ   it is possible to describe the rest spherical electron within the framework of 
Dirac’s relativistic theory of particles as electro-magnetic stable, spheroidal particles. Their 
properties, especially their spins and their magnetic momentum, are exactly those, which have 
been measured at first and later on derived by Dirac. 

 
This concept theoretically can be realised by the help of the formula for the media dispersion 

constants of optical resonance effects, allowing the calculation a polarisation function ( trV , )rε  of 
the vacuum. In this case the ratio of D

r
 to E

r
 can be considered as a “dielectric constant 

(permeability) of vacuum”: ( )
E
DtrV r

r

=,δ . 

It is natural therefore to represent in this case the equations of field in that form, which they 
have for the polarization medium. This means that in particular the dielectric constant Vδ  must be 
considered as the function of space.  

This fact naturally constrains the field in the environment of electron, which automatically 
leads to end value for the self-energy of electron. 

Considering the dielectric constant of vacuum with particles )(rVδ  not as constant, but as the 
function of three-dimensional variables and field (in simplest case, of scalar potential ϕ ), we 
must replace the known Laplace equation for the empty space 
 01 =∆ϕ ,   (7.5.1) 
by the equation, which considers the inconstancy of dielectric constant: 
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 0=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

zzyyxx VVV
ϕδϕδϕδ ,   (7.5.2) 

This equation already can not have the infinite solution for the field of spherical charge. 
Actually, if  )(   ),( rrVV ϕϕδδ == ,  
then the differential equation (7.5.2) takes the form: 

 0
)(ln2

2

2
=++

dr
d

dr
d

dr
d

rdr
d V ϕδϕϕ ,   (7.5.4) 

If a dielectric constant is constant, the equation (7.5.4) has a solution in the form of the 

Coulomb potential: 
r
e

C =ϕ .  

It is obvious that  we must obtain this expression at a great distance from the electron, whereas 
in the limits of the basic volume, which contains the basic energy (mass) of electron, the solution 
must not give the divergent result. 

By analogy with the dispersion formulas of optical theory Bagge proposed the following 
expression for the dielectric constant (without taking into account a damping): 

 
( )2εε

δ
−

=
r

V
C ,    (7.5.5) 

where C is a constant, which must be determined;  )(~ rr ωε h  is the resonance energy 
( ), which is determined by photon energy; 22 cme=ε )(~  ωε h   is certain energy of the fields 
(which can be identified with the energy of electron-positron, which compose the dipole of 
intermediate photon (see Kiryakos, 2010a). It is natural to assume ϕε e= ; then for the dielectric 
constant we obtain the expression: 

 
( )2ϕε

δ
e

C

r
V

−
= ,   (7.5.6) 

Using (7.5.6), we will obtain from (7.5.4) the following expression: 

 022 2

2

2
=⎟

⎠
⎞

⎜
⎝
⎛

−
++

dr
d

e
e

dr
d

rdr
d

r

ϕ
ϕε

ϕϕ ,   (7.5.7) 

Considering that the strength of the field of electron has an finite maximum quantity, we must 
to assume that the resonance energy, which corresponds to this strength, is the constant, which can 

be expressed in the form: 
0

2

r
e

r =ε , so that if , then 22mc=γε 2

2

0 2mc
er =  is a radius of the 

charged sphere, whose charge is distributed uniformly by the volume.   Then from (7.5.7) we 
obtain the nonlinear differential equation: 

 022 2

0
2

2

=⎟
⎠
⎞

⎜
⎝
⎛

−
++

dr
d

ere
e

dr
d

rdr
d ϕ

ϕ
ϕϕ ,   (7.5.8) 

The general solution of this nonlinear differential equation of the second order, as it is not 
difficult to verify (Bagge, 1951), takes the form: 

 ( )
BrAr

rBAr
r
e

+
−+

=
0

0

0

1ϕ ,   (7.5.9)  

where A  and B are constants of the integrations, which can be found from the limiting 
conditions:  

       a) 0=ϕ  with ∞→r , which gives s 1=B , b) 
r
e

→ϕ  with , which gives 0rr >> 1=A ,  
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Thus, the potential of spherically symmetrical electron upon consideration of self-action can be 
recorded in the form: 

 
0rr

e
+

=ϕ ,   (7.5.10) 

As we see, potential ϕ  at point 0=r  does not go to infinity, but is taken the specific 

value: 
0r
e

=ϕ  , which corresponds to the maximum value of field. 

