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Preface 
This book contains a collection of interrelated papers. The title of the book 

equals the title of the main paper. The main paper (part 2) describes a 

research project whose target it is to uncover the origin of dynamics. As a 

starting action, cracks in the fundaments of physics are detected and 

suggestions are given for the repair of these deficiencies (part 1). 

Part 3 concerns the origin of physical fields. It is essential for 

understanding why quantum logic must be extended.  

Part 4 seeks the origin of mass in the presence geo-cavities. In that way 

minuscule geo-cavities may replace Higgs particles in bringing mass to 

elementary particles. 

The Hilbert book model (part 10) is the name of a comprehensible paper 

that describes the new fundament in simple wording. 

The last paper (part 11) describes in the form of a fairytale how the 

universe works. 

 

The other parts have a lesser connection with the main subject of the 

book. 

The paper that describes how the brain works (part 5) gives information 

on how the visual trajectory of vertebrates optimizes the perception of 

low light level signals. It indicates how this system during a billion years 

has helped vertebrates to survive low light level conditions. The observed 

radiation is generated by Poisson processes. The conclusion is that 

information comes to us in the form of clouds of quanta, rather than in 

waves. 

The paper that introduces a new law of nature (part 6) explains that 

nature has a built-in tendency to reduce complexity via the procedure of 

modularization. As a result it establishes the construction of very 

complicated items that include intelligent species. 

Two other papers (part 7 and 8) describe what happens when the merits 

of this new law are neglected and how that annoying situation can be 

cured. 
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The next paper (part 9) treats the relation between physics and religion. 

The last two papers are light weight descriptions of the main subject.  

 

The new model of physics that is introduced in this book is called “The 

Hilbert book model”. It holds strictly to its fundament, which is 

traditional quantum logic. It extends that basic model such that physical 

fields and dynamics also fit. Despite its simplicity the model explains a 

large part of the results of current physics. 
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Logic model 
It is always possible to build a potentially usable theory and a 

corresponding model by starting from a consistent set of axioms. Classical 

logic represents such a set. It is a theory on itself. However, in the realm of 

quantum physics nature cheats with one of the axioms of classical logic. 

So it is sensible to adapt classical logic and change the corresponding 

axiom such that this adapted logic fits better. The adapted version of the 

theory and the corresponding model build on this new logic. The adapted 

logic is known as traditional quantum logic. 

 

Traditional quantum logic and as a consequence the new model still do 

not fit most of the features that we know from physical phenomena. The 

reason is that the new model cannot handle physical fields and it cannot 

treat dynamics. So, as a next step, the traditional quantum logic must be 

extended to a new version of quantum logic that can cope with fields. The 

trick required for this extension blurs a subset of the propositions. The 

blur represents the sticky resistance of these propositions against change. 

It can also be explained as a stochastically inaccurate coupling to the 

value domain of these propositions.  

 

In practice this extension is achieved via the isomorphic companion of 

traditional quantum logic, which is the set of closed subspaces of an 

infinite dimensional separable Hilbert space for which the inner product 

is defined by the elements of the division ring of the quaternions. The new 

logic does not yet have a generally accepted name. So, we leave the name 

at extended quantum logic. The Hilbert space enables the application of 

mathematics. 

 

Still the extended quantum logic and its isomorphic companion can only 

handle static situations. Thus the obtained model is not a dynamic model. 

This situation can be cured by taking a sequence of these extended 

quantum logics such that each subsequent element represents a static 

status quo of the dynamic universe that the final model is aimed to 

describe. 
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The result is called the Hilbert book model. In this model the progression 

is made in universe wide steps. 

 

The attached fields are quaternionic probability amplitude distributions. 

The sign flavors of these fields will be used to explain the large diversity 

of particles that occur in nature. 

 

The gravitation field will be treated as a descriptor of the local curvature 

rather than as the cause of that curvature. In this way a local geometric 

anomaly can also act as the cause of curvature. 

 

Due to its foundation on adapted and extended classical logic and by 

including guidance from physical concepts the resulting model can be 

considered as an abstraction of physical reality. 
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Cracks of fundamental quantum 
physics 

Abstract 
The fundaments of quantum physics are still not well established. This 

paper tries to find the cracks in these fundaments and suggests repair 

procedures. This leads to unconventional solutions and a new model of 

physics. One of the innovations is the derivation of a curvature field from 

the cause of the curvature. The most revolutionary introduction is the 

representation of dynamics by a sequence of separable Hilbert spaces. 

Together, this embodies a repair of fundaments that does not affect the 

building. 

History 
In its first years the development of quantum physics occurred violently 
[1]. As a consequence some cracks sneaked into the fundaments of this 

branch of physics. A careful investigation brings these cracks to the 

foreground. The endeavor to repair these cracks delivers remarkable 

results. 

 

In the early days of quantum physics much attention was given to 

equations of motion that were corrections of classical equations of motion. 

The Schrödinger approach was one and the Heisenberg approach was 

another. Schrödinger used a picture in which the state of a particle 

changes with time. The operators that act on these states are static. 

Heisenberg uses a picture in which the operators change with time, but 

the states are static. For the observables this difference in approach has no 

consequences. This fact is important. It shows that time is just a parameter 
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instead that it acts as a property of physical items
1
. Later Garret Birkhoff, 

John von Neumann and Constantin Piron found a more solid foundation 

that was based on quantum logic. They showed that the set of 

propositions of this logic is isomorphic with the set of closed subspaces of 

an infinite dimensional separable Hilbert space, whose inner product is 

defined with the numbers taken from a division ring. The ring can be the 

real numbers, the complex numbers or the quaternions. Since then many 

physicists do their quantum physics in the realm of a Hilbert space. 

However, the Hilbert space has no operator that delivers eigenvalues for 

parameter time. 

Cracks in the fundaments 

Fist scratches 
These physicists quickly encountered the obstinate character of the 

separable Hilbert space. Its normal operators have countable eigenspaces. 

This can still correspond to a dense coverage of the corresponding hyper 

complex number space. However, this eigenspace is no continuum. Thus, 

functions defined using these eigenspaces as parameter domains cannot 

be differentiated. In order to cope with this defect, most physicists 

resorted to other types of Hilbert spaces than the separable Hilbert space, 

but in doing so they neglect that in this way the stringent relation with 

quantum logic gets broken.  

Severe defects 
Further, it appears that the separable Hilbert space cannot represent 

physical fields and cannot represent dynamics. This is a severe drawback 

and it looks as if the switch to the other Hilbert spaces becomes 

mandatory. For example quantum field theory represents fields as 

operators that reside in a non-separable Hilbert space. In this paper the 

                                                 
1 Later this fact is used in order to apply the progression step counter as a parameter that 

characterizes the members of a sequence of Hilbert spaces. 
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strategy is to hold strictly to the link with traditional quantum logic. So 

the road that is taken by quantum field theory is not followed. 

Back to the future 
On the other hand there are more and more signals that nature is 

fundamentally granular and the non-separable Hilbert spaces do not 

provide that feature. This guides backwards to the separable Hilbert 

space. But in that case we must learn to live with this separability. In 

addition we must find other ways to represent fields.  

Dynamic way out 
The non-separable Hilbert spaces including the rigged Hilbert space gave 

similar problems with representing dynamics as the separable Hilbert 

space does. There is no place for time as an eigenvalue of an operator 

neither in separable Hilbert space nor in the other Hilbert spaces. For that 

reason, it is better to accept that the separable Hilbert space can only 

represent a static status quo.  

Granularity 
Nature is fundamentally granular. The so called Planck units 

2
are 

designed using dimension analyses, but it is generally accepted that 

below these limits (Planck-length, Planck-time, Planck constant = unit of 

action and Boltzmann’s constant = unit of entropy) no discerning 

observation is possible. One could say that below these limits nature does 

not exist or that nature just steps over these regions. The Planck-length 

and Planck-time are related to the Planck constant, the speed of light   

and the gravitational constant  . It is not said that nature’s granularities 

have exactly these sizes. The Planck units are derived by dimensional 

analysis. The Planck unit sizes rather form an order of magnitude 

indication, but these measures are useful and we do not have a better 

estimate. The mutual relation between these units is important. For 

example, the ratio between the Planck-length and the Planck-time equals 

                                                 
2 http://en.wikipedia.org/wiki/Planck_units  

http://en.wikipedia.org/wiki/Planck_units
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the speed of light  . If you reckon that at every time step a physical item 

can at the utmost take one space step, then the maximum speed of all 

physical items is automatically set at the speed c. 

 

This paper will not exploit the fact that eigenspaces are granular. We will 

rather start from the assumption that the eigenspace is not a continuum. 

Coping with granularity 
A solution must be found for the fact that GPS-like normal operators in 

separable Hilbert space do not possess continuum eigenspaces. A GPS 

operator with a granular eigenspace would have a lattice-like eigenspace 

of densely packed granules. The lattice would possess preferred 

directions. This does not correspond with physical reality. Such situations 

can occur in condensed matter, but that is an exceptional condition. 

 

A dense packaging of granules may occur in horizons. For example, 

horizons of black holes appear to be covered by a dense package of 

granules. 

 

Apart from these exceptions the exclusion holds for any multidimensional 

subset of eigenvalues, even if it contains a countable number of values 

that are taken from a continuum. 

 

This consideration means that it is impossible to define in the separable 

Hilbert space a granular operator that acts like a proper global positioning 

system (GPS), which is required in the positioning of field values or when 

we want to relate Hilbert vectors with position. 

 

The separable Hilbert space can provide a GPS-like operator that offers a 

dense coordinate system as its eigenspace. An eigenspace consisting from 

all rational quaternionic numbers would be countable and thus it can be 

an eigenspace of a normal operator in separable Hilbert space. 
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However this eigenspace is no continuum and as a consequence it does 

not support differentiation.  

 

We can still maintain that the set of positions is a set of granules that have 

the size of the order of the Planck-length, which is               . 

However, this set does not have densely packed subsets that have a 

dimension larger than one. 

 

The required separability is special. It is a granularity of differences rather 

than a granularity of values. This might guide the way to a solution. 

Background coordinates 
The separable Hilbert space Ң is connected with its Gelfand triple Ħ, 

which is called a rigged Hilbert space. The Gelfand triple is not a regular 

Hilbert space. In fact the rigged Hilbert space Ħ is only named after its 

generating member Ң.  

 

A background coordinate system exists in rigged Hilbert space as the 

eigenspace of a GPS-like operator  ̌, but it cannot be directly used in the 

separable Hilbert space in order to locate Hilbert vectors in a regular way. 

So, we must find an indirect way. This is delivered by the strand operator 

  3, which resides in separable Hilbert space Ң and has an equivalent  ̌ in 

the rigged Hilbert space Ħ. There it can be coupled to the background 

coordinate system. Apart from horizons, the eigenspace of the strand 

operator does not contain multidimensional sets of eigenvalues. Instead, it 

contains chains of granules. Thus, in separable Hilbert space it avoids the 

mentioned problems. 

Strand operator 
The strand operator only makes sense for localizable particles. Pure plane 

wave “particles” are not localizable along the direction of the wave, but 

                                                 
3 The name strand operator is related to the strand model of Christoph Schiller that 

brought me the idea to use chains as a solution. 
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spherically oscillating particles are localizable. In a similar sense a wave 

package may be localizable. 

 

The mentioned coupling between the eigenspace of the strand operator   

in separable Hilbert space and the eigenspace of the GPS-like operator  ̌ 

in the rigged Hilbert space is not precise. It cannot be so. It is like the 

situation that the number of observations in an experiment overwhelms 

the number of underlying variables. The usual way to solve such a 

situation is to suppose the presence of a stochastic inaccuracy. The 

observations are supposed to be blurred. The blur makes the coupling to 

the underlying variables inaccurate. Their spread of the observations has 

a minimal value. So the observations can be seen as granules.  

 

Nature solves this problem in a similar way. However, it does not use a 

simple probability distribution. Nature gives the inaccuracy of the 

coupling the form of a quaternionic probability amplitude distribution 

(QPAD). The squared modulus of the QPAD is a probability density 

distribution. The real values of the QPAD can be interpreted as a charge 

density distribution and its imaginary value will then be the 

corresponding current density distribution. The eigenvector of   that 

belongs to the resulting eigenvalue acts as the anchor point of the 

distribution. The charge represents a load of properties of the item for 

which the eigenvector provides the location. The granule can be 

considered as the “ground state” of the QPAD. 

 

When the past and the future of the eigenvalues are kept in sight, then the 

eigenspace of the strand operator contains a set of chains that are put 

together from granules. In the chain the granules are ordered. In each 

chain one granule is exceptional. We call it the current granule. The part 

of the chain that ends just before the current granule is called the past 

sub-chain. The part that starts just after the current granule is the future 

sub-chain.  
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One could ask whether having only the current granule could be 

sufficient. For the model, the direct neighborhood of the current granule 

is the most relevant part of the chain. The rest of the chain is hardly used. 

It only gives a reflection of a possible past and a possible future which is 

derived from the current field configuration. However, the step to the 

next version of the “current granule” is taken inside the chain. At a given 

progression step maximally one space step is allowed. When that step is 

taken, then on the average that step has the size of one granule. 

 

The step to the next granule is controlled by a probability density 

distribution (PDD). The extent of this PDD is set by the properties of the 

stochastic coupling between the background coordinate system and the 

position of the granule. In its minimal format the stochastic coupling has 

characteristics that to a certain extend are similar to the characteristics of 

the ground state of a quantum harmonic oscillator. This minimal extent is 

of the order of the Planck-length. However, the shape of the probability 

density distribution must be such that it is zero in a region of the size of 

the Planck length. This is why the granules appear to have a basic size of 

the order of the Planck-length and seem to be surrounded by a nonzero 

QPAD that can take a wider extent. The quantum harmonic oscillator is 

only mentioned as an example. The actual form of the wider extent of the 

QPAD may depend on the particle type. It depends on the characteristics 

of the particle that makes use of this granule as its anchor point. Due to 

the analogy we will call the central part of the QPAD its ground state. 

 

At each actual step a space analog to the space covered by the ground 

state is inaccessible. Nature steps over this space and lands in the middle 

of a new current granule.  

 

One might ask why this restriction exists. The reason must be sought in 

the combination of stochastic inaccuracy with the atomicity of quantum 

logic. This restriction goes further than countability. 
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Chains can split and they can merge. The corresponding creation and 

annihilation occurs during a progression step and is controlled by 

QPAD’s that are attached to the current granules. 

 

The chains in the eigenspace of the strand operator are causal chains. 

Statistics 

The QPAD is a constituent of the field that surrounds the granule. The 

creation and annihilation operators of fields have eigenfunctions that are 

Poisson distributions. Such distributions are produced by Poisson 

processes. A Poisson process can be combined with a subsequent 

binomial process in order to form a generalized Poisson process that has a 

lower efficiency than the original Poisson process. The efficiency is 

weakened by the weakening that is introduced by the binomial process. 

The spatial spread introduced by the QPAD can be interpreted as a 

binomial process with a spatially varying weakening factor. The spread 

function is equal to the squared modulus of the QPAD. 

Canonical conjugate 

Depending on the type of the particle that anchors on the granule there 

may be many types of QPAD’s. Near the anchor point the basic shape of 

the QPAD’s are all equal. Apart from a factor (1, i, -1 or –i) they are 

invariant under Fourier transformation. This means that near the anchor 

point the eigenspace of the canonical conjugate of the strand operator has 

the same basic format as the eigenspace of strand operator. It also anchors 

on similar granules. 

Strand space 
The strand operator has an outer horizon. Outside this horizon its 

eigenspace does not contain granules. It might also have inner horizons 

such that inside these inner horizons no granules exist.  

 

Most inner horizons are borders of black holes. These horizons are 

bubbles that consist of densely packed granules. The QPAD’s that are 

attached to these granules have taken their minimal possible size. Each 
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granule is connected to a Hilbert vector which is eigenvector of the strand 

operator. That Hilbert vector represents a quantum logical proposition. It 

carries a single bit of information that indicates its membership of the 

eigenspace of the strand operator. The inner horizons form an exception 

to the rule that the granules must not form a multidimensional subset.  

Other horizons 

Since light transports all information and has a limited speed, the 

eigenspace of the strand operator may feature information horizons. 

Every object in space has its own private information horizon. This 

horizon is in fact the image of a start horizon that occurred at the start of 

the universe. The start horizon is a special kind of inner horizon that was 

at the same time an outer horizon. It can be interpreted as a bubble that 

existed in empty space and that suddenly converted into matter4. From 

that moment the granules that formed this special horizon spread over 

space and their QPAD folds out, such that it takes more space than just 

the size of the granule. This occurrence must be unique or its probability 

must be very low. There is no indication that it happened more often 

during the lifetime of the universe. 

Affine space 

Since the unit sphere of the separable Hilbert space is an affine space and 

all eigenvectors of the strand operator are represented in that space, the 

strand operator can be considered to have no origin or the origin is just 

arbitrarily selected. The same consideration holds for the GPS-like 

operator in the rigged Hilbert space. 

Types of chains 

The chains may be closed or they start and end at a horizon. Further they 

may split and merge. This corresponds with creation and annihilation of 

particles that anchor on these chains. Actually, only the direct 

environment of the current granule of the chain is relevant. The granules 

                                                 
4 See Birth of the universe 
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in short closed chains may represent the anchors of virtual particles. 

These granules are virtual granules. 

 

The generation and annihilation of particles occurs for example in field 

configurations that are locally invariant under Fourier transformation, 

such as linear and spherical harmonics.  

 

The chains have things in common with the strands in Schiller’s strand 

model. However, they are not the same. 

Vacuum 
The inaccuracy in the coupling between the background coordinate 

system and the granules also plays a role in the space where no current 

granules exist. In this space virtual granules may exist during a very short 

period, for example during a single progression step. These virtual 

granules form the content of vacuum. 

 

Virtual granules only occur inside the outer horizon and outside the inner 

horizons of the strand operator. The virtual granules can be interpreted as 

the ground state of harmonic oscillators. This ground state corresponds 

with the minimal extend that the QPAD can take. The vacuum is 

supposed to have constant density     of virtual granules. 

 

In the Hilbert book model the space between horizons is supposed to be 

stochastically, but on the average uniformly covered with virtual 

granules. At every progression step these virtual granules are 

redistributed. The actual granules exist in between these virtual granules, 

but they possess a wider spread of the corresponding QPAD’s. These 

wider QPAD’s tend to last longer at (nearly) the same location. 

Fields 
Fields do not fit inside a separable Hilbert space. Any field would cover 

the whole Hilbert space. Every Hilbert vector would touch a value of the 
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field. Which value is touched, depends on the functionality of this vector. 

When the vector is one of the eigenvectors of a normal operator and when 

the field can be expressed as a function of the eigenvalues of this operator 

taken as the parameter of the function, then the field value would 

correspond with the parameter value that equals the eigenvalue that 

corresponds to eigenvector. In that case, the considered field value will be 

connected to the considered vector. 

In superposition, field values may compensate each other. That is possible 

when they have opposite sign. 

Function of the field 
The function of the physical fields is to take care of minimizing changes 

during dynamical steps. This function becomes evident when dynamics is 

implemented. Fields keep the shape of the chains of the strand operator 

smooth. In first instance the private fields influence the chain at their 

anchor point. Due to their extent, the fields also influence other chains. 

Basic field constituent 
A QPAD that is attached to the current granule takes care of the fact that 

the chain in the neighborhood of the current granule stays sufficiently 

smooth. This becomes important when dynamics is implemented because 

with each dynamic step the current granule either stays at its current 

position or it moves one place ahead in the chain.  

It must be noticed that exactly this restriction is the reason why speed has 

a maximum! The ratio of the space step and the time step equals the speed 

of light. 

The squared modulus of the QPAD is a probability density distribution 

(PDD). It determines the probability of the position of the current granule. 

The probability is large when the position is close to the position of the 

previous current granule. 

 

Via its wave function a particle is identified with its private field. (They 

are one and the same thing). The notion of private field transfers quantum 

theory into quantum field theory. 
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Fields influence the chain 
The private fields overlap and because they are all QPAD’s their 

superposition causes an interaction between the particles that anchor on 

these fields. 

Taken over a sequence of dynamic steps, the chain appears to fluctuate. 

The fluctuation determines the probability distribution and vice versa the 

dynamic changes of the probability density distribution determine the 

fluctuations of the chains. This relation is instantaneous. There is no 

causal relation. (The granules are ground states of field constituents). 

If the chains would be observable, then the probability distribution could 

be determined by averaging the fluctuations over some period. However, 

neither the chains, nor the probability amplitude function are directly 

observable items. Only their effects become observable. 

Particles 
The Hilbert book model leaves open whether depending on its type, an 

elementary particle relates to one or more of these chains. In any way the 

current granules of these chains are related to the current section of the 

path of the particle.  

 

Elementary particles can be identified by an ordered pair of coupled sign 

flavors of the same field. That field forms the private field of the particle. 

Four some particles the coupling factor is zero. The switch from one sign 

flavor to the other sign flavor can be considered as the charge of the field. 

The sign flavors determine the kind of charge that is involved. A 

continuity equation5 describes the dynamics. In this equation the first 

member acts as the transported part of the field. The second member of 

the pair acts as source/drain. The event and location of the sign flavor 

switch is the observable of the field. It will be perceived as a quantum. 

 

For massive particles the location of the sign flavor switch may go 

together with the location of a local spherical geometric anomaly (SGA). 

                                                 
5 Part two; Hilbert field equations; Continuity equation for charges 
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Strands, curvature, torsion and chirality 
The idea to attach more than one strand to a particle is taken from 

Christoph Schiller’s strand model[2].  

 

In contrast to torsion, curvature relates to mass. For example, according to 

Schiller’s strand model, the strand that represents a massless photon has 

a helix shape. The strands that represent the massive W bosons have the 

shape of an overhand knot. Since this knot shows chirality, it possesses 

electric charge. The strands that represent the massive Z bosons have the 

shape of a figure eight knot. Because the figure eight knot features no 

handedness, it does not possess electric charge. In a similar way 

Christoph Schiller attributes properties to all elementary particles. 

 

The Hilbert book model does not use the strand concept of Schiller’s 

strand model. Strands and chains are both one dimensional and both 

interact with fields. The Hilbert book model relates particles to ordered 

pairs of field sign flavors. The sign flavors decide how the particles are 

charged. That is how far the resemblance of the two models goes. 

Extended Hilbert space 
The addition of QPAD’s to the Hilbert vectors that are attached to the 

current granules extends the separable Hilbert space to a new construct. 

For that reason we call this new construct an extended separable Hilbert 

space. 

Extended quantum logic 
Via the relation between the separable Hilbert space and traditional 

quantum logic we can extend quantum logic to an extended quantum 

logic that includes physical fields in a similar way as the extended 

separable Hilbert space model does. It means that a subset of the 

propositions is afflicted with a stochastic inaccuracy that can be 

characterized by a probability amplitude distribution. 
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Covering field 
The QPAD that is connected to the current granule is a basic field 

constituent. The superposition of all these basic constituents forms a 

covering field. With respect to the dynamics of the picture, it must be 

reckoned that the elementary particles form a combination of two sign 

flavors of the same field in which one sign flavor acts as the transported 

part and the other acts as the source/drain part. Apart from that, the 

configuration of the covering field depends on the configuration of the 

elementary particles. When the configuration of chains changes, then the 

configuration of particles changes and the covering field changes 

accordingly. 

Curvature field 
According to Helmholtz decomposition theorem, the static version of the 

covering field decomposes into a rotation free part and one or two 

divergence free parts. The local decomposition depends on the local field 

configuration and in general it does not run along straight coordinate 

lines. The local decomposition into a one dimensional longitudinal part 

and a transverse part defines a local curvature. This curvature can be used 

to define a local metric. This metric is a tensor and on its turn it can be 

used to define a derived tensor field. We will call this the curvature field. 

It has all aspects of the gravitation field. When split back into curvature 

fields that are private to the particles the private curvature field can be 

used to attach the property “mass” to the corresponding particle. 

What is curvature? 
In order to comprehend quantum physics, it is sometimes sensible to step 

one dimension down. Optics is in many respects similar in 2D to quantum 

physics in 3D.  

 

When optics is studied, then it is often done by following the live path of 

a point object. This can be done by ray tracing and it can be done by 

applying Fourier optics. When the quality of imaging equipment must be 

specified in an objective way, then it is often done in terms of the Optical 
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Transfer Function6 (OTF). The OTF is defined as the Fourier transform of 

the 2D spatial spread of the point object. This definition supposes the 

presence of a projection surface. In practice the analyzed area is kept 

rather small. Further the energy contained in the point image is 

insufficient to activate the measuring equipment. For that reason the 

measurement is done by analyzing the image of a short thin slit object. 

Provided that the point image is spatially invariant in the area of the slit 

object, the analyzed image is the convolution of the Point Spread 

Function7 (PSF) and the slit object. After taking the Fourier transform the 

analyzed image is the product of the OTF and the Fourier transform of the 

slit object. This last function is a two dimensional sinc function that 

extends in the direction across the slit in which the slit is small and is thin 

in the direction in the direction along the slit. The result corresponds 

closely to a vertical 1D cut through the OTF. When the PSF is rotationally 

symmetric, then the result is independent of the direction of the slit. The 

Modulation Transfer Function is the modulus of the MTF. Any vertical 

cut through the MTF is symmetric. Thus when the PSF is not rotationally 

symmetric usually two measurements of the MTF are specified. The first 

result is the one with maximal extent and the other has minimal extent. 

When the imaging system is a rotationally symmetric lens, then on-axis 

the PSF is rotationally symmetric, but off-axis the Seidel aberrations take 

their toll and the PSF is no longer rotationally symmetric. In that case a 

radial (longitudinal) OTF and a lateral (transverse) OTF are specified.  

 

We only traced one ray. Actual images are constituted of the combined 

PSF’s of an extended object. In this way the PSF is a constituent of a scalar 

field. The divergence and the curl of that scalar field form a vector field. 

According to Helmholtz theorem the vector field can be split in a rotation 

free component and a divergence free component. In the above situation 

these components are the longitudinal and the transverse components. 

 

                                                 
6 http://en.wikipedia.org/wiki/Optical_transfer_function  
7 http://en.wikipedia.org/wiki/Point_spread_function  

http://en.wikipedia.org/wiki/Optical_transfer_function
http://en.wikipedia.org/wiki/Point_spread_function
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Now exchange the lens against an arbitrary but smoothly shaped glass 

body. The direction of the longitudinal component no longer runs along a 

straight line. The curvature of the decomposition defines a local 

curvature. This 2D situation looks more like the situation that we have in 

3D quantum physics. 

 

In short: In optics the actual field configuration corresponds to a 

curvature of the coordinate system in which the PSF is spatially invariant. 

Geometric anomalies 
Spherical geometric anomalies (SGA’s) are regions of coordinate space 

that are not occupied by physical objects and that are surrounded by a 

horizon such that information cannot enter that region. This means that 

the local curvature is such that information carrying particles cannot enter 

the region. Large black holes are examples of such geometric anomalies. 

However, such SGA’s may also occur at very small sizes. Inside the 

region the value of the probability density distribution (PDD) of any 

particle is zero. The PDD is the modulus squared of the QPAD. If we take 

the covering field, then its modulus squared is zero inside a SGA. 

The center of an SGA acts as a center of virtual mass. 

Combining the sources of curvature 
Thus two sources of local curvature exist. One source is located in the 

local curvature that is due to the configuration of the covering field. The 

other source is located in the existence of local SGA’s. We can also see the 

SGA’s as special forms of local field configurations. 

About the field concept 
It is common practice to treat the EM fields and the gravitation field as 

different and independent subjects. In this interpretation, the gravitation 

field generates the curvature of the coordinate system in which the other 

fields must operate.  

 

The Hilbert book model takes a different approach. It puts the reason for 

the curvature of the coordinates in the properties and configuration of the 
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covering field. This includes the existence of local SGA’s. The curvature 

that exists in this way is used to derive the total curvature field. On its 

turn the curvature field determines the values and locations of actual or 

virtual masses. The wave function is also interpreted as a constituent of 

the covering field. In this way it also contributes to the curvature field. 

This picture unifies all fields. 

 

The QPAD’s can be seen as a reflection of the stochastic inaccuracy of the 

coupling between the eigenspace of strand operator and the eigenspace of 

the GPS-like operator that resides in rigged Hilbert space and acts as 

background coordinate system. In the same way the curvature field can 

be seen as an administrator of the deficiency of this coupling as is marked 

by the local curvature. 

The start horizon 

With this concept of the curvature field the field configuration near the 

origin of the expanding universe can be interpreted as to be generated 

completely by the curvature that corresponds with the local geometry. 

This curvature determines the field values of the local curvature field. 

This curvature field corresponds to a virtual mass that represents the 

influence of that local geometry. This virtual mass does not correspond to 

the presence of actual matter. It just represents the particular geometry 

that is present near the origin of the universe.  

 

In the Hilbert book model the universe starts with a bubble shaped 

horizon, which is at the same time an inner horizon and an outer horizon. 

This start horizon8 consists completely out of densely packed granules. At 

the start the size of these granules is quite large. These granules do not 

represent ground states of a corresponding QPAD. They represent a much 

higher state. Like the ground state this state offers the capability to form 

bubbles. The start horizon is instable. Its granules collapse into a new 

format whose size is many orders of magnitude smaller. As a 

                                                 
8The idea of the existence of a start horizon is a speculation. Inner and outer horizons 

exist.  
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consequence the space that was taken by the start horizon gets filled with 

a diffused set of the smaller granules that can move around freely. As a 

consequence, part of these granules recombines into new smaller bubbles. 

These smaller bubbles are black holes. These new inner horizons contain a 

lower amount of granules and the granules are much smaller than in the 

start horizon. They represent the ground state of the QPAD. Other 

granules form loosely connected assemblies. Still others keep moving free. 

For the free and loosely packed granules the QPAD’s unfold. This 

unfolding results in a large multitude of different private field types. 

 

The result of this procedure is that the original geometry converts partly 

into matter. Some of it converted back into geometry. This happening is 

then the start of a new expanding universe. However, after this first 

implosion the expansion can be described as a metric expansion. 

 

This also indicates what happens when a large mass collapses into a black 

hole. The matter disappears and converts into a strongly curved 

geometry.  

 

The most important message is that the geometry determines the 

curvature field, rather than that the curvature field determines the 

geometry. This can go so far that the geometry not only determines a 

virtual mass, but under the proper circumstance it can also generate 

actual matter that corresponds to the virtual mass. What happens during 

the collapse of a large mass into a black hole is not only the generation of 

the horizon. It is also the folding together of the private fields that existed 

in the surround of the anchor points until they reach their smallest 

possible extent. 

 

What also becomes clear is that the configuration of the anchor points in 

combination with the type of the private fields determines the curvature 

of the geometry. 
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In this picture the gravitation field only acts as an administrator. The real 

actors are the Hilbert vectors that correspond to the anchor points and the 

corresponding private fields. 

Canonical coordinates 
We start with the situation in which we can select ideal coordinates. What 

that means will become clear soon.  

Ideal coordinates 
The inner product of the Hilbert space can be used to relate two 

orthogonal bases that are each-other’s canonical conjugate. In a 

quaternionic Hilbert space this is not a straightforward procedure. 

Luckier wise, the quaternionic number space can be divided into a series 

of complex number spaces. We just chose one imaginary direction and do 

as if we are in complex Hilbert space. However, this singles out that 

particular direction. We may choose the direction in which the local 

longitudinal direction of the covering field runs. The definition of 

longitudinal is in fact taken in the canonical coordinate space of the 

current configuration space. It can be any radial direction taken from the 

origin of that space. This may give problems when the original 

configuration space is curved, thus when the longitudinal direction 

changes with location.  

 

The fact that space is curved follows from the fact that when this space is 

covered with shapes that should all have the same form; the form of the 

shape in fact changes with the location of that shape9. 

 

For the moment we assume that we have selected a coordinate system for 

which the selected longitudinal field direction runs along a straight line 

and stays that way. We do not bother about granularity, because we will 

base our investigations on fields that are specified using a continuum 

background Global Positioning System coordinates. In Fourier spaces we 

                                                 
9 See: What is curvature. 
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need the corresponding Global Momentum System coordinates. So we 

pick the eigenspace of a normal GPS-like operator  ̌ that resides in rigged 

Hilbert space as our coordinate system. It has an equivalent GPS-like 

coordinate operator   in separable Hilbert space whose eigenspace lays 

dense in the eigenspace of the rigged Hilbert space GPS. The operator  ̌ is 

selected such that the selected longitudinal direction of the field runs 

along one of the imaginary base vectors of the eigenspace. The set of 

eigenvectors       of operator   forms an inner product with another 

normal operator   which is the canonical conjugate of  . The eigenvector 

    corresponds to an eigenvalue   and similarly the eigenvector     of 

  corresponds to an eigenvalue  . The inner products are now given by: 

 
                  

 

The constant   in       is Planck’s constant. The imaginary 3D base 

vector i of the quaternionic number space is the imaginary base number 

of the selected complex number space. 

 

This procedure can be performed for the two operators and three 

mutually perpendicular imaginary base vectors of the eigenspace. We 

have defined the procedure for the operators   and   that reside in 

separable Hilbert space, but with respect to its application to Fourier 

transforms, it makes also sense for the equivalent operators  ̌ and  ̌ in 

rigged Hilbert space. Their eigenspaces form a continuum. 

Fourier transform 
It can easily be seen that the specified inner product also defines a 

complex Fourier transform. We start with the separable Hilbert space. By 

taking all three dimensions the specified inner product defines the 

imaginary part of a quaternionic Fourier transform. 

 

                          ∑             

 

  

 

(1) 

(1) 
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And reversely: 

 

        ̃      ∑             

 

 

 

It must be reckoned that these are discrete transforms. Here the Hilbert 

function 

 
             

 

is a sampled function and is transformed in formula (2) into its Fourier 

partner  ̃   . 

In rigged Hilbert space the sum becomes an integral.  

Use of the Fourier transform 
In separable Hilbert space, Hilbert functions are sampled functions and 

are constructed from the eigenvectors and eigenvalues of a normal 

operator and a selected Hilbert vector. See formula (3).  

The discrete transform and the Hilbert functions do not have many 

usages. In practice the Fourier transform is applied to Hilbert fields
10

 

rather than to Hilbert functions.  

The Fourier transform of a quaternionic field must be performed with a 

quaternionic Fourier transform that acts in a continuous number space [3].  

The Fourier transformation of a private field
11

 of a particle does two 

things. It shifts from a GPS-like coordinate system to its canonical 

conjugate GMS-like coordinate system. Apart from that it transforms the 

private field from a quantum cloud into a wave package. This new 

probability distribution tells about momentum rather than about position. 

Fourier transform habits 
A Fourier transform keeps inner products invariant. Thus it is a unitary 

transformation. It has no eigenvectors and as a consequence it has no 

                                                 
10 Distributions and fields: Hilbert fields 
11 Distributions and fields: Hilbert fields: Private field 

(2) 

(3) 
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eigenvalues. However, in rigged Hilbert space functions exist that apart 

from a multiplication factor are invariant under Fourier transformation. 

Examples of these are the functions that describe linear and spherical 

quantum harmonic oscillators. The multiplication factor can be 1, i, -1, or -

i.  

In separable Hilbert space, the Fourier transform converts an orthogonal 

base into another orthogonal base, which is completely distinct from the 

original base. Any member of the second base is a linear combination of 

all members of the first base. The modulus of all coefficients in this linear 

combination is equal to unity. In rigged Hilbert space the function 

              and the Dirac delta function      form Fourier transform 

pairs. In separable Hilbert space the Kronecker delta replaces Dirac’s delta 

function.  

The existence of canonical conjugation is the reason of the weakening of 

the modular law that makes the difference between classical logic and 

quantum logic. 

A very important property of Fourier transforms is that it transforms a 

differentiation into a multiplication with the canonical conjugated 

coordinate. This only works in rigged Hilbert space. In the Hilbert book 

model it is applied to Hilbert fields
12

. 

Actual coordinates 
In practice the ideal conditions are seldom valid and if they are valid, they 

are only valid locally and with reduced accuracy. It means that the inner 

product that defines the canonical conjugate has only local validity and 

the same holds for the Fourier transforms that are specified with the aid 

of that inner product.  

 

In actual situations depending on the field coordinates the coordinate 

system gets curved locally. Only an appropriate coordinate 

transformation can bring us back to the ideal situation. This is a purely 

mathematical activity and the required transform changes with the field 

                                                 
12 Distributions and fields: Hilbert fields 
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configuration that resides in the current static status quo. It does not affect 

physical reality. So if we know how to perform this coordinate 

transformation then physics in this static status quo becomes trivial. This 

is the reason why particles move along geodesics. However, in another 

static status quo the field configuration will be different. This requires a 

separate coordinate transformation for every static status quo. The 

alternative is that we accept a curved coordinate system. 

 

The presented picture supposes that nowhere the field excitations are so 

violently that it becomes impossible to define a local curvature.  

Coherent state 
A coherent state is a specific kind of state of the quantum harmonic 

oscillator whose dynamics most closely resemble the oscillating behavior 

of a classical harmonic oscillator system.  

The coherent state |α> is defined to be the 'right' eigenstate of the 

annihilation operator  . Formally, this reads: 

 
             

 

Since   is not Hermitian, α is a hyper complex number that is not 

necessarily real, and can be represented as 

 
                

 

where  

  is a real number.  

    is the amplitude and 

  is the phase of state |α>. 

 

This formula means that a coherent state is left unchanged by the 

annihilation or the creation of a particle. The eigenstate of the annihilation 

 (1) 

(2) 
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operator has a Poissonian13 number distribution. A Poisson distribution 

is a necessary and sufficient condition that all annihilations are 

statistically independent. (Shot noise is characterized by a Poisson 

distribution. See information detection.) 

The coherent state's location in the complex plane (phase space14) is 

centered at the position and momentum of a classical oscillator of the 

same phase θ and amplitude. As the phase increases the coherent state 

circles the origin and the corresponding disk neither distorts nor spreads. 

The disc represents Heisenberg’s uncertainty. This is the most similar a 

quantum state can be to a single point in phase space. 

Distributions and fields 
The concepts that have been introduced so far invite the introduction of 

Hilbert distributions and Hilbert fields. 

Hilbert distributions 
Hilbert distributions are sets of Hilbert vectors, in which each vector 

corresponds to the current granule of a member of a set of chains. Thus, 

these vectors are eigenvectors of the strand operator in the current Hilbert 

space. All past and future granules in a chain correspond with a Hilbert 

vector in their corresponding Hilbert spaces, but the vectors of a Hilbert 

distribution correspond with the corresponding current granule, thus 

with a Hilbert vector in the current Hilbert space.  

Also the granules that compose a horizon are eigenvectors of the strand 

operator. An elementary Hilbert distribution is a set of Hilbert vectors 

that belong to an elementary particle. 

                                                 
13 http://en.wikipedia.org/wiki/Poissonian  
14 http://en.wikipedia.org/wiki/Phase_space  

http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
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Hilbert field 
A Hilbert field is a superposition of the QPAD’s that are attached to the 

Hilbert vectors in a Hilbert distribution. In principle all Hilbert 

distributions are Hilbert fields. 

 

A private Hilbert field is a Hilbert field that belongs to an elementary 

Hilbert distribution. However, if a complicated particle consists of a set of 

elementary particles, then we consider the superposition of the private 

fields of the elementary particles as the private field of the complicated 

particle. The Hilbert field is a skew field. The Hilbert book model only 

considers Hilbert fields whose values are taken from a division ring. 

 

The covering field is the superposition of all private fields. It is a Hilbert 

field 

Optics and quantum physics 
If all QPAD’s would be similar, then the Hilbert field can be considered as 

the convolution of this QPAD and a distribution of Dirac delta functions 

that correspond to the Hilbert distribution. This picture resembles (ideal) 

ray optics and if we take the Fourier transform then it resembles (ideal) 

Fourier optics. This is the reason that wave mechanics has so much 

similarity with optics. The characterization “ideal” indicates the 

restriction that all blurs are equal. In practical optics the blurs are not 

equal and change with position in the image surface. In quantum physics 

the same happens15, but the blur may also change with the type and 

properties of the particle. 

The Optical Transfer Function characterizes the information transfer 

capability of an imaging system. In the image plane this OTF has only a 

local validity and it changes with the angular and chromatic 

characteristics of the light beam. Also the phase homogeneity of the light 

plays an important role. In similar way the Fourier transform of the 

                                                 
15 See: What is curvature 
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QPAD characterizes the information transfer capability of a physical 

system.  

Nothing is said yet about detecting the information that is carried by the 

particles. That will be treated later
16

. 

Dynamics 
The extended separable Hilbert space model can only represent a static 

status quo. By using this ingredient, dynamics can be implemented by a 

model that consists of an ordered sequence of such extended Hilbert 

spaces. It corresponds to an equivalent sequence of extended quantum 

logics.  

In order to give this model a name, we can call it the Hilbert book model. 

Passing through the sequence is like glancing through a book, where each 

page describes a static status quo. 

 

The chains of the strand operator pass through a range of Hilbert book 

pages. A loop must be interpreted as a pair of chains that split at the start 

and merge at the end. The split and the merge occur between pages. 

 

What is important is that each static status quo holds both the current 

state and ALL preconditions for the next static status quo. Thus in 

principle the duration of the progression between subsequent static status 

quos is unimportant. The Hilbert book model takes all progression steps 

to be of equal length. 

Spacetime 
This procedure introduces a new parameter that acts as a global 

progression step counter. This parameter must not be confused with our 

common notion of time, which only has local validity.  

The dynamic model implies that space is not the only granular quantity. It 

also means that progression occurs in discrete steps. Further, it indicates 

that against general acceptance, fundamentally, space and progression 

                                                 
16 Information detection 
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have little to do with each other. With other words, no support exists for a 

fundamental physical spacetime quantity. 

That does not say that no relation between the fundamental space step 

and the fundamental time step can exist. The Minkowski signature is a 

clear prove of such relation. It can already be understood from the ratio 

between the Planck-length and the Planck-time. A further more complex 

relation is set by the properties of space and the properties of the 

displacement group.  

When the smallest possible space step  

 

    √        

 

and the smallest possible coordinate time step  

 

     √       

 

are put into the Minkowski signature, 

 
                ⁄   

 

then the corresponding proper time step    is zero. 

The number of Planck-time steps equals the number of global progression 

steps. The number of Planck-length steps must always be equal to or 

lower than the number of Planck-time steps. A free photon never takes a 

non-zero    step. The number of its space steps always equals the number 

of its time steps.  

Any particle that does not travel with light speed skips some of its space 

steps. Any particle can take a space step in a direction that differs from 

the direction of a previous step. 

Relativity 
Wiki states: “One Planck-time is the time it would take a photon 

travelling at the speed of light to cross a distance equal to one Planck-

length. Theoretically, this is the smallest time measurement that will ever 

(1) 

(2) 

(3) 
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be possible, roughly       seconds. Within the framework of the laws of 

physics as we understand them today, for times less than one Planck-time 

apart, we can neither measure nor detect any change.” 

 

Nothing occurs in that period. It is as if universe does not exist in that 

period. Nature just steps over this period. The steps need not be exactly 

equal to the Planck units, but they have the same order of magnitude. In 

the model these steps are taken in synchrony. This follows from the fact 

that a separable Hilbert space can only represent a static status quo. It also 

holds for a Hilbert space that is extended with static fields. In the Hilbert 

book model dynamics is implemented via universe wide progression 

steps. A progression step occurs when an extended Hilbert space is 

followed by a subsequent extended Hilbert space.  

 

The origin of the existence of the space step follows from the inaccuracy 

of the coupling between the strand operator and the GPS operator. It 

shares this origin with the existence of physical fields. 

 

The Hilbert book model uses the concept that the state of the universe can 

be considered as a sequence of static status quos. With respect to 

Einstein’s special relativity this might at first sight seem an odd idea. This 

holds especially with respect to the relativity of simultaneity. However, as 

will be shown17, special relativity perfectly fits the Hilbert book model. 

 

The unit sphere of the Hilbert space is an affine space. It houses all unit 

length eigenvectors. This also holds for the eigenvectors of the position 

operator. This means that between two realizations of the Hilbert space 

the eigenvector that corresponds to the origin of position can be freely 

selected. Or with other words the origin of position can be selected freely.  

 

Differences between positions in subsequent members of the sequence of 

extended separable Hilbert spaces can be interpreted as displacements. 

                                                 
17 See “On the origin of physical dynamics; Dynamics; Relativity 
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The displacement is a coordinate transformation. For the properties of this 

transformation it does not matter where the displacement starts or in 

which direction it is taken. 

 

The same holds for displacements that concern sequence members that 

are located further apart. The corresponding displacements form a group. 

