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Abstract. Based on the "Aspin Bubbles" theory, we propose a velocity function v(r) for 
light that is exclusively dependent on the gravity g(r) that exists at each point P(r) of 
space, and with which, by applying the laws of refraction, the gravitational deflections 
of light measured up to this point are obtained .  
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I.  Introduction 
 
 The "Aspin Bubbles" theory (Lana-Renault 2006)[1], hereinafter AB, shows that 
the gravitational field of a mass M is probably the result of the overlap of the 
anharmonic waves that are emitted by each of its ultimate components (tones), and that 
the mechanical interaction of all of these waves with each of the ultimate components of 
another mass m is what produces the force of gravity. 

 In addition, AB predicts that the refraction of light in a medium really occurs in 
the space "not occupied" by the ultimate components of the medium. It considers that 
such space is disturbed by the overlap of anharmonic waves emitted by each one of the 
components, and that the greater the perturbation of space, the lower the speed the light 
through it. 

 Combining both of these concepts, gravitational deflection can be understood 
simply as the refraction of light caused by gravitational fields. 

 

II.  Fundamental Hypotheses 
 

For light to be refracted, it is proposed that its speed varies in space depending 
on the space perturbation (ether) produced by the anharmonic waves that travel through 
it and whose value will be quantified by the ‘scalar’ gravity (the sum of the absolute 
values of the intensities of the gravitational fields existing in such space).  



 2 

In general, if P(r) represents any point in space at a distance r from the centre of 
a space body with a mass M, we suppose that: 

   1. The speed of light at each point P(r) of its trajectory is given by the fundamental 

formula 

2
( )

( )

A c
v r

A rχ
⋅=

+
    (1) 

where A is a constant to be determined, ( )rχ  is a dimensionless function quantified by 

the ‘scalar’ gravity ( )g r  at each point, and c is the speed of light at infinity, where the 

space is no longer perturbed  by the waves—that is, where gravity is zero. 

 In the hypothetical case of a single space body of mass M, 

2 2
( ) ( )

GM B
r g r

r r
χ = = =     (2) 

where B GM= , and G is the universal gravitational constant. For r = ∞ , it follows that 
( ) ( ) 0gχ ∞ = ∞ =  and ( )v c∞ = . 

   2. The trajectories of light satisfy the laws of refraction. 

 Therefore, for each point P(r) of the trajectory through which the beam of light 

travels with velocity v(r) at an incident angle I(r) with respect to the radius r OP=  
(Figure 1), the law of refraction is expressed by 

sin
.

r I
const

v
α = =  ,    (3) 

where α  is a constant of the trajectory. 
 

 

 

III.  Trajectories of light 
 

 We consider the trajectory of a beam of light �'EQPP T  from a distant star E that 
passes near the Sun and that reaches the Earth (Figure 1), as denoted by polar 
coordinates ( ),r ∆ . The coordinate∆  will be the angular distance travelled by the light. 

The radius R OQ=  will be perpendicular to the trajectory and the radius d OT=  will 
be the distance from the Sun to the Earth. 

 In addition, to simplify the calculation of the trajectory, we will neglect Earth’s 
gravity versus the Sun’s gravity throughout the trajectory. 
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 The law of refraction will be followed at all points, especially at points Q, P, P' 
and T, such that 

0sinsin 90 sin 'sin '

( ) ( ) ( ) ( ') ( )

d IR R r I r I

v R v R v r v r v d
α= = = = =  ,   (4) 

and any arc element �'ds PP=  of the trajectory shall meet the following differential 
relation: 

tan
r d

I
dr

⋅ ∆= −     (5) 

 To solve this differential equation, the first step is to determine tan I  as a 
function of the main characteristics of the trajectory: its constant α  and its nearest 
distance R from the Sun. This can be done as follows. 

