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Abstract

In this work a new dynamics is developed, which is valid for all observers, and which estab-
lishes, among other things, the existence of a new universal force of interaction, called kinetic
force, which balances the remaining forces acting on a body. In this new dynamics, the motion
of a body is not determined by the forces acting on it; instead, the body itself determines its
own motion, since as a result of such motion it exerts over all other bodies the kinetic force
which is necessary to keep the system of forces acting on each of them always in equilibrium.

Introduction

It is known that in classical mechanics Newton’s dynamics cannot be formulated for all refer-
ence frames, since it does not conserve its form when passing from one reference frame to another.
For instance, if we admit that Newton’s dynamics is valid for a chosen reference frame, then we
cannot admit it to be valid for a reference frame which is accelerated relative to the first one, for
the description of the behavior of a body from the accelerated reference frame differs from the
description given by Newton’s dynamics.

Classical mechanics solves this difficulty by separating reference frames into two classes: in-
ertial reference frames, for which Newton’s dynamics applies, and non-inertial reference frames,
where Newton’s dynamics does not apply; but this solution contradicts the principle of general
relativity, which states: the laws of physics shall be valid for all reference frames.

However, this work puts forward a different solution to the difficulty from classical mechanics
mentioned above, with no need to distinguish among reference frames, and in accordance to the
principle of general relativity, starting from Newton’s dynamics and the transformations of kine-
matics and developing a new dynamics which can be formulated for all reference frames, since it
conserves its form when passing from one reference frame to another.

The development of the new dynamics will be made in two parts: in the first part, which deals
with the classical mechanics of particles, the new dynamics of particles will be developed, starting
from Newton’s dynamics of particles and the transformations of the kinematics of particles; in the
second part, which deals with the classical mechanics of rigid bodies, the new dynamics of rigid
bodies will be developed, starting from Newton’s dynamics of rigid bodies and the transformations
of the kinematics of rigid bodies.

In this work only the first part will be formulated.
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1 MECHANICS OF PARTICLES

The classical mechanics of particles considers that the only kind of bodies found in the Universe
are particles, and assumes that any reference frame is fixed to a particle. Therefore, in the classical
mechanics of particles, it can be assumed that reference frames are not rotating.

2 KINEMATICS OF PARTICLES

2.1 Reference Frames

If reference frames are not rotating, then each coordinate axis of a reference frame S will remain
at a fixed angle to the corresponding coordinate axis of another reference frame S’. Therefore, to
simplify calculations it will be assumed that each axis of S is parallel to the corresponding axis
of S’, as shown in Figure 1.
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Figure 1

2.2 Transformations of Kinematics

If a reference frame S of axesO(x,y,z) determines an event by means of three space coordinates
x, y, z and one time coordinatet, then another reference frame S’ of axesO′(x′,y′,z′) determines
the same event by means of three space coordinatesx′, y′, z′ and one time coordinatet ′.

A change of coordinatesx, y, z, t from reference frame S to coordinatesx′, y′, z′, t ′ from
reference frame S’ whose originO′ has coordinatesxo′, yo′, zo′ measured from S, can be carried
out by means of the following equations:

x′ = x−xo′

y′ = y−yo′

z′ = z−zo′

t ′ = t

From these equations, the transformation of velocity and acceleration from reference frame S
to reference frame S’ may be carried out, and expressed in vector form as follows:

v′ = v−vo′

a′ = a−ao′

wherevo′ andao′ are the velocity and acceleration respectively, of reference frame S’ relative to S.

3 DYNAMICS OF PARTICLES

3.1 Newton’s Dynamics

Newton’s first law: Any particle in a state of rest or of uniform linear motion tends to remain
in such a state unless acted upon by an unbalanced external force.

Newton’s second law: The sum of all forces acting on a particle A produces an acceleration in
the direction of the force, and directly proportional to that force.

∑Fa = maaa

wherema is the inertial mass of particle A.
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Newton’s third law: If a particle A exerts a forceF on a particle B, then particle B exerts on
particle A a force−F of the same magnitude but opposite direction.