The displacement is a function of both the position and the sequence 

number. The displacement           can be interpreted as a coordinate 

transformation and can be described by a matrix.  

 

[
  

  
]  [
  
  
] [
 
 
] 

 

The matrix elements are interrelated. When the displacement concerns a 

uniform movement, the interrelations of the matrix elements become a 

function of the speed  . The group properties together with the 

isomorphism of space fix the interrelations. 

 

[
  

  
]    √     [

   
   

] [
 
 
] 

 

If   is positive, then there may be transformations with       which 

transform time into a spatial coordinate and vice versa. This is considered 

to be unphysical. The Hilbert book model also supports that vision. 

 

The condition k = 0 corresponds to a Galilean transformation 

 

[
  

  
]  [

  
   

] [
 
 
] 

 

The condition       corresponds to a Lorentz transformation. We can set 

      , where   is an invariant speed that corresponds to the maximum 

of  . 

 

(1) 

(2) 

(3) 

(4) 
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[
  

  
]    √       [       

   
] [
 
 
] 

 

The Lorentz transformation corresponds with the situation in which a 

maximum speed occurs.  

 

Since in each progression step photons step with a non-zero space step 

and both step sizes are fixed, the speed of the photon at microscopic scale 

is fixed. No other particle goes faster, so in the model a maximum speed 

occurs. With other words when sequence members at different sequence 

number are compared, then the corresponding displacements can be 

described by Lorentz transformations.  

 

Lorentz transformations introduce the phenomena that go together with 

relativity, such as length contraction, time dilatation and relativity of 

simultaneity that occur when two inertial reference frames are 

considered. 

 

    (            
 ) √        

 

The term        
  introduces time dilatation. If       then depending 

on   and     the time difference     is non-zero. 

 

These phenomena occur in the Hilbert book model when different 

members of the sequence of Hilbert spaces are compared. Usually the 

inertial frames are spread over a range of Hilbert book pages. 

Since the members of the sequence represent static status quos, the 

relativity of simultaneity restricts the selection of the inertial frames. Only 

one of the inertial frames can be situated completely in a single member of 

the sequence. In that case the other must be taken from a range of 

sequence elements. 

 

It means that when proper time is taken to be directly related with the 

progression parameter, thus when the corresponding inertial frame is 

(5) 
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fully located in a single sequence member, then coordinate time must 

differ from the progression parameter. 

Continuity equations 
All equations of motion are in fact continuity equations that treat the local 

information generation, annihilation and transfer. 

 

Total change within V = flow into V + production inside V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈   〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S, 

     is the velocity at which the charge density       enters volume V and 

   is the source density inside V.   stands for        .  

The combination of   and      is a quaternionic skew field      and can 

be seen as a probability amplitude distribution (QPAD). 

 
       

 

          can be seen as a probability density distribution (PDD). 

Depending on their sign selection, quaternions come in four sign flavors. 

In a QPAD the quaternion sign flavors do not mix. So, there are four 

QPAD sign flavors. They differ in one or more signs of their imaginary 

base vectors. 

 

                              

 

The field   is supposed to have the same sign flavor as the non-curved 

background coordinate system.  

(1) 

(2) 

(3) 

(3) 

(4) 



63 

 

These sign flavors can combine in coupled pairs. Ordered coupled pairs 

characterize elementary particles. A continuity equation describes the 

distribution of the sign flavor switch. 

 

The field      contains information on the distribution       of the 

considered charge density as well as on the current density     , which 

represents the transport of this charge density. 

 

Where           can be seen as a probability density of finding the center 

of charge at position  , the probability density distribution  ̃    ̃     can 

be seen as the probability density of finding the center of the 

corresponding wave package at location  .  ̃    is the Fourier transform 

of     . 

 

The two independent sign selections of quaternions lead to four different 

field sign flavors. In the equations below the field sign flavors    and    

can be any of               . The numbers indicate the number of 

imaginary base factors that differ with respect to the local coordinate 

system. In its most basic form the continuity equation that describes the 

dynamics of the charges of elementary particles is given by: 

 
         

 

For the antiparticle: 

 
            

 

  is the coupling factor. For some particles   is zero. The sign flavors 

           occur in three different forms that are indicated by the colors 

    and  . 

Elementary particles for which    equals         and   is non-zero are 

fermions. Other elementary particles are bosons. 

The above equations do not yet show the effect of interactions. Thus they 

describe free moving particles. 

(5) 

(6) 
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Lagrangian density 
The Hilbert book model prefers to derive the equations of motion of 

elementary particles from continuity equations.  

In physics the Lagrangian appears to be a very powerful instrument. With 

respect to the Hilbert book model (HBM) it appears to be not the proper 

entry point. A single Hilbert book page contains a complete description of 

the current static status quo. That means a complete description of the 

field configuration, which includes a description of the anchor points to 

the fields. These anchor points correspond to Hilbert vectors. When the 

fields are known, then also their Fourier transforms are known. This 

means that not only the probability distributions of positions are known, 

but also the probability distribution of momentums. Thus these data in 

fact comprise the complete description in terms of the Hamiltonian 

density rather than the description in terms of the Lagrangian density. 

Luckily enough the Hamiltonian density of the private field of each 

particle can be converted in a corresponding Lagrangian density, but 

curvature may hamper easy conversion. However, in general, locally the 

situation can be solved without much trouble. In this way the behaviour 

of a single private field in the environment constituted by all other private 

fields can be studied. 

 

The consequence of this structure is that the Hamiltonian of a private field 

  of a free elementary particle does not explicitly contain the parameter 

 18 and that this private field   becomes its time dependence by adding a 

phase: 

 
                      

 

 ̃       ̃              
 

      

                                                 
18 See: Eliahu Comay:, “Physical Consequences of Mathematical Principles“, (Progress in 

Physics, October 2009 Vol 4), http://www.tau.ac.il/~elicomay/MathPhys.pdf 

http://www.linkedin.com/redirect?url=http%3A%2F%2Fwww%2Etau%2Eac%2Eil%2F%7Eelicomay%2FMathPhys%2Epdf&urlhash=joqA&_t=tracking_disc
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 ̃    is the Fourier transform of     .  ̃    is the Fourier transform of 

    . 

 

The Hamilton density     (      ̃     ) in the Hilbert book model is 

then a function of        ̃        , while its representation 

  (      ̃   ) in the Hilbert space Ң is a function of           ̃   . This 

Hilbert space represent a single page of the book. 

 

The coupling factor 
The generalized equation of motion for elementary particles can be 

transformed to an equation that looks like the Lagrangian and that 

enables the computation of the coupling factor from the field  . 

 

         
 

                             |  |
 
 

 

                   
 

∫             
 

  ∫|  |
 
     

 

 

 

  is a real constant. 

Information detection 
All information that is transmitted by nature is carried by clouds of 

information carrying quanta (see figure 1).  

 

(5) 

(6) 

(7) 

(8) 
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Figure 1: Intensified low dose image of the moon 

 

The clouds themselves carry secondary information in their shape and 

their movement characteristics. It looks as if all quanta are generated by a 

series of Poisson processes. These facts become apparent when 

observations or measurements are done at very low dose rates [3]. The 

shape of the cloud is set by the corresponding QPAD’s. 

As indicated before, coherent states act as Poisson processes. The same 

holds for other QPAD’s that support creation and annihilation of 

substates. 

Rigged Hilbert space 
The rigged partner Ħ of a separable Hilbert space Ң is not a separable 

Hilbert space, but a Gelfand triplet. It is an ordered set          , where 

Ң is the Hilbert space used to generate   and   . The eigenspaces of 

normal operators in a Gelfand triplet need not be countable. They can be 

continuous spaces such as the full set of quaternions. The name of Hilbert 

is misused to identify the Gelfand triplet as a rigged Hilbert space. This 

paper uses the Gelfand triplet Ħ in order to provide a background GPS 

system and to couple the equivalent of the separate Hilbert space strand 

operator to the corresponding GPS operator. Both the equivalent strand 

operator and the GPS operator reside in the rigged Hilbert space Ħ. In 
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this way the granules of the chains that reside in separable Hilbert space 

get their position. Another use of the background GPS operator is the 

coupling of field values to a position value. For that purpose the field 

values must be attached to the corresponding eigenvectors in rigged 

Hilbert space Ħ.  

Discussion 

The Hilbert book model 
This model of physical reality does not contain singularities. Nor does it 

contain infinities. The only infinity it uses is the infinity of the dimension 

of the separable Hilbert space. 

The model is fundamentally granular. The only continuities that the 

extended Hilbert space uses are the continuity of the background 

coordinate system that it borrows from its rigged partner and the 

continuity of the shapes of the QPAD’s. 

Gravity and inertia 
In the Hilbert book model, the gravitation field is treated as a derived 

field. It has long range effects due to the fact that its charges (the local 

metric tensors that describe the local curvature) do not get compensated 

by opposite charges as happens with electric charges19. Prove is given by 

the existence of inertia, which can only be explained by analyzing the 

influence of the universe of particles on a local particle [3], [4]. Locally this 

influence causes an enormous potential  , which according to Sciama can 

be related to the gravitational constant  . Uniform movement of a particle 

does not raise other field activity than a field reconfiguration, but any 

acceleration of the particle goes together with an extra vector field [4]. 

                                                 
19 However Mendel Sachs describes a way to also include the curvature caused by EM 

fields into account. 
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Quantum clouds 
The notion of quantum cloud needs clarification. The quantum cloud that 

corresponds to the private field of an elementary particle only contains 

the current granules of that particle as information carrying quanta. A 

field that consists of a superposition of the private fields of a set of 

elementary particles corresponds to a quantum cloud that contains quanta 

that correspond to the current granules of these particles. Not only the 

quanta carry information. Also the shape of the cloud that contains the 

quanta contains interpretable information. 

When the cloud consists of emitted particles, then the process that 

controls the emission can be considered as a Poisson process. Upon 

detection an elementary particle is fully absorbed or it is converted into 

other particles from which at least one is absorbed. A detected particle 

was emitted by some body. During its travel it may have been reflected 

against or deflected by other bodies. The corresponding quantum clouds 

are affected correspondingly.  

 

A quantum cloud can gain and lose quanta. An emission generates 

quanta and the corresponding private fields, which then form the shape 

of the cloud. The quantum cloud that corresponds to a private field 

disappears with its last quantum. 

Testing theories 
You can falsify a theory when its conclusions according to a selected logic 

are not consistent with its presumptions. If you take classical logic as a 

criterion then QM is a wrong theory. If you take quantum logic as a 

criterion, then more of quantum physics will pass, but you will have 

difficulty in checking quantum field theory. Only after extending 

quantum logic, such that it includes fields, you can handle quantum fields 

as well. Still this equipment does only reach to test static situations. 
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Strand model 
The main difference between the Hilbert space approach that is taken here 

and Schiller’s approach lays in the interpretation of the source of the 

observable data. The principle fundamental postulate of Schiller’s strand 

model is that the crossing switches of strands deliver the observable data. 

In the Hilbert book model the switch of private field to another sign flavor 

of the field carries the observable data.  

Further, Schiller’s strand model derives fields from strand tangles. In the 

Hilbert approach the shape and the dynamics of the chains are controlled 

by fields.  

In both pictures the described concepts may form the basis of a consistent 

model. Both models claim to deliver the proper equations of movement. 
[2], [3]. The reason of this conformance lays in the similarity of the basic field 

constituents. 

Both Schiller’s strand model and the Hilbert book model take their claims 

still further. Both models claim that the model fully explains the standard 

model and that no further particles than those specified by the standard 

model exist. 

Apart from the difference with respect to the main postulate of strand 

model, an important difference exists between the approach presented in 

the Hilbert book model and Schiller’s strand model. Schiller presents the 

gravitation field as a separate field that is mainly determined by distant 

fluctuations of tangle tails. The Hilbert book model treats the gravitation 

field as a field that is derived from the superposition of all fields that are 

private fields of particles. 

Summary of scratches 
The following scratches have been treated here. 

1. Due to its link with traditional quantum logic quantum a model of 

physics must be based on separable Hilbert spaces, but quite often 

it is based on a non-separable Hilbert space. 
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2. Neither the separable Hilbert space nor the rigged Hilbert space 

can represent dynamics. They can only represent a static status 

quo. 

3. The separable Hilbert space cannot represent physical fields. It 

must be extended in order to cope with fields. In models based on 

a non-separable Hilbert space fields are often represented by 

operators. 

4. Nature is fundamentally granular. The usual GPS-like operators do 

not support granularity. 

5. It is impossible to represent a continuum GPS-like operator in 

separable Hilbert space. 

6. Gravitation field is usually seen as an independent field.  

7. Identifying elementary particle types via quantum field theory is a 

burden and not transparent. 

Summary of repairs 
The following repairs have been suggested. 

1. Base quantum physics on a book of Hilbert spaces, where each 

page is an extended infinite dimensional separable Hilbert space 

that represents the current static status quo. The extension is done 

by blurring a subset of the Hilbert vectors. 

2. Introduce a strand operator whose eigenspace consists of one 

dimensional chains of granules, where each granule gets its 

position from a background GPS coordinate system that is 

generated by a GPS operator that houses in rigged Hilbert space. 

a. One of the granules of each chain is special. It is blurred. A 

corresponding eigenvector gives it its position.  

b. The blur is a QPAD. It anchors on the granule and on the 

corresponding Hilbert vector.  

c. The granule corresponds to a ground state of the QPAD. 

3. During dynamic steps the QPAD keeps the chain smooth. 
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4. Elementary particles are anchored on the special granules of one or 

more chains. The corresponding QPAD’s together form the 

particle’s private field, which is also its wave function. 

5. Together the private fields form an overall covering field. 

6. The static covering field can be decomposed into a rotation free 

longitudinal part and a divergence free transverse part.  

a. This decomposition runs along curved lines. 

b. The curvature can be used to define a derived curvature 

field. 

c. The private curvature field of a particle enables the 

determination of the mass of the particle. 

7. Glancing through the pages of the book of Hilbert spaces reveals 

the dynamics of the system. Dynamics couples the static parts of 

the fields. 

8. The elementary particles that make up the standard model are 

identifiable by an ordered pair of quaternionic field sign flavors 

that together form the private field of the particle. 
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On the Origin of Physical Dynamics 
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On the Origin of Physical 
Dynamics 

Abstract 
When physics must be based on an axiomatic foundation then the law set 

of traditional quantum logic is a valid candidate. However, at first sight, 

these axioms do not treat physical fields and they do not treat dynamics. 

It only prescribes the static relations that exist between quantum logical 

propositions that treat static subjects. These subjects are considered to be 

physical subjects or their properties. Amongst these propositions 

statements exist that describe everything that can be said about the static 

condition of a given physical item. Such propositions represent that item.  

 

Traditional quantum logic is lattice isomorphic to the set of closed 

subspaces of an infinite dimensional separable Hilbert space Ң. That is 

why quantum mechanics is usually done with the aid of Hilbert space 

features.  

 

The representation of a physical field does not fit in a separable Hilbert 

subspace. Physical fields have a universe wide range and their 

presentation would cover all of a whole Hilbert space.  

 

Piron has shown that a candidate Hilbert space can be defined by using 

one of three division rings for the specification of the inner products. The 

choice comprises the real numbers, the complex numbers and the 

quaternions. The choice for the quaternions means that manipulations of 

the Hilbert space, such as Fourier transforms, in general use such multi-

dimensional numbers.  

 

According to Helmholtz decomposition theorem, the quaternionic Fourier 

transform can be divided in a complex longitudinal Fourier transform and 
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a transverse Fourier transform. For quaternionic functions this means that 

they can be locally split into a one-dimensional rotation free part and a 

two-dimensional divergence free part. This also holds for the static 

versions of vector fields. 

 

This e-paper indicates that traditional quantum logic can be expanded to 

extended quantum logic, which includes the influences of physical fields 

in the form of potential propositions that concern virtual items. Dynamic 

extended quantum logic is lattice isomorphic with the set of subspaces of 

a set of Hilbert spaces. The fields take care of the coherence between these 

Hilbert spaces. 

 

In this complicated way the axioms of traditional quantum logic form the 

constraints of the dynamics of quantum physics. When the dynamics of 

the universe would be put to a hold, then the axioms of extended 

quantum logic would describe all static constraints and the preconditions 

that are put to that universe. In the developed model, dynamics means 

that universe steps from one static status quo to the next. After the step 

the conditions are changed and the static constraints are reestablished. If 

we find the laws that control the steps, then we have found a complete 

axiomatic foundation of physics. Classical physics forms another 

constraint of dynamical quantum physics. This e-paper studies what 

happens during the step. 

 

Solutions are given for coping with the inherent countability of the 

eigenspaces of operators in the separable Hilbert space and for coping 

with the apparent graininess of some physical quantities. A classification 

of skew Hilbert fields will be generated that corresponds closely to the 

Maxwell fields. Further, this e-paper investigates what happens in the 

infinitesimal steps that nature takes in order to arrive at the next static 

status quo. In this way the origin of dynamics and the origin of special 

and general relativity may be revealed. 

The e-paper unifies particle states with physical fields and treats the 

equivalent of the gravitation field as a derived curvature field. 
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Introduction 
The aim of this paper is to build upon a fundament consisting of a 

minimal set of axioms and then derive as much as is possible from 

fundamental physics by using only purely mathematical methods. 

 

Observations and measurements at low dose rates learn that ALL 

information that we receive comes to us in small packages that we call 

quanta. The distribution of the probability of these information carrying 

quanta determines the picture that we get from reality. 

 

The development of quantum physics in its early days went violently. The 

consequence is that many of the fundaments of this theory are not 

constructed carefully. Fundamental repair is required. 

This e-paper repairs the fundaments without disturbing the building. All 

equations of motion keep their validity. 

The fundament 
This e-paper builds on the following postulates: 

 

1. The rock fundament of physics is an ordered sequence of instances 

of traditional quantum logic. 

2. All physical information is transferred in the form of clouds of 

information carrying quanta.  

3. The shape of this cloud is determined by a QPAD that generates a 

tendency to keep these quanta together. 

 

The first point suggests the name Hilbert book model for the model that 

is described in this paper. Each next page of the book describes a 

subsequent static status quo. 

Equations of motion 
All equations of motion are in fact continuity equations that treat the local 

information generation, annihilation and transfer. 
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Total change within V = flow into V + production inside V 

The logic of the model 
This e-paper is not about reality. It is about a model that could be a 

reflection of part of reality.  

 

When reasoning about physical reality, it is safe to follow the rules of 

classical logic. If one starts with a true statement and these rules are 

followed, then the path of reasoning stays with truth. Classical logic is 

based on about 25 axioms20. A significant part of these axioms defines the 

structure of the logic as a half-ordered set and some other axioms expand 

this to define the set as a mathematical lattice. The other axioms have 

more to do with the rules that must be followed in order to reason 

logically. May be it is a good starting point to use logic itself as a 

fundament of physics. 

 

In the first decades of the last century it was discovered that nature itself 

cheats with classical logic. Numerous observations of the behavior of 

small particles revealed that some of the interrelations between these 

observations are in conflict with classical logic. Birkhoff and von 

Neumann interpreted this conflict and came to the conclusion that nature 

obeys its own kind of logic. They named this logic quantum logic.  

 

The model that is discussed here builds its foundation on traditional 

quantum logic. This e-paper is not about quantum logic. It uses quantum 

logic because traditional quantum logic21 defines the static framework in 

which quantum dynamics takes place. Traditional quantum logic 

prescribes the potential relations that may exist between quantum logical 

propositions. Amongst these propositions statements exist that describe 

everything that can be said about the static condition of a given physical 

                                                 
20 Appendix: Quantum logic 
21 Appendix: History of quantum logic 



78 

 

item. Such propositions represent that item. These propositions form the 

top of a hierarchy of propositions that treat the current values of the 

properties of the considered item. It means that traditional quantum logic 

can represent physical items. 

 

Traditional quantum logic is lattice isomorphic to the set of closed 

subspaces of an infinite dimensional separable Hilbert space Ң. That is 

why quantum mechanics is usually done with the aid of Hilbert space 

features. The representation of a physical field does not fit in a Hilbert 

subspace. Physical fields have a universe wide territory and their 

presentation would cover all of a complete Hilbert space.  

 

Piron has shown that a candidate Hilbert space can be defined over one of 

three division rings. The choice comprises the real numbers, the complex 

numbers and the quaternions. The choice for the quaternions means that 

manipulations of the Hilbert space, such as the Fourier transforms, in 

general operate on these multi-dimensional numbers. In the model the 

representations of physical fields are Hilbert fields. Hilbert fields are 

blurred Hilbert distributions. Hilbert distributions are sets of Hilbert 

vectors that are eigenvectors of a special position operator that we will 

call strand operator. The blur is a local field excitation that is attached to 

the corresponding Hilbert vector. The blur is characterized by a 

continuous spread function. This spread function represents a QPAD. The 

territory of this function may reach all Hilbert vectors. In this way these 

fields not only cover the whole separable Hilbert space, but because these 

functions are smooth the Hilbert fields also become differentiable. 

 

The eigenspace of a quaternionic normal operator may consist of a 

number set that is everywhere dense in the quaternionic number space. 

For example it may consist out of all rational quaternions. Apart from 

Hilbert fields the much simpler Hilbert functions exist. Hilbert functions 

can be defined with the help of a normal operator. Using the eigenvalues 

and the inner products of the eigenvectors with a selected Hilbert vector 

that vector can be converted in a hyper complex function. Hilbert 
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functions can be interpreted as sampled versions of continuous functions. 

They are not differentiable.  

 

When the eigenspace of a normal operator is granular it can still cover the 

whole quaternionic number space, but it will have a lattice structure and 

this lattice will show preferred directions. These preferred directions are 

incompatible with the isotropy that characters the spaces that are found in 

nature.  

 

Another example is the eigenspace of the strand operator. It does not 

cover the whole quaternionic number space. It possesses inner horizons 

and outer horizons. Within the outer horizon and outside the inner 

horizons its eigenvalues can be distributed freely through the imaginary 

part of the quaternionic number space. However, these eigenvalues have 

a stochastic inaccuracy. 

 

All these operators can be used to construct Hilbert functions. The strand 

operator can be used to construct Hilbert fields. In order to represent the 

anchors of physical particles Hilbert fields seem to be better suited than 

Hilbert functions. By using suitable blurs the Hilbert fields are 

differentiable. The Hilbert functions are not differentiable. At the utmost 

they are quasi differentiable.  

 

As a consequence, the theory that is derived here is largely based on the 

properties of these multidimensional transforms and on the properties of 

Hilbert fields. Any Hilbert field can be split in a rotation free longitudinal 

part and a divergence free transverse part. The direction in which a field 

is rotation free may change with the values of the local coordinates. As 

long as the direction stays stationary, the corresponding coordinates can 

be considered as belonging to a complex plane that is embedded in a 

quaternionic space. Selection of another coordinate system gives a 

different topology of the field decomposition. 
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The blurs that constitute the Hilbert fields do not fit inside the realm of an 

infinite dimensional separable Hilbert space, but their values can be 

temporary attached to Hilbert vectors. The separable Hilbert space Ң can 

be embedded in a rigged Hilbert space Ħ. This Gelfand triple can be 

extended to a Hilbert sandwich that apart from the Gelfand triple 

consists of a GPS coordinate system and a covering field. The combination 

of GPS coordinate system and the covering field decomposes the static 

covering field into dubble cover. The decomposition defines a curvature. 

That curvature defines a derived field which is also part of the 

sandwich22. The sandwich consists of six layers and represents a static 

status quo. 

 

Fourier transforms can be defined in a separable Hilbert space, but there 

they expose sampling characteristics that do not occur in a corresponding 

rigged Hilbert space Ħ. Similarly the notions of differentiation and 

integration are easily implemented in a rigged Hilbert space Ħ, but do not 

fit in the corresponding separable Hilbert space Ң. Without the blurring 

trick, differentiation is impossible in the realm of a separable Hilbert 

space Ң. 

 

The set of closed subspaces of a rigged Hilbert space Ħ is no longer lattice 

isomorphic with the set of propositions in a traditional quantum logic 

system. We do not want to offer the isomorphism with quantum logic in 

order to achieve differentiability of functions. This differentiability is 

already introduced by the blurs that are attached to the Hilbert vectors. 

This approach delivers a cleaner model that becomes even better 

comprehensible when we interpret the blur as a QPAD. Further, nature 

has a fundamental granular character, which fits naturally to a separable 

Hilbert space. 

 

In a three dimensional vector space a Fourier transform of a vector field 

can locally be divided in a one-dimensional longitudinal, (locally) 

                                                 
22 In this way the sandwich starts to resemble a club sandwich. 
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complex Fourier transform and a two-dimensional transverse Fourier 

transform. The longitudinal transform works only on the longitudinal 

part of the field that is being transformed. The transverse transform 

works only on the transverse part of the field that is being transformed. 

This also applies to the case where this vector space is formed by the 

imaginary quaternions and the fields have quaternionic values. 

 

The division in a longitudinal part and a transverse part of a function or a 

field has only a local validity. It holds as long as the longitudinal direction is 

sufficiently (= within accepted inaccuracy) stationary. The split is the 

subject of the Helmholtz decomposition theorem. Multi-dimensional 

Dirac delta functions show the same decomposition as the multi-

dimensional Fourier transform. The splits lose their significance when the 

field gets too wild. 

 

The fact that this field categorization has only local validity and that it is 

related to an imaginary direction causes that the quaternionic Fourier 

transform must be considered to operate in a curved coordinate space. 

The differentiability of quaternionic functions and Hilbert fields also 

offers this categorization. Interestingly, Fourier transformation converts 

differentiation into multiplication with the canonical coordinate. 

 

For a given field this situation can be solved by using two coordinate 

systems. One in which the coordinates show a curvature of the field that 

is set by the longitudinal direction and one in which the field has no 

curvature. The field values stay the same, but the coordinates that act as 

parameters change. This concept can be extended to a covering field, 

which is the superposition of all Hilbert fields that exist in the Hilbert 

space. Using the coordinate system for which the covering field has no 

curvature the universe wide Fourier transform can be taken. However, if 

the field configuration changes, then the coordinate system that delivers 

the universe wide Fourier transform changes as well.  

 



82 

 

For a given field and a given coordinate system it is possible to define a 

decomposition related local curvature. That curvature can be used to 

define a derived field. We will call this partner field the curvature field of 

that combination.  

 

In a given coordinate system the fields can be categorized according to 

their symmetry properties. These categorizations must also cope with the 

curvature that is related to that coordinate system.  

 

In the described way, traditional quantum logic and the Helmholtz 

decomposition theorem together form a set of laws that define the 

relational static status quo that would exist in nature when dynamics 

could be put to a hold. This paper points out that traditional quantum 

logic can be expanded such that it includes the representation of static 

physical fields. 

 

The indifference of the properties of physical items for which picture is 

used, the Schrödinger picture or the Heisenberg picture23 indicates that 

time is not a property of physical items but instead it is a parameter that 

characterizes the progress of dynamics. This is the reason why dynamics 

can be included into the model by representing nature by a sequence of 

such extended quantum logics. The fields regulate the coherence between 

subsequent quantum logics. This also means that the model can include 

dynamics by representing nature by a sequence of Hilbert spaces. The 

blurs in the Hilbert fields regulate the coherence between subsequent 

Hilbert spaces. It means that the blurs are smooth functions of the 

progression step counter. The progression step counter is a global 

parameter! It differs from our common notion of time. The blur acts as a 

probability density distribution. When the parameter is a position 

coordinate, then the probability density specifies the chance that during 

the next change the current position changes to this new coordinate. The 

form of the probability density distribution is such, that this change is has 

                                                 
23 Dynamics: Schrödinger or Heisenberg picture 
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a tendency to be minimal. The probability density is the squared modulus 

of the hyper complex probability amplitude. This last value contributes to 

the local field value. 

 

As a consequence of these blur properties, the subsequent Hilbert spaces 

do not differ much. The same holds for the configuration of the fields in 

sub-sequent stages of the static status quo. In fact the fields can be seen as 

a storage place for the conditions that determine the relation between the 

past, the current and the future static status quo. 

 

In this view the fields represent relations between sets of potential 

propositions. These propositions are statements that say everything that 

can be said about the static condition of virtual items. The extension of the 

logic with blurs means that some of the propositions are not precise. 

These propositions possess a stochastic inaccuracy.  

 

The set of propositions in dynamic extended quantum logic is no longer 

isomorph with the set of closed subspaces of a single extended separable 

Hilbert space. It is isomorphic with the closed subspaces of a series of 

extended separable Hilbert spaces. One member of this set of Hilbert 

spaces is the currently actual Hilbert space. It contains the representatives 

of actual physical items. The other members are past or future Hilbert 

spaces. They contain the representations of non-actual physical items. 

 

Each past or future extended separable Hilbert space corresponds to an 

instance of a past or future (extended) quantum logic. These non-actual 

quantum logics represent potential replacements of the actual traditional 

quantum logic. A non-actual quantum logic differs from other non-actual 

quantum logics in the fact that their propositions have a different 

configuration in terms of their atomic predicates or in terms of their sub-

ordered propositions. In a similar sense they will differ from the actual 

quantum logic.  
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The replacement will be made between logics that have a great 

resemblance with each other and the values of the predicates within 

equivalent propositions will be the same or close to each other. In fact, 

each extended quantum logic contains the preconditions for the next 

extended quantum logic in the sequence. A replacement can be seen as a 

combined annihilation and creation. Annihilation must not be followed 

by creation and creation must not be preceded by annihilation. With other 

words annihilation and creation is done during progression steps. 

 

A redefiner, which steps from the actual Hilbert space to a future one, 

implements dynamics. The redefinition step exchanges the actual Hilbert 

space against a future Hilbert space whose selection is determined by the 

current extended Hilbert space. The previous actual Hilbert space 

becomes the nearest past Hilbert space. 

 

In order to be able to control the coherence between subsequent Hilbert 

spaces, the blurs that constitute the Hilbert fields act as probability 

density distributions (PDD’s). In fact, they are QPAD’s whose squared 

modulus is a PDD. These distributions have a form that minimizes change 

during the step from the current Hilbert space to its successor. As a 

consequence physical quantities do not become observable as continuous 

objects. Observables become available in the form of information carrying 

quanta that form the outcome of stochastic processes. The form of the 

clouds of information quanta is described by the QPAD’s that together 

form the Hilbert fields. 

 

Dynamics can be interpreted as a sequence of steps in which each step 

leads nature from the conditions of one static status quo to the conditions 

of the next static status quo. The laws that define the static status quo are 

fairly clear. During the steps several things happen. The laws that govern 

the dynamics are rather obscure. The steps couple the static ingredients 

into a dynamic mixture. For example, the step couples the longitudinal 

part of the field with its transverse part. The steps are taken universe 

wide. A redefiner with a universe wide domain controls these steps. The 
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step counter presents a universe-wide progression parameter. This 

parameter must not be confused with our common notion of time, but it 

cannot be denied that it has some relation with it.  

 

During the step particles move forced by their own momentum and by 

the surrounding covering field to their new position. As a consequence 

their private fields get redistributed in space. Thus the covering field and 

its derived partner the curvature field will change. This delivers the 

preconditions for the next step. These activities are all infinitesimal.  

 

Inertia represents the influence of the whole universe on the condition of 

a local physical item. In fact it is a bilateral relation. The distant particles 

together deliver the largest contribution. Only the curvature field takes 

part in inertia. The primary fields have charges that compensate each 

other’s universe wide contributions. Inertia shows that distant field 

sources do not interfere with uniform movement. However, due to 

inertia, acceleration goes together with an extra local field contribution. The 

words "goes together with" mean that no causal relation exists.  

 

Thus, acceleration of particles goes together with changes of the local 

curvature field. This causes a small change in the local metric. It is already 

indicated that uniform movement of particles causes a reconfiguration of 

the covering field. The local field influences the steps that are taken by the 

particles. This is all that happens during the infinitesimal progression 

step.  

 

We must now analyze what change of curvature, acceleration and field 

reconfiguration does during an infinitesimal progression step.  

 

Inertia24 can guide part of the way. Roughly, the driving force comes from 

the difference         between the current curvature field and the 

                                                 
24 Influence: Inertia 
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previous curvature field. It is contained in an equivalent of the stripped 

version of one of Maxwell's equations25.  

 

(1) 

           
  

  
 

 

  is the gravitational constant. 

During the progression step, the described infinitesimal adventure 

happens to all particles. 

Please notice the switch from covering field to curvature field. It is 

essential!  

Recapitulation and extrapolation 

In summary: Traditional quantum logic is usually defined via its structure 

as an orthomodular lattice. This logic only defines part of the static 

skeleton of the frame in which quantum physics operates. It does not state 

anything about physical fields. The primary fields are the consequence of 

the stochastic inaccurate coupling between the position operator in 

separable Hilbert space and the GPS-like operator in rigged Hilbert space. 

The Helmholtz/Hodge decomposition theorem defines the structure of 

static physical fields. In that way this theorem plays a similar role as 

traditional quantum logic. However, the decomposition has only local 

validity, where quantum logic has global validity. Extended quantum 

logic encompasses both law sets. These law sets do not specify or even 

touch the source of dynamics. Dynamics couples the static fields. The 

coupling not only applies to parts of the same field. It also concerns 

different fields. For example dynamics couples electrostatic fields with 

magnetostatic fields into dynamical electromagnetic fields. The 

gravitation field administrates the curvature of observable space that is 

caused by the decomposition properties of the primary fields. Thus, 

instead of a separate field the gravitation field can be considered as the 

                                                 
25 Dynamics: Unitary transform: Inertia and the progression step 
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result of the properties of the other fields. Inertia26 reveals the importance 

of the gravitation field. 

 

Both the propositions about a quantum physical system and physical 

fields are closely related. However, this relation only gets relevant when 

dynamics comes into play. Dynamics causes a continuing redefinition of 

the propositions. This converts the current static status quo into the next 

one. When one proposition is changed it interchanges its constituting 

atomic predicates with other predicates. The change can even involve the 

exchange of atomic predicates against atomic predicates that are of 

another type. It is also possible that the configuration of a complex system 

that consists of simpler components is altered.  

 

The static physical fields can be interpreted as storage of the 

preconditions for the next step. The physical fields are the representatives 

of the influences that go together with the sticky resistance of the set of 

propositions against the changes that occur due to the redefinitions of the 

propositions that describe physical items. This sticky resistance also 

occurs in propositions that are sub-ordered to other propositions. Inertia 

is a feature that shows this resistance explicitly. 

 

The propositions about quantum physical items can be represented by 

closed subspaces of a Hilbert space. The presence of dynamics means that 

the relations between these subspaces are not stationary. They change 

between subsequent Hilbert spaces. It is also possible to give the physical 

fields a “representation” in Hilbert space by attaching their anchor points 

to Hilbert vectors. However, it must be clear that quantum physical items 

and physical fields are not the same stuff. Physical fields cannot be 

represented by closed Hilbert subspaces. They cover the whole universe 

and as a consequence they cover the whole Hilbert space. However, the 

strength of individual fields may be concentrated around separate excited 

places that are represented by single Hilbert vectors or a small set of 

                                                 
26 Influence: Inertia 
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Hilbert vectors. Such private fields diminish with distance. Together the 

private fields form a covering field. For a given coordinate system that 

covering field has a partner curvature field that can be interpreted as 

gravitational field. 

 

The actual physical items are distributed in space and are surrounded by 

potentials that act as a kind of blur. This is why quantum physics has 

much in common with optics27. The superposition of the separate blurs 

characterizes the information transfer quality of the corresponding field. 

For each particle a separate blur characterizes the quantum generation 

properties of that particle. At not too short distances the electromagnetic 

fields have the same shape as gravitational field. Locally, the EM fields 

and the gravitation field are based on the same Hilbert distributions. As is 

indicated above, the gravitation field is a derived field. The main 

difference lays in the fact that the charges of electromagnetic fields have 

the same size but may have different sign such that they may partly 

compensate each other’s influence. The charge (mass) of the gravitational 

field is always positive, but it may differ in size. Another difference is that 

the gravitation field is the consequence of the decomposition properties of 

the other fields. Mass appears to be an expression of space curvature and 

on its turn this curvature is an expression of the rotation properties of the 

non-gravitational fields. The curvature fields that correspond with private 

fields do not compensate each other’s influence. The masses of all 

physical items work together in order to create the immense potential that 

causes inertia. 

GPS coordinates 

One of the most intriguing facts is that a GPS operator28 that resides in the 

separable Hilbert space Ң cannot be used to define the position of 

particles. Due to the granularity of its eigenspace it would immediately 

introduce unnatural preferred directions. In contrast its equivalent, the 

                                                 
27 Optics 
28 The Hilbert GPS 
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GPS operator that resides in rigged Hilbert space Ħ is very useful as a 

coordinate system for determining the location of field values. In this way 

it can be used to locate the field excitations that go together with particles. 

This continuous GPS operator cannot be used directly in order to locate 

the Hilbert vectors that represent particles. Thus there exists no GPS like 

operator that can be used to locate particles in Hilbert space. An 

alternative is formed by the strand operator29. The strand operator uses 

the continuous GPS operator as a background coordinate system. Its 

eigenspace depends on the configuration of the covering field. 

Test proposition 
It is an elucidating experience to try to implement a complicated quantum 

logical proposition in the representation of quantum logic in Hilbert 

space. In that way we may discover how dynamics emerges in this static 

skeleton. For that reason, we choose as an example a predicate with 

quantifiers rather than a clean proposition. 

 

The selected example proposition (♠) is  

 

“All items in universe influence each other’s position”.  

 

We will already give the final conclusion of this experiment here: A well-

ordered replacement of atomic predicates in an enveloping proposition 

appears to occur without extra field activity, but any deviation of a well 

ordered replacement causes an extra field activity in the form of a local 

influence of the complete set of all propositions.  

 

This explains the interaction between fields and physical items. A local 

deviation of the uniformity of the distribution of physical items can still 

cause a slight influence of neighboring items. At small distances the 

influences can be large. The influence of fields can be implemented in the 

                                                 
29 Hilbert spaces: Strand operator 
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separable Hilbert space. Via an action = reaction game the interaction 

between fields and Hilbert subspaces form the source of dynamics. 

 

What further happens during the implementation of our example 

proposition (♠) is completely governed by mathematics. Thus, for our 

example no further extension of quantum logic is needed to transform it 

into a useful version of dynamic quantum logic. However, nothing is said 

yet of what occurs during the infinitesimal progression steps. During this 

step one static status quo is converted to the next static status quo. This 

will be the main subject of this e-paper. 

Numbers 
As number spaces we use the 2n-ons of Warren Smith rather than the 

hyper complex numbers based on the Cayley-Dickson construction. Up to 

the octonions the corresponding number spaces are similar. (See 

http://www.math.temple.edu/~wds/homepage/nce2.pdf30). For higher n 

the 2n-ons behave in a nicer way. They keep more of their number 

characteristics. We use the quaternions (n=2) as the number space that is 

used to define the inner product of the Hilbert space. However, we 

tolerate operators to have eigenvalues that are higher dimensional 2n-ons. 

We also use 2n-ons in order to set the values of physical fields. 

 

When we use these numbers as eigenvalues or as field values, then we 

apply their number characteristics as well as their storage capacity. A 2n-

on contains 2n real numbers. We also tolerate that eigenvalues of 

operators and values of fields support multiple sign selections, such as the 

inversion of the real axis and the handedness (chirality) of external vector 

products for their eigenvalues. 2n-ons contain n independent imaginary 

base numbers. Each new independent base number introduces a new sign 

selection. The sign selections translate into 2n different skew fields. 

 

                                                 
30 Appendix: 2^n-on construction 

http://www.math.temple.edu/~wds/homepage/nce2.pdf
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With n > m, the 2n-ons act like 2m-ons in their lower m dimensions. 

Further, the 2n-ons contain several subspaces of 2m-ons. We may use 

smoothly curved manifolds that are crossed by curves which form trails 

of 2n-on numbers and that are locally touched by tangent spaces that can 

be interpreted as 2n-on number spaces. 

 

When the members of a set 2n-ons approach zero, then in their mutual 

arithmetic actions they are getting more and more the characters of lower 

dimensional 2m-ons. In the same sense, when two 2n-ons approach each 

other, their mutual arithmetic actions are getting more and more the 

characteristics the arithmetic of lower dimensional 2m-ons. 

 

The implementation of the proposition (♠) leads to a story of manipulators 

and manipulated observables. The number waltz feature (c=ab/a) of the 2n-

ons that becomes a noticeable effect for n>1 seems to play a significant 

role in our model. If this model applies to quantum physics, then it may 

reveal why special relativity exists and brings clearness in the different 

notions of time that exist in quantum physics. The curvature introduced 

by the spatial variance of what the longitudinal direction is reveals how 

the mentioned influences can be implemented as component fields which 

are defined on a curved coordinate system. This holds for gravitational 

fields as well as for the other fields such as electromagnetic fields. 

 

Implementing quantum physics in a complex Hilbert space hides these 

interesting features and diminishes the insight that higher dimensional 2n-

ons can reveal. 

Prospect 
The article shows that there is a need to extend traditional quantum logic 

such that it not only includes the representations of fields but also 

includes axioms, which specify the dynamic underpinning of quantum 

physics. 

 



92 

 

In the course of this project several fundamental aspects of physics get 

uncovered. 

Comments 

Version 5 

Version 5 builds on the content of previous versions. This new version 

stands on itself, but it reorganizes and extends the contents of previous 

versions. One reason is that the text in some paragraphs relies on the text 

of a series of other paragraphs, so that it is impossible to configure the 

paragraphs in a streaming order without repeating much of the content. 

Here we may take the solution to refer to future paragraphs and add a 

“back to XXX” reference after the target text. 

Project 

This project is far from finished. Most parts I have rewritten several times. 

Some ingredients are already included before they are finalized and 

before they are put at the proper position in the context. I try to make the 

whole paper consistent with its parts and I try to keep my goal to include 

nothing that did not follow directly or indirectly from the axioms of 

traditional quantum logic. I only tolerate mathematics as a valid tool and 

ingredient. I will not use or accept intuition as a reason to include a 

subject in the text. An exception might be the treatise of horizons. 

However, I will use indications retrieved from previous experiences. I 

will also not tolerate the usefulness of a concept or its acceptance in the 

physical community as a valid argument to include that concept. If you 

encounter places where I did not succeed in that goal, then you may 

conclude that I still have to work on that section. When the paper gets its 

final version, then no deviations of my goal should result. However, 

partly due to my progressed age (~70), I might never reach that condition. 

Then, you reader might take over and finish the job. But first think of the 

possibility that we will succeed. What does it mean that all of fundamental 

physics is based on mathematics and on the ~25 axioms of traditional quantum 

logic?! Well, another input is the observation that ALL information about nature 
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arrives in the form of clouds of information carrying quanta. The cloud as a whole 

carries secondary information. 

References 

This e-paper contains no lengthy reference list. References to other 

documents are usually presented inline and are mostly put in the form of 

hyperlinks. The appendix and a sometimes referenced toolkit31 contains a 

collection of stuff that otherwise must be grasped from internet. As is 

done in this article, much of the contents of the toolkit are directly or 

indirectly obtained from Wikipedia or from publicly accessible 

publications. In that case the text is adapted to the requirements of the 

papers that use this information. Most texts on internet are based on 

complex Hilbert spaces, so where necessary I have converted these texts 

into quaternionic versions. 

Equation editor 

This paper is prepared with MS Word 2010. This word processor version 

contains a rather capable equation editor and a large series of fonts 

including Cambria Math. However, the equation editor does not 

cooperate with the paragraph indexing in order to automatically 

enumerate the out of line equations. For that reason equations are 

enumerated manually and relative to the current paragraph header. 

References inside that paragraph just use the equation number. 

References from outside of the paragraph are hyperlinks that refer to the 

paragraph header. The hyperlink text may then include the equation 

number. In that case, you must move manually to the referred equation 

inside the target paragraph. 

EM fields 

This paper draws significantly from the book on electromagnetic field 

theory of Bo Thidé. That book has a different goal and uses different 

premises. The book does not use the quaternionic field approach as is 

done here, but its contents easily translate to quaternions. Further its 

                                                 
31 http://www.crypts-of-physics.eu/Toolkit.pdf  

file:///C:/web/NewWebSite/English/Science/Toolkit.pdf
http://www.crypts-of-physics.eu/Toolkit.pdf
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formulation is very precise, it links formulas to physical concepts and 

most of all it is online: 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf32. 

Strands 

I took some ideas from the research of Christoph Schiller as it is presented 

in his online book http://www.motionmountain.net/research.html . 

If the strand model is a valid approach to a model of physical reality and 

if the Hilbert book model that is presented here is also a valid approach, 

then strands have essential correspondences with the chains in the 

eigenspace of the strand operator of the Hilbert book model. At least the 

basic constituents of fields correspond in both models. 