Solve equations (3) or (4) for v(r), and set them equal to (1) substituting (2) 

2
2

sin
( )

r I Ac
v r

B
A

r

α
= =

+
    (6) 

Square and simplify 

2 2 2
2

2 2
sin

A c
I

B A r

α=
+

     (7) 

Introducing the characteristics of point Q, 90ºI =  and r R= , we obtain 

2 2 2 2 2A c B A Rα = +      (8) 

Therefore, (7) is expressed as 

2 2
2

2 2
sin

B A R
I

B A r

+=
+

     (9) 

so that 
2 2 2

2
2 2 2

sin
tan

1 sin

I c
I

I r R

α= =
− −

   and  
2 2

tan
c

I
r R

α ⋅=
−

   (10) 

Finally, substituting this expression into (5) results in 

2 2

c
d dr

r r R

α ⋅−∆ =
−

     (11) 

which can be easily integrated: 
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2 2
arcsin .

c c R
dr const

R rr r R

α α⋅ ⋅−∆ = = +
−∫     (12) 

To calculate the constant, it can be observed in the figure that when r d= , 
0∆ =  , such that 

. arcsin
c R

const
R d

α ⋅= −      (13) 

yielding the following angular distance travelled by the light: 

( ) arcsin arcsin
c R R

r
R r d

α ⋅  ∆ = − 
 

    (14) 

 This angular distance is only valid for distances r going from R to d ( )R r d≤ ≤ . 

 For distances r beyond the minimum distance to the Sun ( )R r≤ ≤ ∞ , the 

angular distance (14) must be transformed to 

arcsin arcsin
R R R

c d rα
⋅

⋅

∆ + =  ,    (15) 

Applying sine functions and using the property ( )sin sinφ π φ= − , we obtain 

sin arcsin sin arcsin
R R R R R

c d r c d
π

α α
⋅ ⋅

⋅ ⋅

∆  ∆    + = = − +    
    

  (16) 

and by undoing this change, we obtain for distances R r≤ ≤ ∞  

( ) arcsin arcsin
c R R

r
R d r

α π⋅  ∆ = − − 
 

   (17) 

 For point Q of the trajectory nearest to the Sun where r R= , (14) or (17) will 
yield  

( ) arcsin
2R

c R
R

R d

α π⋅  ∆ = ∆ = − 
 

 ,   (18) 

and for an infinite distance, r = ∞  , (17) yields 

( ) arcsin
c R

R d

α π⋅
∞

 ∆ = ∆ ∞ = − 
 

 .   (19) 

 To calculate the distance r as a function of any angular distance ∆ , we can clear 
r from (16). The result is  

( ) csc arcsin
R R

r R
c dα

⋅

⋅

∆ ∆ = + 
 

    (20) 
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IV.  Gravitational deflection 

In general, the calculation of a gravitational deflection δ  caused by any mass M 
of a beam of light coming from a distant star at its real position E, visualised on Earth 
with from a virtual position E' with an observation angle 0I  (Figure 2), follows these 

steps: 

 

The Cartesian coordinates ( ),x y  of the real position E of the star are calculated 

as a function of the polar coordinates ( ),r ∆ , cosx r= ∆  and siny r= ∆ . Next, its 

inclination arctan
y

x d
β =

−
  is calculated for two scenarios: 

a) for distances 0x d− ≤ , the gravitational deflection δ will be: 

    0Iδ β= −       (21) 

where, according to (4), the observation angle 0I  has the value 

    0 arcsin vcI
d

α ⋅=      (22) 

where vc  is the speed of light in a vacuum and on the Earth’s surface: 

   ( ) 82,99792458 10 /vc v d m s= = ⋅     (23) 

b) for distances 0x d− > , the gravitational deflection will have a value of: 

    0Iδ β π= + +       (24) 

 

V.  Determination of the constants A  and  c 
 

 To determine the values of the constant A and the speed of light at infinity 
( )v c∞ = , we must start from a known fact. We know that the gravitational deflection 
caused by the Sun on a beam of light from distant stars ( 1500r >  light years) and 
tangent to it is 1,75" of arc. With these data, the procedure is as follows: 
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1. On the Earth’s surface, according to (1), 

    
2

( )T v

T

A c
v d R c

A g

⋅− = =
+

    (25) 

where ( ) 2 2( )
ST

T T

T T

GMGM
g g d R

R d R
= − = +

−
, TM  and SM  are the masses of the Earth 

and the Sun, respectively, and TR  is the radius of the Earth. 