Solution (7.5.10) makes it possible to calculate also strength E  and electrical displacement  
of field, and also energy 

D
eε  of spherical charge. 

From (7.5.10), according to the connection of scalar potential and strength of electric field, we 
obtain for the value: 

 
( ) r

r
rr

egradE
rr

2
0+

=−= ϕ ,   (7.5.11) 

From this the maximum value of field will be equal to: 

 
( ) r

r
r
egradE

rr
2

0

=−= ϕ ,   (7.5.11’) 

Using (7.5.10), from (7.5.6) we obtain for the dielectric constant: 

 
( )

2

2
0

4

2
0

r
rr

e
Cr

V
+

=δ ,   (7.5.12) 

and for the displacement: 

 33

2
0

r
r

e
Cr

ED V

rrr
== δ ,   (7.5.13) 

Equation (7.5.13) gives the possibility to establish the connection between  and . From 
one side: 

C 0r

 ∫ == 3

2

44
e

Cr
eSdD oππ

rr
,   (7.5.14) 

From the other side 

 2
02

0 28
1

e
Cr

cmdDE ==∫ τ
π

rr
,   (7.5.15) 

It follows from (7.5.14) and (7.5.15): 

 2
0

0

2
2 cm

r
e

r ==ε , 42
02

0

4

4 cm
r
eC ==  ,     

Substituting, we obtain complete expression for the dielectric constant the expression: 

 
( )22

0

42
0

2

4

ϕ
δ

ecm

cm
V

−
= ,   (7.5.16) 

which completely satisfies to the physical conditions of the electron-positron pair production: 
taking into account 0→ϕ  we obtain 1→Vδ , while the energy , which is necessary 
for the appearance of pair, gives for the dielectric constant the infinite value, which corresponds to 
the breaking of photon to two parts. Both conclusions correspond precisely to physical statement 
of problems. 

22mce =ϕ
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Following E. Bagge (Bagge, 1951), let us note also that in the general case the problem must 
be placed and be solved, taking into account all fields and their precise configuration. In this case 
the dielectric constant will be not the simple function of potential, but the tensor, determined by 
the electrical and magnetic fields of the intermediate photon and nucleus. 

It was noted (Ivanenko and Sokolov, 1949), that various and, as was outlined, from the 
physical point of view, arbitrary variants of formal nonlinear electrodynamics lead to  close values 
of coefficients, if to take into account, that the electron radius is equal to classical radius of 
electron. 

It was also noted, that the basic defect of these theories, as well as of Mie theory, was the 
arbitrary choice of Lagrangian, which had no connection with the quantum theory, in particular, 
with Dirac theory, and did not take into account properties of electron, revealed by the last. 

We will show that these theories can be considered as approach of the NTEP and that they are 
mathematically connected to the Dirac electron theory. 

6.0. Nonlinear classical theories as approximations of NEPT 
6.1. A connection of G. Mie’s theory with Born-Infeld theory and NEPT  

Let us show that the Mie Lagrangian, after some additions, can be represented as a Lagrangian 
that is similar to the Lagrangian of NEPT (and, consequently, QED). 

Recall the Mie Lagrangian (7.2.1): 

 ( )µ
µ

µν
µν AAfFFLMi ±−=

4
1    or  ( ) ( )µ

µπ
AAfHELMi ±−−= 22

8
1   

As we know (Pauli, 1958; Sommerfeld, 1964), the charge density is not an invariant with 
respect to Lorentz transformations. However, the charge is an absolute invariant with respect to 
Lorentz transformations. It is also known that the square of the 4-potential, i.e. , is an 
invariant with respect to Lorentz transformations. However, it is not an invariant with respect to 
gauge transformations. 

µ
µ AAI =3

It appears that the product of the square of charge and  will be invariant with respect to both 
Lorentz and gauge transformations. 