Notation note  

This paper uses {} in order to indicate a set or a function.  

Depending on the context {|fs>}s means an ordered set of vectors |fs> 

where s is the ordering index. In other contexts {|fs>}s means a vector 

function |f(s)> where s is the (discrete or quaternionic) parameter. 

Continuous functions are presented in the normal way. 

f({qj}j) is a function f(q1, q2, q3, q4,… qn,) of the set of parameters ({qj}j, where 

j = 1, 2, …, n. The index constraint n might be infinity. Nature itself is 

finite, however it lives in a model that has an infinite scope. 

 

The appendix and the toolkit contain information about other notation 

and naming conventions that are used in this paper.  

 

We use the symbols  ̌       for operators whose eigenspace is a 

coordinate system that is curved with respect to the eigenspace of the 

respective idealized operators  ̌ and  . 

  

                                                 
32 Hilbert field equations 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
http://www.motionmountain.net/research.html
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Acquired indications 
Several indications stimulated the development of the theory that is 

presented in this paper. They are listed in this section. 

Studying physics 
When I was studying physics I was triggered by two facts that have 

significant influence on my current insights. 

Classical versus quantum physics 

After finishing the semesters that treated classical physics I started taking 

lessons in quantum mechanics and I was immediately amazed by the 

large difference in the way that classical mechanics was handled and the 

way that quantum mechanics was done. Questioning the teachers did not 

bring much relief. Their explanation was that the difference is due to the 

superposition principle. Investigating this reply reveals quickly that this is 

an alternative description of the different way of working, but no 

explanation. So, I dived into the library and into scientific bookshops until 

I finally found a booklet from P. Mittelstaedt: (Philosophische Probleme der 

modernen Physik, BI Hochschultaschenbücher, Band 50, 1963) that 

contained a chapter on quantum logic. I concluded that this produced the 

answer that I was looking for. Small particles obey a kind of logic that 

differs from classical logic. As a result their dynamic behavior differs from 

the behavior of larger objects. I searched further and encountered papers 

from Garret Birkhoff and John von Neumann that explained the 

correspondence between quantum logic and Hilbert spaces. In those years 

C. Piron wrote his papers that finalized my insight in this subject, but first 

I must explain the other fact that triggered me. 

The rediscovery of quaternions  

Quantum physics appeared to be done in the realm of Hilbert spaces. 

Operators in those spaces delivered the eigenvalues that played the role 

of values of observable quantities.  

I had problems with the fact that according to the in those days 

commonly accepted theory the operators, which deliver observable values 
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as their eigenvalues or as their expectation values, had to be self-adjoint 

and as a consequence these operators could only deliver real valued 

eigenvalues. Nature has a clear 3+1 dimensional structure and there was 

no logical indication in the quantum theory that was lectured in those 

days that explained why four observable values must cling together. I 

started searching for a number system that could deliver this extra 

connectivity and I quickly discovered a number system with 3+1 

dimensions that supported addition, multiplication and division. It took 

me more time to discover that this number system was already 

discovered more than a century before by William Rowan Hamilton33 

when he was walking with his wife over a bridge in Dublin. He was so 

glad about his discovery that he carved the corresponding formula into 

the sidewall of the bridge. The inscription has faded away, but it is now 

molded in bronze and fixed to the same wall. When an assistant professor 

told me the story I started to read papers on quaternions and discovered 

the work of Constantin Piron. 

Birkhoff and von Neumann already discovered that the set of 

propositions in a traditional quantum logic system is lattice isomorphic 

with the set of closed subspaces of an infinite dimensional separable 

Hilbert space Ң. Piron proved that the inner product of this Hilbert space 

must be specified with members of a division ring. There are only three 

suitable division rings: the real numbers, the complex numbers and the 

quaternions. I went for the widest choice and started studying 

quaternionic Hilbert spaces. 

Representation restriction 
After discovering that traditional quantum logic can be represented inside 

an infinite dimensional separable Hilbert space, it is a disappointment to 

discover that this presentation does not cover physical fields and does not 

cover dynamics. 

                                                 
33 http://nl.wikipedia.org/wiki/William_Rowan_Hamilton  

http://nl.wikipedia.org/wiki/William_Rowan_Hamilton
http://nl.wikipedia.org/wiki/William_Rowan_Hamilton
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Extended quantum logic 

However, it appears that it is possible to expand traditional quantum 

logic in a way that corresponds to adding blurs to a subset of the Hilbert 

vectors. The blurred subsets may represent the anchor points of particles. 

In this way the superposition of the blurs may represent the physical 

fields. This leads directly to the existence of Maxwell-like fields in the 

realm of such an extended Hilbert space. This also leads to an extended 

quantum logic that covers physical fields. 

Dynamic quantum logic 

Dynamics can be implemented by representing dynamic quantum logic as 

a sequence of extended traditional quantum logics that each represents a 

static status quo. This dynamic stepping can be detailed further. See 

Progression step details34. With respect to the Hilbert space the dynamic 

model uses a sequence of extended Hilbert spaces. It can be compared to a 

book, where each page represents a static status quo. 

Curved space 

When quaternions are taken as the division ring, then Fourier transforms 

become quaternionic Fourier transforms. The ideal Euclidean formulation 

of the multi-dimensional Fourier transform cannot cope with a variable 

direction in which the Fourier analyzed function or field is rotation free. 

This can be circumvented by converting the parameter domain of the field 

by a coordinate transformation such that the resulting field has a 

stationary direction in which it is rotation free. This corresponds with 

accepting the existence of a curved coordinate space. This curved space is 

subject of general relativity. With other words, extended quantum logic 

supports general relativity. 

Intensified imaging 
After finishing my study I started my career in the development 

laboratory for high-tech electronic appliances of a big electronics 

company. My task consisted of the analysis and measurement of the 

                                                 
34 Acquired indications: Progression step details  
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visual trajectory, starting from the radiation source and ending after 

interpretation of the image in the brain of the observer. At those times 

(~1975) this was fundamental research, because both the measuring 

methods and the modeling methodology in this area were still in their 

childhood. The target products for the laboratory were night vision 

devices and X-ray image intensifiers.  

Intensified imaging is required at low radiation dose rates and in 

situations where the radiation detection capability of the human eye is 

unsuitable. This occurs with starlight scene imaging and with X-ray 

shadow imaging of patients. The low dose rate is necessary due to the fact 

that no active scene lightning can be supplied or due to the fact that 

hazardous gamma ray effects must be avoided.  

When the snowing image produced by image intensifying equipment is 

observed, then it becomes immediately clear that this image is built up 

from a large number of separate spots that together form a rather noisy 

picture of the object. The impression is that clouds of quanta are detected 

rather than waves of radiation. 

The research not only concerned perception experiments and 

measurement. We also had to devise the standards for the measurements 

as well. So we took part in the establishment of develop worldwide 

standards for the specification and measurement of the Optical Transfer 

Function (OTF) and its modulus the MTF. We also took part in the 

committees that created the standards for the Detective Quantum 

Efficiency (DQE). 

The fact that these standards were not only required but were also 

successful is in itself very astonishing. We needed these standards 

because we could model the visual trajectory as a chain of which the first 

elements consisted of a set of Poisson generators. The generators are 

characterized with their efficiency and a spatial, angular and chromatic 

distribution.  
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Next in the chain are attenuating binomial processes. Statistically a blur 

can also be considered as a binomial process. The information is spread 

over a larger area. A Poisson process can be combined with a subsequent 

binomial process into a generalized Poisson process that has a lower 

efficiency. 

The chain also contains light lenses and particle lenses. Further, the 

equipment aided chain contains detection surfaces that convert radiation 

quanta into electrons or electrons into radiation. This chain might also 

contain scintillation layers that convert high energy X-ray quanta in large 

series of low energy light quanta. It might contain fiber optic plates that 

just transport images, usually from a curved to a flat surface. It might 

contain channel plates that convert single electrons into clouds that 

contain about hundred thousand electrons. It might contain image 

receivers that convert the image into an electric signal or into a 

photographic plate.  

The equipment aided chain may and the unaided chain will also contain 

the eye of a human observer. Intensified images are detected by the cones 

in the fovea. At very low light levels the adapted eye detects the images 

via the rods in the fovea. Rods have a much lower acuity than cones. 

Therefore they have a much longer integration time. In general, measures 

that reduce noise have both positive and negative effects on the 

information content of the signal. There is an optimum condition. My task 

was to find that condition. 

After the detection in the fovea the received signal is handled by a large 

series of preprocessors that act in parallel as well as in sequence. The 

preprocessors associate the signals that are received by receptors that lay 

in each other’s neighborhood. The association tests a detail pattern that is 

typical for the considered preprocessor. The associated signal is only 

passed further when its signal to noise ratio surpasses a given boundary 

level. In this way the higher regions of the information processing are not 

disturbed by unnecessary noise.  
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All preprocessors work in this way as noise filtering decision centers. The 

association results in a categorization of the encoded image. The signal 

that reaches the folded fourth layer of the visual cortex represents the 

completely coded version of the received image. In the human brain, a 

folded surface of about four square millimeters is devoted to each image 

receptor in the fovea. This code is interpreted further in the brain. As 

early as possible the filtering process stops noise and details of the image 

that do not carry useful information from proceeding further in the chain. 

Due to this design, already the unaided brain-eye combination is well 

suited to perceive and interpret images in a very large dynamic range of 

circumstances. Apart from the fact that the visual channel can adapt from 

somewhat above starlight conditions until bright daylight conditions, the 

visual trajectory appears to be optimized for handling signals that enter 

the eye in the form of clouds of quanta that are generated by Poisson 

processes. 

All vertebrate visual trajectories work according to the sketched 

principles. Over billions of years evolution has exploited the fact that 

information that comes to living species is generated by Poisson 

processes. The visual trajectory of vertebrates is optimized for handling 

this information for the benefit of the survival of the owner of this 

channel. See: http://www.crypts-of-physics.eu/Howthebrainworks.pdf35 . 

This fact is a strong indication that all visual information comes to us in 

the form of clouds of quanta. When looking at low dose rates through an 

intensified viewer, it becomes clear that this assumption is valid. The 

perceived noisy image is built from separate dots that represent the 

detected quanta. No radiation wave is visible. What you see is just a 

streaming cloud of quanta. 

The fact that visual information is generated by Poisson processes 

indicates a more general feature of physics. ALL information that is 

                                                 
35 Part three: How the brain works 

http://www.crypts-of-physics.eu/Howthebrainworks.pdf
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transferred by electromagnetic radiation can be considered to be 

generated by Poisson processes. This becomes apparent when 

measurements are done at very low dose rates. In the static model the 

Poisson processes represent a lateral distribution. In addition, taken over 

a sequence of Hilbert spaces the Poisson processes represent a temporal 

distribution. 

Granular GPS 
In separable Hilbert space a normal operator has a countable eigenspace. 

This allows to the usage of the rational quaternions as the eigenspace of a 

normal operator. However, nature appears to support a minimum for the 

distance between two positions. This renders a position related operator 

granular. In separable Hilbert space Ң the granularity of the eigenspace of 

a GPS-like coordinate operator presents problems with the fact that a 

dense packaging of the granules generates unrealistic preferred 

directions. Its non-granular equivalent in the corresponding rigged 

Hilbert space Ħ does not suffer this restriction. It can be used as 

coordinate system for fields, but it cannot be used to locate particles 

inside the separable Hilbert space Ң. Inside the separable Hilbert space 

the fields are attached via anchor points to a subset of the Hilbert vectors 

and all Hilbert vectors touch their values. 

Progression step details 
After the former indications the theory reaches the stage that it becomes 

sensible that the model of nature, which takes its foundation on quantum 

logic, steps from one static status quo to the next. It dawns that this is the 

way that dynamics is implemented. What happens during these steps is 

still mysterious. The Hilbert space itself only suggests a Euclidean 

signature of observable space time. However, Einstein and others proved 

that observable spacetime has a Minkowski signature. This discrepancy 

has its origin in the group properties of displacements. For uniform 

movements this leads to the Lorentz displacements group. An early 

conclusion is that coordinate time does not play the role of the fourth 
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dimension in the quaternionic eigenspace of a spacetime-like operator. It 

also differs from the role of the counter of the progression steps.  

 

Both inertia and Feynman’s approach of the path integral may guide what 

happens during an infinitesimal dynamical step36. 

Release and removal of quanta 

During the step interactions take place and particles are emitted or 

absorbed. The information is carried by clouds of quanta. The quanta 

carry the information that they collect during the dynamical step from 

GPS and GMS related data.  

An indication for this fact houses in the structure of the creation and 

annihilation operators. These operators consist of a part that relates 

directly to the GPS operator and a part that directly relates to the GMS 

operator. 

Fields and QPAD’s 

Some subsets of Hilbert vectors represent elementary particles. It means 

that these vectors are blurred. The blur is a QPAD whose form is typical 

for the elementary particle type. Elementary particles combine to form 

more complex particles. 

The superposition of all QPAD’s that correspond to the separate particles 

forms the covering field. 

A repositioning of a particle means a reconfiguration of the covering field 

and vice versa. 

A detailed list of indications and considerations 
1. All information comes to us in the form of clouds of quanta. 

2. These clouds get their shape via a combination of QPAD’s. 

3. Each type of elementary particle is characterized by a set of Hilbert 

vectors and a particular kind of QPAD. 

                                                 
36 Dynamics: Unitary transform: Infinitesimal dynamical step 



103 

 

4. The information contained in the quanta and in the cloud is the 

only information that becomes observable. 

5. This information consists of the information that is carried by the 

separate quanta and by the probability distribution that describes 

the cloud. 

6. Each quantum in the cloud carries a set of information data. 

7. This set contains a 3D position, a 3D momentum and chirality 

qualifiers. 

8. The information that is carried by the quanta becomes available via 

an interaction process. 

9. The information is measured in Planck units, eventually related via 

physical constants, such as the speed of light. 

10. The QPAD  that characterizes a particle becomes part of the field 

that exists in the surroundings of the particle. 

11. Physical fields consist from the superposition of the QPAD’s of the 

separate particles. 

12. Curvature and torsion of the path of the particle are secondary 

characteristics, which are introduced via the probability 

distributions that make up the field that exists in the direct 

environment of the particle. 

13. In contrast to torsion, curvature appears to be linked with gravity. 

The photon path has a helix structure. The photon has no mass. 

14. Curvature in the path of a particle is caused by the local rotation 

that exists in the surrounding field(s). 

15. The rotation properties of the field determine the local 

decomposition of the static field. 

16. This local decomposition determines a curvature of observable 

space. 
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17. On its turn this local curvature specifies a metric and the local 

metric specifies a curvature field. 

18. The curvature field has all the characteristics of the gravitation 

field. 

19. The generation of a given kind of quantum has a typical 

probability. 

20. There exist anti-quanta. The generation of an anti-quantum is 

equivalent to the annihilation of the corresponding quantum. 

21. Creation and annihilation operators have QPAD’s as their 

eigenfunctions. 

22. In their simplest form these probability distributions are Poisson 

distributions. 

23. The generation of shot noise is characterized by Poisson 

distributions. 

24. At high dose rates the Poisson distributions become Gaussian 

(normal) distributions. 

25. For more complicated configurations the QPAD must be 

considered rather than its squared modulus: the probability 

density distribution (PDD). 

26. Bosons are characterized by QPAD’s that remain invariant under a 

rotation of 2π. 

27. The QPAD of a two boson system is invariant under perturbation 

of the bosons. 

28. The creation and annihilation operators of bosons are characterized 

by a non-zero commutator. 

29. Photons form the simplest boson type. Their paths have a helix 

form. 

30. The probability distribution of the corresponding quanta resembles 

a Poisson distribution. 
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31. Fermions are characterized by QPAD’s that change sign under a 

rotation of 2π. 

32. The QPAD of a two or more fermion system changes sign under 

perturbation of the fermions. 

33. With each fermion type an anti-type exists. 

34. A quaternionic QPAD can also contain chirality information. 

35. When chirality is taken into account then a QPAD must be used 

rather than a PDD. 

36. Electric charge is related to the chirality properties of the 

corresponding particle. 

37. The creation and annihilation operators of fermions are 

characterized by a non-zero anti-commutator. 

38. Creation and annihilation operators can be split in a part that 

resides in configuration space and a part that resides in Fourier 

space. 

39. A quant can be emitted (created), absorbed (annihilated) and it can 

be virtual, which means that it is annihilated shortly after its 

creation. 

40. Non-actual quanta belong to previous or future events. 

41. Only actual quanta deliver observable information. 

42. Emitted and absorbed actual quanta belong to the current version 

of events. 

43. During each dynamical step information is collected both from 

configuration space related sources and from momentum space 

related sources. 

44. The part of the collected information that resides in configuration 

space delivers the 3D position information to the 

emitted/absorbed/virtual quant. 
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45. The part of the collected information that resides in Fourier space 

delivers the 3D momentum information to the 

emitted/absorbed/virtual quant. 

46. The sum of an even function and its Fourier transform is invariant 

under Fourier transformation. 

47. The difference between an odd function and its Fourier transform 

is invariant under Fourier transformation. 

48. Apart from a scale factor, the functions that characterize linear and 

spherical harmonics are invariant under Fourier transformation.  

a. The scale factor is 1, i, -1 or –i. 

49. The harmonic functions are also related to creation and 

annihilation operators. 

50. The harmonic functions contain a factor that equals a Gaussian 

probability distribution. 

51. Strand model 

a. Any knot can be represented topologically by equations in 

Cartesian coordinates       of the form:          

           , where     ,      and      are Fourier series 

with finitely many terms. 

b. Only in 3D space knots cannot all be unknotted. 

c. There exist three basic types of elementary particles that can 

be distinguished via the number of strands37 / Hilbert 

vectors involved. These basic types are the bosons, the 

quarks and the leptons. 

d. The bosons can be distinguished in four categories:  

i. The photons have a helix form and no chirality. They 

have no mass and are involved in EM interaction. 

                                                 
37 Strands 
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ii. the    bosons have a knotted form (overhand knot) 

and possess chirality. They have mass and are 

involved in weak interaction.  

iii. the Z bosons have a knotted form (figure eight knot) 

and no chirality. They have mass and are involved in 

weak interaction. 

iv. The gluons have rectangle loop shape (∝) and no 

electric, but color charge. They have no mass and are 

involved in strong interaction. 

e. The quarks and the leptons can be distinguished in three 

generations. 

f. The particles are distinguished via the QPAD of the 

corresponding quanta and the kind of information that is 

carried by these quanta. 

g. There exist three basic forms of interaction that are 

distinguished via the number of strands/Hilbert vectors that 

are involved in the interaction event. 

h. These basic forms of interaction can be related to 

Reidemeister moves. 

52. Particles become observable via their interactions, thus via the 

quanta that are generated due to these interactions. 

53. All motion observed in nature minimizes action. 

54. Uniform motion preferably occurs via a geodesic and obeys the 

geodesic equation. 

55. The visual trajectory of vertebrates is devised in order to cope with 

a huge dynamical range of light conditions ranging from starlight 

conditions up to bright daylight conditions 

56. Over billions of years, evolution has exploited the fact that 

information that comes to living species is generated by Poisson 

processes. The visual trajectory of vertebrates is optimized for 
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handling this information for the survival of the owner of this 

channel.  

57. The Banach–Tarski theorem states that a spherical surface can be split in 

five pieces that can form two spheres of the same volume. The statement 

does not hold in the eigenspace of a coordinate operator that resides in 

separable Hilbert space. 

58. In separable Hilbert space, at least one coordinate operator has lattice 

sampling properties. Its eigenspace shows preferred directions. 

59. At the lowest scale it is not clear how the granules of an eigenspace of a 

Hilbert position operator are geometrically arranged. On a larger scale 

they appear to be influenced by fields. 

60. The geometric sampling of normal operators between subsequent Hilbert 

spaces may differ. 

61. Particles can be considered as sources and drains of information carrying 

quanta. 

62. These sources and drains play their role in a continuity equation that treats 

information carried by quanta. 

63. The concept of measurement has no significance at Planck scales. 

The indications and considerations that are treated in this chapter will 

steer the development of the theory that is subject of this e-paper.  

First conclusion 
The standard model can be retrieved via categorization of the particle 

types and their interactions. This comes down to categorizing QPAD’s 

and categorization of information packages that are carried by generated 

quanta. 
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Logic 

Logics 
Quantum logic differs from classical logic in one of its axioms. The set of 

propositions in classical logic is isomorphic with the set of Venn 

diagrams38. The set of propositions of traditional quantum logic39 is far 

more complex. This significant difference is due to the weakening of just a 

single one of the set of more than 25 axioms. It is lattice isomorphic with 

the set of closed subspaces of an infinite dimensional separable Hilbert 

space40 Ң. The isomorphism means that quantum logical propositions can 

be represented by closed subspaces of a Hilbert space. The inner products 

of that Hilbert space can be defined by using numbers of a 2n-on number 

space. Taking n>2 for that purpose raises numeric problems with the 

closure of the subspaces. Traditional quantum logic does not include any 

axioms that treat dynamics and it does not treat the influences of physical 

fields. It only specifies stationary relations that are possible between 

physical items and their properties.  

Example proposition 
In order to discover the emergence of dynamics we will implement a 

quantum logical proposition in Hilbert space and test its truthfulness. We 

will introduce in this example proposition physical fields as well as 

dynamics. 

 

The example proposition(♠) is: 

All items in universe influence each other’s position. (♠) 

 

It can be answered with either yes or no. And, if we succeed, it can be 

implemented in Hilbert space. So, in that case it is a valid quantum logical 

proposition. 

                                                 
38 http://en.wikipedia.org/wiki/Venn_Diagram  
39 Appendix: Quantum logic 
40 Appendix: The separable Hilbert space 

http://en.wikipedia.org/wiki/Venn_Diagram
http://en.wikipedia.org/wiki/Venn_Diagram
http://en.wikipedia.org/wiki/Venn_Diagram
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Proving ‘yes’ is cumbersome, but the ‘no’ is hardly less difficult. It 

requires finding an item of which the position is not influenced by at least 

one of the other items. For this purpose it is necessary to implement 

notions of items, the universe, influences and position in Hilbert space. 

 

The statement includes quantifiers (position) and dynamic operational 

elements (influence). The set of axioms of traditional quantum logic does 

not treat dynamic operational elements. At least it does not do that in a 

realistic way. As we will see, the influence of the universe of propositions 

(items) will put particular restrictions to the extension of quantum logic 

into the realm of an extended dynamic logic. This restriction is manifested 

in the occurrence of physical fields41 and inertia42.  

 

Translated in physical terms inertia means that in contrast to a uniform 

movement, the acceleration of an item will go together with the action of a 

physical field. Notice that we use the words “goes together with” instead of 

“generates” or “causes”.  

 

Translated in logical terms a conclusion of the analysis of inertia runs:  

“During a redefinition of a proposition the exchange of atomic predicates 

in that proposition must be done in well-ordered and controlled steps. 

Otherwise the community of propositions will influence the considered 

proposition.“ 

 

Again it must be noticed that there is no causal relation between the event 

of being well-ordered and the event of influencing. With other words, the 

inertial interaction is instantaneous. 

 

When nature’s logic is put in axioms, then influences that correspond to 

physical fields must follow from the axioms. Together with the 

                                                 
41 Functions and fields 
42 Influence: Inertia 
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specification of the origin of dynamics this will then result in a dynamic 

version of quantum logic.  

 

I assume that this category of logic does not yet exist in mathematics. 

There exists a version of dynamic operational quantum logic43, but it does 

not cover or mention the effects of the representation of physical fields in 

logic and it does not specify the origin of dynamics. 

Atomic predicates 
Atomic propositions are statements that are either true or false and which 

cannot be broken down into other simpler propositions. When an atomic 

proposition concerns a property, then it may contain the value of that 

property. We will call that kind of atomic propositions atomic predicates. 

For example “The speed is 5.” The identity or the category of the property 

is “speed”. The value of the property is 5 with a certain inaccuracy. The 

inaccuracy is typical for the category of the atomic statement. Only 

discrete properties can be observed without inaccuracy. The dimension of 

the value is “meter per second”, but that is another atomic statement and 

it is a fixed statement. Both the dimension and the inaccuracy form extra 

information that is part of the type definition of the atomic predicate 

category “speed”.  

 

In fact there exist no continuous properties that relate to Hilbert vectors. 

The smallest inaccuracy is set by Planck units. On the other hand the 

granularity of the properties must not cause a regular lattice structure of 

the property space. This need not lead to contradictions, but it leads to 

special solutions44 for the operators that deliver the value of the 

observable properties. 

 

The atomic predicates form a set with a particular lattice structure. In this 

set we only consider atomic predicates that are independent of all other 

                                                 
43 Discussion: Dynamic logic 
44 Hilbert space: Limitedness: Investigating a special operator 
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atomic predicates. Several choices of such sets exist. A subset consisting of 

members of a chosen set may be canonical conjugates45 of members of 

another set. However, canonical conjugates are always dependent. So 

they cannot be member of the same selected set. 

 

In Hilbert space the type definitions of atomic predicates that concern 

numeric variables are represented by operators. The values of the 

properties in the atomic predicates correspond to the eigenvalues of the 

operators or they are expectation values. Expectation values are 

statistically determined via a probability characteristic that characterizes 

both the operator and a physical item. See Wave function46.  

 

In separable Hilbert space Ң the eigenspaces of all normal operators are 

granular. The granularity is a result of the stochastic inaccurate coupling 

between its eigenvalues and corresponding eigenvalues of a 

corresponding operator in rigged Hilbert space that has a continuum as 

eigenspace. 

This stochastic inaccuracy also afflicts the corresponding atomic 

predicate. 

Type definitions 
Type definitions are propositions that describe and categorize subjects 

without specifying their variable values. An atomic predicate type is the 

type definition of a category of atomic predicates and specifies the type of 

property that these propositions treat. The definition also contains the 

physical dimension (unit) of the property, the inaccuracy and the allowed 

range of the potential values of this property. For example, if that category 

is “speed”, then the definition contains the physical dimension meters per 

second. The minimum of the absolute value is zero and the maximum of 

the absolute value is c. Speed is an imaginary quaternion. 

 

                                                 
45 Functions and fields: Canonical conjugate 
46 Functions and fields: Characteristic function 
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When the type definition concerns a more complex object that can act as 

an individual the definition will be called an item type definition. Item 

type definitions use atomic predicate types.  

 

When that item cannot be broken into simpler objects that still can act as 

an individual, then the type definition is an elementary type definition. 

Elementary type definitions are constructed of type definitions of atomic 

predicates. 

The elementary types form (a rather small) subset of the whole set of type 

definitions. Elementary types appear to divide into two categories: 

bosons and fermions. The fermions can be divided in leptons and 

quarks. The bosons can be divided in photons, W-bosons, Z-bosons and 

gluons. 

 

The private field determines the elementary particle type and the basic 

properties of the particle. These include spin, rest mass and charge 

Several types of charge exist. Electric charge, isospin, color charge and 

hyper charge are types of charges. In fact rest mass is one of them, but 

since the gravitation field is an administrator its value must follow from 

the spin and the other charges. Variable properties are position, 

momentum and angular momentum,  

 

If the item is not an elementary type, then its type specification is a 

system or sub-system type definition. A (sub)-system type definition is 

constructed of elementary item type definitions and atomic predicate 

types.  

 

The type definitions form a set with a different lattice structure. Its 

structure is isomorph with the structure of classical logic.  

 

In Hilbert space no representation for item type definitions exists. 

However, in Hilbert space atomic predicate types are represented by 

operators. 
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Strands as type definitions 

The notion of strand47 is introduced by Christoph Schiller. Apart from its 

crossing switch events, a strand is not observable. In the strand model the 

boson types are all represented by a single strand. Reversely a strand is 

nearly equivalent to the type definition of the simplest boson, which is the 

photon. A photon has a helix shape. A strand does not need to have that 

shape. 

 

The Hilbert book model defines a strand operator48 that has an eigenspace 

in which chains of granules reside. These chains come close to Schiller’s 

strands. In each chain one granule is special and is called the current 

granule. Only the current granule and its immediate neighborhood can 

deliver observable values. If operators are type definitions, then the 

notion of a strand comes close to that type definition. 

 

The shape of a chain has a direct relation with the configuration of the 

current covering field. Taken over an ordered sequence of Hilbert spaces 

the strand fluctuates under the influence of the changing field 

configuration. The current granule separates the chain in a “virtual past 

sub-chain” and a “virtual future sub-chain”. The words “past” and 

“future” are misleading while these parts do not really correspond to the 

actual past or future of the chain. They depend on the current field 

configuration, rather than on the past or future configuration. 

Items 
The first problem that is raised by constructing the representation of 

proposition (♠) is to determine what in this representation stands for an 

item. The simplest solution is to attach a subspace of the Hilbert space to 

the item. The corresponding proposition can be phrased as: “This is the 

item”. Something either belongs to the subspace or it is outside that 

subspace. Everything that can be attributed to the item can also be 

attributed to this subspace. Each of these propositions belongs to a 

                                                 
47 Strands 
48 Hilbert space: Limitedness: Strand operator 
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hierarchy for which the mentioned proposition forms the top. All sub-

ordered propositions correspond to subspaces of the item’s subspace. In 

this way the universe of items can be represented by a set of mutual 

orthogonal subspaces of the Hilbert space. Rays that are spanned by a 

single Hilbert vector and that are connected with a numeric value can be 

considered as atomic predicates. Subspaces spanned by such rays that are 

related to the same type of value can be considered as statements with a 

wider scope. The rays can be subspace of an items subspace. The subspace 

that corresponds to a conglomerate of elementary items also represents 

that conglomerate as an item. The configuration of the subspace that 

represents an item will change as a function of the parameter that 

measures the progression of the dynamic behavior of the item. It is 

possible that not only the values of the atomic predicates change. The 

types of these atomic predicates may change as well. This happens for 

example with atomic types that are each other’s canonical conjugate. It is 

also possible that the configuration of the subspace changes more 

drastically.  

 

In a set of subsequent Hilbert spaces the subspace that represents the item 

can be moved around with respect to a selected base consisting of 

eigenvectors of a normal operator. In this way it may be possible to 

implement the dynamics of items. This moving around does not mean 

that the vectors are moved around. It means that at each step of the move 

the set of vectors that span the considered subspace is redefined. The 

redefinition corresponds to a redefinition of the corresponding 

proposition. Alternatively, it is also possible to redefine the selected 

normal operator. Thus, redefinition and the laws that govern redefinition 

convert the static quantum logic into a dynamic version of quantum logic. 

It will be shown that physical fields play a significant role in this 

redefinition. 

 

With his bra-ket notation Dirac has provided us with a marvelous 

symbolism for vectors and even for operators. He did not provide us with 

symbols for subspaces. However, it is easy to extend his symbolism and 
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indicate a subspace with a set of vectors that spans that subspace. For 

example {|fs>}s indicates a set of element vectors |fs> with enumerator s 

that span a closed subspace. This set identifies the subspace. Different sets 

may identify the same closed subspace. 

 

It is sensible to have one vector inside the item’s subspace that is 

considered as characteristic for the location of the representation of the 

item in Hilbert space. We reserve the name locator for this vector. When 

the item is redefined, that vector may be redefined as well. This 

characteristic vector can be used to obtain a precise location of the 

subspace in Hilbert space. The process via which the locator is 

determined depends on the requirements. The requirements may be set in 

relation to an operator. For example the vector that corresponds with the 

expectation value of the operator for that subspace can be chosen as the 

locator. In that case the state vector49 that corresponds with that operator 

may play the role of the locator. Two or more bosons can share the same 

locator. Fermions that possess the same property values cannot share the 

same vector as a locator. 

 

Atomic predicates are not considered to be statements that fully describe 

a physical item. The statement “This is the item” forms the top of a 

hierarchy of statements that all say something about the item. The 

hierarchy contains statements that define the item’s type. Other members 

of the hierarchy specify the items constituents. Still other statements 

concern the item’s atomic variables that together with the type definition 

specify the item’s identity. For atoms the variables of the subsystems are 

hidden from the outside of the atom. This means that atoms can be 

considered as modules50. 

                                                 
49 States 
50 Part four or http://www.cryps-of-

physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf  

file:///C:/web/NewWebSite/English/Science/ThereExistsATendencyInNatureToReduceComplexity.pdf
http://www.cryps-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
http://www.cryps-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
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Representation of items 
A subspace in a single separable Hilbert space Ң cannot represent all 

properties of a physical item. The fact that the position of the item is 

known means that an eigenvector of the position operator resides within 

the subspace that represents the item. Say that this subspace covers 

position values in a certain region. Heisenberg’s uncertainty principle 

now states that the value of the momentum of the item is uncertain. Any 

values of this property must correspond with eigenvectors of the 

momentum operator that also reside in this subspace. For elementary 

particles the subspace will be too small in order to guarantee sufficiently 

sure property values. Sufficient information could be collected when the 

Hilbert space also contains past and future data, such that the momentum 

can be derived/estimated from those data. The physical fields contain 

such preconditions. For a free elementary particle the momentum can be 

derived from the Fourier transform of the QPAD that controls the 

position of the particle. This QPAD is the wave function of the particle. 

Together with the subspace that represents the particle, the wave function 

represents all information that can be retrieved from the particle. Since all 

particles have such QPAD’s these private fields get intermixed. Thus in 

the neighborhood of other particles the superposition of the private fields 

must be reckoned rather than a single private field. 

 

Via its wave function a particle is identified with its private field. The 

notion of private field transfers quantum theory into quantum field 

theory. The dynamics of the particle are represented by the dynamics of 

their private field. 

Vacuum 
Multidimensional subspaces exist that do not represent a dynamical item. 

They can be considered as vacuum. It is still possible that the subspace 

represents a ground state51. We will assume that on the average the ‘filled’ 

                                                 
51 Functions and fields: Quaternionic Fourier transform split: Ladder operator: Ground 

state 
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and the vacuum subspaces are evenly distributed over a connected part of 

the Hilbert space. The phrase “evenly distributed” means that the 

distance between the representations of items makes sense. Here we do 

not mean the distance related to the norm of Hilbert vectors, but the 

coordinate related distance.  

 

“Vacuum” does not say that these subspaces are empty. It is rather an 

indication that the subspace does not represent a dynamical object. 

Instead the subspace may represent a ground state.  

 

Vacuum does not generate observable information quanta. In vacuum 

the clouds of quanta are empty. (However the combined vacuum states 

can cause an observable effect. The Casimir effect is an observable 

phenomenon.) 
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Hilbert spaces 

Dual views of a Hilbert space 
We only consider infinite dimensional separable Hilbert spaces52 and their 

Gelfand triple53, the rigged Hilbert space, which is not a Hilbert space, but 

just got its name.  

 

In Hilbert space normal operators exist whose eigenvectors form an 

orthonormal base of the Hilbert space. The canonical conjugate of that 

normal operator has a set of eigenvectors that is completely disjoint of the 

former orthonormal base. This fact defines pairs of views of the same 

Hilbert space that are related via canonical conjugation. 

 

The corresponding orthogonal bases do not touch. Every base vector is a 

linear combination with non-zero coefficients of all members of “the other 

base”. All coefficients have the same modulus. 

Position 
The original proposition (♠) speaks about the position of the item. The 

position must be related to something that is available in the separable 

Hilbert space. This Hilbert space is defined over a number space. Thus we 

might attach a number of this number space (or a higher 2n-on) to the 

Hilbert subspace that represents the item. That number must represent 

position. The natural way of attaching numbers to subspaces of a Hilbert 

space is via the concept of eigenvalues of normal operators. Any 

symmetry transform of a selected normal GPS coordinate operator might 

meet the requirements.  

 

However, there exists a significant drawback. The eigenspaces of all 

normal operators that reside in a separable Hilbert space Ң are countable. 

In addition the eigenspace of the position operator in Ң must be granular. 

The granularity means that the difference between two different positions 

                                                 
52 Appendix; The separable Hilbert space 
53 Appendix; Gelfand triple 
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must be equal to or larger than the Planck-length. A GPS coordinate 

system that is constructed from a dense package of fixed size granules 

generates preferred directions. If we want to avoid this, then we must use 

a position operator whose eigenspace does not contain multidimensional 

sets of granular eigenvalues. Still each of the eigenvectors must have 

eigenvalues that deliver position values as eigenvalue. Thus there must be 

a relation with a background coordinate system. That background 

coordinate system must form a continuum. This background coordinate 

system can be delivered by a GPS-like operator that resides in the 

corresponding rigged Hilbert space Ħ. That operator has the continuum 

of the quaternionic number system as its eigenspace. Apart from the real 

axis of this hyper complex number system it shows no preferred 

directions. So for position values we must take rescue in rigged Hilbert 

space Ħ. The eigenspace of the GPS-like operator does not show a natural 

granularity. The continuum GPS operator is not a part of the separable 

Hilbert space Ң, but an equivalent operator with a countable eigenspace 

exists in Ң. It cannot be used to locate the vectors of the separable Hilbert 

space. However, we can use it to give field values an approximate 

location. What we have obtained are two GPS-like operators. One resides 

in separable Hilbert space and has a countable eigenspace. The other 

resides in rigged Hilbert space and has an continuum eigenspace. This 

continuum is at least usable as a background coordinate system. The 

eigenspace of the first GPS-like operator forms a dense coverage of the 

second GPS-like operator. Both GPS-like operators do not support 

granularity. 

 

For a given field we may choose a GPS-like operator  , which resides in 

separable Hilbert space and has an equivalent  ̌ in rigged Hilbert space, 

such that for that field we can work with the ideal form of the 

quaternionic Fourier transform. That means that by using these 

coordinates as parameters, the field that will be analyzed has 

decompositions that run along straight lines in the eigenspaces of   and 

 ̌.  ̌ introduces a new coordinate system that is curved with respect to the 

original GPS-like coordinate system that is eigenspace of operator  ̌. 
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The new coordinates are characterized by the fact that the considered 

field when formulated using these coordinates shows a decomposition 

into static parts that runs along straight coordinate lines. A Fourier 

transform taken in these coordinates has universe wide validity. The 

canonical conjugate   of operator   also shows a similar behavior for the 

Fourier transform of the analyzed field that was first stated in   

coordinates and after transformation is specified in   coordinates. The 

same relation holds for operator  ̌ and the canonical conjugate  ̌. 

Physical coordinates 
Coordinates are not necessarily physical quantities in the way that they 

can be considered as properties of physical items. The physical 

coordinates of identifiable physical items are granular. The granularity 

means that at a given progression step they can only change with a step 

that either is zero or is equal to a Planck-length. Coordinates that are 

eigenvalues of normal operators in separable Hilbert space Ң are 

countable. The set of rational quaternions is countable, but this set is not 

granular. In rigged Hilbert space Ħ the eigenspace of a normal operator 

may be uncountable. It means that this space forms a continuum. The set 

of all imaginary quaternions forms a continuum. In a given static status 

quo, only a countable and granular subset of these eigenvalues can be 

physical quantities. 

 

We took the Planck-length here as THE minimum distance between 

positions. The Planck-length is derived via dimensional analysis. The 

important thing is that a minimum exists. Planck-length is a proper name 

for it and the exact size is less important. 

Generating a Hilbert space GPS 
The first step is the introduction of a suitable GPS system in Hilbert space. 

This can be done by taking an orthonormal base of Hilbert vectors and 

add quaternion values to them. Due to the separability of the Hilbert 

space this number set must be countable. Let us take the rational 
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quaternions as an example. This construction defines a normal operator Ϙ 

with countable infinite number of eigenvectors |ϙ> and corresponding 

eigenvalues ϙ. We will use the name coordinate space for the eigenspace 

of the coordinate operator Ϙ.  

 

The quaternions clearly have an origin. In contrast, the unit sphere of the 

Hilbert space, which contains all eigenvectors of Ϙ is an affine space. The 

eigenvectors of Ϙ form an orthonormal base. This singles out the 

eigenvector that belongs to the origin of the eigenspace. It indicates that Ϙ 

must only be used for relative locations. Also the real axis has no 

equivalent in the isomorphism between the unit sphere of the Hilbert 

space and the eigenspace of Ϙ. So, we will neglect this part of the eigenspace 

of Ϙ during the specification of a GPS-like operator. (It appears that nature does 

the same). We will only look at the imaginary part of the eigenspace of Ϙ. 
 

When we speak about the (Ϙ) coordinate distance between two vectors 

|f> and |g> in Hilbert space, then we mean the numerical distance 

between the values of <f|Ϙ f>/<f|f> and <g|Ϙ g>/<g|g>. 

 

Ϙ has an infinite but countable number of eigenvalues. A location in 

coordinate space represents a location on the unit sphere of Hilbert space. 

 

The fact that Ϙ must be bounded means that Ϙ has a boundary Ͽ at a finite 

distance from its origin. 

 

Take the polar decomposition of the normal coordinate operator Ϙ in a 

unitary part Ų and a positive operator Ņ. The eigenspace of Ų is the uni-

coordinate space. Like the unit sphere of the Hilbert space, the uni-

coordinate space is an affine space. Besides of that also no preferred 

direction should exist in this unit sphere. But that is not the case! 
 

The eigenspace of Ϙ consists of all eigenvalues of Ϙ. The eigenspace is not a 

closed set and it does not include infinity. If the eigenspace of Ϙ was granular, 

then in order to be able to act as a kind of GPS the granules must have a fixed 

size. A dense packing of the granules would create preferred directions. It means 
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that in that case Ϙ is not isotropic. In contrast, the unit sphere of the Hilbert space 

is isotropic. This sphere contains all eigenvectors of Ϙ. With granularity spread in 

a regulated order, the granularity raises preferred imaginary directions. As a 

consequence the size of an infinitesimal step will depend on direction. This does 

not generally correspond with physical reality. Only in condensed matter such 

conditions may occur. We can conclude that regulated spread granularity of the 

eigenspace of Ϙ leads to unphysical eigenvalues. Thus, let us restrict to 

countability. However, this restriction prohibits the use of sets of eigenvalues as 

parameters in differentiation operations. 

 

With artificial means the eigenspace of the coordinate operator may be closed by 

adding all limits of converging rows of eigenvalues. In this away a closed set of 

quaternions results. However, most members of this closed set are not 

eigenvalues of the coordinate operator Ϙ. The set is eigenspace of a 

corresponding coordinate operator  ̌ in a rigged Hilbert space Ħ. Still, the use of 

the separable Hilbert space Ң coordinate operator Ϙ will always prevent 

differentiation. Thus, for realistic physical conditions an alternative for this 

coordinate operator Ϙ must be sought. The coordinate operator  ̌ that has its 

residence in the rigged Hilbert space Ħ does not suffer from preferred imaginary 

directions and has an eigenspace that is a continuum. For that reason we can use 

it as a background coordinate operator. In the future we will indicate the 

background operator  ̌ as the (background) GPS operator. We will use the 

name GPS like operator for any operator that has an eigenspace that can be 

obtained via an invertible continuous transform or a reflection from the 

eigenspace of operator  ̌. 

Canonical conjugate 
The four dimensions of the quaternions enable the split of Ϙ into one Hermitian 

and three anti-Hermitian components. Via the inner product of the Hilbert space, 

each of these components gets a canonical conjugate. This creates a GMS-like 

operator. 

 

           ̃ (  )          
     

 (  )

                   
 

          is the index of the dimension. 

 

           are imaginary base numbers. 

 

(1) 



124 

 

  
      

 

The Hilbert vector      is eigenvector of operator    and corresponds with 

eigenvalue   . 

The Hilbert vector      is eigenvector of operator    and corresponds with 

eigenvalue   . 

 

The constant   relates to the size of the granules. 

For each dimension index   holds: 

 

   |                     |                 
 

                         
 

The definitions of the four canonical conjugates also define four (decoupled) 

complex Fourier transforms. The granularity decouples the Fourier transforms. 

The Hilbert space GMS 
The GMS operator  ̌ of the rigged Hilbert space Ħ is the canonical 

conjugate of the rigged Hilbert GPS operator  ̌. Both operators reside in 

the Gelfand triple that corresponds to the separable  Hilbert space Ң. The 

canonical conjugate   of   is formed from the combination of the four    

operators. The same reasoning that is used for the   operator also holds 

for the   operator. It means that also the   operator has a countable 

eigenspace and it has a boundary Ͼ. Both boundaries have a one to one 

correspondence with the unit sphere ʘ of the Hilbert space, but none of 

the eigenvectors of the   operator coincides with an eigenvector of the   

operator. 

 

GPS stands for Global Positioning System. 

GMS stands for Global Momentum System. 

For positioning purposes only the imaginary part of the eigenspaces are 

used. The real part is ignored. 

 

(2) 

(3) 

(4) 
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Like with positions, in a given static status quo not all momentum 

eigenvalues of the GMS operator are physical quantities. Only a countable 

subset deserves that qualification.  