2. Solving (25) for c 

    
2

1 T
v

g
c c

A
= +       (26) 

and inputting values for A such that we can calculate c, ( )v r  at each point of the 

trajectory is 

   

( )
2

2
22

( )
( ) S T

A c A c
v r

GM GMA r
A

r r d

χ
⋅ ⋅= =

+ + +
−

,  (27)  

and the constant α  characteristic of each trajectory, ( )
R

v R
α =  according to (4), where 

R is the radius of the Sun. 

3. Next, the angular distance E∆  of the real position E of the star is found for a distance 

1500Er =  light years using (17). 

4. Its Cartesian coordinates ( ),x y  are determined, along with its observation angle 0I  

and inclination angle β . 

5. Finally, the gravitational deflection δ is calculated according to (21).    

 The process from 2 to 5 is iterative until a value of A is found such that the 
gravitational deflection is 1,75"of arc. The value obtained is the following: 

     7121 1A = ±      (28) 

so that the speed of light at infinity is 

   8 10( ) 2,9979248706 10 10 /v c m s−∞ = = ⋅ ±    (29) 

such that 11/ 1,00000009694 3·10vc c −= ± . 

 Next, the trajectory ( )r ∆ can be plotted from 0∆ =  to E∆ = ∆  using equation 

(20). 
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Other input data used are: 

 - Gravitational constant 11 2 26,67259 10G N m kg− −= ⋅ ⋅ ⋅  

 - Radius of the Earth 66,371 10TR m= ⋅  

 - Mass of the Earth 245,977 10TM kg= ⋅  

 - Radius of the Sun 86,96 10SR m= ⋅  

 - Mass of the Sun 301,99 10SM kg= ⋅  

 - Distance to the Sun 111,5 10d m= ⋅  

Other output data: 

 - Trajectory constant 2,32161215239192α =  

 - Angular distance 179,7346211223093ºE∆ =  

 - Observation angle 0 0,265865355953574ºI =  

 - Inclination angle 0, 265378874844856ºβ =  

 

VI.  Differences with Einstein 
 

With these values of A and c, we can verify that the gravitational deflection of 
1,75" of arc is the same for stars located between a distance of 0.1Er =  light years and 

infinite Er . For 0.1Er <  light years, the deflection becomes slightly smaller. For 

example, for 410Er
−=  light years, the value obtained is 1,51"δ =  of arc. This 

constitutes a slight difference from the generic formula established by Einstein for 
gravitational deflection: 

 

2

4
Einstein

v

GM

R c
δ =

⋅
     (30) 

which yields the same result for any distance Er  of the star, since it does not depend on 

this variable. 

 Another difference is that while Einstein’s theoretical deflection is directly 
proportional to the mass M that causes the deflection, such is not the case with the 
findings from this study. Only for masses M, where 0,1 1000S SM M M⋅ < < ⋅ , the 

deflection is also directly proportional to the mass M. Outside of this range, the 
deflection is slightly smaller than the one obtained with the Einstein equation. 

 Finally, the greatest difference is that the light beams are not tangent to the space 
body M; that is, they travel at a distance R from the centre greater than their radius. 
Einstein’s deflection, according to (30), is inversely proportional to R for every space 
body of mass M. In this case, the deflection obtained is somewhat different. 
Considering the deflection produced by the Sun, the comparative data are the following. 
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 For 
S

R
p

R
= , where SR  is the radius of the Sun, we obtain the deflection  

    
( )
2

SR

p

δ
δ ≅      (31) 

where Einstein’s formula yields        
( )SR

p

δ
δ = .  (32) 

 

VII. Trajectories 
 

 Since the distances to stars are disproportionate compared those to our solar 
system, the real trajectories of light cannot be visualised in a graphic. However, with a 
few modifications—that is, changing the input data and using equation (20)—any light 
trajectory can be represented, and its path and deflection can be perfectly observed. 