3I

6.1.1. Larmor – Schwarzschild’s invariant  
According to (Pauli, 1958) and (Sommerfeld, 1964), R. Schwarzschild (Schwarzschild, 1903), 

introduced the value 

 A
c

Sw

rr
⋅−=

υϕ ,     (7.6.1) 

which he called "electrokinetic potential". He showed that this value, when multiplied by the 
density of charge, forms a relativistic invariant: 

 wSAj
c

A
c

L ρυϕρ µ
µ =⋅−=⋅−= ⋅

1)('
rr

,    (7.6.2) 

where { }υρρµ
r,icj =  is a 4-current density, { }AiA

r
,ϕµ =  is a 4-potential. Further, Schwarzschild 

forms the Lagrange function by integration with respect to space  

 ( )∫ ∫ ⋅−+−= dVA
c

dVEHL )(
2
1 22

rr
υϕρ     (7.6.3) 

He then obtains the action function by integration with respect to time. 
Thus, in four dimensions, the Lagrange function density (or Lagrangian) can be written as 

follows: 

 µ
µ

µν
µν Aj

c
FFL 1

4
1

−= ,    (7.6.4) 
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while the Lagrange function will be:  

 ∫ ∫−= ττ µ
µ

µν
µν dAj

c
dFFL 1

4
1 ,    (7.6.5) 

(In note 10 to his book (Pauli, 1958) Pauli noted that before Schwarzschild, the same Lagrangian 
has been suggested by J.J. Larmor (Larmor, 1900)). 

6.1.2. The Mie variant of gauge-invariant theory 
We will now consider the radicand function in Mie’s Lagrangian: 

      ,    (7.6.6) 222
iAAAA +−=≡ ϕµµµ

Multiplying it by the square of an electron’s charge, we obtain: 
     2222 )()( AeeAe

r
+−= ϕµ ,    (7.6.7) 

Since the value: 
         ϕε ee = ,    (7.6.8) 

is the energy of electron interaction, and the value: 

      iie eA
c

p 1
= ,    (7.6.9) 

is the momentum of electron interaction, we obtain from (7.6.9): 
          ( )2222

ee pcAe r
+−= εµ ,    (7.6.10) 

Taking into account that ( ) ( ) 2222 ˆ,ˆ ppo
rrr

== αεεα , these expressions can also be written as: 

 ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−=−−=

222
0

22222 ˆˆ
ieeiee pcpcAe rrαεαεµ ,    (7.6.11) 

Using the above results, we will accept the following expression for the nonlinear part of Mie’s 
Lagrangian ( )µ

µ AAfLN
Mie ±= : 

    ( )222 AceLN
Mie

r
−±= ϕ ,     (7.6.12) 

Using the properties of Dirac matrices, it is easy to obtain the following decomposition: 

    ( )ee pcAe rr
m αεαµ

ˆˆ0
22 ±= ,    (7.6.13) 

which results in the following expression for the nonlinear part of the Lagrangian: 

        ( )ee
Ne
Mie pcL rr

m αεα ˆˆ0 ±= ,    (7.6.14) 

Taking into account that 

 ( )ee pcmc rr
m αεαβ ˆˆˆ

0
2 ±= ,    (7.6.17) 

we see that we can put the mass term of Dirac’s equation into Mie’s Lagrangian.  
The usage of these expressions leads to Dirac’s equations of electron and positron, and gives 

the basis to Weyl‘s attempt to interpret an asymmetry of both types of electricity not with regard 
to a mass, but with respect to the difference between the particle and antiparticle. 

Also, this way we can relate the Mie’s Lagrangian to Born-Infeld’s Lagrangian. We can write 
using (7.6.11) the following: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫ ∫∫∫

∞+ ∞+∞+∞+

o

dgcudgcudgcudeA
0

2

0

2

0

2 )()( ττττµ
rrr ,   (7.6.18)   

Then, using the approximation in the previous chapter, we have: 
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( ) ( )( )22222 τµ ∆−−= gcueA r ,      (7.6.19) 
Thus, in approximate form, the Mie’s Lagrangian can be written in the following form: 

  ( ) ( ) ( )22222

8
1 gcuLMi

r
−∆+Η−Ε= τ

π
,      (7.6.20) 

Recalling electromagnetic representation of the Fierz identity: 

 
( ) ( ) ( ) ( )

( ) [ ] ( ) ( 222222

2222222

44

88

HEHEHEHE

Sugcu
rrrrrrrr

rr

⋅−−=×−+=

=−=− ππ

)  ,     (7.6.21) 

we can write an approximation of the Mie Lagrangian as 

( ) ( ) ( )22222 48
8
1 HEHELMi

rrrr
⋅−−∆+Η−Ε= τπ

π
,     (7.6.22) 

As it is not difficult to see this approximation is similar to Born-Infeld Lagrangian. Moreover, 
in the following chapter we will show that Mie’s Lagrangian can be transformed into the form of 
the Lagrangian of nonlinear field theory, which corresponds to the electron theory of NEPT (see 
the following chapter “NTEP. 8. Nonlinear quantum electron theory”). 