The fourth dimension 
Often time is perceived as the fourth dimension. However, Piron and 

Einstein prove that when space is occupying the imaginary part, our 

common notion of time is unfit to act as the fourth dimension of the hyper 

complex number space. Einstein’s special relativity indicates that a 

Minkowski signature characterizes the common spacetime concept. It 

means that a rectangular triangle relation exists between the spacetime 

step, the space step and the coordinate time step, where the coordinate 

time steps acts as the hypotenuse. Thus the coordinate time step is not 

perpendicular to the space step as the fourth dimension in quaternion 

space would be.  

 

In combination with Garret Birkhoff and John von Neumann, Constantin 

Piron proved that the values of inner products of Hilbert vectors must 

belong to a division ring. When observables must stay expressible in such 

numbers, then they can maximally be quaternions. In that case, the real 

part of the quaternion of which the imaginary part represents a space 

coordinate, cannot be coordinate time.  

 

Another argument is the following. Neither traditional quantum logic nor 

the corresponding separable Hilbert space Ң can represent dynamics. 

Thus, time is not an observable that fits in this separable Hilbert space Ң. 

However, both traditional quantum logic and the corresponding Hilbert 

space may contain items that represent the precondition of change. 

 

Due to the fact that the Hilbert space is separable, the observable 

quantities must be countable. In fact many physical quantities are 

granular. For example the granularity of space is characterized by the 

Planck-length    . The fourth dimension is supposed to be granular as 

well. 
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Two quantities, other than space and time that are known to be granular 

are action and entropy. The granularity of action is characterized by the 

Planck constant. The granularity of entropy is characterized by the 

Boltzmann constant. Both are valid candidates for the fourth dimension. 

Energy is not a valid candidate, because it represents action per unit of 

time. Thus, it would introduce a notion of time via this backdoor. Action 

represents change. Entropy represents potential change. Field values 

represent preconditions of change. 

 

Another possibility is to use the spacetime step as the fourth dimension. 

This step is perpendicular to the space step. This interpretation 

immediately poses the question what then the physical significance is of 

this spacetime step.  

 

Until we encounter the requirement to fill it, the gap of the fourth 

dimension can be left open. One thing is for sure; coordinate time does 

not fit in that gap. 

Time and dynamics 
Dynamics and its progression parameter time do not fit in a Hilbert space 

that can only represent a static status quo. That also means that this 

Hilbert space does not support the corresponding operator. However, the 

static representation of the preconditions of change is represented in this 

Hilbert space. Its interpretation is then as the precondition for the change 

that will be applied in the next dynamical step.  

 

For example potential displacement is characterized by momentum, 

which is the canonical conjugate of space. A progression step is required 

in order to determine the actual displacement. The progression step 

occurs between the instants of validity of subsequent Hilbert spaces. As a 

consequence the displacement gets its significance by comparing 

subsequent Hilbert spaces.  
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This means that the duration of the progression step is unimportant.  

 

When the smallest possible space step     √       and the smallest 

possible coordinate time step      √      are put into the Minkowski 

signature,                 ⁄  then the corresponding spacetime step 

   is zero. 

 

The number of Planck-time steps equals the number of global progression 

steps. The number of Planck-length steps must always be lower than the 

number of Planck-time steps. The photon never takes a non-zero 

spacetime step. The number of its space steps always equals the number 

of its time steps.  

 

Any particle that does not travel with light speed skips some of its space 

steps. Any particle can take a space step in a direction that differs from 

the direction of a previous step. 

 

According to the Minkowski signature of spacetime the proper time step 

of information transfer is zero. The Hilbert book model takes the duration 

of the progression step equal to the proper time step of information 

transfer. 

 

Displacement goes together with a reconfiguration of the fields. An 

acceleration of an item goes together with an extra field component.  

 

Action is change. In this respect its role is similar to the role of 

displacement. Also the action step gets its significance by comparing 

subsequent Hilbert spaces. Fields represent the preconditions for the next 

action step. 

Hilbert functions 
Coordinate operators enable the definition of a special type of functions. 

Take a coordinate operator Ϙ. Next take an arbitrary Hilbert vector    . 

Construct the inner products of this vector with all eigenvectors      . of 
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Ϙ. Use the eigenvalues     of Ϙ as variable. Now we have defined Hilbert 

function      as  

 
                               

 

Now the Fourier transform  ̃    of      is defined using the canonical 

conjugate   of Ϙ via: 

 

 ̃       ̃                       

 

This is again a Hilbert function, but it uses a different coordinate operator 

( ). 

Hilbert functions are sampled functions. They are not differentiable. They can be 

approximated by a corresponding continuous function, which may be 

differentiable. 

 

The continuous approximation of      is indicated as  ⏞ ( ⏞). Both the function 

and its parameters are smooth. 

The sampled version of continuous function      is indicated as  ⃛  ⃛   
 

The components of Hilbert functions are always decoupled. The same holds for 

their Fourier transforms. For Hilbert functions no divergence and no curl exists. 

 

The components of (quaternionic) continuous functions are always coupled. The 

same holds for their Fourier transforms. For continuous functions divergence and 

curl may exist. However, inside a separable Hilbert space Ң continuous functions 

only can act as Hilbert vectors. This is the case in ℓ² space54. 

Limitedness 

Countability 

The separable Hilbert space Ң has a countable dimension. It means that 

the eigenvalues of normal operators may offer a dense coverage of a 

connected part of the number space, but it is not a closed coverage. The 

number space is a continuum. The eigenspace does not include all limits 

                                                 
54 http://en.wikipedia.org/wiki/Lp_space#Hilbert_spaces 

(1) 

(2) 

http://en.wikipedia.org/wiki/Lp_space#Hilbert_spaces
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of all convergent rows. At least a closed subset of the whole number space 

is densely covered by the set of eigenvectors. An eigenvector represents 

an atomic predicate that represents the corresponding attribute of the 

considered item. The eigenvector lies inside the subspace that represents 

the item. The corresponding atomic predicate states that the 

corresponding attribute of the item lies inside the environment that is 

represented by the eigenvector. 

Granularity 

The fact that the separable Hilbert space Ң has a countable number of 

orthonormal base vectors does not on itself render the eigenspace of every 

normal operator granular. We could cover a closed subset of the whole 

quaternionic number space with a countable number of rational 

quaternions. However, the Planck-length sets a minimum difference for 

positions and this renders the corresponding position operator granular. 

The way this granularity is distributed may cause particular features. For 

example dense packing causes preferred directions. Preferred directions 

do not commonly occur in nature. Such directions occur in condensed 

matter. Thus, dense packing or any other kind of organized packing does 

not generally occur in nature. It may occur in horizons. (It happens in the 

horizons of black holes). This means that the physical use of a granular 

coordinate operator is restricted to specific situations. However, from the 

Ϙ operator a corresponding background GPS operator  ̌ can be derived 

that resides in the corresponding rigged Hilbert space Ħ. The set of closed 

subspaces of this rigged Hilbert space Ħ is not lattice isomorph with 

traditional quantum logic. Thus, it is not a proper model of that logic. This 

conflicts with our primary goal.  

Both   and  ̌ are not suitable as granular position operator. We must find 

a possible realization of a granular position operator that resides in the 

separable Hilbert space. 

Investigating an alternative operator 

In order not to generate preferred directions the alternative operator must 

not support an eigenspace that contains multidimensional subsets that are 

not horizons. Still it must deliver positions as eigenvalues. Part of the 
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solution is that this new operator relates to a background GPS coordinate 

system.  

 

A corresponding continuous GPS coordinate operator that can deliver 

such a GPS background coordinate system can only reside in the rigged 

Hilbert space Ħ that corresponds to the considered separable Hilbert 

space. 

 

The eigenspace of the target operator may consist of  

 a set of separate points (granules) 

 a set of curves (chains of granules) 

 a set of horizons (surfaces consisting of granules) 

These elements are located with respect to the mentioned background 

coordinate system. 

It must be possible to locate the current position of ALL physical particles 

with the eigenvalue set of the new operator. 

 

The operator must exhibit the granularity of the position attribute. At the 

same time, the position must not be related to a fixed lattice. As a 

consequence: Any position difference must be equal or larger than the 

Planck-length.  

 

Further, a sensible reason must be found for the existence of the granules. 

They must not just fall from heaven. 

 

Between subsequent Hilbert spaces the position may stay stationary. 

However, when a difference occurs, it must again be equal or larger than 

the Planck-length. On its turn this means that between subsequent Hilbert 

spaces the eigenspaces of the target operator must be related. 

 

Apart from the horizons the solution may be given by a set of chains of 

granules. Each chain has a sub-chain of past granules, a current granule 

and a sub-chain of future granules. The space step may be zero. 

Otherwise, during the step to the next Hilbert space, the first granule in 
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the future chain of the current Hilbert space becomes the current granule 

in the subsequent Hilbert space. At the same instance the current granule 

turns into the last granule in the past chain.  

 

In each chain only the current granules will deliver observable values. 

Fields take care that in each chain sufficient smoothness exists around the 

current granules. For that reason the field in the surrounds of the current 

granules acts like a QPAD that regulates the position of that granule. The 

result of this investigation is a strand operator. 

The reason behind granules 

The fact that the QPAD’s anchor on the granules can be solved quickly 

when we can find a reason for the granules to be part of the 

corresponding quaternionic probability amplitude distribution (QPAD). 

This reason is fully supplied when the granule is the ground state of the 

QPAD. 

Now the quest changes to the reason why the QPAD exists. This reason 

can be found in the coupling of the eigenspace of the position operator 

that houses in separatable Hilbert space and the eigenspace of the GPS-

like operator in the rigged Hilbert space that delivers the background 

coordinate system. This coupling is inaccurate in a stochastic sense. The 

QPAD reflects this stochastic relation. 

Several types of QPAD’s exist. Every type of QPAD corresponds with a 

type of elementary particle. The types can be grouped in categories. This 

diversity and partitioning is the secret behind the standard model. 

However, no great diversity exists with respect to the ground states. All 

localizable types feature nearly the same ground state. 

The scale of the extent of the ground state is of the order of the Planck-

length. This sets the size of the granules that represent the eigenvalues of 

the new position operator. 

When the Fourier transformation of the full QPAD is taken, then the 

result gives information on the displacement that will be performed in the 

next progression step. 
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Apart from a constant, the ground state of the QPAD is invariant under 

Fourier transformation. This constant is one of (1, i, -1 or -i). This means 

that the momentum operator that corresponds to the new position 

operator has also a granular eigenspace. 

Strand operator 

With exception of its horizons, the eigenspace of the strand operator does 

not cause preferred directions. Thus, its eigenvalues do not suffer the 

anomalies of the eigenspace of the Ϙ operator. The elements in its 

eigenspace have a direction, but that direction is related to local physical 

conditions.  

 

A strand operator Ҩ can be defined along the following steps: 

 Take a chain of granules.  

 All granules have the same size. 

 Each granule in this chain can be given an integer ordering 

number.  

 The background coordinate GPS operator can be used to give each 

granule in a chain a unique position. 

 The coupling of the granule with the position in the background 

coordinates is not precise. The inaccuracy is stochastic and is of the 

order of the Planck-length. This effect determines the size of the 

granules. 

 Each chain consists of a past sub-chain, a current granule and a 

future sub-chain. The ordering number of the current granule is 

zero. 

 If the set of Hilbert spaces steps to the subsequent Hilbert space, 

then the position of the current granule stays stationary or it 

becomes the position of the last granule in the past sub-chain. In 

that case the current granule becomes the place of what was the 

first granule in the future sub-chain. 

 A QPAD that extends beyond the size of the granule takes care that 

in each chain sufficient smoothness exists around the current 

granules. 
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 The granule is the ground state of this QPAD. 

 Define a set of such chains. 

 These measures leave a freedom that corresponds to a fluctuation 

of the chains over subsequent Hilbert spaces. 

 Each separate QPAD in the chain contains information on the 

displacement in the next progression step. 

 Taken over a small set of subsequent Hilbert spaces, the movement 

of the current granule reflects the influence of the QPAD that 

controls the smoothness of the chain in the surround of the current 

granule.  

 This distribution describes the properties of a moving, rotating and 

diffusing cloud of virtual information carrying quanta. 

 Depending on how the distribution is viewed, the QPAD describes 

the probability density of the information carried by these quanta.  

 In any case the squared modulus of the QPAD describes the 

probable position of the current granule.  

 Taking the Fourier transform of the distribution reveals similar 

information about the canonical conjugated coordinate. 

 

Further: 

1. The eigenspace of the strand operator can only house a finite 

number of chains. 

2. The eigenspace of the strand operator does not house volumes.  

3. The eigenspace of the strand operator houses horizons.  

4. These horizons have the shape of bubbles. 

5. The bubbles consist of densely packed granules. 

6. In this configuration the granules take their minimal (ground state) 

shape. 
 

Chains can split and they can merge. The corresponding creation and annihilation 

occurs during a progression step and is controlled by the combined effect of 

Poisson distributions and spatial QPAD’sthat are attached to the current granules. 
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Horizons 
Because the normal strand operator is bounded, a boundary surface exists at a 

finite distance from the origin of the background GPS coordinate system. We will 

call this boundary the outer horizon. 

 

The covered space has an outer horizon, but it may also contain closed inner 

horizons. Outside the outer horizon and inside the inner horizons no strands 

exist. 

 

Black holes 

Most inner horizons are borders of black holes. These horizons are 

bubbles that consist of densely packed granules. The QPAD’s that are 

attached to these granules have taken their minimal possible size. Each 

granule is connected to a Hilbert vector which is eigenvector of the strand 

operator. That Hilbert vector represents a quantum logical proposition. It 

carries a single bit of information that indicates its membership of the set 

of eigenvectors of the strand operator. The inner horizons form an 

exception to the rule that the granules must not form a multidimensional 

subset.  

 

When a large piece of matter collapses into a black hole, then the QPAD’s 

that are attached to the anchor points of particles collapse into their 

smallest possible shape. They take the shape of the granule and all 

granules group at the horizon such that they form the horizon. 

 

When matter falls onto the horizon of the black hole then the QPAD’s of 

these particles are forced into their smallest possible extent, which is their 

ground state. Next these granules are added to the horizon of the black 

hole 

Start horizon 

Inner horizons and outer horizons exist. In the Hilbert space that describes 

the first element in the sequence of static status quos, the eigenspace of the strand 

operator may consist of a start horizon. It is at the same time an inner and an 

outer horizon.  

 



135 

 

The idea that at the start of the universe an inner horizon coincides with 

the outer horizon is speculation. Still the concept of a start horizon is an 

intriguing possibility and it fits well into the Hilbert book model.. 

 

The start horizon can be interpreted as a bubble that existed in empty 

space and that converted into matter55. It is at same time an inner horizon 

and an outer horizon. Its inner side is empty. Outside its outer side 

nothing exists. The start horizon is a bubble that is densely covered with 

granules. In the start horizon the “granules” were huge. As a consequence 

that bubble was instable. The huge “granules” granules collapsed into 

their ground state. Despite the fact that the former state offered the 

capability to form bubbles, the ground state that also offers this capability 

is much more stable. After the implosion the new more stable granules 

spread over the space that came available and their QPAD folded out, 

such that it took more space than just the size of the granule.  

 

After the implosion, the preconditions for forming the start horizon are 

gone. There is no indication that during the lifetime of the universe a 

similar implosion happened more often. 

Information horizons 
Information horizons exist in different types. 

 

A black hole has its own particular type of information horizon. Information 

cannot pass through that horizon. Due to the strong curvature, in the 

neighborhood of the horizon of a black hole the speed of information carrying 

light particles goes to zero. This information horizon is an event horizon. Not 

only information cannot pass. In fact any particle cannot pass the horizon. Instead 

the particle or debris of that particle are transferred into their ground state and 

added to the horizon. Some of the debris may escape. 

 

Any physical item has its own private information horizon. Since light 

transports all information and has a limited speed, the private 

information horizon is in fact the image of the start horizon. This differs 

                                                 
55 See Birth of the universe 
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from the outer horizon. That private information horizon is set by the most 

distant items from which light can reach the observing item.  
 

The private information horizon depends on the position of the observer. 

In a universe, a multitude of such private information horizons may exist. 

They might even be disjoint. This type of information horizon is 

determined by the reach of light since the start of the universe. 

Configuration space 

Since the unit sphere of the Hilbert space is an affine space and all 

eigenvectors of the GPS operator are represented in that space, the GPS 

can be considered to have no origin. 

 

The chains may be closed or they start and end at a horizon. Further they 

may split and merge. This corresponds with creation and annihilation of 

particles that anchor on these chains.  

 

Vacuum is not empty. It is the space in between horizons where chains 

may exist. Very short closed chains are spread all over vacuum. The 

granules in very short closed chains may represent the anchors of virtual 

particles. 

 

Only the direct environment of the current granule of the chain is 

relevant. The QPAD that guides the current granule becomes part of the 

surrounding fields. It forms the basic constituent of the field. Its 

introduction extends the concept of separable Hilbert space. In a similar 

way it extends the concept of quantum logic. 

Statistics 

The QPAD is a constituent of the field that surrounds the granule. The 

creation and annihilation operators of fields have eigenfunctions that are 

Poisson distributions. Such distributions are produced by Poisson 

processes. A Poisson process can be combined with a subsequent 

binomial process in order to form a generalized Poisson process that has a 

lower efficiency than the original Poisson process. The efficiency is 
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weakened by the weakening that is introduced by the binomial process. 

The spatial spread introduced by the QPAD can be interpreted as a 

binomial process with a spatial varying weakening factor. The spread 

function is equal to the squared modulus of the QPAD. 

Canonical conjugate 

The ground states of the QPAD’s that determine the spatial spread 

functions are all (nearly) equal. Apart from a factor (1, i, -1 or –i) they are 

invariant under Fourier transformation. This means that the canonical 

conjugate of the strand operator has the same basic format. It is also 

constituted of granules. 

Chain interpretation 

In a single Hilbert space a chain may represent a piece of a potential past, 

present and future path of a particle. The present part of the path is 

formed by the direct surround of a single granule that acts as the current 

granule. In this single Hilbert space the granule corresponds to a Hilbert 

vector which is an eigenvector of the strand operator. The local path is 

determined by the current configuration of the field(s) that influence(s) 

the path. As a consequence, when taken over a sequence of Hilbert spaces, 

the chains fluctuate. This gives chains a place in the Hilbert book model. 

It must be noticed that the chains do not reflect the actual path. That only 

holds for the direct neighborhood of the current granule. 

 

Taken over a sequence of Hilbert spaces the granules that represent the 

actual state of the chain represent the actual path of the corresponding 

particle.  

Vacuum 
The inaccuracy in the coupling between the background coordinate 

system and the eigenvalues of the position operator also plays a role in 

the space where little or no actual current granules exist. In this space 

virtual granules may exist during a very short period, such as single 

progression step. In fact the granules are part of a chain that forms a very 

short loop. These virtual granules form the main content of vacuum. 
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Virtual granules only occur inside the outer horizon and outside the inner 

horizons of the strand operator. A virtual granule can be interpreted as 

the ground state of the corresponding QPAD and may come close to the 

ground state of a linear or spherical harmonic oscillator. This ground state 

corresponds with the minimal extend that the QPAD can take. 

In the Hilbert book model, the vacuum has a constant density     of 

virtual granules. 

 

In the Hilbert book model the space between horizons is stochastically, 

but on the average uniformly covered with virtual granules. At every 

progression step these virtual granules are redistributed. The actual 

granules exist in between these virtual granules, but they possess a wider 

spread of the corresponding QPAD’s. These wider QPAD’s tend to last 

longer at a (nearly) stationary location. 

Fundamental measures and units 
Events are instants of creation or annihilation of quanta. After creation the 

quantum becomes observable. After annihilation the quantum is no 

longer observable. 

A change is the stepwise variation of the information carried by a 

quantum. 

The information carried by a quantum is its position, its momentum its 

chirality and other characteristics of the corresponding particle. 

 

The distance between two items equals the number of granules that fit 

between them. 

The progression time between two events equals the number of 

progression steps between them. 

The action in a progression interval equals the number of progression 

steps in that interval during which a change took place. 

The entropy of a system equals the number of steps during which a 

change can take place in that system. It equals the number of granules in 

that system. 
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In relation to the covering field56, a QPAD provides secondary 

information. 

 

The basic measures of physics are: 

 

The Planck-length,     √                 
      

 

The Planck (coordinate) time,      √                
      

 

The unit of action is the constant of Planck,                 

 

The unit of entropy is the constant of Boltzmann,         
      

Numbers 

Sign selections 
Four possibilities exist due to the sign selections of the quaternions. One 

sign selection is covered by the conjugation a→a*. This selection switches 

the sign of all three imaginary base vectors. The other is caused by 

switching the sign of a single binary base vector a→a⊗. For this sign 

selection one of the three available base vectors is selected. When 

relevant, then these choices are indicated by colors (r, g or b). Both 

methods switch the handedness (chirality). When both sign selections 

combine then the superscript a→a⊕ is used. This combination does not 
switch handedness. Also this selection is colored.  
 
It is also possible to use the extended quaternionic conjugation concept: 
 

       
 

 ⊗     

                                                 
56 Functions and fields; Hilbert field; Covering field 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 
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 ⊕     ⊗     
 

The encircled number stands for the number of switched base vectors. For 

the single sign switch   , three independent direction selections are 

possible. We indicate these choices with r, g and b. 

Similarly for the double sign switch   , three independent direction 

selections are possible. We indicate these choices also with r, g and b. This 

direction belongs to the non-switched direction. 

Without closer description the value of          . It means that the 

colors are suspected to be the same. 

The change from   to   or    cause a switch of the handedness of  . 

 

          (  )
 
   

 

          
 

           

 

The effects of the quaternionic conjugation are visible in the base numbers 

1, i, j, k: 

 
     

 

                   
 

The blue colored sign selection is given by 

 

                   

 

                   
 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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In the blue colored sign selection, k follows the rules of complex 

conjugation. This renders its direction to a special direction.  

 

The selected color direction is called the longitudinal direction. The the 

perpendicular directions are the transverse directions. Apart from that 

they are mutual perpendicular and perpendicular to the longitudinal 

direction, they have no preferred direction.  

Sign selections and quaternionic distributions 

Quaternionic distributions are supposed to obey a distribution wide sign 

selection. Thus, the distribution is characterized by one of the eight 

quaternionic sign flavors.  

 

                           
 

Many of the elementary particles are characterized by an ordered pair of 

two field sign flavors. These fields are coupled with a coupling strength 

that is typical for the particle type. These particles obey a characteristic 

continuity equation57. 

Product rule 

We use the quaternionic product rule.  

        〈   〉              
 

〈   〉                 
 

                                           

Operators 

The sign selections of operator           depend on the sign selections 

of position operator Q, which determines the sign selections for its 

eigenvalues          .  

 

                                                 
57 Hilbert field equations; Continuity equation for charges 

(1) 

(2) 

(3) 
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Normally we consider the sign selection for operators Q and   fixed to 

operators    and   . Sometimes we chose    instead of operator  . 
 

Quaternionic sign selection are directly connected with the concepts of 

parity and spin. 

 

For quaternionic functions symmetry reduces the differences that are 

produced by conjugation and anti-symmetry stresses the differences. The 

same holds for operators. 

Matrices 

Another possibility is to present sign selections by matrices58. 

 

   [
    
  
]     [ 

   
  

]     [
  
   

] 

 

The    matrix switches the complex fields that together form the 

quaternion field. 

 

[
  
    
]  [
  
  
] [
  
    
] 

 

The    matrix switches the real parts and the imaginary parts of the 

complex fields that together form the quaternion field and it switches 

both fields. 

 

 [
   
    
]  [
   
  

] [
  
    
] 

 

The    matrix switches the sign of the first complex field. 

 

[
   
    
]  [
   
  

] [
  
    
] 

 

                                                 
58 http://www.vttoth.com/qt.htm  

http://www.vttoth.com/qt.htm
http://www.vttoth.com/qt.htm
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The Pauli matrices are involutory. 

The determinants59 and traces60 of the Pauli matrices are: 

 
           

 
         

 

   [
   
    

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

The    matrices together select the imaginary base vectors. The   matrix 

exchanges the sign of all imaginary base vectors. Thus the   matrix 

implements the quaternionic conjugate. The conjugation also exchanges 

right handedness against left handedness. 

 

Another way of exchanging right handedness against left handedness is 

the exchange of the sign of one of the imaginary base vectors. 

 

[
  
    
]  [
  
  
] [
  
    
] 

                                                 
59 http://en.wikipedia.org/wiki/Determinant  
60 http://en.wikipedia.org/wiki/Trace_of_a_matrix  

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
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   [
  
  
]  

 

The gamma matrices61 translate directly from complex fields to fully 

featured quaternionic fields. In this way four sign flavors of quaternionic 

fields are constructed from four complex fields. This is represented by 

four dimensional matrices and four dimensional spinors. The equivalent 

of the   matrix is the    matrix. 

 

[

   
    
   
    

]  [

    
    
    
    

] [

   
    
   
    

] 

 

It is false to interpret the matrices as vectors. They form a shorthand for 

handling spinors. 

 

The Pauli matrix    represents the sign selection a→a⊗, while the   matrix 

represents the sign selection a→a*. The other Pauli matrices and the   

matrices implement the resulting part of the quaternion behavior for 

spinors. 

Construction 
The Cayley-Dickson construction formula enables the generation of a 

quaternion from two complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db*; a*d + cb) 

 

                                                 
61 Appendix; Gamma matrices 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 
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r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

Apart from the Cayley-Dickson construction the 2n-on construction 

exists.62 

Colored signs 
In the following text, the consequences for the product of the sign choices 

of the conjugate    is indicated by blue color  . The extra consequence   

for the product of the choice of the handedness  of the cross product is 

indicated by red color  . The mixed sign selection   acts on both sign 
colors. 
The handedness can be switched by changing the sign of all imaginary base 
vectors. 
 

                      
 

The sign selections split the ring of quaternions in four different 

realizations. 

Path characteristics 
The Frenet-Serret frame is devised for describing curved paths of particles  

 

                                                 
62 Appendix; 2n-on construction. 

(5) 

(6) 

(7) 

(8) 

(1) 
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Let {αqt}t = α(q,t) describe a curved path consisting of infinitesimal steps 

through a landscape {αq}q = α(q) of imaginary quaternions αqt, such 

that     ̇             for all t.  

 

The 3D Frenet-Serret frame for the above path is given by: 

 

 (    )    
  (    )

  
       ̇    

 

          ̇      

 

             ̇    

 
                   

 
                                   

 

      is the tantrix of curve α(q(t)) at instance t. 

     is the principal normal of curve α(q(t)) at instance t. It is only 

defined when κ(t) ≠ 0. 

     is the binormal of curve α(q(t)) at instance t. 

    ,       and       are imaginary quaternions. 

κ(t)  is the curvature of curve at α(q(t)) at instance t. 

r(t) = 1/ κ(t)  is the radius of curvature at instance t. 

τ(t) is the torsion of curve α(q(t)) at instance t.  

 

[

 ̇   

 ̇   

 ̇   

]   [

      
          
       

] [

    
    
    
] 

 
The Frenet-Serret curves have particular characteristics. The path may be 

curved and curled. The path is completely determined by its tantrix, 

curvature and torsion given by functions of t. Each coordinate of the 

quaternionic function α(q(t)) has its own set of characteristics. This means 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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that for a given quaternionic function these characteristics are quaternions 

rather than real numbers and they are all functions of parameter t. 

Path equations  
The path equations are given by 

 

 ̇              

 

 ̇                                                   

 

 ̇                     ̇     ̇         

 

                

Curve length 
The curve length        is defined by: 

 

        ∫   ̇       
   

   

   

 

The integration over the square of the modulus delivers the action S of the 

curve. 

 

        ∫   ̇        
   

   

   

Reparameterization 
The path characteristics κ(t) and τ(t) together with the curve length and 

the curve action are independent of any reparameterization      of the 

progression parameter t. 

A natural reparameterization is given by             . 

This turns the curve         into a natural curve  (    ): 

 

 (    )          

 

(1) 

(2) 

(3) 

(1) 

(2) 

(1) 



148 

 

Curves on a surface which minimize length between the endpoints are 

called geodesics. 

The natural curve corresponds to a geodesic63. 

The consequence is that in three-dimensional space the corresponding 

movement obeys the geodesic equation64. The Lagrangian is an equivalent 

of this equation.  

  

                                                 
63 http://en.wikipedia.org/wiki/Geodesic 
64 Equations of motion; Lagrangian 

http://en.wikipedia.org/wiki/Geodesic
http://en.wikipedia.org/wiki/Geodesic
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Functions and fields 

Distributions in quaternionic Hilbert space 
Using a compact normal operator 𝒬 and a second distribution operator ρ 
with the same eigenvectors {|𝓆>}q but with eigenvalues {ρq} we can 
generate a Hilbert distribution65. 
 

  𝓆     𝓆   𝓆    
 

Operator ρ need not be a compact normal operator. Its spectrum of 

eigenvalues may be confined to a discrete set of points. Its eigenvectors are 
used. Its eigenvalues need not be used. . If they are used, the eigenvalues may 
consist of any kind of hyper complex number. 
 
A Hilbert distribution is not differentiable. It can be seen as a combination of 
a set of Dirac delta functions that are multiplied with hyper complex 
numbers. If all numbers are quaternions, then it is a linear combination of 
Dirac delta functions that each represents a Hilbert vector. 
 
The Hilbert space is separable. This means that the set of eigenvalues of an 

operator is countable. Thus a Hilbert distribution ρ(𝓆) is always discrete: 

 

  𝓆  ∑𝓆   

 

   

  𝓆 𝓆   

 

The factors 𝓆   are hyper complex 2n-ons. 

 

A Hilbert function is also a Hilbert distribution. (The reverse is not true). 

A special form of Hilbert distribution is the representation of a QPAD as a 

Hilbert function. 
 
As stated before, every (quaternionic) Hilbert function can be split into four 
decoupled components. And every Hilbert function has a Fourier transform 
that consists of four decoupled Fourier transforms. 

                                                 
65 http://en.wikipedia.org/wiki/Distribution_(mathematics)  

(1) 

(2) 

http://en.wikipedia.org/wiki/Distribution_(mathematics)
http://en.wikipedia.org/wiki/Distribution_(mathematics)
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As in the case of a Hilbert function, a Hilbert distribution can represent a 

very dense coverage. In that case the distribution may become quasi 

differentiable. 
 

Convolution of a Hilbert distribution with a blurring spread function can 

render the result (mostly) differentiable. In fact in the convolution the 

distribution is represented by a set of Dirac delta functions. Depending on 

the blur, the result may still be singular for example on the definition 

points of the Hilbert distribution. The blur may represent a probability 

distribution. Those blurs are well-formed.  

 

A convolution means that every member of the Hilbert distribution is 

blurred with the same blur. It may also be done with a different blur, but 

then the result is no longer a convolution.  
 
A special kind of Hilbert distributions is formed by the elementary Hilbert 
distributions. These distributions contain a single or only a few Hilbert 
vectors. They form the anchor points under the private fields, which 
represent elementary particles. Private fields are special kinds of Hilbert 
fields.  
 
The Hilbert book model uses Hilbert distributions that consist of 
eigenvectors of the strand operator. The eigenvalues of the strand operator 
are taken from a continuum background coordinate system. In the Hilbert 
book model every elementary particle anchors on one ore more eigenvectors 
of the strand operator. Each elementary particle type has its own type of 
blur.  

Hilbert field 
By blurring the Hilbert distribution with a suitable spread function, the 
distribution can be transformed into a mostly continuous function. When the 
blur is the same for every element of the Hilbert distribution, then this 
converts the Hilbert distribution      into a skew Hilbert field66      via the 
convolution: 

                                                 
66 http://en.wikipedia.org/wiki/Skew_field  

http://en.wikipedia.org/wiki/Skew_field
http://en.wikipedia.org/wiki/Skew_field
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With a given Hilbert distribution     , each blurring function      causes in 
this way a corresponding Hilbert field that is characterized by the blurring 
function     .  
 
Mathematically this convolution is impossible in a separable Hilbert space, 
but the corresponding rigged Hilbert space Ħ is a suitable alternative. The 
vectors in an orthonormal base consisting of eigenvectors of the normal 
operator 𝒬 that resides in the separable Hilbert space   are represented in 
the rigged Hilbert space Ħ by corresponding Dirac delta functions. We only 
use the vectors that belong to the Hilbert distribution     . The values of the 
result of the convolution can be attached to the same orthonormal base 
vectors of the separable Hilbert space  . This procedure attaches the field 
onto the separable Hilbert space  . In principle the field covers all vectors of 
the separable Hilbert space.  
 
When the blurs differ per element of the Hilbert distribution, then the Hilbert 

field can still be interpreted as the superposition of the contributing blurs, but it 

can no longer be considered as a convolution. Like with the convolution, the 

location of the blur must be reckoned in this superposition. 

 

When there are only a few types of blurs, then each type constitutes via 

convolution with a corresponding Hilbert distribution a type specific Hilbert field. 

The covering Hilbert field can then be interpreted as the superposition of the 

(blur) type specific Hilbert fields. 

 

The blurs are not hanging as a lose substance in the separable Hilbert space Ң. 

The blurs are spread over the Hilbert vectors. Each Hilbert vector in the domain 

of a blur touches this blur and carries the local value of that blur. 
 
Via superposition the Hilbert fields that correspond to the same Hilbert 
distribution form a covering Hilbert field. 
 
A Hilbert field or type specific subfield can be categorized according to its: 

 Symmetries 
 Conjugation 
 Corresponding blur function 

(1) 
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 Corresponding Hilbert distribution 
 
Hilbert fields are differentiable. The dimension related components of a 
Hilbert field are coupled. The differential of a symmetric field or field part is 
anti-symmetric. 
The differential of an anti- symmetric field or field part is symmetric. 

Sampled Hilbert field 
In separable Hilbert space, a sampled Hilbert field consists of its values 
attached to the eigenvectors of a normal operator, whose eigenspace acts as 
a coordinate system. A sampled Hilbert field is NOT differentiable. Its 
dimension related components are decoupled. It closely approximates a 
corresponding Hilbert field. The countable eigenspace of the normal 
operator closely matches the corresponding continuous eigenspace of a 
coordinate operator that resides in rigged Hilbert space Ħ. 
 
It can be interpreted as the distributed superposition of a number of Hilbert 
functions. 

Blur function 
The blur is a spread function. It is the reason of the significant similarity 
between optics and quantum physics. On the other hand, the blur is a 
probability distribution. This is the source of quantum noise. The probability 
distribution can be a probability amplitude distribution or its squared 
modulus, which is a probability density distribution. A quaternionic QPAD 
has the advantage that its squared modulus can specify the probability and 
the parameter can specify the full location, while the resulting factor 
represents related data in the form of a unitary quaternion. This quaternion 
can also carry its sign selection data, which includes its chirality, its spin and 
its parity. Compared to a complex amplitude distribution, this is a wealth of 
extra information. The shape of the blur contains secondary information. For 
example the Fourier transform of the blur offers momentum related data 
and the rotation of the blur represents angular momentum related data. 
 
The simplest kind of blur that belongs to a particle relates to its ground 
state67. 

                                                 
67 Functions and fields; Quaternionic transform split; Ground state 
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Hermite functions, which are eigenfunctions of the Fourier transformation, 
have a Gaussian blur. Coherent states68, which are eigenfunctions of creation 
or annihilation operators have a Poissonian blur. 
 
Quantum shot noise69 produces a Poisson distribution. When large numbers 
of quanta are produced the distribution approaches a Gaussian distribution. 
A binomial process that follow a noise generating Poisson process can be 
combined with that binomial process into a generalized Poisson process 
with a lower efficiency. The binomial process represents a weakening effect. 
Spatial blur can be interpreted as a binomial process. This is because it 
represents a spatial diffusion effect. In the static model the Poisson 
processes only represent a lateral distribution. Taken over a sequence of 
Hilbert spaces the Poisson processes represent an additional temporal 
distribution. The efficiency of the detection of quanta is characterized by the 
detective quantum efficiency70 (DQE) of the detector. Together with the 
Fourier transform of the spatial spread function this determines the signal to 
noise ratio in the information stream. The spread has an integrating 
(smoothing) effect. A sharper spread improves the signal, but also increases 
the noise. Any temporal integration reduces the noise. The effect of the 
lateral spread can be characterized by the Optical Transfer Function (OTF). 
 
When the quanta are given a direction, then the blur becomes the equivalent 
of a QPAD. In the strand model the observable values of crossing switches of 

strands form QPAD’ . See: http://www.motionmountain.net/research.html . 
 
The blur plays a role when canonical conjugate operators occur together or 
in sequence. An extra blur is caused by the inaccuracy of the combination of 
these operators. 
The blur has many functions and interpretations: 
 

 Convolution with a smooth spread function makes a Hilbert 
distribution differentiable. 

 The spread ensures the compactness of corresponding operators. It 
also reduces the frequency range that is covered by its Fourier 
transform. 

                                                 
68 Functions and fields; Quaternionic transform split; Coherent state 
69 http://en.wikipedia.org/wiki/Quantum_noise  
70 http://en.wikipedia.org/wiki/Detective_quantum_efficiency  

http://en.wikipedia.org/wiki/Quantum_noise
http://en.wikipedia.org/wiki/Detective_quantum_efficiency
http://www.motionmountain.net/research.html
http://en.wikipedia.org/wiki/Quantum_noise
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 The spread function represents a probability density distribution or 
more in detail a quaternionic QPAD. 

 Each elementary blur has a Fourier transform 
 The probability distribution is characteristic for the inaccuracy of the 

expectation value of a category of operators, such as the GPS 
operator, the GMS operator, the Fourier transform, the 
creation/annihilation operators, the ladder operators and the number 
and ladder operators. 

 The ground state is characterized by a typical spread function. 
 The spread represents the probability that non-actual items exchange 

roles with actual items. 
 The non-actual items represent subspaces of non-actualHilbert 

spaces that are ready to exchange roles with the currently valid 
Hilbert space. 

 The non-actual items represent non-actual quantum logical 
propositions that may exchange roles with currently actual 
propositions. 

 The non-actual quantum logical propositions are elements of a non-
actual traditional quantum logic that is ready to exchange roles with 
the currently actual traditional quantum logic. 

 The blur can be interpreted as a spatial quantum noise distribution. 
 The blur can be interpreted as a spatial distribution of crossing 

switches of strands. 
 The blur can be interpreted as a spatial distribution of generations or 

annihilations of quanta.  
 The annihilation of a quant is equivalent to the generation of the 

corresponding anti-quant. 
 The blur works as storage of past, present and future conditions. 
 The blur can be squeezed in order to reflect the importance of 

momentum versus position. 
 A ground state blur has in each direction a symmetric cut.  
 An odd-times differentiated ground state blur has in one direction an 

asymmetric cut.  
 An even-times differentiated ground state blur has in each direction a 

symmetric cut. 
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 The blur represents the sticky resistance of the universe against 
unordered changes (= changes of uniform movement in a geodesic). 
This is proved by the existence of inertia71. 

 The blur represents the sticky resistance of the collection of all 
propositions against unordered redefinitions. 

 Blurs can be categorized according to the corresponding particle type. 
 The superposition of blurs forms a field. 
 A particle can be interpreted as the local excitation of this field. 
 During a progression step the blur may get distorted. 

 
In short: Without blur (quantum) physics is impossible! 

Bypassing granularity 
The fact that the Hilbert space is separable means that normal operators 

have a countable number of eigenvalues. That may still be an infinite 

number, but it means that the eigenspace of these operators is a countable 

set. It is not a continuum. It is possible to define a procedure that attaches 

an increasing natural number to each eigenvector and to each eigenvalue. 

It means that functions that are defined using such eigenvalues as 

parameters or as function values cannot be differentiated.  

 

This does not mean that differentiable functions cannot exist in Hilbert 

space. For example, ℓ²is isomorphic with a separable Hilbert space Ң and 

consists of integrable and differentiable functions, but, as with any 

separable Hilbert space, the eigenvalues of operators in ℓ² do not form a 

continuum. The mentioned functions act as Hilbert vectors. They are NOT 

Hilbert functions. 

 

It is possible to use a trick that enables differentiation of fields that are 

defined as functions with eigenvalues of a normal operator as their 

parameter values. The trick consists of blurring all or a subset of the 

corresponding eigenvectors. When the blur is differentiable, then the field 

becomes differentiable as well. Still, if the blur extends wide enough, all 

                                                 
71 Influence; Inertia 
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members of an orthonormal base of Hilbert vectors touch a value of this 

field. 

 

The blur does not fit IN the considered separable Hilbert space Ң. It 

anchors onto a vector of this separable Hilbert space Ң. In addition, all 

members of an orthonormal base of the Hilbert space touch a value of the 

blur. 

 

The fact that differentiable quaternionic functions have an isotropic multi-

dimensional parameter space (in the imaginary part of the quaternions) 

means that in contrast to the eigenspaces of coordinate operators in 

separable Hilbert space Ң this parameter space is continuous. All its 

dimension related components of the quaternionic functions are coupled. 

Instead in the canonical conjugated coordinate space a decoupling exists 

along not necessarily straight radial lines that decompose rotation free 

and divergence free parts of the quaternionic functions. 

 

In our model the real part of quaternions that are applied as parameters 

appears to play a rather minor or at least a quite different role. For that 

reason, in most cases the results of differential geometry are more 

applicable than the theory of regular quaternionic functions. 

 

Differential geometry also decomposes local space into three independent 

coordinate directions. These dimensions are selected according to the 

divergence and rotation properties of the analyzed functionality. This is 

similar to the approach in the Helmholtz or Hodge decomposition 

theorem. For example, the Frenet-Serret frame72 features three mutually 

perpendicular directions. 

The basic constituent and private field 
There is only one basic constituent to Hilbert fields. That constituent is a 

QPAD. A small subset of Hilbert vectors forms an elementary Hilbert 

                                                 
72 Path characteristics 
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distribution73. Basic constituents exist in different forms. A corresponding 

private field is formed from the superpositions of the basic constituents 

that are attached to this elementary Hilbert distribution. In the rigged 

Hilbert space the corresponding Hilbert vectors in this distribution are 

represented by Dirac delta functions. These Dirac delta functions are 

convoluted with the corresponding basic constituent. In this 

superposition the Hilbert vectors form the anchor points of the basic 

constituents. The ground state of the basic constituent corresponds to a 

granule. 

 

The basic constituent covers the whole separable Hilbert space. In 

separable Hilbert space a normal operator has a set of eigenvectors that 

forms an orthonormal base of the separable Hilbert space. The 

corresponding eigenvalues can be taken as parameters of functions that 

have values of the basic constituent as their function values. This means 

that every member of an orthonormal base of the separable Hilbert space 

touches a value of the constituent. Via linear combination of the 

eigenvectors any Hilbert vector can be reached and the corresponding 

value of the basic constituent can be closely approximated. 

 

Via the anchor points and via the touching values the private fields are 

embedded in separable Hilbert space Ң. The private field represents an 

elementary particle and the physical fields that belong to that particle. The 

anchor points are eigenvectors of a strand operator. The corresponding 

eigenvalues are taken from a background coordinate system, which is in 

fact the eigenspace of a GPS-like operator that resides in the rigged 

Hilbert space that belongs to the separable Hilbert space. The strand 

operator resides in separable Hilbert space and has an equivalent in 

rigged Hilbert space.  

 

In this rigged Hilbert space the eigenvectors of the strand operator get 

their GPS-value. However, this coupling is inaccurate in a stochastic 

                                                 
73 Functions and fields; Elementary Hilbert distribution 
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sense. The blur that is attached to the eigenvector reflects this inaccuracy. 

Its ground state defines a granule. 

 

Via its wave function a particle is identified with its private field. The 

notion of private field transfers quantum theory into quantum field 

theory. The dynamics of the particle are represented by the dynamics of 

their private field. The fact that the private field anchors on a Hilbert 

vector also identifies the particle with that Hilbert vector.  

 

In some cases the private field is wide spread. That happens when the 

private field has the shape of a wave. In that case the anchor Hilbert 

vector is an eigenvector of the momentum operator rather than an 

eigenvector of the position operator. Also in that case the coupling with 

the background coordinate system is inaccurate in a stochastic sense. The 

background coordinate system in this case is the continuum canonical 

conjugate GSM system of the continuum GPS coordinate system. 

(Without further notice we will always assume that the anchor Hilbert 

vector is an eigenvector of the position operator). 

 

The eigenspace of the strand operator contains a set of chains of granules. 

In each chain one granule is singled out and represents the current 

granule. It forms the anchor point of the chain’s basic constituent. In fact 

the granule represents the ground state of the blur. It represents the 

central part of the QPAD and it equals zero over a region of the size of the 

Planck length. 