 Using the Mathcad software program, several light trajectories are represented. 
 

 
 
 

For light trajectories coming from stars E1 and E2 the following input data have 

been used: 40A = , 6 sd R=   and  ( ) ( )1 2 2r E r E d= = yielding the following. 

- Trajectory E1 tangent to the Sun: 1 2,499α = , 1
0 10,33ºI = , ( )1 179,25ºE∆ = , 

1 0,50ºβ =  resulting in a gravitational deflection value of 1 9,83ºδ = . 

- Trajectory E2 away from the Sun such that 1,4p = : 2 3,371α = , 2
0 14,00ºI = , 

( )2 166,64ºE∆ = , 1 8,91ºβ =  resulting in a gravitational deflection of 2 5,09ºδ = . 
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 Using the same data input, but assuming that the Sun has a mass 10 times 
greater, the result would be: 

 

- Trajectory E1 tangent to the Sun: 1 3,725α = , 1
0 15,51ºI = , ( )1 272,81ºE∆ = , 

1 65,70ºβ = −  resulting in a gravitational deflection value of 1 81,21ºδ = . 

- Trajectory E2 away from the Sun, such that 1,4p = : 2 4,334α = , 2
0 18,13ºI = , 

( )2 218,77ºE∆ = , 1 26,07ºβ = −  resulting in a gravitational deflection value of 

2 44,20ºδ = . 

 It is possible to observe that the light trajectories are more curved if mass M, 
which causes the deflection, is greater. 

 

VIII. Conclusions  
 
 We have demonstrated that gravitational deflection can be treated as a simple 
refraction of light through space, and that the latter depends, at all times, on the ‘scalar’ 
gravity present in such space. Consequently, a gravitational index of refraction ng for 
each point P(r) of the space is considered based on our first hypothesis. From (1) and 
(2) it can be deduced that 

( )
2

1
( )g

g rc
n

v r A
= = +     (33) 

 Phenomena such as ‘gravitational lenses’ and ‘black holes’ can now be easily 
explained with this tool, based on the gravitational refraction of light. 
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In addition, according to evidence from this study, we conclude that our space is  
probably not curved but rather straight or apparently curved by the gravitational fields 
that refract light. 

 
 

ACKNOWLEDGEMENTS 

 I would like to acknowledge the time and friendship of Dr. Juan José Gascón 
Wingenbach[2] and Dr. Miguel Ángel González Rodrigo[2], who have always been 
participants, encouragers and excellent critics of this work through their contributions to 
the Astroseti astrophysics forum.  
 
 
REFERENCES   

- [1] Lana-Renault, Yoël (2006): "Aspin" Bubbles: Mechanical Project for the 

Unification of the Forces of Nature.  Journal online APEIRON, Vol 13, No 3, July, 
344-374. http://redshift.vif.com/JournalFiles/V13NO3PDF/V13N3LAN.PDF   

- [2] Lana-Renault, Yoël (2006): Michelson-Morley, Bradley, Fizeau and "Aspin 

Bubbles". Astroseti physics forum http://foros.astroseti.org/viewtopic.php?t=2922 

 
 
BIBLIOGRAPHY   

- Lana-Renault, Yoël (2000): Exact zero-energy solution for a new family of 

Anharmonic Potentials. Journal of the Academy of Sciences Zaragoza. 55: 103-109. 
http://www.telefonica.net/web2/yoelclaude/ExactzeroenergyAcadCiencias.pdf 
http://arxiv.org/abs/physics/0102054 

- Lana-Renault, Yoël (1998):  Model of the internal constitution of Earth. Doctoral 
Thesis, Dep. of Theoretical Physics, Univ. of Zaragoza, 146 pp. 
http://www.tesisenred.net/TESIS_UniZar/AVAILABLE/TDR-1103108-
085246//TUZ_0029_lana_modelo.pdf 

   

 
 