Fa =−Fb

The transformation of real forces from one reference frame to another is given by

F′ = F

The transformation of inertial masses from one reference frame to another is given by

m′ = m

3.2 Dynamical Behavior of Particles

Let us consider a Universe composed of three particles A, B, and C which follow Newton’s
dynamics from reference frame S (inertial frame). Therefore, the behavior of such particles will
be given (from S) by the equations

∑Fa = maaa

∑Fb = mbab (1)

∑Fc = mcac

From the equations (1) and by means of the transformations of dynamics and kinematics, it can
be shown that the behavior of particles A, B, and C will be determined from a reference frame S’
by the equations

∑F′
a = m′

a(a
′
a−a′o)

∑F′
b = m′

b(a
′
b−a′o) (2)

∑F′
c = m′

c(a
′
c−a′o)

wherea′o is the acceleration of reference frame S relative to S’, which is equal and opposite to the
acceleration−ao′ of reference frame S’ relative to S.

As the equations (2) are the same as the equations (1) only if the accelerationa′o of refer-
ence frame S relative to S’ is equal to zero, then the behavior of particles A, B, and C cannot be
determined from any (accelerated) reference frame by the equations (1).

Now, if the equations (2) are added together, it yields

∑F′
a +∑F′

b +∑F′
c = m′

a(a
′
a−a′o)+m′

b(a
′
b−a′o)+m′

c(a
′
c−a′o) (3)

It follows from Newton’s third law that∑F′
a + ∑F′

b + ∑F′
c = 0, and from (3), a′o may be

expressed as

a′o =
m′

aa′a +m′
ba′b +m′

ca
′
c

m′
a +m′

b +m′
c

(4)

As the right-hand side of (4) is the accelerationa′cm of the center of mass of the Universe
relative to the reference frame S’, then

a′o = a′cm (5)
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Substituting into the equations (2) yields the following equations:

∑F′
a = m′

a(a
′
a−a′cm)

∑F′
b = m′

b(a
′
b−a′cm) (6)

∑F′
c = m′

c(a
′
c−a′cm)

Therefore, the behavior of particles A, B, and C is now determined from the reference frame S’
by the equations (6), which are equivalent to the equations (2).

Now, if the equations (6) are transformed from reference frame S’ to S using the transforma-
tions of kinematics and dynamics, the resulting equations become

∑Fa = ma(aa−acm)

∑Fb = mb(ab−acm) (7)

∑Fc = mc(ac−acm)

It follows that the behavior of particles A, B, and C will now be determined from reference
frame S by the equations (7), which are equivalent to the equations (1) only if the accelerationacm

of the center of mass of the Universe relative to the reference frame S equals zero, a fact that may
be verified by adding together the equations (1):

∑Fa +∑Fb +∑Fc = maaa +mbab +mcac (8)

Dividing both sides of (8) by ma+mb+mc and using the fact that∑Fa+∑Fb+∑Fc = 0 from
Newton’s third law, (8) yields

acm =
maaa +mbab +mcac

ma +mb +mc
= 0 (9)

Considering that the equations (7) have the same form as the equations (6), then the behavior
of particles A, B, and C will be determined from any reference frame by the equations (7), and will
be determined by the equations (1) only if the acceleration of the center of mass of the Universe
relative to that reference frame is zero.

Now, the equations (7) can be arranged as follows:

∑Fa +ma(acm−aa) = 0

∑Fb +mb(acm−ab) = 0 (10)

∑Fc +mc(acm−ac) = 0

Substituting (9) into (10) and factoring

∑Fa +
mamb(ab−aa)
ma +mb +mc

+
mamc(ac−aa)
ma +mb +mc

= 0

∑Fb +
mbma(aa−ab)
ma +mb +mc

+
mbmc(ac−ab)
ma +mb +mc

= 0 (11)

∑Fc +
mcma(aa−ac)
ma +mb +mc

+
mcmb(ab−ac)
ma +mb +mc

= 0
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If the second and third terms of the left-hand sides of each one of the equations (11) is taken as
a new forceF◦ acting on the corresponding particle, and exerted by the remaining particles, then
it can be seen thatF◦ conserves its form when passing from one reference frame to another; in
addition, if a particle exerts a forceF◦ on another particle, the latter exerts on the first particle a
force−F◦ of equal magnitude and opposite direction. Therefore, as the second and third terms
of the left-hand sides of each one of the equations (11) represent the sum of the new forces∑F◦

acting on the particles, then

∑Fa +∑F◦
a = 0

∑Fb +∑F◦
b = 0 (12)

∑Fc +∑F◦
c = 0

And adding the second term to the first yields

∑Fa = 0

∑Fb = 0 (13)

∑Fc = 0

Consequently, it can be established that the behavior of particles A, B, and C will be determined
from any reference frame by the equations (13), which may be stated as follows: if the new force is
added to the sum of real forces, the resulting force will be zero, yielding a system in equilibrium.