 

Depending on its type each elementary particle owns one or more of these 

anchor points. Also depending on the type of the elementary particle the 

QPAD might have typical characteristics, but the ground states of these 

different QPAD’s must all have nearly the same format and the same 

characteristics. 

 

The strand operator possesses an outer horizon. This guarantees its 

compactness. 
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The private field is a continuous function with parameters that are taken 

from a selected coordinate system. The field itself is independent of the 

selection of this coordinate system. Thus, only the when the field is taken as a 

function of the coordinates it depends on the coordinate selection. The 

selected coordinate system is related to a corresponding orthonormal base 

of the Hilbert space. That base consists of eigenvectors of a normal 

operator that resides in separable Hilbert space. Its eigenvalues are spread 

dense in the background coordinate system. That background coordinate 

system corresponds to the eigenspace of a GPS-like operator, which 

resides in rigged Hilbert space. This last eigenspace is a continuum. 

 

We assume that in the context of the Hilbert book model all basic 

constituents are differentiable with respect to a selected coordinate 

system. This means that the basic constituents have a local divergence and 

a local curl. This corresponds to two vector fields. These vector fields are 

formed by imaginary quaternions. One is divergence free and the other is 

rotation free. This divides the imaginary part of the differential of the 

basic constituent locally in two components, a divergence free part and a 

rotation free part. Fourier transformation converts differentiation into a 

product of the original Fourier transform with the argument.  

 

By redistributing the eigenvalues of the coordinate system a new 

coordinate system can be established for which the decomposition runs 

along straight coordinate lines. An appropriate reorientation of this 

coordinate system puts the decomposition in the canonical conjugated 

coordinate system along straight radial lines. In this coordinate system the 

ideal form of the Fourier transform can be applied to the considered 

configuration of the field. In this idealized condition the Fourier 

transform can be considered as three independent complex Fourier 

transforms. This trick can only be done for a static status quo, thus for a 

single separable Hilbert space and the static fields that are attached to it. 

Each static status quo has its own field configuration and asks for a 

adapted coordinate system in order to reach the idealized condition. 
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When subsequent Hilbert spaces are considered, the private fields move74 

together with the corresponding elementary Hilbert distribution. Apart 

from a linear movement the private fields may rotate. When a given 

Hilbert distribution contains just one Hilbert vector, then the constituent 

can rotate free around that point. If the Hilbert distribution contains 

multiple Hilbert vectors, then apart from these anchor points a center of 

movement exists. If it contains two vectors, then one axis is fixed with 

respect to the anchor points. If it contains three independent vectors, then 

the private field can only rotate together with these anchor points.  

 

The movements are stochastic and have average characteristics such as 

position, speed, rotation axis, rotation phase and chirality. At each 

position within the private field these data may differ. Also the relative 

position of the carrying Hilbert vectors with respect to each other may 

change.  

 

The basic constituent can be interpreted as the QPAD whose squared 

modulus describes the probable location of the carrying Hilbert vector. 

The private field does that for all its anchor points. 

 

The granularity of the eigenspace of the position operator determines the 

minimal distance that can exist between the carrying vectors. It also 

describes the maximal change in average position that can occur during a 

single progression step. Apart from zero it also describes the minimal 

change. 

 

It is sensible to select the coordinate system such that the members of the 

elementary Hilbert distribution are eigenvectors of the corresponding 

position operator. When a Fourier transform is taken, then this can no 

longer be valid. In that case the members of the elementary Hilbert 

                                                 
74 Dynamics 
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distribution must be linear combinations of the eigenvectors of the 

canonical conjugate of the original coordinate operator. 

 

The Hilbert vectors that are member of a given elementary Hilbert 

distribution can be interpreted as eigenvectors of a strand operator. The 

corresponding eigenvalue is the position value of a granule that is the 

current granule of the chain.  

 

The private fields overlap and because they are all QPAD’s their 

superposition causes an interaction between the particles that anchor on 

these fields. 

Covering field 
Physical fields are not identifiable physical items. In the Hilbert book 

model, physical fields are represented by Hilbert fields75. For each Hilbert 

field, every member of an orthonormal base of the Hilbert space 

corresponds to a value of the field. If for this base the set of eigenvectors 

of a normal operator is selected, then in this way this field can be coupled 

to a parameter system that is formed by the corresponding eigenvalues of 

the normal operator.  

 
These parameters are not necessarily physical quantities. The physical coordinates of 

identifiable physical items are granular. They can only change with steps that are equal 

to a Planck-length. Coordinates that are eigenvalues of normal operators in separable 

Hilbert space are countable. The set of rational quaternions is countable, but this set is 

not granular in the sense that a difference has a minimal step size. In rigged Hilbert 

space the eigenspace of a normal operator may be uncountable. It means that this space 

forms a continuum. The set of all imaginary quaternions forms a continuum. In a given 

static status quo, only a countable and granular subset of these eigenvalues can represent 

physical quantities. 

 

Each elementary particle corresponds to a private field. A covering field 

is formed by the superposition of these private fields. Each private field 

that belongs to an elementary particle is characterized by a complicated 

                                                 
75Distributions and fields; Hilbert fields  
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blur function whose characteristics are typical for the particle type. That 

blur function can be interpreted as a complicated QPAD. This blur 

function anchors on a small number of Hilbert vectors, which together 

span a Hilbert subspace. These vectors form an elementary Hilbert 

distribution. The number of Hilbert vectors on which this elementary 

Hilbert distribution is based depends on the type of the elementary 

particle. The anchor points correspond to current granules of chains that 

reside in the eigenspace of the strand operator. The granules are ground 

states of basic field constituents. 

 

The blurs of elementary particles are smooth and fade out at long 

distances. As a consequence the covering field is smooth as well and its 

squared modulus can be considered as a single - very wide spread - 

QPAD.  

 

Taken over a series of static status quos the simplest form of blur is a 

Poisson distribution. Thus, dynamically, the covering field can also be 

seen as a series of parallel Poisson processes. 

 

Depending on the type of the constituting particles the covering field can 

be divided in subfields. Each type has its own subfield. 

 

Depending on the coordinate operator that is selected for the background 

coordinate system, the parameters of the probability distributions are GPS 

related or GMS related. 

Decomposition 
The imaginary part of a Hilbert field can be decomposed in a rotation free 

part and a divergence free part.  

 

The Helmholtz decomposition splits the static vector field   in a 

(transversal) divergence free part    and a (one dimensional longitudinal) 

rotation free part   .  
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Here   is a scalar field and   is a vector field. In quaternionic terms   and 
  are the real and the imaginary part of a quaternionic field.   is an 
imaginary quaternion.76 
 

The significance of the terms “longitudinal”and “transversal” can be 

understood by computing the local three-dimensional Fourier transform 

of the vector field  , which we call  ̃. Next decompose this field, at each 

point  , into two components, one of which points longitudinally, i.e. 

parallel to  , the other of which points in the transverse direction, i.e. 

perpendicular to  .  

 ̃     ̃      ̃      

〈   ̃    〉    

   ̃       

The Fourier transform converts gradient into multiplication and vice 

versa. Due to these properties the inverse Fourier transform gives: 

         

〈    〉    

        

so this split indeed conforms to the Helmholtz decomposition. 

This interpretation relies on idealized circumstance in which the 

decomposition runs along straight lines. This idealized condition is in 

general not provided. In normal conditions the decomposition and the 

                                                 
76 See next paragraph 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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interpretation via Fourier transformation only work locally and with 

reduced accuracy. 

If we take the covering field as the subject, then the above idealized 

picture no longer fits. The covering field is a superposition of a very large 

number of constituents that each bear on their own anchor point. These 

anchor points disturb the ideal picture. As a result the   lines are no 

longer straight lines but they get curved in the neighborhood of anchor 

points. The curvature of these lines can be used to define a local curvature 

value. 

The decomposition depends on the choice of the selected coordinate 

system. In general such decomposition runs along curved lines. However, 

for a fixed field configuration it is possible to select a coordinate system 

for which the decomposition runs along straight lines. For this coordinate 

system it is possible to define a globally valid multidimensional Fourier 

transform that consists of a set of complex Fourier transforms. With 

respect to this coordinate system, other coordinate systems possess a 

locally defined curvature. In the idealized coordinate system all typical 

shapes are spatially invariant. 

Decomposition and quaternionic Fourier transform 

The above relations are the consequence of the properties of the 

quaternionic Fourier transform with respect to differentiation in an 

idealized coordinate system. The quaternionic differentiation of a 

quaternionic field runs; 

 
          

          〈      〉                

 (       ) 

 

The colored   and   signs refer to the sign selections of quaternionic 

multiplication.  

In Fourier space differentiation becomes multiplication with the canonical 

conjugate coordinate and therefore the equivalent equation becomes: 

(1) 
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 ̃      ̃   

      ̃    〈   ̃   〉     ̃       ̃    

 (    ̃   ) 

 

For the imaginary parts holds: 

 

                      (       ) 

 

 ̃        ̃       ̃     (    ̃   ) 

 

For the static part (        ) holds: 

 

             (       ) 

 

 ̃       ̃     (    ̃   ) 

 

Since  

 
           

 

and 

 

〈        〉 = 0 

 

this conforms to the previous paragraph77. 

Curvature field 
The decomposition properties of the covering field determine the 

curvature of a secondary coordinate system with respect to the original 

                                                 
77 http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf ;Formulas:F.104, 

F.105 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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GPS coordinate system. That curvature on its turn defines a local metric 

and this metric defines a secondary tensor field which we will call 

curvature field. In this view the curvature field is derived from the 

covering field, which is built via superposition from the private fields of 

the separate particles. 

 

The curvature that is caused by the blur of an elementary distribution 

represents a private curvature field and is independent of any electric 

charge (or other charges) of the elementary distribution. The curvature of 

the private curvature field is non-negative. It can be thought of being 

distributed over the domain of the private curvature field or its equivalent 

“charge” value being located at a center point. This “charge” is called 

mass and the center point is the center of mass. 

 

At each location the local curvature can also act as a guide for the local 

direction of chains in that environment. 

About the field concept 
It is common practice to treat the EM fields and the gravitation field as 

different and independent subjects. In this interpretation, the gravitation 

field generates the curvature of the coordinate system in which the other 

fields must operate.  

 

This paper takes a different approach. It puts the reason for the curvature 

of the coordinates in the properties and configuration of the covering 

field. The curvature that exists in this way is used to derive the curvature 

field. The wave function is interpreted as a private field that is part of the 

covering field. In this way it also contributes to the curvature field. This 

picture unifies all fields. 

Functions in quaternionic Hilbert space 
Due to their definition the Hilbert functions are only defined for an 

infinite but countable number of parameter values that lay dense in 

quaternion space. The Hilbert functions are close to a corresponding 
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differentiable function that resides in the corresponding rigged Hilbert 

space Ħ. In contrast to what holds for the Hilbert function, the dimension 

related components of the differentiable function are coupled. 

 

A locatable probability distribution can be described by the convolution 

of a Dirac delta function that corresponds to the Hilbert vector, which 

represents the location of the weighted center of that distribution and a 

function f(q) that describes the distribution relative to that location. In this 

way a blurred Hilbert vector is defined. This means that a blurred Hilbert 

vector can be closely approximated by a Hilbert function that is defined 

by the combination of a sharp locator Hilbert vector and a sharp shape 

Hilbert vector. We will use the addition “Hilbert” to the name of a 

continuous function for the Hilbert function that closely approximates 

that continuous function. 

Thus, in Hilbert space the representative of the blurred locator Hilbert 

vector by a Hilbert function is a Hilbert blur or more specifically a 

Hilbert QPAD.  

 

It is also possible to use an elementary Hilbert distribution78 as the anchor 

of the continuous QPAD. This construct may represent an elementary 

particle. It is closely approximated by a private Hilbert field that is 

formed by the superposition of the Hilbert functions that are formed by a 

small set of locator Hilbert vectors and a single shape Hilbert vector. 

 

Pure states79 are characterized by blurred elementary Hilbert 

distributions. 

Elementary Hilbert distribution 
An elementary Hilbert distribution is a discrete distribution in which a 

single or a small number of Hilbert vectors participate. Together these 

                                                 
78 Functions and fields; Elementary Hilbert distribution 
79 States; State definition; Pure states 
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Hilbert vectors span a closed subspace that represents an un-blurred 

elementary item. 

 

A unary distribution uses only one Hilbert vector that is eigenvector of 

the position operator. 

A binary distribution uses two Hilbert vectors that are different 

eigenvectors of the position operator. 

A ternary distribution uses three Hilbert vectors that are different 

eigenvectors of the position operator. 

 

If the eigenvectors are selected such that they belong to mutually 

perpendicular imaginary (base) eigenvalues, then the elementary 

distributions are restricted to the mentioned three classes. 

Characteristic functions 
Now the position is connected to eigenvectors of the strand operator. The 

physical item is connected to a subspace rather than to a single vector. 

This subspace is spanned by the eigenvectors. So we can use a localizer 

that represents the (weighted) average position as a more precise 

indicator of the position of the physical item. On the other hand physical 

items are characterized by a state.  

 

A state is either a wave function80 or a probability density operator. Both 

use background coordinate position as their parameter. The wave 

function is a QPAD. Each wave function can be approximated by a 

Hilbert function. The squared modulus of the wave function indicates the 

probability of finding the position of the localizer.  

 

The probability density operator is a weighted projection operator that is 

related both to the subspace that represents the item and to the position 

operator. It represents the probability that after measuring the position 

the parameter of the density distribution is found as the result. 

                                                 
80 States 
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Differentiation 
Let  ̌ be the selected coordinate operator. 

The nabla operator   is directly related to operator  ̌. Thus, the sign 

selections for  ̌ transfer to the sign selections for operator  . Due to sign 
selection four nabla operations exist. With a fixed nabla operator there may 
exist four results. Normally we reduce the use of the nabla operator to 
        . 

 
           

 

          〈      〉                 (       ) 

 

 ̅           
 

          〈      〉                 (       ) 

 

  turns a symmetric field f(q) into an anti-symmetric field  f(q) and an 

anti-symmetric field into a symmetric field. 

 

The fact that         means that      is constant or that at location q 

function      is in a maximum, a minimum, a saddle point or an 

asymmetric plateau. The consequence of this restriction is: 

 

         〈      〉                  (       ) 

 

The fact that          leads to different equations. 

 

         〈      〉                  (       ) 

 

The quaternionic Laplace operator Δ is defined by  

 

                              
             

 

A quaternionic function that fulfills         is a harmonic function. 

(1) 

(2) 

(3) 

(4) 

(5) 
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A quaternionic function that fulfills          is a spatial harmonic 

function. 

 

For quaternionic functions in general: 

 

 (        )  (     )               

  

(6) 
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Covariant derivative 
The covariant derivative plays a role in the Lagrangian and in the 

equation of motion. 

The covariant derivative   is defined as  

 
                      

 

This is interesting with respect to a gauge transformation of the form 

 
                

 
               

 
               

 

where with a corresponding vector potential transformation 

 
                   

 
               

 

The following step is in general not valid for quaternionic functions. 

However, we assume that it is valid for              . 

 

 (        )  (     )               

 
                                  

 
                           

 

     (               ) 
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Thus with that transformation pair not only the modulus of the function 

stays invariant but also the modulus of the covariant derivative stays 

invariant. Further 

 
                                    

 
             

Above the right sided covariant derivative   is defined 

 

 ⃗⃗       ⃗⃗                

 

The left sided covariant derivative is defined as: 

 

     ⃗⃗⃖       ⃗⃗⃖             

 

We will use  ⃖  for both left sided and right sided covariant derivative: 

 

 ⃖      
 ⃗⃗           ⃗⃗⃖

 
                      

 

Canonical conjugate 
Remember that the operator  ̌ that resides in rigged Hilbert space Ħ is 

defined such that the decomposition of the covering field runs along 

straight lines. At least we suppose that for the environment that we 

investigate an operator exists that does this with sufficient accuracy. First 

we restrict to a selected longitudinal direction. This restricts to a complex 

subspace of the full quaternionic number space. 

 

The canonical conjugate of the operator  ̌ is the operator  ̌. It is defined 

by using a complex subspace of a quaternionic number space that is used 

to specify inner products. It is defined by specifying the function that 

defines the inner products of the eigenvectors |q> of  ̌ and |p> of  ̌ with 

real eigenvalues q and p. 

(10) 

(11) 

(12) 

(13) 
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         ̃                                  

 

The imaginary base number   belongs to a complex subspace of the 

quaternionic number space. The constant   is Planck’s constant and 

relates to the granularity of the eigenspaces. If the Fourier transform of 

the ground state of a chain’s QPAD is taken, then apart from a factor 

           –     the same function results. The average spread of the 

granule in phase space is characterized by  .  

 

Due to its specification, the canonical conjugate operator  ̌ can be 

interpreted as a generator of displacement of the eigenvalues of  ̌. For 

this purpose the considered function      must be differentiable. 

 

 ̌         
 

  
 

 

    ̌           
 

  
     

 

This interpretation of the operator  ̌ shows that the complex canonical 

conjugate shown here corresponds with the imaginary direction in 

which the differentiated function      is rotation free. 

 

The definition leads to the commutator: 

 

   ̌  ̌     ̌ ̌   ̌ ̌        

 

The sign selections of  ̌ depend on the sign selections of  ̌. 

Complex Fourier transform  

The specification of the complex canonical conjugate also defines a 

complex Fourier transform.  

 

(1) 

(2) 

(3) 

(4) 
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Also here the imaginary direction must correspond to the direction in 

which the analyzed function is rotation free. 

 

Let |f> be the generator of a quaternionic function that is generated with 

the help of the eigenvectors and eigenfunctions of operator  ̌ with 

canonical conjugate  ̌. 

 

The Fourier transform Ƒȋ = Uqp converts the base {|q>}q into the base 

{|p>}p. The inverse Fourier transform Upq does the reverse. These 

transforms reside both in separable Hilbert space Ң as well as in rigged 

Hilbert space Ħ. 

 

                          ∑             

 

  

 
 ∑                 

 
   ∑             

 

  ∑          

 

 

 

         ∑             

 

 

 

   ∑          

 

 

 

When summation is replaced by integration the Fourier transformation is 

confined to the rigged Hilbert space. There it can be applied to continuous 

functions.  

 

The complex Fourier transform of a symmetric (complex) function is a 

cosine transform. It is a real function. 

(1) 

(2) 
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The complex Fourier transform of an anti-symmetric (complex) function is 

a sine transform. It is an imaginary function. 

 

Through complex Fourier transformation the operators  ̌ and  ̌ exchange 

roles. 

 

The Hilbert function  ̃          denotes the Fourier transform of the 

Hilbert function            

Heisenberg’s uncertainty 

The Heisenberg’s uncertainty principle is a consequence of the definition 

of the combination of the canonical conjugate and the definition of the 

Hilbert field. It means that a small spread of q values goes together with a 

large spread of p values and vice versa. 

 

Δq·Δp ≥ ħ/2 

 

A squeezed coherent state81 is any state such that the uncertainty 

principle is saturated. That is: 

 

Δq·Δp = ħ/2 

 

See: http://en.wikipedia.org/wiki/Squeezed_coherent_state. 

For animations: http://gerdbreitenbach.de/gallery/.  

 

The ground states of the basic field constituents are squeezed coherent 

states. 

The quaternionic displacement generator 

The formula that defines  ̌ as a complex displacement generator: 

 

                                                 
81 Functions and fields: Quaternionic Fourier transform split: Functions invariant under 

Fourier transform: Coherent states 

(1) 

(2) 

http://en.wikipedia.org/wiki/Squeezed_coherent_state
http://gerdbreitenbach.de/gallery/
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    ̌           
 

  
     

 

can more generally be written as a quaternionic displacement generator 

for eigenvalues of operator  ̌. 

 

  | ̌            |          
      

 

    ∫             

 

 ∫            

 

 

This means that for all   and its canonical conjugated   holds: 

 
                 

 

Here     is the eigenvector belonging to eigenvalue   and     is the 

eigenvector belonging to eigenvalue  .    represents quaternionic 

differentiation with respect to eigenvalues of operator  ̌. 

 

It is shown82 that locally the operator    splits field       in a longitudinal 

rotation free part and a transverse divergence free part. 

Idealized field conditions 

Only in a complex subspace of the quaternionic number space the relation 

(3) between the canonical conjugates   and   can be simplified to: 

 

          (    
 

 
)  

 

The longitudinal direction runs in   space. The above simplification can 

only be valid when the longitudinal direction runs along straight radial 

lines. This simplification also enables the specification of a complex 

Fourier transform that is based on this formula (1). 

 

                                                 
82 Decomposition: Decomposition and quaternionic Fourier transform 

(1) 

(2) 

(3) 

(1) 
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It behaves as if the analyzed function is constant in dimensions that 

belong to other quaternionic imaginary directions. It is well-known that 

the Fourier transform of a constant delivers a Dirac delta function. Thus, 

the complex longitudinal Fourier transform equals a cut through the 

quaternionic Fourier transform of the full 3D imaginary quaternionic 

function or field. 

 

This is similar to the cut through the 2D optical transfer function that is 

obtained when the Fourier analysis of the imaging device is confined to 

the image of a thin slit. 

 

The configuration of the analyzed field determines whether the 

conditions are sufficiently ideal. Otherwise the field configuration induces 

at every location a local curvature of the actual background coordinate 

system that is defined using operator  ̌ The eigenspace of the actual 

operator  ̌ is curved with respect to the eigenspace of the idealized 

operator  ̌. 

 

The position operator  ̌ is defined such that when the analyzed function 

or field is specified with  ̌ coordinates the longitudinal direction is 

stationary. It runs along straight radial lines. The construction of such an 

idealized position operator is possible for a given configuration of the 

analyzed field. When the analyzed field is the static covering field, then it 

holds for that field and not for a part of this field or the covering field that 

belongs to another static status quo. 

 

In this paper, when nothing else is indicated, we confine Fourier analysis 

to the ideal quaternionic Fourier transform. When nothing is indicated we 

presume  ̌ coordinates and analysis of the covering field. 

 

The formula below specifies the local relation between canonical 

conjugated coordinates when field conditions are not idealized. 

 
                 (2) 
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Affine space 
The eigenvectors of a normal operator form an orthonormal base of the 

separable Hilbert space Ң. This orthonormal base defines an affine unit 

sphere. Apparently, the correspondence with a  ̌ type GPS operator that 

is equipped with an origin in its eigenspace is not a natural mapping for 

this affine Hilbert unit sphere. On the other hand, like this Hilbert unit 

sphere, the imaginary eigenspace of the  ̌ type GPS operator has no 

preferred direction. When viewed from a particular Hilbert vector the 

mapping becomes more natural. 

 

If a field covers all vectors of an orthonormal base, then it covers all of 

Hilbert space. The orientation along the longitudinal direction of the 

(covering) field is not natural for the Hilbert space, but it is natural for the 

combination of the field and a position operator that keeps the 

longitudinal lines straight. Thus apart from a shift of the origin, the 

position operator  ̌ is fully determined by the properties of the field. 

 

The origin of the eigenspace of the  ̌ operator may be interpreted as the 

position of the observer. That selection would consume the last freedom 

for this operator. 

 

There exists a point to point relation between an arbitrary  ̌ type GPS 

operator and the  ̌ operator. This point to point relation defines the 

curvature field. 

Quaternionic Fourier transform split 
The longitudinal Fourier transform represents only part of the full 

quaternionic Fourier transform. It depends on the selection of a radial line 

     in p space that under ideal conditions runs along a straight line. 

 

  (    )                

 

Or 

 

(1) 
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  (    )    (     )  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

 (    )    ̃    

 

The inverse Fourier transform runs: 

 
     ̃           

 

The split in longitudinal and transverse Fourier transforms corresponds to 

a corresponding split in the multi-dimensional Dirac delta function. 

 

We consider a field      that equals the quaternionic differentiation of 

another field   with respect to a selected (ideal) coordinate system  .  

 
          

 

We use the results of the paragraph on decomposition. We only use the 

static and imaginary version of field     . 

 

For the static imaginary part      holds: 

 

             (       )              

 

In Fourier space differentiation becomes multiplication with the canonical 

conjugate coordinate   and therefore the equivalent equation becomes: 

 

 ̃      ̃     (    ̃   )   ̃      ̃     

 

Since  

 
                     

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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and 

 
〈        〉    〈       〉    

 

Now we take 

 

  | ̌            |          
            

 

   ∫            

 

 

 

The static imaginary part is 

 

  | ̌            |          
            

 

    (∫            

 

)  ∫               

 

 

 

 ∫                

 

 ∫                

 

 

 

 ∫          ̃     

 

 ∫          ̃     

 

 

 

The left part is the longitudinal inverse Fourier transform of field  ̃   . 

The right part is the transverse inverse Fourier transform of field  ̃   . 

For the Fourier transform of      holds the split: 

 

 ̃     ∫                

 

 ∫               

 

 

 

(9) 

(10) 

(11) 

(12) 
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  ∫               

 

 

 

The longitudinal direction is a one dimensional (radial) space. The 

corresponding transverse direction is tangent to a sphere in 3D. Its 

direction depends on the field      or alternatively on the combination of 

field   and the selected (ideal) coordinate system  ̌. 

For a weakly curved coordinate system  ̌ the formulas hold with a 

restricted accuracy and within a restricted region. 

Alternative transverse plane 
The Cayley-Dickson construction, as well as Warren Smith’s construction 

formula shows that the transverse part can be considered as a complex 

number space multiplied with a fixed imaginary quaternionic base 

number. The selection of the imaginary base number i is arbitrary as long 

as it is perpendicular to k. The resulting plane is spanned by axes i and ik. 

When base number i is divided away, then a normal complex number 

space results.  

Also here a complex Fourier transform can be defined in a way that is 

similar to the longitudinal Fourier transform. It must be reckoned that the 

sign selections for these directions differ.  

Alternative approach to Fourier transform 
The following draws from the work of S. Thangavelu83. 
 

Let us take the non-abelian group ℍ1 which is ℝ ⊗ ℝ ⊗ℝ with the group 

law 

 

                                                    
 

Then it is clear that ℍ1 is non-abelian and the Lebesgue measure dx dy dt is 

both left and right invariant Haar measure on ℍ1. With this measure we 

can form the Hilbert space L2(ℍ1). Let Γ = ℤ ⊗ ℤ ⊗ ℤ. Then it is easy to 

                                                 
83 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(1) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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check that Γ is a subgroup of ℍ1 so that we can form the quotient M = Γ/ℍ1 

consisting of all right cosets of Γ. Functions on M are naturally identified 

with left Γ-invariant functions on ℍ1. As the Lebesgue measure dx dy dt is 

left Γ-invariant we can form L2(M) using the Lebesgue measure restricted 

to M. As a set we can identify M with [0, 1)3 and we just think of L2(M) as 

L2([0, 1)3). 
 

Fourier expansion in the last variable allows us to decompose L2(M) into a direct 

sum of orthogonal subspaces. Simply define  k to be the set of all f ∈L2(M) 

which satisfy the condition 

 

                                       
 

Then  k is orthogonal to  j whenever k ≠ j and any f ∈ L2(M) has the unique 

expansion 

 

     ∑   

 

    

     ∈     

 

In quaternionic terms, the split sees ik as imaginary quaternion k and the 

quaternionic Hilbert space is split in components according to the imaginary 

direction of k, where the choice is between three mutually perpendicular 

directions.  

 

For the moment, we are mainly interested in  1 which is a Hilbert space in its 

own right. It is interesting to note that functions in  1 are also invariant under the 

left action of Γ. 
 

Our next example of a unitary operator is the following. Consider the map J :  1 

→  1 given by  

 

            –        –      

 

               –     –      

 

         

(2) 

(3) 

(4) 

(5) 

(6) 
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              –         –         –   –       

 
       

 
                   

 
                              –        –      

 

Weil-Brezin transform  

Next consider the Weil-Brezin transform V: 

 

                          ∑                         

 

 

 

∫                 ∫ ∑             
   

    

 

   

 

   

   

 

∭                       ∫           
 

 

 

 

 

  

V is unitary.  

See also Zak transform 

Fourier transform 

We define the Fourier transform F by: 

 

           

 

         ; for every   ∈     ℝ   

                ; for almost every   ∈  ℝ 

 ‖   ‖    ‖ ‖  

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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For   ∈     ℝ       ℝ  the Fourier transform is given by 

 

        ∫                    
  ∈ ℝ

 

 

If we further assume that    ∈     ℝ  then for almost every x we have 

 

        ∫                       
  ∈ ℝ

 

 

Functions invariant under Fourier transform 
In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

  
                      

  

   
          . 

  

 

2. The physicist’s Hermite polynomials 

 

  
                    

  

    
         

          (  
 

  
)            

 

These two definitions are not exactly equivalent; either is a rescaling of the 

other: 

 

  
               

    
( √ ) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

(15) 

(16) 

  
       

        
    ( √ ) 

(1, 2) 

(3) 

http://en.wikipedia.org/wiki/Hermite_polynomials
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The Gaussian function φ(z) defined by  

 
                  

 

is an eigenfunction of F. It means that its Fourier transform has the same 

form. 

As        any λ in its spectrum        satisfies λ4 = 1: Hence,  

 

                    .  

We take the Fourier transform of the expansion: 

                 –        ∑                   
    

 

   

 

First we take the Fourier transform of the left hand side: 

 
 

√  
 ∫                      

          –    
 

    

    

           
                

   

   ∑          
                

    

 

   

 

The Fourier transform of the right hand side is given by 

 

√  
 ∑  ∫                      

          
    

 

    

 

   

    

Equating like powers of c in the transformed versions of the left- and 

right-hand sides gives 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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√  
 ∫                      

          
    

 

    
     

                 
          

  

  
 

Let us define the Hermite functions       

 
                            

          

 
                  

  

 

with suitably chosen cn so as to make 

 
‖  ‖

       

 

   
 

√    √ 
 

 

The importance of the Hermite functions lie in the following theorem. 

 

“The Hermite functions ψn; n  N form an orthonormal basis for 

L2(R)” 

 

Consider the operator  

 

      
  

   
        

 

Apply this to ψn(z): 

 
                        

 

Thus, ψn is an eigenfunction of H. 

 

Let           be any of the Hermite functions. Then we have 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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 ∑             (              )

 

    

 

 

         ∑                        

 

    

 

 
Proof: As  

 

           
 

the equation  

 

            
 

translates into 

 

                                

 

With the definition of V and t = xy: 

 

                          ∑                         

 

 

 

QED. 

 

The vectors |ψn> are eigenvectors of the Fourier transform operator with 

eigenvalues (-k)n. The eigenfunctions ψn(x) represent eigenvectors |ψn> 

that span the complex Hilbert space Ңk. 

For higher n the central parts of       and        
  become a sinusoidal 

form. 

(16) 

(17) 

(18) 

(19) 

(20) 
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A coherent state84 is a specific kind of state85 of the quantum harmonic 

oscillator whose dynamics most closely resemble the oscillating behavior 

of a classical harmonic oscillator system. The ground state is a squeezed 

coherent state86. 

 

The ground state here differs from the ground state of the QPAD. That 

ground state equals zero in the close neighborhood of the center. The size 

of that neighborhood is of the order of the Planck length. Thus in this 

region the QPAD has the form of a stretched turban mold. It has a form 

similar to the second state in the picture of        , thus the lowest state 

                                                 
84 http://en.wikipedia.org/wiki/Coherent_state  
85 States 
86 Canonical conjugate: Heisenberg’s uncertainty 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Coherent_state
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where      is asymmetric. Asymmetric states are better localizable than 

symmetric states.  
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Ladder operator 

The Hermite functions    represent Fock states87. 

 

Boson ladder operators are characterized by 

 

       √          
 

        √            
 

  
 

√ 
(  
 

  
    )      ̌√

 

       
  ̌√

   

   
 

 

   
 

√ 
(   

 

  
    )     ̌√

 

       
  ̌√

   

   
 

 

In the Heisenberg picture, the operators have the following time 

dependence: 

 

             (           ) 

 

                              

 

We can also define an enumeration operator N which has the following 

property: 

 

         
 

                

 

In deriving the form of   , we have used the fact that the operators X 

and Px, which represent observables, are Hermitian. These observable 

                                                 
87 http://en.wikipedia.org/wiki/Fock_state  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Fock_state
http://en.wikipedia.org/wiki/Fock_state
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operators can be expressed as a linear combination of the ladder operators 

as 

 

 ̌      √
 

     
                

 

 ̌        √                       

 

The  ̌ and  ̌ operators obey the following identity, known as the 

canonical commutation relation: 

 

[ ̌  ̌]       

 

Using the above, we can prove the identities 

 

                                

 

           

 

Now, let |fE>denote an energy eigenstate with energy E. The inner 

product of any ket with itself must be non-negative, so 

 

                         
              

 

Expressing     in terms of the Hamiltonian H: 

 
                                           

 

so that 

 

         .  

 

Note that when              (is the zero ket i.e. a ket with length 

zero), the inequality is saturated, so that  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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It is straightforward to check that there exists a state satisfying this 

condition; it is the ground state 

 
                            

 

Using the above identities, we can now show that the commutation 

relations of   and    with H are: 

 
              

 
               

 

Thus, provided          is not the zero ket,  

 
                            

 
                   

 
                    

 
                   

 

Similarly, we can show that 

 

                         
      

 

In other words,   acts on an eigenstate of energy E to produce, up to a 

multiplicative constant, another eigenstate of energy E – ħ ω, and      acts 

on an eigenstate of energy E to produce an eigenstate of energy E + ħ ω. 

For this reason, a is called a "lowering operator", and     "raising 

operator". The two operators together are called ladder operators. In 

quantum field theory,   and    are alternatively called "annihilation" 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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and "creation" operators because they destroy and create particles, which 

correspond to our quanta of energy. 

Given any energy eigenstate, we can act on it with the lowering operator 

 , to produce another eigenstate with ħ ω-less energy. By repeated 

application of the lowering operator, it seems that we can produce energy 

eigenstates down to E = −∞. However, this would contradict our earlier 

requirement that E ≥ ħ ω/2.  

Ground state 

Therefore, there must be a ground-state energy eigenstate, which we label 

|fground>, such that 

 

                    (zero ket). 

 

In this case, subsequent applications of the lowering operator will just 

produce zero kets, instead of additional energy eigenstates. Furthermore, 

we have shown above that 

 
                                

 

Finally, by acting on           with the raising operator and multiplying 

by suitable normalization factors, we can produce an infinite set of energy 

eigenstates  

 

                                ,  

 

such that 

 
                           

 

which matches the energy spectrum. 

This method can also be used to quickly find the ground state wave 

function of the quantum harmonic oscillator.  

Indeed  

(1) 

(2) 

(3) 

(4) 
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becomes 

 

                                    
 

   
 
 

  
       

 

so that 

 

               
 

   
          (     )    

   

  
            

 

After normalization this leads to the following position space 

representation of the ground state wave function. 

 

        √
   

  

 
    
   
  
    

 

Coherent state 

A coherent state is a specific kind of state88 of the quantum harmonic 

oscillator89 whose dynamics most closely resemble the oscillating behavior 

of a classical harmonic oscillator system.  

 

The coherent state |α> is defined to be the 'right' eigenstate of the 

annihilation operator  . Formally, this reads: 

 
             

 

Since   is not Hermitian, α is a hyper complex number that is not 

necessarily real, and can be represented as 

 

                                                 
88States  
89 Functions invariant under Fourier transform 

(5) 

(6) 

(7) 

(8) 

(1) 
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where   is a real number.     is the amplitude and   is the phase of state 

|α>. 

This formula means that a coherent state is left unchanged by the 

annihilation or the creation of a particle. The eigenstate of the annihilation 

operator has a Poissonian90 number distribution A Poisson distribution is 

a necessary and sufficient condition that all annihilations are statistically 

independent. 

The coherent state's location in the complex plane (phase space91) is 

centered at the position and momentum of a classical oscillator of the 

same phase θ and amplitude. As the phase increases the coherent state circles 

the origin and the corresponding disk neither distorts nor spreads. The disc 

represents Heisenberg’s uncertainty. This is the most similar a quantum state can 

be to a single point in phase space. 

 

 

                                                 
90 http://en.wikipedia.org/wiki/Poissonian  
91 http://en.wikipedia.org/wiki/Phase_space  

(2) 

http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
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Phase space plot of a coherent state. This shows that the uncertainty (blur) 

in a coherent state is equally distributed in all directions. The horizontal 

and vertical axes are the X and P quadratures of the field, respectively. 
Oscillations that are said to be in quadrature, if they are separated in phase by π/2 

radians. The red dots on the x-axis trace out the boundaries of the 

quantum noise. Further from the origin the relative contribution of the 

quantum noise becomes less important. 

 

The representation of the coherent state in the basis of Fock states is: 

 

                ∑
  

√  

 

   

                     (    )      

 

where |n> are Hermite functions (eigenvectors of the Hamiltonian). This 

is a Poissonian distribution. The probability of detecting n photons is: 

 

          〈 〉 
〈 〉 

  
 

 

Similarly, the average photon number in a coherent state is  

 

〈 〉  〈   〉        
 

and the variance is 

 

         (   )        

Squeezing 

The squeezing operator can squeeze a state more or less in the direction of 

either P or Q. The operator is defined as: 

 

          ( (       )) 

 
              

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Squeezing_operator
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The ground state is a saturated squeezed coherent state where  

 

          Δq·Δp = ħ/2 

Base transforms 

Now we have discovered the following base transforms: 

Position⟺momentum: 

 

        
 

√   
      
     

 
  

 

Position⟺Fock state: 

 

        √
  

  

  

√     
       

  

  
        √

  

 
  

 

Fock state⟺coherent state: 

 

        
 

√  
                 

Harmonic oscillating Hilbert field  

Take the ingredients of the complex harmonic oscillator and interpret 

these as similar ingredients of a harmonic oscillating Hilbert field that is 

based on a Gaussian blur. The blur delivers the conditions of the ground 

state. 

 

        √
   

  

 
    
   
  
    

 

This means that the ground state corresponds with a Gaussian charge 

distribution. Higher states correspond to a blurred current. We indicate 

this current as vector potential  . Its time derivative  ̇ is perpendicular to 

 . The other ingredients are P, Q,   and   . 

(3) 

(1) 

(2) 

(3) 

(1) 
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 ⟺       √
 

   
      

 
  

 

     
 
   

 

 ⟺   ̇    ̇  √
   

 
       

 
  

 

     
 
   

 

 ⟺            √
  

  
(  

 ̇

 
)  √

  

  
(      

 ̇ 

 
) 

 

  ⟺      
 
     

 
 √
  

  
(  

 ̇

 
)  √

  

  
(      

 ̇ 

 
) 

 

The   field and the  ̇ field are mutually perpendicular. If both fields are 

subjected to a synchronized quantum harmonic oscillation, then an 

oscillating wave results. We take the same ground state for each of the 

fields. These ground states correspond to a spherical symmetric Gaussian 

blur.  

 

When bounds of the cavity are removed or relaxed, then the higher order 

modes may differ in a phase shift. The sign selections set the eigenvalues 

of the spin operator. The result is an elliptically polarized wave that 

moves in directions along    ̇.  

 

  no longer stands for a single position, but instead for a Gaussian 

distribution of positions. Similarly  ̇ does not stand for a single moving 

particle, but for a moving Gaussian cloud of virtual particles. 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Annihilator and creator 

The annihilator   and the creator    are examples of boson operators. 

This is a consequence of their commutation relations. 

 

         
 

        ̇ 
 

            ̇ 

 

             ̇ 
 

[          ]        

 
              

 

[           ]    

 

The corresponding fermion operators are: 

 

{          }        

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



200 

 

 
              

 

{           }    

 

The fermion operators can be represented by imaginary quaternionic base 

numbers: 

 

       

 

       
 

          
 

           
 

(    )(    )                  

 

             

Rotational symmetry 

In case of rotational symmetry in the imaginary part of quaternion space, 

the exponential function must be replaced by a Bessel function. The 

corresponding Fourier transform then becomes a Hankel transform92. 

The spherical harmonics are eigenfunctions of the square of the orbital 

angular momentum operator        and therefore they represent the 

different quantized configurations of atomic orbitals. 

Spherical harmonics 

The following draws from the work of S. Thangavelu93. 

                                                 
92 http://en.wikipedia.org/wiki/Hankel_transform  
93 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf  

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

http://en.wikipedia.org/wiki/Hankel_transform
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Quantized
http://en.wikipedia.org/wiki/Atomic_orbitals
http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
http://en.wikipedia.org/wiki/Hankel_transform
http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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In this subsection we look for eigenfunctions of the Fourier transform 

which have spherical symmetry. As in the one dimensional case we 

consider functions of the form  

 
                       

 

This will be an eigenfunction of   if and only   satisfies 

 

∫                          
ℝ 

          

 

Here in quaternion terms          represent two mutually perpendicular 

imaginary numbers while         are parallel. Thangavelu uses complex 

numbers. We keep as close as is possible to his text. 

 

If (2) is true for all  ∈ ℝ  then we should also have 

 

∫                       
ℝ 

           

 

Integrating in polar coordinates the integral on the left is 

 

∫       (∫                 
    

)
 

   

                   

 

where       is the normalised surface measure on the unit sphere     . 

 

If   is homogeneous of degree m then  

 
                 

 

and hence for such polynomials the equation 

 

∫                       
ℝ 

              

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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will be satisfied for 

 
           

 

if   has the mean value property 

 

∫                     
    

 

 

Such functions are precisely the harmonic functions satisfying  

 
       

 

Thus we have proved: 

 

Let  

 
                        

 

where   is homogeneous of degree m and harmonic. Then  

 
              

 

Let    stand for the finite dimensional space of homogeneous harmonic 

polynomials of degree m:  

 

The above theorem says that the finite dimensional subspace of    ℝ   

consisting of functions of the form 

 
                     ∈      

 

is invariant under the Fourier transform. 

We claim that the following extension is true. 

Let  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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  ∈     ℝ   

 

be of the form  

  
                      ∈      

Then  

 

               | |  
 

Thus the subspace of functions of the form  

 
                      ∈      

 

is invariant under the Fourier transform. 

 

Let  
  ∈     ℝ    

 

be of the form  

 
                      ∈      

 

Then  

 
            

             

 

The above result is known as the Hecke-Bochner formula for the Fourier 

transform.  

 

We conclude our discussion on invariant subspaces with the following 

result which shows that the Fourier transform of a radial function reduces 

to an integral transform whose kernel is a Bessel function. This relates to 

the Hankel transform. 

 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

http://en.wikipedia.org/wiki/Hankel_transform
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Let    stand for the Bessel function of type        

If  

 
               

 

is radial and integrable then 

  

              ∫      
  
 
  
           

           
 
 
  
       

 

 

   

Spherical harmonic transform 

Next we like to decompose 2D and 3D functions into wave-like basic 

patterns that have simple radial and angular structures94. In that case, the 

base functions must take the separation-of-variable form: 

 

          
 

√  
               

 

for 2D and 

 
                           

 

                √
    

  

      

      
                 

 

for 3D where       and         are the polar and spherical coordinates 

respectively.  and   are integers.       and        . 

 

The base functions are eigenfunctions of the Laplacian. They represent 

wave-like patterns. The associated angular transform is closely related to 

the normal Fourier transform. For polar coordinates this reduces to a 

simple complex 1D Fourier transform. 

                                                 
94 http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf  

(20) 

(21) 

(1) 

(2) 

(3) 

http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
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The radial base function is a Bessel function        for polar coordinates 

and a spherical Bessel function        for spherical coordinates. The 

parameter   can take either continuous or discrete values, depending on 

whether the region is infinite or finite. For functions defined on      , the 

transform with        as integral kernel and r as weight is known as the 

Hankel transform. For functions defined on a finite interval, with zero-

value boundary condition for the base functions, one gets the Fourier-

Bessel series. For the 3D case the transform is called Spherical Harmonic 

(SH) transform. 

Polar coordinates 

The Laplacian in polar coordinates is: 

 

    
 

 
 
 

  
(  
  

  
)  
 

  
   

   
 

 

The Helmholtz differential equation is 

 

                   

 
                

 
             

 
 

 
 
 

  
(  
     

  
)   (

  

  
   )     

 

The solution is: 

 
                

 
                     

 

   is the  -th order Bessel function. The Neumann function    is singular 

at    . Therefore     and    . 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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In finite solutions, the boundary conditions determine what set of 

functions can be used as base functions. The reference in the footnote 

shows which choices can be relevant. 

Spherical coordinates 

The Laplacian in polar coordinates is: 

 

    
 

  
 
 

  
(   
  

  
)  

 

       

   

   
 
 

      

 

  
(     

  

  
) 

 

The Helmholtz differential equation is 

 

                       

 
                    

 
                

 

         √
    

  

      

      
                 

 
 

  
 
 

  
(   
     

  
)   (

      

  
   )     

 

A non-singular solution for      is: 

 
            

 

   is the spherical Bessel function of order  . 