7.0. Nonlinear classical theories as approximations of NTEP. 
General statement of problem 

As we has shown already, the condition of quantization in NTEP is caused by the introduction 
of relationships of the energy (according to Planck) and momentum (according to de Broglie) 
quantization. Therefore, the classical nonlinear theories, in which the requirement of 
noncommutativity is valid because of the specific nonlinearity (caused by cyclic transport of field 
vectors), can be considered as quantum theories if they are supplemented with this condition. 

Obviously, the NTEP can include all possible invariants of electromagnetic field. Therefore, its 
Lagrangian can be written as some function of the field invariants ( )22

1 HEI
rr

−=  and 
( )HEI

rr
⋅=2 : 

 ,      (7.7.1) ),( 21 IIfL L=

Apparently, the function  can have a specific form for each particular problem. However, an 
expansion of the function  in Taylor–Mac-Laurent power series must exist in every 
case. In general case, these expansions must contain the same set of terms that will differ only by 
constant coefficients, some of which can be equal to zero (see examples of such expansions in 
(Akhiezer and Berestetskii, 1965; Weisskopf, 1936; Schwinger, 1951).  

Lf
),( 21 IIfL

Therefore, in general, the expansion will look as follows: 

 ( ) '
8
1 22 LBELM +−=

rr

π
,     (7.7.2) 

where   

( ) ( ) ( )( )
( ) ( )( ) ...

'
222322

222222

+⋅−+−+

+⋅−+⋅+−=

BEBEBE

BEBEBEBEL
rrrrrr

rrrrrrrr

ζξ

γβα
,    (7.7.3) 

is the part responsible for nonlinear interaction (here, ,...,,,, ζξγβα  are constant coefficients). 
On the other hand, the Born-Infeld Lagrangian can be expanded into a series with small 

parameters  and  ,  where  122 <<Ea 122 <<Ba
2
0

2 1
E

a = : 

( ) ( ) ( )[ ] ∑+⋅+−+−−= ),(4
328

1 222222
2

22 HEOBEBEaBELBI

rrrrrrrr

ππ
,   (7.7.4) 
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where ∑ ),( 22 HEO
rr

 is the series remainder with the terms, containing vectors of 
electromagnetic field in powers greater than four. Obviously, at a large distance from the center of 
a particle (where the maximal field is), under the conditions  and , the terms 
of these series quickly converge. However, the terms with higher powers must be taken into 
account at a small distance from the particle center.  

122 <<Ea 122 <<Ba

 In the following chapter we will show that the first approximation of Lagrangian of NTEP can 
be represented in EM form as:  

 ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⋅+−+−−=

22222 4
8
1 BEBEABELN

rrrrrr

π
,    (7.7.5) 

where A  is some constant. Thus, taking into account (7.7.4), we can write: 
 ,    (7.7.6) BIN LL ≈

Then, within the framework of NTEP, an approximate solution of the electron equation will be 
similar to the solution of the Born-Infeld theory. Obviously, this assertion will be also correct for 
other nonlinear theories. 

Having this, it is not difficult to answer the question, why the various variants of formal 
nonlinear electrodynamics lead to close values of coefficients: the expansions of nonlinear 
Lagrangian (7.7.3) are approximately similar for various variants and consequently they produce 
close results. 

At the same time, since the Lagrangian and equations of NTEP completely coincide with the 
Lagrangian and equations of quantum electrodynamics, the Mie theory and its variant - the Born-
Infeld theory, are closely related to Dirac’s electron theory. 

In the following chapter we will show that the Dirac electron equation can be expressed in 
form of nonlinear equation, which in the electromagnetic form is similar to classical nonlinear 
equations, considered above, and in the quantum form is similar to known nonlinear quantum 
field equations. 
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