Consequently, it is possible to conceive a new dynamics, which can be formulated for all
reference frames. The usual explanation for the motion of particles is that particles undergo a
certain motion in response to the external forces acting on them, following Newton’s first and
second laws. The new dynamics, instead, considers that particles experience a certain motion
because in that way they balance the sum of real forces with the new force.

From now on, the new force will be called kinetic force, since it is a force which depends on
the motion of particles, and the magnitudem (mass) will be called kinetic mass instead of inertial
mass, since in the new dynamics particles do not exhibit the property known as inertia.

3.3 The New Dynamics

First principle: A particle can have any state of motion.
Second principle: The forces acting upon a particle A always remain balanced.

∑Fa = 0

Third principle: If a particle A exerts a forceF on a particle B, then particle B exerts on parti-
cle A a force−F of the same magnitude but opposite direction.

Fa =−Fb

The transformation of real forces from one reference frame to another, is given by the following
equation:

F′ = F
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The kinetic forceFKab exerted on a particle A by another particle B, caused by the interaction
between particle A and particle B, is given by the following equation:

FKab =
mamb

MT
(ab−aa)

wherema is the kinetic mass of particle A,mb is the kinetic mass of particle B,ab is the acceleration
of particle B,aa is the acceleration of particle A, andMT is the total kinetic mass of the Universe.

The transformation of kinetic masses from one reference frame to another is given by the
following equation:

m′ = m

From the previous statements it follows that the sum of kinetic forces∑FKa acting on a parti-
cle A is given by

∑FKa = ma(acm−aa) (14)

wherema is the kinetic mass of particle A,acm is the acceleration of the center of kinetic mass of
the Universe andaa is the acceleration of particle A.

3.4 Determination of the Motion of Particles

The equation determining the accelerationaa of a particle A relative to a reference frame S
fixed to a particle S may be calculated as follows: the sum of the kinetic forces∑FKa acting on
particle A and the sum of the kinetic forces∑FKs acting on particle S, are given by the following
equations:

∑FKa = ma(acm−aa)

∑FKs = ms(acm−as)

Combining both equations yields

∑FKa

ma
+aa = ∑FKs

ms
+as

Since the accelerationas of particle S relative to the reference frame S equals zero always,aa

may be obtained from the last equation as

aa = ∑FKs

ms
− ∑FKa

ma

Since from the second principle of the new dynamics the sum of the kinetic forces(∑FK)
acting on a particle equals the opposite of the sum of the non-kinetic forces(−∑FN) acting on the
particle, we have

aa = ∑FNa

ma
− ∑FNs

ms

Therefore, the accelerationaa of a particle A relative to a reference frame S fixed to a particle S
will be determined by the last equation, where∑FNa is the sum of the non-kinetic forces acting
on particle A,ma is the mass of particle A (from now on, kinetic mass will be referred to as mass),
∑FNs is the sum of the non-kinetic forces acting on particle S, andms is the mass of particle S.
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3.5 Galilean Circumstance

A reference frame S fixed to a particle S is said to be in the galilean circumstance if the sum of
the non-kinetic forces acting on particle S equals zero.

If reference frame S is in the galilean circumstance, then, by the second principle of the new
dynamics it can be shown that the sum of the kinetic forces∑FKs acting on particle S equals zero,
that is

∑FKs = ms(acm−as) = 0

And, as the accelerationas of particle S relative to the reference frame S equals zero always,
then

acm = 0

That is, the acceleration of the center of mass of the Universe relative to a reference frame in
the galilean circumstance is zero.

3.6 Isolated System

A system of particles is said to be isolated if the sum of the non-kinetic external forces acting
on the system equals zero.