 

      √
 

  
         

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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The spherical harmonic transform 

The equivalent of the Fourier transform in terms of spherical harmonics 

depends on the boundary conditions. For example when the analysis is 

done over a limited region, then the zero boundary condition will give 

different results than the zero derivative boundary condition95. An infinite 

range will always request a zero value of contributions when the radius 

goes to infinity. 

 

      ∫ ∫ ∫          

 

   

  

   

 

   

 
   
                          

 

          ∑∑ ∑     

 

    

 

   

 

   

  
   
        

 
                             

 

The Fourier transform of a black hole 

In its simplest form a black hole is a bubble that is covered with a blanket 

of ground states. 

The blanket is a comb function that is convoluted with a ground state. The 

Fourier transform of this blanket is the product of the Fourier transform 

of the comb function and the Fourier transform of the ground state. Apart 

from a factor, the ground state is invariant under Fourier transformation. 

Also the comb function is invariant. Thus the Fourier transform of the 

blanket is a modulated comb function. The modulation does not reach far. 

 

The most complicated component is the bubble. In its simplest form this is 

a pulse on the radius. If we interpret this pulse as a Dirac delta function, 

then the Fourier coefficients have the form: 

 

                                                 
95  http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf 

(1) 

(2) 

(3) 

http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
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                 √
 

  
         

 

If we sum these coefficients, then we get a sampled spherical Bessel 

function. These spheres are blurred with the transformed blanket. 

Spherical harmonics eigenvalues 

See: http://en.wikipedia.org/wiki/Spherical_harmonics for more details. 

Spherical harmonics are best presented in polar coordinates. There exists 

a corresponding polar Fourier transform. This Fourier transform also has 

invariant functions. Like in the rectangular case, they form the basis for 

spherical harmonics. 

 

Laplace's equation in spherical coordinates is: 

 

          
 

  
 (   

  

  
)  

 

        
 
 

  
         

  

  
   

 

         
 
   

   
   

  
 

Try to find solutions in the form of the eigenfunctions of the Fourier 

transform.  

By separation of variables, two differential equations result by imposing 

Laplace's equation: 

 
                       

 

   
 

  
 (  
  

  
)     

 
 

       

 

  
 (      

  

  
)   

 

         

   

   
       

 

The second equation can be simplified under the assumption that   has 

the form  

 
                  

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Spherical_harmonics
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Applying separation of variables again to the second equation gives way 

to the pair of differential equations 

 
 

    

      

   
       

 

           
      

    

 

  
[       

  

  
]        

 

for some number m. A priori, m is a complex constant, but because   

must be a periodic function whose period evenly divides      is 

necessarily an integer and   is a linear combination of the complex 

exponentials            . The solution function        is regular at the 

poles of the sphere, where      . Imposing this regularity in the 

solution   of the second equation at the boundary points of the domain is 

a Sturm–Liouville problem96 that forces the parameter   to be of the form 

         for some non-negative integer with      ; this is also 

explained below in terms of the orbital angular momentum. Furthermore, 

a change of variables        transforms this equation into the Legendre 

equation, whose solution is a multiple of the associated Legendre 

function97.   
         . Finally, the equation for R has solutions of the 

form                     ; requiring the solution to be regular 

throughout ℝ  forces    . 

Here the solution was assumed to have the special form  

 
                   

 

For a given value of  , there are      independent solutions of this form, 

one for each integer m with       . These angular solutions are a 

                                                 
96 http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem  
97 http://en.wikipedia.org/wiki/Associated_Legendre_function  

(6) 

(7) 

(8) 

http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem
http://en.wikipedia.org/wiki/Associated_Legendre_function
http://en.wikipedia.org/wiki/Associated_Legendre_function
http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem
http://en.wikipedia.org/wiki/Associated_Legendre_function
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product of trigonometric functions, here represented as a complex 

exponential, and associated Legendre functions: 

 
  
                       

          

 

which fulfill 

 
       

                     
       

 

Here   
  is called a spherical harmonic function of degree   and order m, 

   
  is an associated Legendre function, N is a normalization constant, θ 

represents the colatitude and φ represents the longitude. In particular, the 

colatitude98 θ, or polar angle, ranges from 0 at the North Pole to π at the 

South Pole, assuming the value of π/2 at the Equator, and the longitude99 

 , or azimuth100, may assume all values with       . For a fixed 

integer  , every solution        of the eigenvalue problem 

 
                      

 

is a linear combination of   
 . In fact, for any such solution,           is 

the expression in spherical coordinates of a homogeneous polynomial that 

is harmonic, and so counting dimensions shows that there are      

linearly independent of such polynomials. 

The general solution to Laplace's equation in a ball centered at the origin 

is a linear combination of the spherical harmonic functions multiplied by 

the appropriate scale factor   , 

 

           ∑ ∑   
     

      

 

    

 

   

 

 

                                                 
98 http://en.wikipedia.org/wiki/Colatitude  
99 http://en.wikipedia.org/wiki/Longitude  
100 http://en.wikipedia.org/wiki/Azimuth  

(9) 

(10) 

(11) 

(12) 

http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Azimuth
http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Azimuth
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where the   
  are constants and the factors·     

  are known as solid 

harmonics101. Such an expansion is valid in the ball 

 

             
   
        

         

 

Orbital angular momentum 

In quantum mechanics, Laplace's spherical harmonics are understood in 

terms of the orbital angular momentum102 

 
                                   

 

The spherical harmonics are eigenfunctions of the square of the orbital 

angular momentum 

 

              (  
 

  
    )   

 

  
 

 

  
 

      
 
 

  
       

 

  
  

 

       
 
  

   
 

 

Laplace's spherical harmonics are the joint eigenfunctions of the square of 

the orbital angular momentum and the generator of rotations about the 

azimuthal axis: 

 

          ( 
 

  
   
 

  
)      

 

  
 

 

These operators commute, and are densely defined self-adjoint operators 

on the Hilbert space of functions ƒ square-integrable with respect to the 

normal distribution on ℝ : 

 

                                                 
101 http://en.wikipedia.org/wiki/Solid_harmonics  
102 http://en.wikipedia.org/wiki/Orbital_angular_momentum  

(13) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
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 ∫        

ℝ 
                 

Furthermore,    is a positive operator. 

If   is a joint eigenfunction of    and   , then by definition 

 
           

 
           

 

for some real numbers m and  . Here m must in fact be an integer, for   

must be periodic in the coordinate   with period a number that evenly 

divides    . Furthermore, since 

 
       

      
      

  

 

and each of           are self-adjoint, it follows that     . 

Denote this joint eigenspace by     , and define the raising and lowering 

operators by 

 
               

 
              

 

Then    and    commute with   , and the Lie algebra generated by 

         is the special linear Lie algebra, with commutation relations 

 
            

 
             

 
              

 

Thus                  (it is a "raising operator") and                  (it 

is a "lowering operator"). In particular,   
                must be zero for 

k sufficiently large, because the inequality      must hold in each of the 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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nontrivial joint eigenspaces. Let  ∈      be a nonzero joint eigenfunction, 

and let k be the least integer such that 

 

  
         

 

Then, since 

 
         

     
      

 

it follows that 

 

         
       (            –        )   

 

Thus            for the positive integer        . 

Spherical harmonics expansion 

The Laplace spherical harmonics form a complete set of orthonormal 

functions and thus form an orthonormal basis of the Hilbert space of 

square-integrable functions. On the unit sphere, any square-integrable 

function can thus be expanded as a linear combination of these: 

 

       ∑ ∑   
   
      

 

    

 

   

 

 

This expansion holds in the sense of mean-square convergence — 

convergence in L2 of the sphere — which is to say that 

 

   
   
∫ ∫ |       ∑ ∑   

   
      

 

    

 

   

|
 

 

 

             
  

 

 

 

The expansion coefficients are the analogs of Fourier coefficients, and can 

be obtained by multiplying the above equation by the complex conjugate 

of a spherical harmonic, integrating over the solid angle  , and utilizing 

(13) 

(14) 

(15) 

(16) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Lp_space
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the above orthogonality relationships. This is justified rigorously by basic 

Hilbert space theory. For the case of orthonormalized harmonics, this 

gives: 

 

  
  ∫      

 

  
         

 ∫   ∫           
 

 

  

 

          
        

 

If the coefficients decay in ℓ sufficiently rapidly — for instance, 

exponentially — then the series also converges uniformly to ƒ. 

A real square-integrable function ƒ can be expanded in terms of the real 

harmonics Yℓm above as a sum 

 

       ∑ ∑   
   
      

 

    

 

   

 

 

Convergence of the series holds again in the same sense. 

Spin weighted spherical harmonics 

Regard the sphere    as embedded into the three-dimensional imaginary 

part of the quaternionic number field. At a point x on the sphere, a 

positively oriented orthonormal basis of tangent vectors at x is a pair a, b 

of vectors such that 

                          

                  

〈       〉      

where the first pair of equations states that a and b are tangent at x, the 

second pair states that a and b are unit vectors, a and b are orthogonal, 

and the         is a right-handed basis of ℝ . 

(3) 

(4) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
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θ

a·sin(θ)

a·cos(θ)

b·cos(θ)

-b·sin(θ)

θ

a·sin(θ)

a·cos(θ)

b·cos(θ)
-b·sin(θ)

ψ

ψ

c

d

da = ca·cos(θ) –cb·sin(θ) 

db = ca·cin(θ) –cb·cos(θ)

 
Figure 3: θ and the parameters a and b of the spin-weight function f. 

 

A spin-weight s function ƒ is a function accepting as input a point x of S2 

and a positively oriented orthonormal basis of tangent vectors at x, such 

that 

  

 (                                      )                       

for every rotation angle  . 

Following Eastwood & Tod (1982), denote the collection of all spin-weight 

s functions by B(s). Concretely, these are understood as functions ƒ on 

       satisfying the following homogeneity law under complex scaling 

 

       ̅  ̅   (
 ̅

 
)

 

     ̅  

 

(4) 

(5) 
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This makes sense provided s is a half-integer. 

Abstractly, B(s) is isomorphic to the smooth vector bundle underlying the 

antiholomorphic vector bundle O*(2·s) of the Serre twist on the complex 

projective line    . A section of the latter bundle is a function g on        

satisfying 

 

 (     ̅  ̅)   ( ̅)
  
      ̅  

 

Given such a g, we may produce a spin-weight s function by multiplying 

by a suitable power of the Hermitian form 

 
     ̅      ̅ 

 

Specifically,        is a spin-weight s function. The association of a spin-

weighted function to an ordinary homogeneous function is an 

isomorphism. 

Eth 

The spin weight bundles B(s) are equipped with a differential operator  ð 

(eth). This operator is essentially the Dolbeault operator103,  

 
            

 

Thus for      , 

 
                    

 

defines a function of spin-weight    . 

Spin-weighted harmonic functions 

See http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics for 

more details. 

                                                 
103 http://en.wikipedia.org/wiki/Dolbeault_operator  

(6) 

(7) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Dolbeault_operator
http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics
http://en.wikipedia.org/wiki/Dolbeault_operator
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Just as conventional spherical harmonics are the eigenfunctions of the 

Laplace-Beltrami operator on the sphere, the spin-weight s harmonics are 

the eigensections for the Laplace-Beltrami operator acting on the bundles 

     of spin-weight s functions. 

The spin-weighted harmonics can be represented as functions on a sphere 

once a point on the sphere has been selected to serve as the North Pole. By 

definition, a function η with spin weight s transforms under rotation about 

the pole via  

 
                 

 

Working in standard spherical coordinates, we can define a particular 

operator ð acting on a function η as: 

 

                
 

  
 
 

      
 
 

  
             

 

This gives us another function of   and  . [The operator ð is effectively a 

covariant derivative operator in the sphere.] 

An important property of the new function    is that if η had spin weight 

     has spin weight      . Thus, the operator raises the spin weight of a 

function by 1. Similarly, we can define an operator which will lower the 

spin weight of a function by 1: 

 

 ̅             {
 

  
 
 

      

 

  
}              

 

We extend the function   
  to   

 
 
  according to 

 
  
 

 
           

       

 
                          

 

(1) 

(2) 

(3) 

(4) 

(5) 
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The spin-weighted spherical harmonics are then defined in terms of the 

usual spherical harmonics as: 

 

  
 

 
  √

      

      
      

             

 

  
 

 
   √

      

      
               

             

 
  
 

 
                 

 

The functions   
 

 
  then have the property of transforming with spin 

weight s. 

Other important properties include the following: 

 

    
 

 
     √                  

 
   
  

 

    
 

 
     √                  

 
   
  

Special Fourier transform pairs 

Functions that keep the same form through Fourier transformation are: 

 
                 

 

      
 

   
 

 
              

 

The comb function consists of a set of equidistant Dirac delta functions. 

 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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Other examples of functions that are invariant under Fourier 

transformation are the linear and spherical harmonic oscillators and the 

solutions of the Laplace equation. 

Complex Fourier transform invariance properties 
Each even function      ⟺  ̃    induces a Fourier invariant: 

 

     √          ̃   . 

 

 ̃     √         
 

Each odd function      ⟺  ̃    induces a Fourier invariant: 

 

     √          ̃   . 
 

A function      is invariant under Fourier transformation if and only if the 

function   satisfies the differential equation  

 
      

   
              , for some scalar  ∈  . 

 

The Fourier transform invariant functions are fixed apart from a scale 

factor. That scale factor can be 1, k, -1 or –k. k is an imaginary base 

number in the longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is,       in the 

Heisenberg’s uncertainty relation. 

 

For proves see: http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf.  

Fourier transform properties 

Parseval’s theorem 

Parseval’s theorem runs: 

 

∫                ∫ ̃
      ̃        

(1) 

(2) 

(3) 

(4) 

(1) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
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This leads to 

 

∫             ∫| ̃   |
 
     

Convolution 

Through Fourier transformation a convolution changes into a simple 

product and vice versa. 

 

               ̃     ̃    

Differentiation 

Fourier transformation converts differentiation into multiplication with 

the canonical conjugated coordinate. 

 
           

 

 ̃      ̃    

Vacuum expectation value 
The vacuum expectation value (also called condensate or simply VEV) of 

an operator is its average, expected value in the vacuum104. The vacuum 

corresponds to a ground state. The vacuum expectation value of an 

operator O is usually denoted by 〈 〉. 

Hilbert field equations 
Despite the obvious similarity, Hilbert field equations are not Maxwell 

field equations. First of all, the Hilbert field is a skew field. It carries the 

properties of the quaternions and Hilbert field theory uses the properties 

of the quaternionic Fourier transform.  

 

Next Hilbert fields are mathematical (skew) fields, while Maxwell fields 

are physical fields in a 3D geometry. Finally the Hilbert fields are 

                                                 
104 http://en.wikipedia.org/wiki/Vacuum_state  

(1) 

(1) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Vacuum_state
http://en.wikipedia.org/wiki/Vacuum_state
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constituted from a collection of member fields that each have one or more 

anchor points. 

Statics and dynamics 

In this section we mix statics and dynamics, but we start with a static 

status quo. When we confine to the static status quo we get the two sets of 

equations.  

 

We will consider differentiations with respect to an idealized coordinate 

system. 

 

The field        consists of a real part    and an imaginary part  .  

We consider the effect of the nabla operator   on this field.  

 
                   

 

The real valued field    is a scalar field. Its divergence        is 

imaginary and can be considered to be a vector field. This vector field is 

rotation free.  

 

The imaginary valued field   conforms to a vector field. It is possible to 

take the curl          of that imaginary field. This new field is again 

imaginary and is divergence free. 

 

The idealized coordinate system is formed by the eigenspace of operator 

 ̌. We will only use the imaginary part of the eigenspace as coordinate 

system. Now introduce a progression parameter. We will place it as the 

real part    of the eigenvalues   of operator  ̌. Thus a full eigenvalue is 

      . We use this in order to define a nabla operator  = +  . 

 

When dynamics is supported as well, then these parts    and   get 

coupled. A single separable Hilbert space Ң only meets the static parts of 

the Hilbert field. This means that in this Hilbert space the two parts do 

not couple. Coupling only takes place during the step from one Hilbert 
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space to the next member in the sequence. Continuity equations describe 

the coupling between the parts. 

 

The parameter that controls dynamics in these differential equations is the 

progression parameter. This parameter stands for the counter of the 

progression steps. For mathematical convenience we consider the 

progression parameter as a smooth parameter. Thus we switch from a 

fundamentally granular progression step counter to a continuous 

progression parameter. This progression parameter is not our common 

notion of time. The derivative of the field   for this parameter is defined 

as    .  

In order to make the step from the integer progression step to the 

continuous progression parameter possible there must be a mechanism 

that reduces change, such that no violent steps are taken. On the other 

hand the mechanism must not be so strong that only a few steps are taken 

after which the universe is put to an eternal hold. How this in practice is 

regulated is shown by the phenomenon inertia105. Inertia is installed by 

the community of all particles. Locally this community generates an 

enormous potential. This potential works the same in all directions, so 

when nothing happens it has no influence on a local particle. A uniform 

movement of a local particle corresponds with the existence of a local 

vector potential. With other words, where the real part    of field   

corresponds to the “charge density” of the particle, the imaginary part   

of the field   corresponds to a uniform moving particle. Also this vector 

potential does not apply any action. However, when the particle 

accelerates, then this goes together with the existence of an extra vector 

field that counteracts the acceleration. Thus, inertia does not counteract 

uniform movement. Uniform movements cause redistribution of the 

particles and with it a reconfiguration of the fields. This disturbance of the 

static status quo is the motor that keeps dynamics going. The tolerance of 

inertia with respect to uniform movement is the reason that the 

movement does not get killed. 

                                                 
105 Influence:Inertia 
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The quaternionic nabla 

According to the definition of quaternionic differentiation the split of 

quaternionic nabla operator in a real part and an imaginary part is 

defined by: 

 
                      

 
               〈      〉 

 

                      (       ) 

 
                       

 

The second term on the right treats imaginary divergence. The last term 

treats the rotation. The first term is raised due to the dynamic coupling of 

the static fields. 

 

In Fourier space the equivalent equation are: 

 
 ̃           ̃      ̃    

 

 ̃         ̃     〈   ̃   〉 
 

 ̃         ̃       ̃     (    ̃   ) 

 

     ̃     ̃      ̃     

Blurring the charges 

We may represent the members of the Hilbert distribution with Dirac 

delta functions. These Dirac delta functions can be multiplied with a 

hyper complex number. Such a distribution raises problems with the 

nabla operator. 

However, since these members represent anchor points and since each 

anchor point attaches to a QPAD, it has more sense to start directly with 

these blurred anchor points. We introduce the quaternionic function      

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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that represent the presence of one or more blurred anchor points in its 

real part and represent the flow of these blurred anchor points in its 

imaginary part. This leads to integral and differential continuity 

equations. 

 

Not all anchor points must be equal. When this is true, it is better to 

categorize them and treat each category separately. Each member of such 

a category represents a charge that is typical for that category.  

 

The QPAD      can be interpreted as the combination of a scalar potential 

      and a vector potential     . 
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Continuity equation for charges 

Continuity equation 

When       is interpreted as a charge density distribution, then the 

conservation of the corresponding charge is given by the continuity 

equation: 

 

Total change within V = flow into V + production inside V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈   〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S, 

       is the velocity at which the charge density         enters volume V 

and    is the source density inside V. In the above formula   stands for 
          

 

It is the flux (flow per unit area and unit time) of    . 

 

The combination of         and        is a quaternionic skew field        

and can be seen as a probability amplitude distribution (QPAD). 

 
       

 

              can be seen as an overall probability density distribution 

(PDD).         is a charge density distribution.        is the current 

density distribution. 

 

Depending on their sign selection, quaternions come in four sign flavors. 

In a QPAD the quaternion sign flavors do not mix. So, there are four 

QPAD sign flavors. 

(1) 

(2) 

(3) 

(4) 

(5) 
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Still these sign flavors can combine in pairs or in quadruples. 

 

The quaternionic field        contains information on the distribution 

        of the considered charge density as well as on the current density 

      , which represents the transport of this charge density. 

 

Where               can be seen as a probability density of finding the 

center of charge at position  , the probability density distribution 

 ̃      ̃       can be seen as the probability density of finding the center 

of the corresponding wave package at location  .  ̃      is the Fourier 

transform of       . 

 

The dimension of            is         , the dimension of    is      ]. The 

factor c has dimension       .     is an arbitrary dimension. It attaches to 

the charge. 

 

The conversion from formula (2) to formula (3) uses the Gauss theorem106. 

This results in the law of charge conservation  

 

                  〈  (                      )〉 

 
           〈               〉 

 
           〈               〉  〈        〉         

 
 〈        〉 

 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field       . The field        is an arbitrary 

differentiable vector function. 

 
〈          〉    

                                                 
106 http://en.wikipedia.org/wiki/Divergence_theorem  

(6) 

(7) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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                 is always divergence free. In the following we will 

neglect       . 

In Fourier space the continuity equation becomes: 

 
 ̃          ̃       〈   ̃     〉 

 

This equation represents a balance equation for charge (or mass) density. 

Here       is the charge distribution,      is the current density.  

This only treats the real part of the full equation. The full equation runs: 

 
                              

 
            〈        〉                    

 (         ) 

 
           〈               〉  〈        〉          

 
                              

 

 (                                  ) 

 
                   〈             〉  〈        〉         

 
                           

 

 ( (                                )) 

 

The red sign selection indicates a change of handedness by changing the 

sign of one of the imaginary base vectors. (Conjugation also causes a 

switch of handedness). If temporarily no creation and no annihilation 

occur, then these equations reduce to equations of motion. 

 

                     〈        〉            (         ) 

(8) 

(9) 

(10) 

(11) 

(12) 
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         〈        〉                    

 
           〈        〉 

 
                             

 

The field        can be split in a (relative) stationary background       

and the moving private field        .  

If        is a constant then 

 
                   〈          〉 

 

                  (           ) 

 

                  〈          〉            (           ) 

 

The continuity equation has a direct relation to a corresponding 

conservation law107. The conserved quantity is         or its integral 

 

       ∫       

 

 

 

Noether’s theorem108 provides the relation between conserved quantities, 

differentiable symmetries and the Lagrangian109. 

Properties 

The particles described below have properties such a coupling factor  , a 

half integer or full integer valued spin and an electric charge that can be 

               . 

                                                 
107 http://en.wikipedia.org/wiki/Conservation_law  
108 http://en.wikipedia.org/wiki/Noether's_theorem  
109 http://en.wikipedia.org/wiki/Lagrangian#Lagrangians_in_quantum_field_theory  

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Noether's_theorem
http://en.wikipedia.org/wiki/Lagrangian#Lagrangians_in_quantum_field_theory
http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Noether's_theorem
http://en.wikipedia.org/wiki/Lagrangian#Lagrangians_in_quantum_field_theory
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Apart from the coupling factor, this paper does not explain why the 

particles have these properties. However, it is clear that the values of the 

properties are related to the sign flavors of the ordered pair of 

quaternionic fields that identify the particle. 

Quaternion sign flavors 

Quaternions know two independent conjugations. One conjugation 

     switches the sign of all three imaginary base vectors of the values 

of the quaternion. The other conjugation      switches the sign of just 

one imaginary base vector. In a quaternionic field the conjugation works 

field wide. The two independent conjugations raise four sign flavors for 

quaternionic fields. A quaternionic field will stick with one and no more 

than one sign flavor. The sign flavors are determined by sign selections. 

 

The background coordinate system has its own kind of sign flavor. The 

sign flavor of the background coordinate system can act as a reference for 

comparing quaternion field sign flavors. The background coordinate 

system can be curved. In that case we use the local tangent space that acts 

as a quaternionic number space.  

 

Quaternion fields come in four sign flavors110:                . We 

will use the symbol   or    for the sign flavor of the quaternionic field 

that has the same sign flavor as the local background coordinate system. 

The superscripts indicate the number of base vectors that changed sign.  

 

      
 

And with the same symbolic: 

 

      

 

                                                 
110 The notion of “sign flavor” is used because for elementary particles “flavor” already 

has a different meaning. 

(1) 

(2) 

(3) 
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Often the symbols          will be used instead of the symbols    and 

  . 

 

In the later investigated continuity equations, pairs of field sign flavors 

will be treated that belong to the same base field  . For example: 

 
         

 

The factor   is a coupling factor. We sometimes call    the coupled field 

and       stands for the flip. 

The continuity equation will use one of the pair         as the 

transported field and the other pair member      as the source field.  

Each choice of an ordered pair of field sign flavors         will result in a 

different equation. However, if      , then the coupling factor m is 

zero.  

 

In many equations    is interpreted as a background field.  

 

The same equation may accept different basic fields ( ). The standard 

model appears to use three different field configurations for  . This 

means that as many different background fields exist. Each of the 

configurations has its own set of coupling factors. This paper does not 

explain why these three field configurations exist.  

 

Each ordered pair         represents an elementary particle type 

category. Each such pair corresponds to a specific continuity equation, 

which is also an equation of motion. 

 

Some categories appear in triplets. The members of the triplet are coupled 

to directions of imaginary base vectors.  

 
Sign flavor Flip Imaginary Handedness Isotropy 

(4) 
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      base vectors 
conjugation:      3 switch isotropic 

double flip:      2 neutral anisotropic 

single flip:      1 switch anisotropic 

No flip     0 neutral isotropic 
   flip       3 switch anisotropic 

 

The quaternionic nabla operator   uses the sign flavor of the background 

coordinate system. Antiparticles use the conjugated nabla operator   . 

The Dirac equation 

The Dirac equation appears to be a special form of continuity equation111. 

 
                     

 

The QPAD        can be used to define a charge probability density and 

probability current density. The conventional form of the Dirac equation 

runs 

 
                  

 

  and   represent the matrices that implement the quaternion behavior 

including the sign selections of quaternions for complex fields.  

We keep the sign selections of the background coordinate system       

fixed. Thus   and   only influence the elements of spinor    . 

 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

                                                 
111 See http://www.vttoth.com/qt.htm. 

(1) 

 (2) 

(2) 

(3) 

(4) 

(5) 

http://www.vttoth.com/qt.htm
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  [
  
  
] 

 

There exist also a relation between          and the Pauli112 matrices 

         : 

 

   [
    
  
]     [ 

   
  

]     [
  
   

] 

 
                       

 

This combination is usually represented in the form of gamma matrices113. 

These matrices are not used in this paper. They are used when a complex 

Hilbert space must handle quaternionic behavior. 

 

Transferring the matrix form of the Dirac equation into quaternionic 

format delivers two quaternionic fields    and    that couple two 

equations of motion. 

 
             

 
             

 

The mass term   couples    and   . The fact     decouples    and 

  . 

 
     

       
 

Thus the fields are each other’s quaternionic conjugate. 

Reformulating the quaternionic equations gives 

 

         

                                                 
112 http://en.wikipedia.org/wiki/Pauli_matrices  
113 http://en.wikipedia.org/wiki/Gamma_matrices  

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

http://en.wikipedia.org/wiki/Pauli_matrices
http://en.wikipedia.org/wiki/Gamma_matrices
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For the conjugated field holds 

 

           
 

                         

 

This implements the reverse flip. The corresponding particle is the 

antiparticle. 

 

(     )   (     ) 

 

Summing the equations gives via 

 
        〈   〉 

 

the result 

 
      〈   〉        

 

The difference gives 

 
                  

 

Just reversing the sign flavors does not work. The corresponding equation 

contains extra terms: 

 

                                     

 
       〈   〉                

       〈   〉  

 
      〈   〉       

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Thus if the reverse equation fits, then it will concern another field 

configuration    that will not fit the original equation. 

 

       
     〈   〉             

 

Compare with the continuity equations 

 
          〈        〉          

 

And 

 
                                    

 

This means that  

 
                  

 
            

 

Thus in the Dirac equation the mass term is a source term that depends on 

the (conjugate) field. 

 

The following definitions specify another continuity equation: 

 
               〈   〉       

 
             〈   〉 

 
            

 

                 
             

 

                       

 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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The field   is real and non-negative and represents a probability density 

distribution. This result defines two new continuity equations.         has 

a Minkowski signature. 

 

The interpretation of   as the probability density distribution of presence 

leads to: 

 

∫      

 

 

 

∫             

 

 

 

The coupling factor   for the antiparticle is the same. 

 

The field   has an intrinsic spin114: 

 
     ∫            ∫             

  ∫             
  

 

The sign flavor flip reverses the spin. 

Properties 

The particles that obey the Dirac equation appear to have electrical charge 

and half integer valued spin. They are fermions. 

The particles that obey equation (12) have the opposite charge from the 

corresponding antiparticles that obey equation (14). Both particle types 

can have spin up or spin down. 

Interactions 

The interaction free equation can be extended with interactions with other 

fields.  

 

                                                 
114 http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf Section: Conservation of 

angular momentum, formula 4.70a 

(31) 

(32) 

(33) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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 ⃗⃖                  

 

The field   is right covariant with  . The field   is left covariant with  . 

The two can be combined in Q-covariance.   is a coupling constant. Thus 

here  ⃗⃖  is the two sided covariant derivative115. The field   represents a 

source. 

 

For the interaction field   holds 

 
      

  〈   〉                 

 

  is the d’Alembert operator  

 

The wave equation for the electromagnetic field in vacuum is 

 
     

 

Besides of the one sided covariance also a Q covariance is possible due to 

the application of a quaternion waltz116. 

The background field 

It is possible to get an explanation/implementation for the coupled field. 

 Let      be a spherically symmetric QPAD for which the modulus 

       decreases with the distance   of the center location of      

according to the function    .  

 This dependence need not start directly at    , but it must start 

close to zero. 

 Let the universe be filled with QPAD’s      that on average are 

equal to      and who’s center locations are randomly distributed 

over an affine space. 

                                                 
115 See paragraphs on covariant and Q-covariant derivative 
116 Fermion and boson equations; Q covariant derivative 

(1) 

(2) 

(3) 

(4) 
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 Define      as the superposition of all     , taken at the center 

location of     . 

 

The contribution to the local superposition decreases with the distance of 

a   , however the number of contributing   ’s increases with that 

distance. So, the largest contribution comes from the most distant   ’s. 

 

Now the charge of      is huge and it is distributed over space in a 

similar way as the charge of     . However the current      has its 

direction reverse to     . With other words: 

 

          
          

     

 

   is a constant. Thus, when   is spherically symmetric and is embedded 

in a sea of QPAD’s that on average are similar to  , while all these 

QPAD’s decrease with   as    , then the above construction works. 

 

The long range averaging over an increasing number of contributions and 

the random distribution of the   ’s take care that equation (1) holds. 

 

We will call the renormalized superposition the background field. 

 

This interpretation enables to interpret the transported field as the wave 

function and the coupled field as the environment. 

 

This view lifts a tip of the veil that hides why the gravitational constant 

enters into the Planck units. The gravitational constant has to do with the 

total number of particles that exist117. 

 

The background field places the particle in its environment. It means that 

the equation of motion is at the same time describing interactions. 

                                                 
117 See D. Sciama: On the origin of inertia, 

(http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 

(1) 

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
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Prospect 

The original Dirac equation can be transformed into two quaternionic 

equations: 

 
        

 
         

 

The reverse equations (for the same field configuration) are more 

complicated: 

 

         〈   〉       
 

          〈   〉       
 

We will analyze whether this is more general principle. For example the 

Majorana equation is to a certain extend similar to the Dirac equation. 

The Majorana equation 

The Majorana equation118 differs from the Dirac equation in the way that 

the sign flavor of the transported field    differs.  

In fact two possible versions of the Majorana equation exist. The first is: 

 

       
  

 

While the second version is: 

 

       
  

 

The first version is in agreement with the use of the background field    

as the coupled field. The second equation uses the conjugate    of the 

background field. 

                                                 
118 http://en.wikipedia.org/wiki/Majorana_equation  

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Majorana_equation
http://en.wikipedia.org/wiki/Majorana_equation
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The sign selection    only switches a single imaginary base vector. Like 

the conjugation, it switches the handedness of     The sign selection    

switches two imaginary base vectors. It does not switch the handedness. 

In both equations two imaginary base vectors change their sign. These 

sign selections do not switch handedness. Three independent directions 

are possible. (That fact may not become observable). 

 

For the conjugated equations hold: 

 

        
  

 

        
  

 

Thus the conjugated equation does not switch the handedness. Three 

independent directions are possible. 

 

Neutrinos are supposed to obey the Majorana equation. 

 

When the first version of the Majorana equation holds, then 

 

          
       

  

 

∫(      )    

 

  ∫   
    

 

    

 

For the conjugated field holds: 

 

           
        

  

 

∫(      )      
 

∫       

 

    

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Properties 

The particles that belong to this category are neutral fermions. They have 

half integer valued spin that can be either up or down. 

The third category sign flavor switch 

Apart from the Dirac equation and the Majorana equation, a third 

category equation is possible. In these equations the mass term flips the 

sign of only one imaginary base vector. As a result the handedness flips as 

well. The sign flavor of the background coordinate system can act as a 

reference for comparing quaternion sign flavors. The quaternionic nabla 

operator uses that same sign flavor. With respect to the background sign 

flavor, three different possibilities for the choice of the flipped imaginary 

base vector exist. It will become clear that this category corresponds to 

quarks. 

 

The corresponding equation is: 

 

   
 
      

  

 

The index   runs over three color versions r, g and b. These colors relate to 

the selected direction. This particle features charge -⅓e. 

 

For the conjugated equation holds: 

 

    
 
      

  

 

The so called down versions obey equation (1) and (2). When equation (1) 

holds, then 

 

     
 
      

           
  

 

∫(     
 
)        

 

 

 

(1) 

(2) 

(3) 

(4) 
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For each color   a down version{  
 
   } and an up version 

{  
 
   }exists. 

 

Properties 

In contrast to the (     ) flip, the (     
 
) flip and the (     

 
) flip 

are strongly anisotropic. The three choices for the flipped imaginary base 

vector may be linked with color charges.  

 

The antiparticles have anti-color. The particles and antiparticles may be 

linked with the color charges and the up and down versions of quarks. 

The fact that only one of the three, or with the second version two of the 

three imaginary base vectors are flipped may account for the respective 

electrical charges, which are    or   . 

All particles of this category appear to have half integer valued spin. They 

can have spin up or spin down. The particles are fermions. 

The rules 

The ordered pair         represents a category of elementary particle 

types. 

The above treated particles appear to be fermions.  

For antiparticles all participating fields and the nabla operator conjugate. 

Photons and gluons have zero coupling factor. 

 

The rules are: 

 If the coupling takes place between two field sign flavors with 

different handedness, then the corresponding particle is charged.  

 The charge depends on the number and direction of the base 

vectors that differ.  

 The count for each difference is ±⅓e. 

 

No elementary particle exists that obeys the rules and features electric 

charge ⅔e. Such a particle may exist as a composite.  Thus, according to 
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these rules the up-quarks are not elementary particlesFor that reason, they 

do not belong to the standard model. 

Anisotropic coupling fields 

We have explored all particles that make use of the isotropic background 

field or the conjugate of the background field, which is also isotropic. 

These particles appear to be fermions. Next we like to explore particles 

that couple to anisotropic fields. These particles appear to be bosons. They 

all have integer valued spin. 

The cross-sign flavor equations 

These equations describe the situation that a flip is made from a   
 

 field 

to a    
 

 field or vice versa. The direction   might play no role. 

 

   
 
        

 
 

 

The conjugated equation is: 

 

    
 
        

 
 

 

Another form is 

 

   
 
        

 
 

 

The conjugated equation is: 

 

    
 
        

 
 

 

The sign flavor switch affects three imaginary base vectors and flips the 

handedness. As a consequence the particles have a full electric charge. It 

concerns two particles, the    and the    bosons. These bosons carry 

electrical charges. 

 

(1) 

(2) 

(3) 

(4) 

(5) 



243 

 

  
 
    
 
       

 
   
 

 

 

∫  (  
 
   
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

  
 
    
 
       

 
   
 

 

 

∫ (  
 
    
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

The Z boson 

The particle that obeys: 

 

         
  

 

Is a neutral boson. 

 

∫  (  
 
    )    

 

    ∫ (  
 
   
 
)    

 

      

 

Another possibility is: 

 

          
  

The non-sign flavor flip category  

In this category no switch is performed. The field couples with itself. 

The corresponding equation is: 

 
         

 

For the antiparticle holds: 

 
            

 

(6) 

(7) 

(8) 

(1) 

(2) 
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And for the mass   holds 

 

∫             

 

 ∫             

 

 

 

The equation describes neutral particles. 

For the probability density no integral source or leakage exists. Thus   

must be zero. 

Fermion and boson equations 

Elementary particles are identified by a pair of quaternionic field sign 

flavors. The antiparticle corresponds to the conjugated pair. The type of 

sign flavor switch determines the charge of the particle. From this 

combination it is not clear what the maximum value of the spin of the 

particle will be. It certainly has something to do with the isotropy of the 

coupled field. 

Elementary particles with zero mass are not coupled and appear to be 

bosons. With the    bosons the coupled field is in condition    or   . 

For all fermions the coupled field is in condition    or   . 

 

 

Three fermion equations exist. Their interaction free forms are: 

 

         
  

 

          
  , this concerns the antiparticle 

 

(3) 

(1) 

(1a) 

Elementary fermions are elementary particles that are based on a coupled 

pair of field sign flavors of which the coupled member has sign flavor 𝜓   

 

Elementary bosons are elementary particles that are based on non-coupled 

field sign flavors or on a coupled pair of field sign flavors of which the 

coupled member has sign flavor 𝜓  or 𝜓  
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Three massive boson equations exist: 

 

         
  

 

         
  

 

        
  

 

The massless particles are of the form {     } : 

 
       

 

Four of these massless bosons exist. 

Other possibilities do not appear in the standard model. 

 

         
  

 

   
 
     

          

 

         
  

 

         
  

General form 

The general form of the equation for particle {     } is: 

 
         

 

For the antiparticle: 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(1) 
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For all particles holds: 

 
      〈   〉       

 
        

     
        

 

∫        

 

 

 

∫         

 

 

 

The factor g is real and non-negative. 

Further, the equation for coupling factor   

 

∫            
 

   ∫          
 

  ∫        
 

 

 

An equivalent of the Lagrangian may look like 

 
                   

  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Survey of couplings 

In the following table the attribution of particle names is speculative. 

 

RLrl e Diff Coupling    Particle Multiplet 

RL -1 3         fermion electron 1 

LR 1 3         fermion positron 1 

lR -

⅓ 

1          fermion down-quark 3 colors 

Ll 0 2          boson Z 3? 

lr -1 1           boson    3? 

rl 1 1           boson    3? 

RR 0 0       0 boson photon  

LL 0 0       0 boson photon  

rr 0 0         0 boson gluon 3? 

ll 0 0         0 boson gluon 3? 

Rl ⅓ 1           boson ? 3 colors 

rL ⅔ 1          boson ? 3 colors 

Lr -
⅔ 

1            boson ? 3 colors 

rR 0 2           boson neutrino? 3? 

lL 0 2          boson neutrino 3? 

Rr 0 2             boson Z? 3? 

 

Colophon:  

RLrl; switch by 3, 2 or 1 imaginary base vectors 

e; electric charge of particle 

Diff; number of imaginary base vectors difference 

Coupling; the field sign flavors that are coupled 

Fermion/boson; 

Particle; elementary particle category 

Multiplet; multiplet structure 

 

The neutrinos, Z and W bosons might show multiplicity. 
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In the standard model three versions of fermion mass factors   exist. 

These versions are not (yet) explained by this model. 

 

Remarkably, in the table several places for particles are still open.  

Coupling factors 

The integral probability densities are: 

 

∫(    )   

 

 ∫       

 

   

 

  ∫(    )   

 

 ∫(    )   

 

 ∫|  |
 
   

 

 ∫|  |
 
   

 

 

 

The coupling factors are: 

 

Primary Coupling factor reverse Coupling factor 

         ∫( 
    )   

 

        

         
 

 
∫(     )    

 

        

         ∫( 
     )   

 

        

  
 
        

 

  
∫(     

 
)    

 

      
 

  

  
 
        

 

  
∫(     

 
)    

 

      
 

  

          
 

 
∫  (  

 
   
 
)    

 

           
 

 
∫ (  

 
    
 
)    

 

 

 

Most particle categories of the SM appear with three different coupling 

factors. This corresponds with three different field configurations of  . 

This paper does not explain that extra diversity. 
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Interactions 

In complex quantum field theory, interactions are derived from covariant 

derivatives. In quaternion field theory this is not that straight forward. 

The problem is caused by the fact that for quaternionic fields in general: 

 
                

 

On the other hand quaternionic fields are interesting because a field   can 

rotate inside another field   under the influence of a quaternion waltz: 

 
         

 

The result is Q-covariance. 

Covariant derivative 

The covariant derivative plays a role in the Lagrangian and in the 

equation of motion. 

 

The covariant derivative   of field      is defined as  

 
                              

 

This is interesting with respect to a gauge transformation of the form 

 
                

 

The field      has a modulus that is equal to one: 

 
               

 

We suppose that a field       exists such that  

 
                

 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 
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A new version of the derivative can be obtained by a corresponding 

vector potential transformation 

 
                   

 
               

 

The following inequality holds in general for quaternionic functions.  

 

 (        )  (     )               

 

However, we assume that it is an equality for              . 

 
                                  

 
                           

 

     (               ) 

 
                   

 

Thus, with that transformation pair not only the modulus of the function 

stays invariant but also the modulus of the covariant derivative stays 

invariant.  

 

Further 

 
                                    

 
             

 

Above the right sided covariant derivative   is defined 

 

 ⃗⃗       ⃗⃗               

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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The left sided covariant derivative is defined as: 

 

     ⃗⃗⃖       ⃗⃗⃖             
 

We will use  ⃖  for both left sided and right sided covariant derivative: 

 

 ⃖      
 ⃗⃗           ⃗⃗⃖

 
                      

 

Multiplication with a unitary factor corresponds with a displacement in 

the canonical conjugate space, thus with a shift of the momentum of the 

field. 

Q Covariant derivative 

The Q covariant derivative119 relates to quaternionic field transformations 

of the form 

 
           

 
       

 

This is the quaternion waltz. Let the imaginary field   be defined by: 

 

 ⃗⃗       
 

   ⃗⃗⃖      ( ⃗⃗  )
 
 

 

The following step is questionable, because with quaternionic functions in 

general  

 
                

 

                                                 
119 Principle of General Q Covariance; D. Finkelstein, J. M. Jauch, S. Schiminovich and D. 

Speiser; Journal of Mathematical Physics volume 4, number 6, June 1963, 788-796  

(12) 

(13) 

(1) 

(2) 

(3) 

(4) 

(5) 
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However we consider the rule valid for this special case. In fact we apply 

the covariant case twice. 

 

               ( ⃗⃗  )                   (   ⃗⃗⃖) 

 
                            

 
                       

 

The general equation of motion is: 

 
         

 

Applying the quaternion waltz gives: 

 

   
 
 [    

 
]            

 

                                    
 

Where  

 
        

 

Thus, the general equation of motion due to the waltz is 

 

                     
 

This equation describes the equation of motion including interactions that 

are due to the effect of the quaternion waltz under the influence of 

another field ( ). 

 

The interpretation of the Q-covariant derivative is that the particle to 

which     and     belong not only moves due to the nabla operator, but 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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also rotates with respect to an outside field  , which takes the particle in a 

quaternion waltz120.  

English quaternion waltz 

When the rotation is slow compared to the current   , then it becomes 

interesting to analyze an infinitesimal rotation. The quaternionic value of 

  is close to 1. Thus            is imaginary. Let us investigate the 

transform            .  

 

                      

 
                           

 
                 

 
               

 

                 

 

                
                 

 
            

           

 
                  

 
                    

  

                                                 
120 For an explanation of the quaternion waltz, see the Hilbert book model: 

http://www.crypts-of-physics.eu/OntheoriginofdynamicsBoek2.pdf, part two 

(12) 

(13) 

(14) 

http://www.crypts-of-physics.eu/OntheoriginofdynamicsBoek2.pdf
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Interpreting the flip event 

The equations of motion indicate that a flip of field sign flavor occurs. The 

charge density distribution specifies the probability where this flip occurs. 

The current density distribution represents the transport of the location 

where the flip may occur. 

The flip event can be observed. This is then the event of observing the 

corresponding quantum. The observation represents the interaction with 

another particle. The flip event may represent an electric charge and it 

may represent a color charge. 

 

Photons and gluons are flipping at every progression step. That is why 

their coupling constant delivers zero. 

Interpreting coupling factors 

The gravitation field, which is a tensor field rather than a quaternionic 

field, is an administrator of the local curvature rather than that it is the 

cause of local curvature. The value of the local metric tensor accurately 

registers all aspects of the local curvature. From the gravitation field it is 

possible to derive centers of gravitation on which the field can be thought 

to be anchored. Such a center need not be the location of an actual cause. 

It can be the center of the activity of a local geometric anomaly, such as a 

black hole. Such a center is a (virtual) position that can be at a location 

where space does not even exist. This is possible when two coordinate 

systems are considered. One flat and the other curved. The curved system 

features geometric anomalies. 

 

In this way it becomes possible to consider a black hole as a geometric 

anomaly, such that within which nothing, not even space exists. Instead 

space at its border is curved such that no information can penetrate that 

border. Every particle, elementary or not, that approaches the border is 

ripped apart and part of the debris is attached to the border of the BH. 

The rest of the debris escapes from the process. 
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It can be imagined that elementary particles that possess mass will also 

have a geometric anomaly at their center. The curvature at the border of 

that anomaly forms a center of gravity. The fact that the particle is formed 

by anti-symmetric private fields will already explain the presence of such 

a local hole. 

 

Private fields of elementary particles are formed by pairs of coupled sign 

flavors of the same quaternionic probability amplitude distribution. The 

coupling factor that characterizes the coupling of the two sign flavors 

might also determine the curvature of the local geometric anomaly. 

Interpreting the equations of free movement 

The equations of movement are best interpreted when an extra 

differentiation step is added: 

 

         
 

             
 

It means that a coupled oscillation takes place when the quantum moves. 

In case of leptons this means that: 

 
            

 

The coupled oscillation takes place along the direction in which the 

electron moves. 

The anisotropic coupled quanta oscillate free in one or two directions and 

oscillate coupled along the direction of movement. 

Extending the Zoo 

This paper treated single fields and ordered pairs of sign flavors of the 

same base field. The set of particles may be extended by ordered triples 

and ordered quadruples of the same base field. 

 

(1) 

(2) 

(3) 
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Higher order couplings 

Couplings that constitute composite particles from elementary particles or 

other composite particles are not treated here. It is assumed that during 

these couplings the constituting elementary particles keep their basic 

properties; coupling factor, electric charge and angular momentum. 

The properties that characterize the coupling event are sources of 

secondary fields. These fields are known as physical fields. 

It is thought that these secondary fields play a major role in the higher 

order couplings. The reason for this fact is that the properties influence 

the curvature of the parameter space. 

Forbidden region 

Fermions have asymmetric permutation wave functions. This fact has 

only significance when two or more states are considered. Let us consider 

the situation that the two states are completely identical121 and are nearly at 

the same location. In that case the superposition of the two states is given 

by: 

 
                       

 

The plus sign holds for bosons and the minus sign holds for fermions. The 

images of the two cases are: 

 
Boson pair Fermion pair 

  
Symmetric distribution Asymmetric distribution 

                                                 
121 http://en.wikipedia.org/wiki/Identical_particles  

(1) 

http://en.wikipedia.org/wiki/Identical_particles
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This is a two dimensional model, but it explains the general idea. Below 

the cut through the center of the asymmetric distribution is shown. When 

this is compared with the same cut of the squared modulus, then it 

reveals a forbidden region for the asymmetric distribution.  

 
 

 

 

The particles were put at the closest possible position. Before the 

displacement occurs, the direction of the displacement is undefined. Thus 

the forbidden region has a spherical shape. When fermions go to their 

next position, they must step over the forbidden region. Bosons do not 

have that restriction. 

Fourier transforms 

The Fourier transform of the generalized equation 

 

         〈   〉                  
  

 

Gives 

 

  ̃     ̃   〈   ̃〉     ̃    ̃     ̃     ̃
  

 

For all field sign flavors hold: 

 

   ̃   〈   ̃〉     ̃  
 

(1) 

(2) 

(3) 
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   ̃    ̃     ̃      ̃
  

 

∫ ̃ ̃      

 

 

 

Let us consider the (anti)commutators 

 

[ ̃     ̃    ]   ̃     ̃      ̃     ̃     

 

{ ̃     ̃    }    ̃      ̃      ̃     ̃     

 
To be continued 

Example potential 

Spatial Harmonic functions122 are suitable spread functions. 
For a harmonic function      holds: 
 

                 
 

If there is a static spherically symmetric Gaussian charge density ρ (r): 

 

      
 

√    
         

      ⁄   

where Q is the total charge, then the solution φ (r) of Poisson's equation123, 

 

        
    

 
 

 

is given by 

 

     
 

      
   (
   

√  
) 

                                                 
122 http://en.wikipedia.org/wiki/Harmonic_function  
123 http://en.wikipedia.org/wiki/Poisson%27s_equation  

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
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where erf(x) is the error function.  

 

In fact the quaternionic Poisson’s equation represents two separate 

equations: 

 

   
            

     

 
 

 

   
           

    

 
 

 

Note that, for     much greater than σ, the erf function approaches unity 

and the potential φ (r) approaches the point charge potential 
 

      
, as one 

would expect. Furthermore the erf function approaches 1 extremely 

quickly as its argument increases; in practice for     > 3σ the relative error 

is smaller than one part in a thousand124.  

 

The definition of the quaternionic potential ϕ(q) is based on the 

convolution of a quaternionic distribution ρ(q) with the real function      

See Newton potential and Bertrand’s theorem in Wikipedia. The real part 

ρ0(q) of the distribution ρ(q) can be interpreted as a charge distribution. 

The imaginary part ρ(q) can be interpreted as a current distribution. 

The convolution blurs the distribution such that the result becomes 

differentiable. 

 

In configuration space holds: 

 

           
 

   
  

 

Reversely, according to Poisson’s equation: 

                                                 
124 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density
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The real part of ϕ(q) presents a scalar potential. The imaginary part 

presents a vector potential.  

 
                 

 

In the above section: 

The scalar potential is a blurred charge distribution.  

The vector potential is a blurred current distribution.  

Current is moving charge. 

Mass is a form of charge. 

 
(The selected blurring function has striking resemblance with the ground state of the 

quantum harmonic oscillator125). 

 

In Fourier space holds: 

 

 ̃      ̃    
 

   
    ̃      ̃    

 

In Fourier space the frequency spectrum of the Hilbert distribution is 

multiplied with the Fourier transform of the blurring function. When this 

falls off when the frequencies go to infinity, then as a consequence the 

frequency spectrum of the potential is bounded. This is valid independent 

of the fact that the frequency spectrum of the Hilbert distribution is 

unbounded. 

 

Equations of motion 

The equation for the conservation of charge: 

                                                 
125 Functions and fields:Functions invariant under Fourier transformation:Ladder 

operator:Ground state 

(8) 

(9) 

(10) 
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              〈      〉 

 

We can define     : 

 
           

 
               〈      〉 

 
        

 
                            

 
        

 
           

 
             

 

The definition of      and      have the freedom of the gauge 

transform126 

 

              
 

           (       ) 

 

   
 
   
  
 
 

 

This translates in the source free case         into: 

 
         〈      〉 

 
               〈      〉    

 

In the source divergence free case          this means: 

 

                                                 
126 http://en.wikipedia.org/wiki/Gauge_fixing 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

http://en.wikipedia.org/wiki/Gauge_fixing
http://en.wikipedia.org/wiki/Gauge_fixing
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           〈      〉 

 
           〈      〉 

 
 〈      〉                  

 

Due to the fact that there are other charges present, the divergence of the 

scalar potential need be in the direction of the current ρ(q), which for a 
spherical symmetric blur is also in the direction of the vector potential ϕ(q). 
However, a tendency exists to minimize that difference. Thus          is 

parallel to     .  With other words: 
 

      〈      〉    

 

Reckoning the sign selections for the sign ± of the conjugation and the 

handedness ± of the cross product will provide four different sets of 

equations. This will provide four different Hilbert fields.  

Discrete distribution 

If ρ(q) is discrete, such that  

 
      ∑              
 

where   
  is a point charge at location q′, then the contribution to the field 

E(q) that is generated by a point charge at location qi is given by: 

 

           
    

|    |
         

 

|    |
 

Differential potential equations 

The gradient and curl of ϕ(q) are related. In configuration space holds: 

 

               〈      〉                 (       ) 

 
              

 

(22) 

(23) 

(24) 

(25) 

(1) 

(2) 

(1) 

(2) 
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               〈      〉 
 

                         

 

When the field      is split into a private field       and a background 

field      , then       corresponds to the private field of the uniform 

moving item. When this item accelerates, then it goes together with an 

extra term        . This is the reason of existence of inertia127. 

 
〈      〉                    

 

        ; Rotation free field 

 

〈      〉    ; Divergence free B field  

 

        〈      〉          〈      〉         
      

 

                        
      

 

                
      

 

Since       is supposed to be parallel to       , it is sensible to define 

    as the total field in longitudinal direction: 

 
                                

 

And 

 
          

                                                 
127 Influence; Inertia 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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With this definition: 

 
                

 
〈      〉    

 
                    

In Fourier space 

In Fourier space holds: 

 

 ̃        ̃     〈   ̃   〉     ̃       ̃        ̃    

 

 ̃      ̃            ̃      ̃       ̃    

 

 ̃         ̃     〈   ̃   〉 
 

 ̃       ̃     

 

 ̃       ̃        ̃    

 

 ̃        ̃    

 

 ̃       ̃      ̃       ̃    
 

〈   ̃   〉       ̃        ̃     

 

   ̃     ; Rotation free field 

 

〈   ̃   〉    ; Divergence free B field  

 

   ̃     〈   ̃   〉     ̃     〈   ̃   〉   ̃    
 

 

(14) 

(15) 

(16) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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   ̃         ̃      ̃        ̃     ̃    

 

If the distribution ρ(q) is differentiable, then the same equations that hold 

for fields ϕ(q) and  ̃    hold for the non-blurred distributions ρ(q) and 

 ̃   . 

Maxwell equations 

First it must be noted that the above derived field equations hold for 

general quaternionic fields. 

The resemblance with physical fields holds for electromagnetic fields as 

well as for gravitational fields and for any fields whose blurring function 

approximates  

 

      
 

   
.  

 

In Maxwell equations, E(r) is defined as: 

 

                  
       

  
        

       

  
 

 

Further: 

 

〈        〉              
 〈        〉

  
 

 

 
       

  
 
 〈        〉

  
 

 

In Maxwell equations, B(r) is defined as: 

 
                        

 

Further: 

 

(11) 
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〈        〉    
 

                 
  

  
) 

 

Differentiable distribution 

If the distribution ρ(q) is differentiable, then the same equations that hold 

for fields ϕ(q) and  ̃    hold for the non-blurred distributions ρ(q) and 

 ̃   . 

Using: 

 
                                             

 

gives 

 
                 

 

          (               ) 

 

          (               ) 

 
        〈      〉                          

 

And correspondingly in Fourier space 

 

   ̃         ̃     

 

   ̃       (   ̃        ̃    ) 

 

   ̃       (   ̃        ̃    ) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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   ̃     〈   ̃   〉     ̃        ̃        ̃     

The origin of mass 
 

Conservation laws 

Flux vector 

The longitudinal direction k of      and the direction i of      fix two 

mutual perpendicular directions. This generates curiosity to the 

significance of the direction    . With other words what happens with 

         .   
 

The flux vector       is defined as: 

 
                 

 

Conservation of energy 

Field energy density 

 
〈      〉  〈           〉  〈           〉 

 
  〈           〉  〈         〉  〈           〉 

 
      〈         〉  〈         〉  〈         〉 

 

The field energy density is defined as: 

 
            〈         〉  〈         〉               

 

     can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 
            〈      〉    〈         〉         〈         〉 

(9) 

(1) 

(1) 

(2) 

(3) 
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This means that 〈         〉 can be interpreted as a source term. 

          represents force per unit volume. 

     〈         〉            work per unit volume, or, in other words, 

the power density. It is known as the Lorentz power density and is 

equivalent to the time rate of change of the mechanical energy density of 

the charged particles that form the current     . 

 
            〈      〉                    

 
              〈         〉       〈         〉 

 

  (                           )   〈      〉 

 

Total change within V = flow into V + production inside V 

 
                                                         

 

                                       ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source s0 is zero. 

How to interprete Umechanical 

            is the energy of the private field (wave function) of the 

involved particle(s). 

Conservation of linear momentum 

Field linear momentum 

     can also be interpreted as the field linear momentum density. The 

time rate change of the field linear momentum density is: 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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 (           )                    

 
               〈     〉  〈   〉    〈    〉  〈   〉 

 
          〈    〉  〈    〉  

 
          〈    〉  〈    〉  

 
                        〈    〉  〈    〉  

 
               〈    〉  

 
                            

 
                      〈    〉  〈    〉  

 
                                 

 
                          

 

     is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V surrounded by 

surface S is: 

 

       ∫         

 

 ∫        

 

 ∫  〈    〉    ∮〈 ̂   〉  
 

 

 

 
                           

 

Physically,      is the Lorentz force density. It equals the time rate change 

of the mechanical linear momentum density            . 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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The force acted upon a single particle that is contained in a volume V is: 

 

  ∫    
 

 ∫              
 

 

 

Brought together this gives: 

 

  (                        )    〈      〉 

 

This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction that passes 

a surface element in the j-th direction per unit time, per unit area. 

 

Total change within V = flow into V + production inside V 

 
                              

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sg = 0. 

Conservation of angular momentum 

Field angular momentum 

The angular momentum relates to the linear momentum. 

 
                  

 
                            

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(1) 

(2) 
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              (q) 

 

This enables the balance equation for angular momentum: 

 

  (                          )    〈       〉 

 

Total change within V = flow into V + production inside V 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds for the 

mechanical torsion: 

 

      ∫               

 

 

 

 ∫        (ρ                         )  

 

 

 
                             

 
                             

 

Using 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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〈    〉    
   

   
   

 

〈    〉    
   

   
   

 

holds 

 

          ∫ 
         

 

 ∫                   

 

 

 

 ∫    〈      〉  〈         〉    

 

 

 

 ∫   〈      〉  
 

 

 

 ∫      

 

 ∫〈       〉  
 

 ∫      〈   〉  
 

 

Spin 

Define the non-local spin term, which does not depend on q' as: 

 

       ∫           

 

 

 

Notice 

 

                       (         ) 

 

And 

(10) 

(11) 

(12) 

(13) 
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          ∫ 
  〈      〉  

 

 ∫        
 

 

 

Using Gauss: 

 

∫〈   〉   
 

∮〈 ̂  〉  
 

 

And 

 
   〈   〉 

 

Leads to: 

                           ∮〈 ̂   
   〉  

 

 

Spin discussion 

The spin term is defined by: 

 

       ∫           

 

 

 

In free space the charge density ρ0 vanishes and the scalar potential ϕ0 
shows no variance. Only the vector potential ϕ may vary with q0. Thus: 
 

               

 

       ∫               

 

 

 
Depending on the selected field Σfield has two versions that differ in their sign. 
These versions can be combined in a single operator: 

 

        [
       
       

] 

(14) 

(15) 

(16) 

(17) 

(1) 

(2) 

(3) 

(4) 
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If 
    

      
 can be interpreted as tantrix      ) and 

      

        
 can be interpreted as 

the principle normal      , then 
             

               
 can be interpreted as the 

binormal      .  
From these quantities the curvature and the torsion128 can be derived. 

 

[

 ̇   

 ̇   

 ̇   

]   [

      
          
       

] [

    
    
    
] 

 

States 
Where a unique closed Hilbert subspace represents a given physical item, 

its state characterizes the probabilistic properties of that item. In quantum 

physics, a quantum state is a set of mathematical variables that as far as is 

possible describes the corresponding physical item. For example, the set 

of 4 numbers {n, l, ml, ms} define part of the state of an electron within a 

hydrogen atom and are known as the electron's quantum numbers. The 

observables that determine the state are mutually compatible. The 

position of the electron within the atom is a hidden property. If two 

operators are each other’s canonical conjugate, then only one of them can 

participate in the state, or the state must contain an account of the 

combination of both values. An example of such a combination is the 

ladder operator. 

Quantum states can be either pure or mixed. Pure states cannot be 

described as a mixture of others. Mixed states correspond to a random 

process that blends pure states together. Realizations of elementary types 

are characterized by pure states. 

                                                 
128Path characteristics  

(5) 

http://en.wikipedia.org/wiki/Quantum_system
http://en.wikipedia.org/wiki/Quantum_number
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This indicates that the notion of state is closely related to the basic 

constituents of Hilbert fields. Stated in other words:  

 

In relation to the concepts defined earlier, a pure state corresponds to the 

blur of an elementary Hilbert distribution, while the blur itself can be 

interpreted as a QPAD. The state then also corresponds to the squared 

modulus of this QPAD, which is a probability density function. The blur 

is defined with respect to a background coordinate system. This 

coordinate system is delivered by a GPS operator129 that resides in rigged 

Hilbert space. For example the operators  ̌      ̌ suit that purpose, or the 

coordinate system is represented by the canonical conjugate, the GMS 

operator that corresponds to  ̌     ̌. With other words, several different 

states correspond with the same physical item. The position of the 

considered item is determined by the position of the anchor points of the 

QPAD. These anchor points correspond to eigenvectors of the strand 

operator. The eigenvalues of this strand operator are coupled to the 

background coordinate system. This coupling is inaccurate. The QPAD 

reflects the inaccuracy. 

When performing an observation on a quantum state, the result is 

generally described by a probability distribution, and the form that this 

distribution takes is completely determined by the quantum state and the 

operators that are related to the observation of the quantum state. The 

result of an observation is only determined probabilistically. Even when 

the observed quantity is quantized it still can take a range of values, each 

with a corresponding probability. In relation to the observables that 

determine the state, a pure state is characterized by the blur of a single 

elementary Hilbert distribution and that blurred distribution corresponds 

                                                 
129Hilbert spaces; Generating a Hilbert space GPS  

The QPAD that represents the private field of an elementary particle 

also represents the state of that particle. 

The properties of the field are also the properties of the state. 
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in relation to these observables to a mathematical object known as a wave 

function. If another observable concerns the canonical conjugate, then the 

corresponding Fourier transform of the wave function must be 

considered. 

 

The result of a “sharp” observation equals one of the eigenvalues that 

corresponds to the set of eigenvectors over which the probability 

distribution is non-zero. It means that the observable must have the same 

eigenvectors as the operator that is used to define the wave function. The 

probability of getting this vector and the corresponding value is given by 

the probability density that corresponds to the wave function value. The 

probalistic nature of observations reflects a core difference between 

classical and quantum physics. The granularity of observables that are 

afflicted with Planck limits forbids that differences are measured with 

precise accuracy. 

Linear combinations (superpositions) of states can describe interference 

phenomena. A mixed state cannot be characterized by a single blurred 

elementary Hilbert distribution. Instead, it is described by the associated 

density operator of that mixed state. It is still represented by a (blurred) 

closed Hilbert subspace, but that is no longer the subspace that is spanned 

by a single elementary Hilbert distribution. 

Pure states can be represented by a single blurred elementary Hilbert 

distribution. 

State definition 
A measure   on the closed subspaces of a Hilbert space obeys the rule: 

 

     ∑   
   
   , for each set      of closed subspaces 

 

Each Hilbert vector     generates a measure       via the projection    

of     on A 

 

(1) 
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      ‖     ‖
  

 

Gleason’s theorem states:  

Let      be a measure on the closed subspaces   of a separable Hilbert 

space Ң with dimension ≥ 3, then there exists a positive definite self 

adjoint operator T of the trace class, such that 

 
                

 

Given a state P on a space of dimension ≥ 3, there is an Hermitian, non-

negative operator ρ on Ң, whose trace is unity, such that 

 

    ∈                 , where x is a ray spanned by |x> 

 

With each compact normal operator Q corresponds an orthonormal base 

of eigenvectors        with eigenvalues q. As a consequence a notion of 

state is attached to each physical item combined with one or more 

mutually compatible compact normal operators      . 

 

In Hilbert space a state, or probability function, is a real function P on the 

Hilbert subspaces, with the following properties: 

1.        

 

2.   ∈         , y is a Hilbert subspace 

 

3. ∑         , where      form an orthonormal base of Ң and xj  is 

the ray spanned by |xj> 
 

4.      ∑      
 
    where   are mutually orthogonal rays spanning 

subspace y 

Pure state 

In particular, if some ray x0 satisfies P(x0) = 1, then according to Born’s 

rule: 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
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    ∈                

   

 

This happens when |x0> represents an unary pure state. 

Item state 

The state           is connected to a wave function  (     ), where  

 

           | (     )|
 
  

 

and       are the eigenvalues of eigenvector       of the operators      . 

Two operators A and B are compatible when their commutator is zero: 

 
                   

 

If the state is characterized by a set of independent properties, then each 

of these properties corresponds with a corresponding operator. These 

operators must be normal, but they need not be compact. It must be 

possible to construct a spectral decomposition for each of the operators. 

Further, the operators that together determine the state must be mutually 

compatible. The wave function is then the product of the probability 

amplitudes that correspond to the separate operators. Thus the resulting 

wave function is a characteristic that represents the probability 

amplitudes of a set of mutually compatible observables that correspond to 

the normal operators that determine the state. 

 

The squared modulus of the probability amplitude is the probability 

density. The wave function will also be a function of a progression 

parameter. Position can be a state characterizing observable. However, 

like the progression parameter, spacetime does not occur as an eigenvalue 

of a Hilbert space operator. The operators may vary. For example an 

operator may be replaced by its canonical conjugate. In that case, care 

must be taken that the operators that form the changed state are still 

(1) 

(1) 

(2) 
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compatible. Thus, even with the same physical item, the wave function is 

not unique. 

 

For the operator   with eigenfunctions |q> and eigenvalues q the 

probability amplitude function ψ(q) is given by the smoothed version of 
      

 
             

 

When   is a compact normal operator then the smoothed version of ψ(q) 

is a continuous function. In that case the eigenvalues of the corresponding 

operator  ̌ that resides in rigged Hilbert space Ħ are used. Then ψ(q) has 

a Fourier transform φ(p), where the operator  ̌ with eigenvectors |p> and 

eigenvalues p is the canonical conjugate of  ̌. Like ψ(q), the function φ(p) 

is also a function that characterizes the corresponding item and |φ> is a 

characterizing vector. The parameters q and p may be quaternionic. 

 

      ̃            

 

With respect to the correspondence with traditional quantum logic, it is 

wrong to take any characteristic vector including the locator or any 

function including the wave function as the representative for the item. It is 

ridiculous to expect that a single Hilbert vector carries all properties of a 

complex physical item, such as a DNA molecule or an elephant.  

 

In usual quantum mechanics the wave function can be interpreted as the 

combination of a stationary vector and a progression operator. The 

progression operator has the form A·exp(S/ħ). This was introduced by 

Dirac. A is Hermitian and positive. S is anti-Hermitian. Both operators are 

a function of parameter t. This is reflected in the Hamilton-Jacobi 

equation. 

 

In contemporary quantum field theory the fields replace the wave 

function. Thus a field may be interpreted as the amplitude of the 

(3) 

(4) 

http://en.wikipedia.org/wiki/Compact_operator_on_Hilbert_space
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probability to find something at the location of the field value. For bosons 

that something may be interpreted as a virtual particle. For fermions that 

something may be interpreted as a pair of virtual particles. Each type of 

virtual particle has its own type of field. 

 

There are some questions left with wave functions:  

 Can it have non-zero values outside the subspace that represents 

the physical item?  

o Answer: Yes. The private field covers the whole Hilbert 

space. 

 Is the wave function a regular function?  

o Answer: When universe is restricted by an outer horizon, 

then the wave function is regular. 

 What happens to the representing subspace and to the wave 

function when a measurement on a particle is performed? 

o Answer:  

 When the coordinate space stays the same, then both 

the subspace and the wave function will not be 

affected. However, the measurement may affect the 

state of the particle. 

 When the coordinate space changes into the canonical 

conjugate, then the subspace changes to other base 

vectors and the wave function is Fourier transformed 

into a new form. 

 Has a system a wave function? 

o Answer: In general a system must not have a wave function, 

but it has a density operator. 

Probability density 

Gleason’s theorem130 states that a probability measure μ(P) on the lattice 

L(Ң) of projections P on closed subspaces of a Hilbert space Ң 

corresponds to a non-negative Hermitian operator ρ with trace 1, such 

                                                 
130 http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure  

http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
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that μ(P) = tr(ρP). When the projections Pq correspond to the rays formed 

by the eigenvectors |q> of operator Q and μi(Pq) corresponds to the 

considered physical item, then μi(Pq) =  <q, ρi q> corresponds to the square 

of the modulus of the wave function ψi(q). ρi is the probability density 

operator131 corresponding to μi. The probability measure μ is a regular 

function.  

 

The probability density function132 P(q) = |ψ(q)|2 of an absolutely 

continuous random variable q is a function that describes the relative 

chance for this random variable to occur at a given point in the Q 

observation space. The probability for a random variable to fall within a 

given set is given by the integral of its density over the set. 

The probability density operator133 ρ is positive-semi-definite (    ∈ Ң {<f|ρ 

f> ≥ 0}), self-adjoint (ρ = ρϯ), and has trace one (tr(ρ) = 1). For the operator 

Q with eigenfunctions |q> and eigenvalues q with probability amplitude 

ψ(q), the density operator ρ is given by 

   ∑                    

Von Neumann entropy134 is defined using the density operator of physical 

items. 

The entropy S(ρ) describes the departure of the system from a pure state. 

In other words, it measures the degree of mixture (entanglement135) of the 

state |ψ>. 

The operator A can be decomposed 

 

                                                 
131 Functions and fields:characteristic functions  
132 http://en.wikipedia.org/wiki/Probability_density_function  
133 http://en.wikipedia.org/wiki/Density_operator  
134 http://en.wikipedia.org/wiki/Von_Neumann_entropy  
135 http://en.wikipedia.org/wiki/Quantum_entanglement  

(1) 

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Density_operator
http://en.wikipedia.org/wiki/Positive-semidefinite_matrix
http://en.wikipedia.org/wiki/Self-adjoint_operator
http://en.wikipedia.org/wiki/Trace_class
http://en.wikipedia.org/wiki/Von_Neumann_entropy
http://en.wikipedia.org/wiki/Quantum_entanglement
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Density_operator
http://en.wikipedia.org/wiki/Von_Neumann_entropy
http://en.wikipedia.org/wiki/Quantum_entanglement
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    ∑          
 

For the state |ψ> the expectation value 〈 〉 for the observable A is 

 
 〈 〉             ∑                             

 

A Hilbert field is a blurred Hilbert distribution. The blur represents a 

QPAD.  

 

The squared modulus of the private field that belongs to a Hilbert 

distribution can act as a probability density function. The projection 

operator whose target domain is spanned by the Hilbert distribution can 

act as the probability operator. 

States and blurs 

Apparently a state is the same stuff as the basic constituent of a Hilbert 

field. Both can be characterized as QPAD’s. The squared modulus of a 

probability amplitude distribution136 is a probability density distribution 

(PDD). The state corresponds with a wave function or with a probability 

density operator.  

 The state of a physical item can be interpreted as the probability of 

finding the parameter value when an observation is done that 

corresponds to the corresponding coordinate operator. 

 The squared modulus of the blur can be interpreted as the 

probability of detecting a quantum at the location specified by the 

parameter value that corresponds to the corresponding coordinate 

operator. 

Blurs are the building stones of Hilbert fields. In a similar way wave 

functions must be interpretable as the building stones of fields. 

Blurs are private fields of elementary Hilbert distributions. Thus, wave 

functions must also be related to elementary Hilbert distributions. 

  

                                                 
136 http://en.wikipedia.org/wiki/Probability_amplitude; the quaternionic version is used. 

(2) 

(3) 

http://en.wikipedia.org/wiki/Von_Neumann_entropy
http://en.wikipedia.org/wiki/Probability_amplitude
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Observables and field values 
In separable Hilbert space observables are represented by operators. The 

observed value is represented by an eigenvalue or by the expectation 

value of the operator that represents the observable. The expectation 

value can be computed using the QPAD of the observed item. In order to 

do this the QPAD must be written as a function of the eigenvalues of the 

operator.  

 

Scalar physical fields have numeric values. Vector and tensor fields 

consist of vectors and tensors that are constructed using numbers. Both 

the eigenvalues of operators and the values of fields may be hyper 

complex 2n-ons137. 

Numbers 
The Hilbert space can be specified by using a number space that allows 

the mutual orthogonalization and the closure of subspaces. The real 

numbers, the complex numbers and the quaternions can perform that job. 

Horwitz showed that even the octonions with some trouble can achieve 

this 138. The real numbers, the complex numbers, the quaternions and the 

octonions are the only normed division algebras and they are the only 

alternative division algebras. In general the octonions are not associative, 

but the product of two octonions that belong to the same quaternionic 

subfield is associative. The alternative property of the octonions admits 

the closure of the subspace generated by (successively associated) 

products of the vector with octonion elements to order seven, i.e., after 

multiplication seven times by octonions, the subspace no longer grows. 

 

Neither all quaternions nor all octonions commute. However, within 

complex subspaces the numbers commute. In general holds for 2n-ons that 

they behave like 2m-ons in their lower m dimensions. 

 

                                                 
137 see http://www.math.temple.edu/~wds/homepage/nce2.pdf or the appendix 
138 see: http://arxiv.org/abs/quant-ph/9602001 

file:///C:/web/NewWebSite/English/Science/Toolkit.pdf
http://www.math.temple.edu/~wds/homepage/nce2.pdf
http://arxiv.org/abs/quant-ph/9602001
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We might take the following freedom. The fact that a given number space 

is used for specifying linear combinations of Hilbert space vectors does 

not mean that eigenvalues of operators must also be restricted to that 

same number space. In this sense a Hilbert space specified over the 

quaternions may allow eigenvalues of operators that are taken from the 

octonions or even higher 2n-ons. The problem with higher dimension 2n-

ons is that their number characteristics deteriorate with n. However, as 

long as the (full) eigenvalues are not used to construct linear 

combinations of vectors, or to specify the inner products of the Hilbert 

space, there is no problem. This means that operators for which 

expectation values are used as parameters of functions must also have 

quaternionic or lower dimensional eigenvalues.  

 

All higher dimensional 2n-ons contain several subspaces that are lower 

dimensional 2m-on number spaces. Further, 2n-ons behave like 2m-ons in 

their lower 2m dimensions.   

 

In general the elements of curves or curved manifolds are themselves not 

numbers. So, in general they cannot be used as eigenvalues. However, 

locally the elements of a curved manifold may resemble numbers of a 2n-

on number space. Also tangent spaces may resemble number spaces.  

 

Number spaces can be attached as tangent spaces to smoothly curved 

manifolds. Smoothly curved trails of objects that locally resemble 2n-ons 

can be treated with the Frenet-Serret frame toolkit. In that way the 

elements of the curves and the manifolds obtain number characteristics in 

a small enough environment.  

 

Sequences or sets of operators can locally have eigenvalues that are 

numbers which can be considered as member of smooth curves or of the 

tangent space of a curved manifold at that location. In that way the 

elements of smooth curves or of curved manifolds can be related to the 

corresponding eigenvalues. 2n-ons are ideally suited for this purpose. This 

means that the eigenspaces of the subsequent operators in a trail need not 
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overlap. These eigenspaces are only used locally. When curvature and 

bending of the operator trail diminish, the dimension of the local number 

space can be lower. When the curvature and the bending increase, the 

dimension must be higher. This will be reflected in the dimensionality of 

the local eigenvalues. Apart from the application as eigenvalues of 

operators the 2n-ons are suited as values of physical fields. 

 

We will restrict to the 2n-ons as extensions of the quaternions. As we 

stated, the higher dimension numbers created with the Cayley-Dickson 

construction are not so well behaved. Alternatives are the use of Clifford 

algebras, Jordan algebras or Grassmann algebras. We will show that in 

the Hilbert space the 2n-ons for n > 1 automatically introduce these latter 

algebras for example through their number waltz. 

 

The niners are the most extensive 2n-on numbers that still keep a 

reasonable set of number characteristics. More precisely said the 2n-ons, 

even those that have a higher dimension than the octonions, keep 

reasonable number characteristics in the space spanned by their 

coordinates that have an index lower than nine. The real numbers, the 

complex numbers, the quaternions and the octonions completely fall 

within these boundaries. The above hyperlink describes exactly what 

characteristics the niners retain.  

 

The subspace of the 2n-on field that is spanned by the first 2m dimensions 

acts as a 2m-on number space. Thus in a dynamic situation, an octionic 

operator acts locally as a quaternionic operator. In a smaller or more flat 

region it acts as a complex operator and at “nano”-locality as a real (or as 

an imaginary) operator. 

2n-on construction 

The 2n-ons use the following doubling formula 

 

 (a, b) (c, d) = (a·c – (b·d*)*,(b*·c*)* + (b*·(a*·((b-1)*·d*)*)*)*) 

 

(1) 
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Up until the 16-ons the formula can be simplified to 

 
(a, b) (c, d) = (a·c – b·d*, c·b + (a*·b-1)·(b·d)) 

 
Up to the octonions the Cayley Dickson construction delivers the same as 

the 2n-on construction. From n>3 the 2n-ons are ‘nicer’ than the Cayley 

Dickson numbers. They keep more useful number characteristics. The 2n+1-

ons contain the 2n-ons as the sub-algebra of elements of the form (a, 0) 

Waltz details 

The 16-ons lose the continuity of the map x => xy. Also, in general holds  

xy·x ≠ x·yx for 16-ons. However, for all 2n-ons the base numbers fulfill 

eiej·ei = ei·ejei. All 2n-ons feature a conjugate and an inverse. The inverse 

only exists for non-zero numbers. The 2n-ons support the number waltz  

 

c = a·ba-1. 

 

Often the number waltz appears as a unitary number waltz 

 

c = u*·bu 

 

where u is a unit size number and u* is its conjugate u·u* = 1. 

 

In quaternion space the quaternion waltz a·b·a-1can be written as 

  
a·b·a-1 = exp(2·π·ĩ·φ)·b·exp(-2·π·ĩ·φ) 

  
= b – b┴ + exp(2·π·ĩ·φ)·b┴·exp(-2·π·ĩ·φ) 

  
= b – b┴ + exp(4·π·ĩ·φ)·b┴ 

  
∆b = (exp(4·π·ĩ·φ) – 1)·b┴ 

  

(2) 

(1) 

(2) 

(3) 

(4) 
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= (cos(4·π·φ) + ĩ·sin(4·π·φ) – 1)·b┴ 

  

= exp(2·π·ĩ·φ)·2·ĩ·sin (2·π·φ)·b┴ 

  

||∆b|| = ||2·sin(2·π·φ)·b┴|| 

 
Another way of specifying the difference is:  
 

∆b = (a·b – b·a)/a = 2·(a×b)/a 

 

||∆b|| =2·||a×b||/ ||a||  

 

a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 
Figure 1. The rotation of a quaternion by a second quaternion. 

 

(5) 

(6) 

(7) 
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Infinitesimal number transformation 

The number v is close to 1. Thus v = 1 + Δs. Let us investigate the 

transform c = v*·b·v.  

 

c = (1 + Δs*)·b·(1 + Δs)  

= b + Δs*·b + b·Δs + Δs*·b· Δs  

≈ b + Δs*·b + b·Δs 

= b + Δs0·b + 2·b×Δs 

 

Δb = Δs0·b + 2·b×Δs 

 

This comes close to the effect of an infinitesimal number waltz, especially 

when Δs0 = 0 In that case Δb0 = 0 and Δb is perpendicular to Δs. 

For 2n-ons with n > 1, a·ba-1 in general does not equal b. This effect stays 

unnoticed when quantum mechanics sticks to a complex Hilbert space. 

 

 

(1) 

(2) 
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b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 
Figure 2: The difference after rotation 

Sign selections 

The paper that describes 2n-ons does not describe the choice for right or 

left handedness of the external vector product. So, we do it here. The 

generally accepted convention is to let the handedness depend on the 

orientation of the underlying ℝn space. However, when numbers are 

constructed via the Cayley-Dickson construction or the 2n-on construction 

then the handedness follows from the applied construction formula. We 

want to get rid of these restrictions, because we want to give operators 

and fields the freedom to select the handedness and other sign selections 

of their (eigen)values.  

 

The 2n-ons have n independent binary base numbers and   sign 

selections. The real numbers do not offer a sign selection. The complex 

numbers offer the selection of the sign of the real or the imaginary axis. 

This is inherited by all higher 2n-ons in the form of the conjugation. The 

quaternions have two independent imaginary base numbers and two 
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independent sign selections that both affect the handedness of its external 

product. The octonions have three independent imaginary base numbers. 

These correspond to three independent sign selections for the handedness 

in external products that involve this new base number. 

Need for spinors 

In the number waltz the current manipulator only needs an argument α in 

order to turn the subject over 2α. This is typical behavior for spinors. 

Spinors also have a storage place for the handedness of rotations. By 

using the number waltz and the sign selections the 2n-ons can perform the 

same act as the spinors. Spinors are only required when quantum 

mechanics is restricted to complex Hilbert spaces. Spinors are the carriers 

of the spin phenomenon. Thus, in our model the sign selections in 

combination with the number waltz form the carriers of spin.  

 

The approach taken in this paper might cause a revival of the importance 

of the hyper complex numbers that turned in oblivion when Gibbs 

introduced his vector analysis.  
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Influence 
The original example proposition (♠) talks about influencing the position 

of an item. This implies that the position of the item changes due to the 

mentioned influence. Thus when the influence occurs, the eigenvector 

that represents the position of the item is exchanged against another 

eigenvector. That other eigenvector corresponds to another environment 

inside the eigenspace of the position operator. The eigenvectors of the 

position operator move with respect to the subspace that characterizes the 

item. Another possibility is that the eigenvectors stay, but the 

corresponding eigenvalues change while the Hilbert subspace moves. In 

both cases the movement is relative. See Heisenberg picture versus 

Schrödinger picture139.  

 

Thus, there is a way to implement influence in Hilbert space. The 

influence causes a move of the item’s subspace relative to one or more 

eigenvectors of the position operator. The original proposition (♠) claims 

that this movement is caused by other items. We must check whether this 

is true. 

 

If this is true then influences are the motor behind the dynamics of the 

items. 

The universe of items 
The original proposition (♠) states that all items influence each other’s 

position. This includes that all items influence the considered item. Part of 

the items compensates each other’s influences on the currently considered 

item. It will be shown that this holds for the largest part. 

Inertia 
The influence may decrease with distance according to some function f(r) 

of the distance r. However the number of contributing items increases 

with the distance. Depending on function f(r) the most probable result is 

                                                 
139 Dynamics: Schrödinger or Heisenberg picture 
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that the strongest influence comes from the cooperative activity of the 

most distant items. Due to the enormous number of items in the universe, 

any variation of the influences of the distant items averages away. This 

also holds for the density distribution of the items. So there exists a fairly 

uniform background influence caused by the universe of items. What will 

happen, can be deduced from an equivalent of Denis Sciama’s analysis140. 

We will take his analysis as a guide. Sciama’s analysis uses a different 

setting: the (observed) 3D space and coordinate time. This setting raised 

critique because the approach involves instantaneous action on large 

distances. In Sciama’s setting this is in conflict with special relativity. In 

our setting we do not (yet) encounter special relativity. We use the 

coordinate space defined by an appropriate coordinate operator and the 

progression parameter   that relates to the progression step counter as our 

setting. A location in coordinate space represents a location on the unit 

sphere of Hilbert space. This last location is taken by the eigenvector that 

corresponds to the first location. As stated before, the unit sphere of 

Hilbert space is an affine space. This means that we must treat position as 

relative data. With other words, the eigenspace of the coordinate operator 

has no absolute origin. 

 

The most important aspects of the analysis are: 

 

The total potential   at the location of the influenced subject is141 

 

    ∫
 

 
  

 

    ∫
  

  
        

 

This conforms to a Gaussian blur142 as a representative of the average blur 

function. The integral is taken over the coordinate space volume V. 

Indirectly, the integral is taken over the unit sphere of Hilbert space. This 

                                                 
140 See: http://arxiv.org/abs/physics/0609026v4.pdf and "On the origin of inertia", by 

Denis Sciama (http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
141 See: http://en.wikipedia.org/wiki/Newtonian_potential 
142 Hilbert field equations: example potential 

(1) 

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://en.wikipedia.org/wiki/Newtonian_potential
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is an affine space. The parameter r is the length of the vector from the 

actor to the location of the subject. The considered subject is located 

somewhere in the affine coordinate space. All other subjects have 

positions relative to that considered subject. At large distances, the 

density ρ of the contributing items can be considered to be uniformly 

distributed. Also any variance in strength other than the dependence on r 

becomes negligible because the differences are blurred and averaged 

away. We already assumed that the average blur of the distributed matter 

in universe is a Gaussian blur. We take the average of the strength as the 

significant parameter. We combine it with ρ. Therefore the average of ρ 

can be taken out of the integral. Thus, apart from its dependence on the 

average value of ρ, Φ is a huge constant. Sciama relates Φ to the 

gravitational constant  . 

 

    
 

 ⁄  

 

As a consequence we can consider the universe as a very large rigid body. 

If nothing else happens then all influences compensate each other. 

 

In the following equations we use imaginary quaternions rather than 3D 

vectors. In this way we can avoid the distracting factor i. 

 

If the considered subject moves relative to the universe with a uniform 

speed v, then a vector potential A is generated. 

 

  =  ∫
   

   
  

 

 

 

Both ρ and v are independent of r. Together with the constant c they can 

be taken out of the integral. Thus 

 

A = Φ·v/c 

 

(2) 

(3) 
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What we have here is the reverse of the definition of the potential that 

goes together with a charge distribution. When we defined a Hilbert field 

we started in fact from a charge distribution and a current distribution 

and we considered the influence of these distributions on the universe. 

Here we consider the influence of the universe on a local charge or 

current. For this purpose we use the same volume integrals!  

 

The field that we treat in studying inertia is a curvature field rather than a 

covering field. The curvature field derives from the covering field by 

taking the curvature that is caused by the decomposition of the covering 

field as its charge. 

 
The notions of charge and current correspond to equivalent notions in 

N      ’         143. Here we talk about inertia and curvature fields. 
Thus charge may symbolize mass. 

 

Here the progression parameter t plays the role of “time”. Be aware, this 

is not our usual notion of time. 

 

According to Helmholtz theorem the Hilbert field derived from the above 

potentials can be split into a divergence free part and a rotation free part. 

The Helmholtz decomposition theorem only concerns the static versions 

of the derived field. It is related to the fact that the Fourier transform of a 

vector field can be split in a longitudinal and a transversal version. There 

also exists a corresponding split of the multi-dimensional Dirac delta 

function in a longitudinal and a transversal version. If we use the position 

operator  ̌ as the coordinate operator, then the decomposition runs along 

straight lines. If we use the GPS operator  ̌ then the decomposition runs 

along curved lines. In curved manifolds the Helmholtz decomposition 

theorem should be replaced by the Hodge decomposition theorem. 

 

                                                 
143 http://en.wikipedia.org/wiki/Noether%27s_theorem  

http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
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A variation of v goes together with a variation of A. On its turn this goes 

together with a non-zero field  ̇      which is a dynamical part of the 

derived Hilbert field.  

 

Sciama uses a Maxwell equation to explain the relation between ∂v/∂t and 

 ̇     . Our setting differs, but the main reasoning is the same. 

 

                  
 

 
  ̇       

 

 ̃           ̃       
 

 
   ̃       

 

If we exclude the first term because it is negligible small, we get: 

 

         
 

  
 
  

  
   

  

  
 

 

Remark: As soon as we turn to the dynamic version (4) an extra 

component  ̇ of field E appears that corresponds to acceleration ∂v/∂t. 

(See for derivation of Maxwell equations e.g. the online book 

http://www.plasma.uu.se/CED/Book; formula 3.25 or the section on Hilbert field 

equations in this e-paper) 

 

As already claimed, in our setting the component    of the field E is 

negligible. With respect to this component the items compensate each 

other’s influence. This means that if the influenced subject moves with 

uniform speed v, then E ≈ 0. However, a vector potential A is present due 

to the movement of the considered item. Any acceleration of the 

considered item goes together with an extra non-zero E field. In this way 

the universe of items causes inertia in the form of a force that acts upon 

the accelerating item’s charge. 

 

We have used the coordinate space as a playground to implement an 

equivalent of Sciama’s analysis. The analysis uses the fact that every item 

(4) 

(5) 

(6) 

http://www.plasma.uu.se/CED/Book
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in universe causes an influence and that this influence reduces according 

to f = –k/r. (Compare this with Bertrand’s theorem144 in Wikipedia) 

 

A uniform movement in Hilbert space does not on itself generate a 

reaction of the universe of items. Any alteration of that uniform 

movement will cause as reaction a field. The physical name for this 

reaction is action. It usually gets the symbol S. When the path of the item 

coincides with a geodesic, then it can be travelled field free. 