Therefore, if a system of particles is isolated, by the second principle of the new dynamics,
the sum of the internal non-kinetic forces∑FNi and the internal and external kinetic forces∑FK

equals zero:

∑FNi +∑FK = 0

Substituting∑FK from expression (14) applied to a system of N particles, and taking into
account that∑FNi = 0 from the third principle of the new dynamics, it follows that

ma(acm−aa)+mb(acm−ab)+ · · ·+mn(acm−an) = 0

from whichacm can be expressed as

acm =
maaa +mbab + · · ·+mnan

ma +mb + · · ·+mn

And as the right-hand side is the accelerationacmsof the isolated system, then

acms= acm

Therefore, the acceleration of the center of mass of an isolated system equals the acceleration
of the center of mass of the Universe.

4 CONSERVATION LAWS OF PARTICLES

4.1 Restricted Conservation of Linear Momentum

On one hand, the acceleration of the center of mass of an isolated system equals the acceleration
of the center of mass of the Universe and, on the other hand, the acceleration of the center of mass
of the Universe relative to a reference frame in the galilean circumstance equals zero.
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Therefore, the acceleration of the center of mass of an isolated system relative to a reference
frame in the galilean circumstance equals zero; that is

maaa +mbab + · · ·+mnan

ma +mb + · · ·+mn
= 0

Multiplying both sides of this equation byma + mb + · · ·+ mn and integrating with respect to
time yields

mava +mbvb + · · ·+mnvn = constant

As the left-hand side is the total linear momentumP of the isolated system, then

P = constant

Therefore, for a reference frame in the galilean circumstance the total linear momentum of an
isolated system is conserved.

4.2 Work and Live Energy

The total workW done by the forces acting on a particle is given by

W =
r∫

ro

Fa ·dr +
r∫

ro

Fb ·dr + · · ·+
r∫

ro

Fn ·dr

Grouping yields

W =
r∫

ro

(Fa +Fb + · · ·+Fn) ·dr

As Fa +Fb + · · ·+Fn = 0 by the second principle of the new dynamics, it follows that

W = 0

That is, the total work done by the forces acting on a particle equals zero.
But the total workW done by the interacting kinetic forcesFKa andFKb acting on particles A

and B respectively, is given by

W =
ra∫

rao

FKa ·dra +
rb∫

rbo

FKb ·drb

or else

W =
ra∫

rao

mamb

MT
(ab−aa) ·dra +

rb∫
rbo

mbma

MT
(aa−ab) ·drb

resulting in

W =−∆

(
mamb

2MT
(va−vb)2

)
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If we call the energy of the kinetic force live energy, then the expression between brackets
represents the live energyELab of the system particle A - particle B; therefore

W =−∆ELab

It follows that the total work done by the interacting kinetic forces acting on a particle A and
a particle B is equal and opposite in sign to the live energy difference of the system particle A -
particle B; with the live energy of the system given by

ELab =
mamb

2MT
(va−vb)2

wherema is the mass of particle A,mb is the mass of particle B,va is the velocity of particle A,vb

is the velocity of particle B, andMT is the total mass of the Universe.
The total workW done by the kinetic forces acting on an isolated system is

W =
ra∫

rao

∑FKa ·dra + · · ·+
rn∫

rno

∑FKn ·drn

that is

W =
ra∫

rao

ma(acm−aa) ·dra + · · ·+
rn∫

rno

mn(acm−an) ·drn

Substitutingacm in the last equation by the accelerationacmsof the center of mass of the isolated
system, sinceacms is equal toacm, yields

W =−∆

(
∑1/2miv2

i −
(∑mivi)2

2∑mi

)
The expression between brackets represents the total live energyEL of the isolated system, then

W =−∆EL

Therefore, the total work done by the kinetic forces acting on an isolated system equals minus
the total live energy difference of the isolated system, where the total live energyEL of an isolated
system is given by

EL = EK− P2

2MS

whereEK is the total kinetic energy of the isolated system,P is the total linear momentum of the
isolated system, andMS is the total mass of the isolated system.

4.3 Conservation of Live Energy

The total work done by the forces acting on a particle equals zero; therefore, the total workW
done by the forces acting on an isolated system equals zero.

W = 0
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If the total workW is divided into two parts: the total workWf n done by the non-kinetic forces
and the total workWf k done by the kinetic forces, then

Wf n +Wf k = 0

As Wf k equals minus the total live energy difference of the isolated system, then

Wf n−∆EL = 0

If the non-kinetic forces acting on the isolated system do not perform work, it follows that

−∆EL = 0

that is

EL = constant

or else

EK− P2

2MS
= constant

Therefore, if the non-kinetic forces acting on an isolated system do not perform work, the total
live energy of the isolated system is conserved.

On the other hand, if the total live energy of an isolated system is conserved, then from a
reference frame in the galilean circumstance the total kinetic energy of the isolated system is
conserved too, since for such system the total linear momentum remains constant.

5 GENERAL OBSERVATIONS

It is currently known that in order to describe the behavior (motion) of a body from a non-
inertial reference frame in classical mechanics, it is necessary to introduce apparent forces called
fictitious forces (also called pseudo-forces, inertial forces or non-inertial forces). Unlike real
forces, fictitious forces are not caused by the interaction between bodies, that is, if there is a
fictitious forceF acting on a body A, then a fictitious force−F of the same magnitude but opposite
direction acting on another body B cannot be found; that is, fictitious forces do not obey Newton’s
third law.

On the other hand, in the theory of general relativity, based on the principle of equivalence, it
is established that fictitious forces are caused, in a generalized sense, by a gravitational field which
all non-inertial reference frames experience, that is, in the theory of general relativity fictitious
forces are equivalent to gravitational forces.

But, why are fictitious forces not caused by the interaction between bodies, just as real forces
are? Why do not fictitious forces conserve their value when passing from one non-inertial reference
frame to another inertial reference frame, just as real forces do? If fictitious forces are equivalent
to gravitational forces, then why are fictitious forces not caused by the interaction between bodies
and do not conserve their value when passing from one non-inertial reference frame to another
inertial reference frame, just as gravitational forces are caused and conserve their value?

It can be stated that neither classical mechanics nor the theory of general relativity give satis-
factory answers to the above mentioned questions and that, therefore, it should be accepted that
apparently experience shows that to describe the behavior (motion) of a body from a non-inertial
reference frame it is necessary to introduce fictitious forces that do not behave in the same way
that real forces do.
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However, this work does give satisfactory answers to the above mentioned questions, since it is
deduced from it that, in fact, experience does not show that fictitious forces that do not behave as
real forces exist, but experience does show that there exists a new real force which is still ignored
and that the so called fictitious forces are in fact mathematical expressions that partially represent
this new real force.

In this work the new real force, called kinetic force, behaves like the other real forces, that is, it
is a force caused by the interaction between bodies and conserves its value when passing from one
reference frame to another. But, on the other hand, it is established in this work that the goal of
the kinetic force is to balance the remaining real forces acting on a body, that is, the kinetic force
is the real force that makes the sum of all the real forces acting on a body be always equal to zero.

Now, how is it possible then to change the natural state of motion of a body, if according to
Newton’s first and second laws, based on the principle of inertia, it is established that the natural
state of motion of a body will only change when there is an unbalanced external force acting on it?

In contradiction with the principle of inertia, it is established in this work that in the absence
of external forces the natural state of motion of a body is not only the state of rest or of uniform
linear motion, but that the natural state of motion of a body in the absence of external forces is any
possible state of motion; that is, any possible state of motion is a natural state of motion. However,
the previous statement does not mean that there is no relation between the motion of bodies and
the forces acting on them, since such a relation exists and is mathematically expressed in the new
dynamics developed in this work.

In the new dynamics the motion is the mechanism that bodies have, which makes it possible
for the kinetic force to balance the remaining forces acting on a body, since as a result of its motion
a body exerts over all other bodies the kinetic force which is necessary to keep the system of forces
acting on each of them always in equilibrium.

On the other hand, in this work it is not necessary to separate reference frames into two classes:
inertial reference frames and non-inertial reference frames, since through the new dynamics the
behavior (motion) of a body can be described exactly in the same way from any reference frame.
That is, the new dynamics is in accord with the principle of general relativity, which states: the
laws of physics shall be valid for all reference frames.

As a final conclusion it can be said that physics has two possible options: to develop classical
mechanics based on the principle of inertia, as a first option, or to develop classical mechanics not
based on the principle of inertia, as a second option.

However, this work, at least in the classical mechanics of particles, demonstrates, on one hand,
that the second option is in accord with what experience shows and, on the other hand, that from a
theoretical point of view the second option is widely superior to the first one.
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