 

Uniform movements do cause displacement of charges. On its turn it 

changes the configuration of the local field. Thus, indirectly the local field 

will also act on uniform displacements. As we see from inertia, any field 

change goes together with a corresponding acceleration. 

 

It must be noticed that the original analysis of Sciama uses observable 

position space rather coordinate space and it uses a different notion of 

time. However, the general conclusion stays the same. Sciama’s analysis is 

criticized because it uses infinite speed of information transfer. Since we 

do not work in observable position space, we do not encounter coordinate 

time. So for us, this criticism is misplaced. Most part of the story plays in a 

stationary condition. Even the uniform movement is stationary. The 

acceleration deviates from the stationary condition. This deviation goes 

together with an extra field component. 

 

Coordinate time145 relates to observations of position. It is a local player in 

the game, where the progression parameter is a global player. 

 

The situation with electromagnetic fields is different, because with this 

field positive and negative charges compensate each other’s long range 

influence. For that reason there exists no electromagnetic background 

influence. The masses of the gravitational and inertial fields only 

                                                 
144 http://en.wikipedia.org/wiki/Bertrand's_theorem  
145 Dynamics; Relativity 

http://en.wikipedia.org/wiki/Bertrand's_theorem
http://en.wikipedia.org/wiki/Bertrand's_theorem
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compensate each other’s long range influences through geometrical 

circumstances. Still in combination, they create gigantic potentials. 

 

The particles outside the information horizons also contribute to the 

inertia. 

 

We may reverse the conclusion of the analysis:  

 

An extra field component goes together with an acceleration of the local 

item. 

 

Thus when through uniform movement the local field configuration 

changes, then that change goes together with an acceleration of the local 

item. 

Nearby items 
Items that are located nearby have a different effect. In general their 

influence will not have its strength equal to the average strength. Further 

these items are not uniformly distributed. Still at macroscopic distances 

their influence depends on inter-distance as f = –k/r. As a consequence 

their influences form a landscape of which the effects will become sensible 

in the action of the fields that surround the considered item. This 

landscape will form a curved action space. The considered item will try to 

follow a geodesic through that curved space. 

Rotational inertia 
Besides linear inertia there exists rotational inertia. In a non-rotating 

universe hold near the origin A = 0 and Φ = -c2/G. We choose units such 

that c=G=1. In a universe rotating slowly with angular speed ω hold 

 

Ax = ω·y 

 

Ay =  ω·x 

 

(1) 

(2) 

(3) 
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Az = 0 

 

    √          

 

A constant angular movement meets the fields that correspond to a 

centripetal force. 

 

The field E has the form 

 

    
   

√       
 

 

An added uniform speed v meets the fields corresponding to a Coriolis 

force.  

 
            

 
          

 

The forces are usually considered as fictitious but they are actually caused 

by inertia. Sciama treats them in section 5 of his paper. Like fields of linear 

inertia these rotation related fields correspond to actions of the 

manipulator. 

Storage, sign selections and virtual items. 
The static fields act as storage media for the location and the speed of the 

charges of the physical items.  

 

When the values of the fields are stored in hyper complex numbers, then 

the sign choices for these numbers will also be reflected in these fields. 

Each of the   independent imaginary base vectors will introduce an 

independent sign selection. This will produce    field sign flavors. 

 

(4) 

(5) 

(6) 

(7) 
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The fields can be interpreted as reflections of the presence of non-actual 

items that are ready to exchange roles with actual items. 

The proposition 
This finding indicates that when our interpretation of Sciama’s analysis is 

correct, the original proposition  

All items in universe influence each other’s position. 

is not generally true. The universe of items does not influence position. It 

counteracts acceleration of individual items. Position is only influenced in 

an indirect way and presupposes an observation. If the item moves in a 

geodesic with uniform speed, then the position changes while the 

influences of all other items compensate each other. In such cases the 

summed influence is zero. 

 

We may alter the original proposition (♠). If our analysis is correct, then 

the proposition  

All items in universe influence each other’s acceleration. 

is true.  
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The origin of dynamics 
If we want to discover the origin of dynamics, we must first determine 

what the static structure of nature is. We already found an important 

ingredient of this skeleton: the lattice structure of quantum logic and the 

corresponding lattice structure of the closed subspaces of a Hilbert space. 

Both structures are only defined in a static way. Nothing is said about 

their dynamics. Besides of these static relations the concept of wave 

functions and density operators offer insight in the probability and 

information content of these relations. These subjects correspond to 

private fields, which are the constituents of a covering field. This covering 

field can be seen as the superposition of all private fields. For a selected 

coordinate system the static covering field can be decomposed into a 

rotation free and a divergence free part. Depending on the configuration 

of the anchors of the private fields the decomposition does not run along 

straight coordinate lines. This defines a local curvature that depends on 

the selected coordinate system. That curvature can be used to define a 

curvature field. This together defines the ingredients of the static status 

quo. It all fits in a model that we call extended quantum logic or 

equivalently extended Hilbert space. 

 

In the previous part of the paper the added component of the static 

structure of nature is investigated: the static structure of the influences. It 

appears that this structure is identical with the structure of static Hilbert 

fields. Both the analysis of inertia and the study of Hilbert fields showed 

the static relation between divergence free fields and rotation free fields. 

These analyses also showed the influence of dynamics on the coupling of 

these static fields. The analysis of Hilbert fields explained how these fields 

change as a function of the progression parameter q0. Inertia showed how 

these fields get coupled when the uniform movement of a physical item is 

disturbed. We also explained that uniform movement may cause a 

reconfiguration of the field. On its turn, this change may initiate extra 

movement.  
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Next we try to find a more precise formulation for these origins of 

dynamics. 

Extended quantum logic 
Wave functions represent the probability of finding properties of actual 

items. For example if a GPS type coordinate system is selected as its 

parameter space, then this property can be the position of the item. If it is 

a GMS type system, then the property can be momentum.  

 

In quantum theory the values of fields are treated in equations of motion 

in a similar way as the wave functions of actual items are treated in such 

equations. The Hilbert book model interprets the wave function itself as 

part of the field.  

 

When fields in general can be considered as representations of the 

probability of finding properties of actual as well as virtual items, then the 

fields get an interesting interpretation.  

 

In quantum logic the realistic physical item is represented by a 

proposition in the form of a statement that says everything about that 

item.  

 

For non-actual items the new interpretation would mean that in extended 

quantum logic the non-actual items are represented by potential 

propositions that are ready to become actual propositions or that were 

actual propositions in the past. 

 

It means that traditional quantum logic is embedded in extended 

quantum logic such that it apart from propositions about actual physical 

items also contains preconditions about future physical items and post-

conditions about past physical items. 

 

This information is contained the Fourier transforms of the QPAD’s that 

belong to elementary particles. It is already shown that the canonical 
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conjugated operators give information about changes of the original 

operators146. 

 

In this way, the set of propositions of extended quantum logic is much 

larger than the set of propositions of quantum logic.  

Interpretation in logical terms 
The results of the analysis of inertia mean that when the redefinition of 

the set of vectors that belongs to the representation of the item occurs 

such that this corresponds to a uniform movement of the physical item, 

then the influences of the universe of items tend to compensate each 

other. The whole is treated as a static set of relations. Otherwise, the 

universe of items reacts with a corresponding extra field component. This 

means an extra blur = extra divergence of the stochastic inaccuracy of 

properties of the considered item.  

 

Besides of the universe wide response, a local variance in the distribution 

of items causes a variation in the influences. This local variance can partly 

be the consequence of a uniform displacement of particles. 

 

It seems that quantum logic and Helmholtz decomposition together 

define an important part of the static relations that exist in physics. The 

fields appear to resist the disturbance of the interrelations in the lattice of 

quantum propositions. In dynamical sense this lattice might step from one 

static status quo to the next. After a step new conditions are established 

that again must fulfill the laws that govern the static situation. If this is a 

proper interpretation, then it is likely that the progression step is taken 

universe wide. After each step the positions of the physical items relative 

to the fields have changed, thus when the fields are not uniformly 

distributed, the items meet a different field configuration. The next step is 

taken with and due to these new conditions. 

 

                                                 
146 Functions and fields; Canonical conjugate; The quaternionic displacement generator 
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Quantum logic only defines a static skeleton in which the dynamics of 

quantum physics takes place. To make it a dynamic logic, the set of 

axioms must be extended. The new axioms must state that all 

propositions influence each other. The influence depends on their mutual 

(coordinate) distance. In stationary conditions, which include uniform 

motion, these influences compensate each other. When an atomic 

predicate that concerns an element of an ordered set is replaced in a non-

ordered fashion, meaning that the distance between the replaced elements 

does not stay the same, then the universe of all propositions will react 

such that the influences of the other propositions no longer compensate 

each other. The disordered influences counteract the disordered 

replacement.  

 

Besides of that the local variance in the distribution of the propositions, 

which corresponds to a variance of the distribution of the corresponding 

physical items, also cause a variation in the influences that propositions 

have with respect to each other. 

 

In Hilbert space these influences are implemented in the actions of Hilbert 

fields. In quantum physics the influence appears as a set of physical fields. 

Minkowski signature 
One important step must still be taken. In physics observed spacetime has 

a Minkowski signature. Further we observe that space corresponds with 

the imaginary part of a position quaternion for which the real part seems 

to have no direct physical meaning. We must find an explanation for 

these facts. The Minkowski signature defines the following time-like 

relation between the space time step Δs, the space step Δq and the 

coordinate time step Δt 

 
                      ⁄  

 
(1) 
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During inertial motion this corresponds for the proper time147   to 

 
                      ⁄  

 
              

 

This is a triangle relation where    is at the hypotenuse. 

If we substitute the Planck-length for    and the Planck-time for    then 

   equals zero. 

Dynamics 

Schrödinger or Heisenberg picture 
For global rotations around its origin the Hilbert unit sphere acts as an 

affine space. It does not matter whether the eigenvectors of operators or 

the subspace that represents the item is moved. We can take the picture in 

which the subspace stays fixed, while the eigenvectors move and the 

operators change with them. This is the Heisenberg picture. 

We can also take the picture in which the eigenvectors and operators stay 

fixed and the subspace moves. This is the Schrödinger picture. 

 

We are only interested in the consequences. These are determined by the 

relative movement, not by the absolute movement. For a given physical 

item, in both pictures the expectation values of the operators vary in the 

same way. 

Unitary transform 
A unitary transform is a bounded normal operator. Unitary transforms 

keep the value of inner products untouched. If a unitary transform is 

applied to two vectors, then their inner product stays the same.  

 

                                                 
147 http://en.wikipedia.org/wiki/Proper_time  

(2) 

(3) 

http://en.wikipedia.org/wiki/Proper_time
http://en.wikipedia.org/wiki/Proper_time


305 

 

Unitary transforms need not have eigenvectors. For example Fourier 

transforms do not possess eigenvectors. In the rigged Hilbert space Ħ 

functions exist that apart from a scaling factor are invariant under Fourier 

transformation.  

 

If a unitary transform has eigenvectors then it has unit sized eigenvalues 

and to each of these eigenvalues correspond one or more eigenvectors 

that are mutually orthogonal. Unitary transforms are completely 

determined by their vector replacement characteristics or by their 

eigenvectors and the corresponding eigenvalues. 

 

When a unitary operator   is applied to the eigenvector     of an 

operator   with eigenvalue  , then the eigenvector is transferred into 

another vector      . In general       is not another eigenvector of  . In 

quaternionic Hilbert space the expectation value for        is no longer 

 , but  

 

                        

 
Or, with other words the operator   is redefined to     .  

 

The norm of the expectation value            for an arbitrary vector 

    does not depend on  . It only depends on   and    . However the 

expectation value is rotated and the rotation depends on U. 

Trail of infinitesimal transforms 

The effect of a single unitary transform   can also be achieved by a trail of 

infinitesimal unitary transforms      . This also holds for a set of unitary 

operators that operate in parallel.  

 

The situation sketched above can be refined for any instant t occurring 

after t=0. We can treat it more generally by chopping the path from 

        to          into a trail of infinitesimal steps of size    that is 

achieved by a set of infinitesimal transforms        , where  

(1) 
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       ∏          

 

and 

 
           

 

The parameter   acts as the trail progression parameter. It is not identical 

with our common notion of time. If it has anything to do with time it will 

be confronted with a lower limit, which is set by the Planck-time. The 

infinitesimal transforms     work in parallel as well as in sequence.      

represents the current local infinitesimal action step. It is an imaginary 

operator. Like time the action step also has a lower limit that is 

determined by a corresponding Planck unit. 

 

The Heisenberg picture conforms to the description with unitary 

transforms where operators are redefined. When this is done in small 

steps, then the redefined operator becomes a function of progression 

parameter t. 

Unitary transform with full set of eigenvectors 

When a unitary transformation U is applied to an arbitrary vector    , 

which is not an eigenvector, then that vector is transferred into another 

vector            , which has the same norm. If     is an eigenvector 

of U then     is not transferred to a different vector, but it is multiplied 

with the corresponding eigenvalue. Also in this case the norm stays the 

same. 

 

If a unitary transform contains a full set of eigenvectors, then 

multidimensional subspaces usually contain one or more eigenvectors of 

that unitary transform. In that case the transfer of a multidimensional 

closed subspace requires a set of parallel unitary transforms.  

 

If we take a set of vectors         that together span a closed subspace, 

then a set of suitable unitary transforms      , can in parallel transfer all 

(1) 

(2) 
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vectors of this set such that after the transform                the set 

        spans the new subspace. Each of the members    of the set       

can be split in a trail.        

Fourier transform as unitary transform 

Unitary transforms exist that have no eigenvectors. For example in 

Hilbert space a Fourier transform has no eigenvectors and no eigenvalues. 

It does not leave a single Hilbert vector untouched.  

 

The Fourier transform converts an orthonormal base into another 

orthonormal base, which is the canonical conjugate of the first.  

 

Hilbert fields exist that apart from a scaling factor are invariant under 

Fourier transformation. They keep their form through Fourier 

transformation. For that reason they are often called eigenfunctions, but 

they do not correspond to eigenvectors. Their form stays the same, but 

their parameters change. So, the name eigenfunction is incorrect. The 

Hermite functions148 are notorious examples of Fourier invariant 

functions. Even and odd functions have an indirect relation to functions 

that are invariant under Fourier transformation.  

 

An invariant function is not an eigenfunction. In extended separable Hilbert 

space, every Fourier transform causes a resampling of the analyzed field 

or function. 

 

Each Fourier transform means a complete replacement of the current 

orthonormal base. For that reason, a Fourier transform that resides in 

separable Hilbert space can never be an infinitesimal unitary transform. 

Stated in different words this means: The transform            is not a 

Fourier transform. However, Fourier transforms    and reverse Fourier 

transforms   
  can be member of a trail of unitary transforms, where each 

                                                 
148 Functions and fields; Functions that are invariant under Fourier transform. 
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trail step contains a move up and down to Fourier space, while in Fourier 

space only an infinitesimal action is taken. 

 

       ∏        
 

      

 

Stepping through the Fourier space has the advantage that there 

derivation turns into multiplication and multiplication with a factor close 

to unity reduces to addition. 

Single infinitesimal step 

The success of the Feynman path integral formalism149 gives us guidance 

in the analysis of what happens during a single infinitesimal step. We 

analyze an arbitrary trail consisting of infinitesimal trajectory steps: 

 

            
        {∏(   

 |           |   )

    

    

}           

 

During a single step the system moves from position       ’        ? 

Let us evaluate                  for a single trajectory. Here     is an 

infinitesimal unitary transform. It is a member of the set of parallel 

unitary transforms that act on a target subspace. In the following text we 

leave the parallel trajectory index s in     unspecified. We concentrate on 

the sequence index  , which represents the progression parameter. The 

infinitesimal sequence step comprises three sub-steps: 

 

1. Goto Fourier space. This is achieved by part       . 

2. Perform the action. This is done by       
  . 

3. Go back to configuration space. This is achieved by      . 

 

The sense behind the first and the last part is a travel to and back from 

Fourier space. Step two means that in Fourier space the action of the 

operator is just a multiplication with factor         . 

                                                 
149 http://en.wikipedia.org/wiki/Path_integral_formulation  

(1) 

(1) 

http://en.wikipedia.org/wiki/Path_integral_formulation
http://en.wikipedia.org/wiki/Path_integral_formulation
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First we split       . 

 

                  (
     

 
)        (  

     

 
) 

 
                

 
                     

 

       (  
     

 
)               

 
               

  
 

This is a quaternionic rotation of the central term   , which is close to 

unity. The quaternionic rotation manipulators stands for the route to 

Fourier space and the route back from Fourier space. The central term    

stands for what is done during a single step by the action in Fourier space. 

 

   (  
     

 
)            

     

 
           

 

   
     

 
     

 
                 

 
          〈    〉                      

 

We study the step    somewhat deeper. Since   and   are considered to 

be imaginary, we skip the parts containing     or     

 
              〈    〉          

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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We introduce  . It characterizes the infinitesimal step. 

 

     
  

  
      ̇ 

 

Both    and   are functions of progression parameter t. 

 
                 〈    〉 

 

      〈
  

  
  〉   〈 ̇  〉 

 
                                

 

     
   
  
  
  

  
        ̇    ̇     

 

The steps     and     depend on the step  t of the trajectory parameter t 

that is used to chop the unitary transform       .  

In the trail the imaginary part of   is rotated. 

If    is zero then 

 

     
   
  

 

 

   is never zero. If    equals the Planck-time, then      is either zero or it 

equals the Planck-length. In that case  

 

|
  

  
|    

Ray tracing 

Following a trail has much in common with ray tracing in optics. 

However in optics the use of characteristics that have their base in Fourier 

analysis seems to be more fruitful than ray tracing. Ray tracing follows 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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the path of a sharp particle, while Fourier analysis is capable of following 

the life path of a blurred particle and include more of the influences of the 

environment in the analysis. It is sensible to expect that the advantages of 

Fourier analysis also hold for wave mechanics. As shown here, to a 

certain extent the path integral approach also makes use of Fourier 

analysis. 

The dynamic of the private field 

The private field represents the particle. When it is interpreted as a 

probability amplitude distribution, then it can be related to the 

expectation value of the position and the expectation value of the 

momentum of the particle. In this way the private field represents all 

potential paths with their corresponding probabilities. The Feynman path 

integral relates all these paths with the actual path, which corresponds to 

the path that uses minimal action. 

Relativity 

In advance Einstein’s own explanation of the origin of relativity was: 

"There is no logical way to the discovery of these elementary laws. There is only 

the way of intuition." Read more in: 

http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15

NlhpWDu 
 

Transformations that describe displacements 

The current explanation of the origin of special relativity is based on the 

properties of the generalized transformation that causes a displacement 

with uniform speed. We apply the corresponding reasoning on the 

Hilbert book model. This model represents static status quos of the 

universe by extended quantum logics or equivalently by extended 

separable Hilbert spaces. The complete model consists of a sequence of 

such extended separable Hilbert spaces. 

 

The unit sphere of the separable Hilbert space is an affine space. It houses 

all unit length eigenvectors. This also holds for the eigenvectors of the 

position operator. This means that between two realizations of the Hilbert 

http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15NlhpWDu
http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15NlhpWDu
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space the eigenvector that corresponds to the origin of position can be 

freely selected. Or with other words the origin of position can be selected 

freely.  

 

Differences between positions in subsequent members of the sequence of 

extended separable Hilbert spaces can be interpreted as displacements. 

The displacement is a coordinate transformation. For the properties of this 

transformation it does not matter where the displacement starts or in 

which direction it is taken. The same holds for displacements that concern 

sequence members that are separated further apart.  

 

The corresponding displacements form a group. The displacement is a 

function of both the position and the sequence number. The displacement 

          can be interpreted as a coordinate transformation and can be 

described by a matrix  

 

[
  

  
]  [
  
  
] [
 
 
] 

 

The matrix elements are interrelated.  

Uniform movement 

When the displacement concerns a uniform movement, the interrelations 

of the matrix elements become a function of the speed  . The group 

properties fix the interrelations150. 

 

[
  

  
]    √     [

   
   

] [
 
 
] 

 

If   is positive, then there may be transformations with       which 

transform time into a spatial coordinate and vice versa. This is considered 

to be unphysical. 

 

                                                 
150 Appendix; Displacement in an isotropic medium 

(1) 

(2) 
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The condition k = 0 corresponds to a Galilean transformation 

 

[
  

  
]  [

  
   

] [
 
 
] 

 

The condition       corresponds to a Lorentz transformation. We then 

can set       , where   is an invariant speed that corresponds to the 

maximum of  . 

 

[
  

  
]    √       [       

   
] [
 
 
] 

 

Thus, when the displacement transformation group features a maximum 

speed, then it concerns Lorentz transforms.  

 

Since in each progression step photons step with a non-zero space step 

and both step sizes are fixed, the speed of the photon at microscopic scale 

is fixed. No other particle goes faster, so in the model a maximum speed 

occurs. With other words when sequence members at different sequence 

number are compared, then the corresponding displacements can be 

described by Lorentz transformations.  

 

Lorentz transformations introduce the phenomena that go together with 

relativity, such as length contraction, time dilatation and relativity of 

simultaneity that occur when two inertial reference frames are 

considered. These phenomena occur in the Hilbert book model when 

different members of the sequence of Hilbert spaces are compared. 

Simultaneity 

The restrictions set by the relativity of simultaneity limit the freedom of 

the selection of reference frames. 

 

    (            
 ) √        

 

(3) 

(4) 

(17) 



314 

 

Here    is the proper time, which is measured by a clock that travels with 

the observed item and    is the coordinate time that is measured by the 

observer. 

If       then depending on   and     the time difference     is non-

zero. 

 
This restriction of selection of reference frames means that the inertial 
reference frames cannot arbitrarily be taken from the sequence of extended 
Hilbert spaces. Usually at least one of them must be taken from a multi-
sample range of extended Hilbert spaces.  
 

For photons the proper time step is always zero. 

Infinitesimal unitary transforms 

Still another indication exists that the model supports special relativity. 

 

The position operator   is modified by the unitary operators of the trail 

into another operator    that has different eigenvectors and different 

eigenvalues. 

 

             
  

 
         

 

  
        

 
                   

 
 〈 〉  〈     〉  〈  〉                    

 

This indicates that the step  〈 〉 in the expectation value 〈  〉 of    is 

perpendicular to both    and    . The steps  〈 〉 and     form a right 

angular triangle with a hypotenuse:      , such that: 

 
       〈 〉      

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Here we introduced a new imaginary variable   . 

With            the Minkowski signature of a new “observable” 

spacetime becomes visible. 

 

     
 〈 〉

 
    

 
        〈 〉   

 
           

    〈 〉      
 

Thus, the analysis of what occurs during a single infinitesimal step gives 

us an indication how relativity enters physics. However, it asks for the 

introduction of a local notion of time         that differs considerably 

from the (global) progression parameter t. This new parameter is the 

coordinate time151   . 

Proper time 

In relativity, proper time152    is time measured by a single clock between 

events that occur at the same place as the clock. It depends not only on the 

events but also on the motion of the clock between the events. An 

accelerated clock will measure a proper time between two events that is 

shorter than the coordinate time measured by a non-accelerated (inertial) 

clock between the same events. 

 

|   |
 
      

    〈 〉      

 

   
   
 
        

 

                                                 
151 http://en.wikipedia.org/wiki/Coordinate_time  
152 http://en.wikipedia.org/wiki/Proper_time  

(7) 

(8) 

(9) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Spacetime
http://en.wikipedia.org/wiki/Coordinate_time
http://en.wikipedia.org/wiki/Proper_time
http://en.wikipedia.org/wiki/Coordinate_time
http://en.wikipedia.org/wiki/Proper_time
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Thus, proper time    is, via the action step     related to our notion of 

progression parameter t. 

 

For a photon the proper time step is always zero. This also holds in the 

realm of general relativity. In the vicinity of a black hole this leads to the 

fact that the radial velocity of a photon approaches zero when the photon 

approaches the border of the black hole. The border is located at the 

Schwarzschild radius     

 
         

  
 

We use polar coordinates and the expression for the metric near the black 

hole 

 

|   |
 
    

   
 
      

  (
     

       
         )     

 

Take     . Then with       

 
  

   
  (  

   
 
) 

 

Discussion 

We have successfully introduced special relativity into our model. 

By introducing relativity this way we perform a few tricks.  

 We neglect the real part of the quaternionic position observable. In 

our model it plays no essential part in dynamics. 

 Clocks do not count progression steps. Instead they tend to 

measure coordinate time differences. 

 We may shift from the global progression parameter t to the local 

coordinate time   . 

 We may combine the resulting observed space with coordinate 

time into a Minkowski/Lorentzian space.  

(3) 

(4) 

(5) 
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As a consequence  

 We then shift from 2n-on/Riemannian space to 

Minkowski/Lorentzian space. 

 Most physicists will use Clifford, Jordan and Grassmann algebras 

rather than 2n-on algebras. 

 With these algebras they can use complex analysis instead of the 

more complicated 2n-on analysis. 

 But if they do so, they are confronted with unintuitive selection 

features.  

 In the new space the quaternion waltz becomes an odd operation. 

 Spinors can help in order to cope with these changes. 

Can we do without relativity? 

Yes.  

 Skip coordinate time.  

 Use clocks that measure the progression parameter. 

However, you would have to fight existing conventions. 

Inertia and progression step  
The covering field represents the influence of the universe of all particles. 

According to the findings about inertia153, the change    since the last 

progression step of the corresponding curvature field   determines the 

acceleration that a local particle senses during the current progression 

step. 

This results in the acceleration 
  

  
 of the particle. 

 

           
  

  
 

Redefinition 
If we want to use the Schrödinger picture, rather than the Heisenberg 

picture, then it is better not to use unitary transforms, because they 

                                                 
153 Influence; Inertia 

(1) 
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change the operators by acting on the eigenvectors of the operators. 

Instead the subspace should be redefined without touching eigenvectors. 

 

Let us suppose that there exists a dynamical equivalent of the traditional 

quantum logic. The equivalent of a move of a physical item in the lattice 

of propositions is a redefinition of a subset of the propositions. The 

redefinition occurs in terms of atomic predicates that describe the 

properties of the physical items. In the Hilbert space this corresponds 

with a redefinition of a relevant part of the Hilbert subspace in terms of 

the eigenvectors that belong to the new eigenvalues.  

 

The redefinition concerns the Hilbert space which represents the current 

static status quo. The step transforms the current version of the Hilbert 

space into a past version of the Hilbert space and it transforms a future 

version of the Hilbert space into the new current version. This is 

interesting in the light that a Hilbert field exists that controls the relation 

between the past, the current and the future versions of the Hilbert fields. 

For that reason we will call this special Hilbert field the adventure field. 

A transform that controls dynamics converts a future Hilbert space into 

the new current Hilbert spaces and it converts the current Hilbert spaces 

into a past Hilbert space. This transform will be called progression 

transform. The local blurs that characterize the adventure field form 

boundary conditions for the local transfer characteristics of the 

progression transform. Each item type is surrounded by a characteristic 

blur. 

 

A progression transform that moves Hilbert subspaces without touching 

the eigenvectors of normal operators will be called a redefiner. The effect 

of the action of the redefiner on expectation values of operators must be 

similar to the effect of the trail of parallel unitary transforms treated in the 

previous paragraphs. While the set of parallel trails of unitary transforms 

act in the Heisenberg picture, the redefiner acts in the Schrödinger 

picture. As indicated earlier, the redefiner has an equivalent in the 

dynamic version of quantum logic. 
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In order to achieve the same effect as the Heisenberg picture, the Hilbert 

subspace redefiner must to a large degree have similar properties as the 

trails of parallel infinitesimal unitary transformations that are used to 

move the subspace in the Heisenberg picture. The redefinition keeps the 

inner products of vectors intact. Where unitary transforms rotate vectors 

around the origin of a Hilbert space, the redefiner takes subspaces of a 

potential future Hilbert space in order to redefine them into subspaces of 

the new current Hilbert space. In contrast to a unitary transform the 

redefiner does not change the eigenvectors of normal operators. Thus, it 

leaves the operators untouched. Like the trails of unitary transforms the 

redefinition works in infinitesimal steps. These infinitesimal actions also 

form trails. In this way the manipulated subspace can move close to 

continuously through Hilbert space. Where the redefiners act on 

subspaces, the trails of unitary transforms redefine operators. 

 

During this process the subspace may change its configuration. This may 

include a change that corresponds to the change of type definitions of 

atomic predicates. The redefiner steps from one stationary situation to the 

next. The Schrödinger picture conforms to the description with a 

redefiner. The result for the position of the locator must be the same as it 

was under the influence of the set of parallel infinitesimal unitary 

operators in the Heisenberg picture. The redefiner moves the subspace 

such that the new locator position is similar to the value as was 

established by the redefined position operator. It means that during the 

redefiner step the position of the locator undergoes an infinitesimal 

number transform that is equivalent to the infinitesimal transform that is 

established by the redefined position operator. That redefinition was 

caused by the parallel infinitesimal unitary transforms. 

Trails 

In fact the    step characterizes the redefinition step. The subsequent 

replacement of vectors and the replacement of the corresponding 

eigenvalues can be interpreted as a rather continuous movement of the 
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corresponding characteristic subjects. Here we encountered ten different 

trails.  

1. The trail of subsequent manipulators (infinitesimal unitary 

transforms or infinitesimal redefiners) that each perform an 

infinitesimal action. 

2. The trail of subspaces, which with respect to the manipulators are 

characteristic for the considered item. 

3. The trail of corresponding “action values” of the redefiner. 

4. The trails of corresponding “action values” of the unitary 

transforms. 

5. The trail of eigenvectors |qt>  

6. The trail of corresponding observables Qt. 

7. The trail of corresponding observed expectation values qt. 

8. The trail of values ψ(qt) of a wave function. 

9. This, on its turn corresponds to a trail of a state in coordinate space  

10. And a trail of that state in Hilbert space. 

Cycles 

It is quite possible that locally subsequent steps are done in cycles of two 

or more steps. It is obvious that movements inside an item are cyclic. In 

ideal circumstances these movements are harmonic. 

Redefiner 

The concept of dynamic manipulator gives us reason to introduce a new 

type of actuator: the redefiner Ɽ. This actuator moves subspaces, but 

leaves vectors untouched. It works in infinitesimal steps. In the Hilbert 

book model its activity fits in the conversion from an actual Hilbert space 

to the next Hilbert space. It is easily interpreted as a function Ɽt of the 

progression parameter t. Its scope spans the subsequent Hilbert spaces. 

The effect of each step on an item is similar to the effect of a set of parallel 

infinitesimal unitary transforms {Uts}s. The current “action value” of the 

redefiner is a number, which is close to unity. It is an “average” of the 

“actions values” of the parallel infinitesimal uniforms that are active in 

the same step. The redefiner accepts 2n-ons as “action values”. 
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The redefiner has an equivalent in a dynamic quantum logic, where it 

redefines propositions that concern the same objects as are represented by 

the closed subspaces of the Hilbert space that are moved by Ɽt. There 

seems to be no objection against the assumption that Ɽt has a global scope. 

If we take that point of view, then the progression parameter t also has a 

global scope. 

 

With this interpretation, the redefiner is a universe-wide stepper. It 

transforms the universe from one static situation to the next static 

situation. These static situations are governed by extended quantum logic, 

which combines traditional quantum logic, the blur of representations of 

physical items and the Helmholtz/Hodge decomposition theorems. After 

each step a new static status quo of subspaces and fields is established. 

After the step the conditions have been changed. After each step the 

position of the physical item relative to the fields has changed, thus when 

the fields are not uniformly distributed, the item meets a different field 

configuration. On the other hand the fields represent the blurs of the 

individual items. Thus, when the position or the type of the item has 

changed, then the local configuration of the field has changed. This is the 

way that macroscopic dynamics takes place in quantum physics. 
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Equations of motion 

Private continuity equation 
Existence, transport, generation and annihilation of information carrying quanta is 

governed by a continuity equation. In short this equation runs: 

 

Total change within V = flow into V + production inside V 

 

This integral equation corresponds to differential equations in which an 

information quantum density ρ , an information quantum current   and an 

information quantum source   will play a role. 

Particles act as sources and drains. Private fields represent the currents and the 

static density distributions. Wave functions are private fields that represent the 

situation in the direct environment of particles. 

 

The rotation free part of the private field corresponds to the divergence of the 

information QPAD, whose squared modulus corresponds to the probability 

density. The transverse part of the private field corresponds to curl of the 

information current QPAD, whose squared modulus corresponds to the 

information current. Together the private fields form the covering field. The 

covering field is the superposition of all private fields. The curvature field is 

derived from the decomposition properties of the covering field. 

Particles 
Fields are superpositions of QPAD’s. These QPAD’s are typical for 

corresponding particles and are attached to one or a small set of Hilbert vectors. 

The anchor points of the fields are eigenvectors of the strand operator. Thus the 

eigenvalue of these vectors are positions. All other properties of the particle are 

properties of its private field. 

Particle types 
Boson dynamics is controlled by U(1). Four boson types exist: photons, gluons, 

W type and Z type bosons. They all have spin ±1. However, apart from the W 

type, bosons do not carry a charge. They are the messengers that transfer 

interactions. Photons and gluons are massless bosons. Z and W type bosons have 

mass. They mediate weak field forces. The photons mediate EM field forces. 

Photons have no charge. Gluons have color charge. The gluons mediate color 

(strong) field forces. All bosons can be considered as a pair of fermions. For that 

reason it might be sensible to attach in the Hilbert book model two Hilbert 

vectors to a single boson that each attach to a fermion. 

(1) 



323 

 

 

Quark color dynamics is controlled by SU(3) and quark sign flavor is controlled 

by SU(2). Six quark types exist: up, down, charm, strange, top and bottom. These 

quarks are grouped into 3×2 sign flavors. They all have spin ±½ and fractional 

electric charge. Further, each quark has one of three color charges: red, green or 

blue. The quarks have mass. The Hilbert book model attaches a quark to a single 

Hilbert vector. The attached private field can be red, green or blue. An SU(3) 

group treats the corresponding color conversions.  

 

The color neutral hadrons are aggregates and group into baryons and mesons. The 

baryons consist of three quarks and the mesons consist of a quark and an anti-

quark. In this picture the gluons are not counted. For the aggregates the anchor 

points carry together a centralized probability distribution that represents the 

influence of a single charge. 

 

Eight types of gluons exist. Gluons have color charge. The eight gluons 

correspond to the eight generators of the SU(3) group. They each attach to two 

Hilbert vectors. 

Glueballs are aggregates that consist of gluons.  

 

Six lepton types exist. All leptons have spin ±½. The three neutrino types have no 

charge and relative little mass. The electron, the muon and the tau particle are all 

massive particles. The leptons are attached to a single Hilbert vector. These 

leptons are grouped into 3×2 sign flavors. The sign flavors correspond to an 

SU(2) group. 

 

Gen I Gen II Gen III type 

Up Down charm Strange top Bottom quark 

2/3 -1/3 2/3 -1/3 2/3 -1/3 charge 

low high low high low high sign flavor 

      red 

      green 

      blue 

       

     electron      muon      tau lepton 

0 -1 0 -1 0 -1 charge 
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An SU(3) group treats colors for quarks. An SU(2) group treats sign flavor 

conversions for both quarks and leptons. The W and Z bosons mediate sign 

flavors. 

 

type mediates # 

photon Leptons, hadrons,       1 

gluon Quark color 8 

  ,    Fermion sign flavor 1,1 

Z Fermion sign flavor 1 

 

Photons and gluons are massless. Neutrinos are nearly massless. 

 

Usually the Higgs boson is also included into the standard model. The Hilbert 

book model does not do that. It takes the position that the reason for a particle to 

cause curvature is already contained in the structure of the private field. 

 

In the strand model bosons are attached to a single strand, quarks are attached to 

two strands and leptons attach to three strands. In the Hilbert book model all 

elementary fermions attach to a single Hilbert vector. Bosons attach to two 

Hilbert vectors. One vector attaches to a fermion and the other vector attaches to 

an anti-fermion. 

Interactions 
QPAD’s, which represent particles, move and rotate. That is interpreted as a 

movement / rotation of the corresponding item. Interactions may change the form 

of the QPAD’s. Three types of change are discerned: 

 

In strand theory the first Reidemeister move, or type I move, or twist, is 

the addition or removal of a twist in a corresponding strand. In Hilbert space it 

involves the approach of a single Hilbert vector into the realm of a particle. The 

twist, is related to the electromagnetic interaction. Two twist directions are 

possible. The twists form an SU(1) group. 

 

In strand theory the second Reidemeister move, or type II move, or poke, 

is the addition or removal of a bend of one strand under (or over) a second strand. 

In Hilbert space it involves the interaction of two Hilbert vectors in the realm of a 

particle, where one Hilbert vector approaches the particle. The poke is related to 

electro-weak interaction. Three basic pokes exist. The pokes form an SU(2) 

group. 
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In strand theory the third Reidemeister move, or type III move, or slide, is 

the displacement of one strand segment under (or over) the crossing of two other 

strands. In Hilbert space it involves the simultaneous interaction of three Hilbert 

vectors in the realm of a particle, where one Hilbert vector approaches the 

particle. The slide is related to electro-strong interaction. The slides form an 

SU(3) group. 

 

Each Reidemeister move generates a single corresponding observable quant or 

annihilates a single potentially observable quant. 

Schrödinger equation 
When the spin has a constant direction: 

The first term on the left side signifies the quantum generation rate per 

time step. 

The second term indicates the influence of the electric field on this rate. 

The first term on the right signifies the generation rate per path length. 

The second term indicates the influence of the vector potential on this 

rate. 

The square dependence indicates the increasing alignment of spin with 

the movement. 

 

(       ̃) ̃       (       ̃) ̃      
 

               
 

  
               

Pauli equation 
When the spin has no constant direction: 

The density        and the Euler angles       define the Pauli equation:  
 

        √   
  
   [
   (
 

 
)  
  
 

     (
 

 
)   

  
 

] 

 
Due to the half angles, the two-component matrix is not a vector, but a spinor. 

(1) 

(2) 

(1) 
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Pauli’s equation for the evolution of a free quantum particle with spin ½ is: 

 

          
  

  
         

 

               
 

  
               – 

  

  
     

 

The last term shows the influence of spin. 

Dirac equation  
The final and most detailed description of elementary fermions, the Dirac 

equation, results from combining all three ingredients:  

1. the relation between the quantum of action and the phase of the wave 

function,  

2. the relativistic mass–energy relation, 

3. spin 1/2. 
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       is the probability density. 

  is a phase which represents the relative importance of particle and antiparticle 

density. 

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

(4) 



327 

 

          are Euler angles. They describe the average local orientation and 

phase of the spin axis. 

(this defines a rotating spin vector) 

       is the average local Lorentz boost. 

   is an abbreviation for the boosted and rotated unit spinor.(quantum) 

 

The probability amplitude   moves and rotates and individually the quanta carry 

position, momentum and angular momentum (including spin) information. 

Fields 
It is clear that the physical fields  play an important role in nature. They 

form an indispensable ingredient in the establishment of dynamics. Each 

physical item follows a path through a set of universe wide fields. The 

static gravitational field, the electrostatic field and the electromagnetic 

field are all subjected to the Helmholtz decomposition theorem. The 

difference between the gravitational field and the electromagnetic field is 

that the masses are non-negative and the electric charges are, apart from a 

sign, always the same. All other fields also have charges that on the long 

range will compensate each other. The gravitation field can be seen as 

being derived from the curvature set by the decomposition of the 

covering field. The covering field is the superposition of all fields but the 

gravitation field.  

When the path with respect to the gravitation field corresponds to a unit 

speed curve then that field executes no action onto that item. Only the 

gravitation field keeps its long range because its charges do not 

compensate each other’s potentials. They only compensate each other’s 

forces. 

More fields 

There exists a list of fields with shorter ranges than the range of the 

gravitation field and the range of the electromagnetic fields. The electro-

weak field and the electro-strong field are not treated here in detail.  

The action represented by a complete Lagrangian indicates how fields 

appear in the argument of a manipulator. See Lagrangian of the world154 

                                                 
154 Appendix; Thoughts; The world’s action 
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for a complete survey of terms. Mendel Sachs155 has also found a way to 

bring all terms under the same hood. 

Lagrangian 
 

     ̅               
 

    
    

    ∑   
   
  

 

   

  ∑   
   
  

 

   

 

 

Where           
The first term concerns the affected particle. 

The second term concerns electromagnetic interactions. Reidemeister twists. 

SU(1). 

The third term concerns unbroken weak interactions. Reidemeister moves. SU(2). 

The fourth term concerns unbroken strong interactions. Reidemeister slides. 

SU(3). 

 

            
              

 

                  
 

   
        

        
              

   
  

 

   
        

        
              

   
  

 

  is the private field of the affected particle. 

  ,   
  and   

  are vector potentials of the corresponding subfields 

  is the gauge coupling constant156. The quantity      is the structure 

constant157 of the gauge group. 

                                                 
155 Appendix; Thoughts; Representing multiple fields 
156 http://en.wikipedia.org/wiki/Coupling_constant  
157 http://en.wikipedia.org/wiki/Algebra_over_a_field#Structure_coefficients  

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Coupling_constant
http://en.wikipedia.org/wiki/Algebra_over_a_field#Structure_coefficients
http://en.wikipedia.org/wiki/Algebra_over_a_field#Structure_coefficients
http://en.wikipedia.org/wiki/Coupling_constant
http://en.wikipedia.org/wiki/Algebra_over_a_field#Structure_coefficients
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Path through field 
The text in this section is borrowed from Wikipedia. 

In a Riemannian manifold158 M with metric tensor159  , the length of a 

continuously differentiable curve           is defined by 

 

     ∫ √     ( ̇     ̇   )   
 

 

 

The distance        between two points   and   of   is defined as the 

infimum160 of the length taken over all continuous, piecewise 

continuously differentiable curves           such that        and 

      . With this definition of distance, geodesics in a Riemannian 

manifold are then the locally distance-minimizing paths, in the above 

sense. 

The minimizing curves of L in a small enough open set161 of M can be 

obtained by techniques of calculus of variations162. Typically, one 

introduces the following action163 or energy functional164 

 

      ∫      ( ̇     ̇   )   
 

 

 

 

It is then enough to minimize the functional E, owing to the Cauchy–

Schwarz inequality165 

 
                  

 

with equality if and only if         is constant. 

                                                 
158 http://en.wikipedia.org/wiki/Riemannian_manifold  
159 http://en.wikipedia.org/wiki/Metric_tensor  
160 http://en.wikipedia.org/wiki/Infimum  
161 http://en.wikipedia.org/wiki/Open_set  
162 http://en.wikipedia.org/wiki/Calculus_of_variations  
163 http://en.wikipedia.org/wiki/Action_(physics)  
164 http://en.wikipedia.org/wiki/Energy_functional  
165 http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality  
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(2) 

(3) 

http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Infimum
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Infimum
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
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The Euler–Lagrange166 equations of motion for the functional   are then 

given in local coordinates by 

 

    

   
      

  
   

  
 
   

  
   

 

where    
 are the Christoffel symbols167 of the metric. This is the geodesic 

equation. 

Calculus of variations 

Techniques of the classical calculus of variations168 can be applied to 

examine the energy functional E. The first variation169 of energy is defined 

in local coordinates by 

 

         
 

  
|
   
         

 

The critical points170 of the first variation are precisely the geodesics. The 

second variation is defined by 

 

            
  

   
|
   

            

 

In an appropriate sense, zeros of the second variation along a geodesic γ 

arise along Jacobi fields171. Jacobi fields are thus regarded as variations 

through geodesics. 

By applying variational techniques from classical mechanics172, one can 

also regard geodesics as Hamiltonian flows173. They are solutions of the 

                                                 
166 Appendix; Derivation of the one dimensional Euler Langrange equation  
167 Equations of motion; Path through field; Christoffel symbols 
168 http://en.wikipedia.org/wiki/Calculus_of_variations  
169 http://en.wikipedia.org/wiki/First_variation  
170 http://en.wikipedia.org/wiki/Critical_point_(mathematics)  
171 http://en.wikipedia.org/wiki/Jacobi_field  
172 http://en.wikipedia.org/wiki/Classical_mechanics  
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http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/First_variation
http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Jacobi_field
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/First_variation
http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Jacobi_field
http://en.wikipedia.org/wiki/Classical_mechanics
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associated Hamilton–Jacobi equations174, with (pseudo-)Riemannian 

metric taken as Hamiltonian175. 

Affine geometry 

A geodesic on a smooth manifold M with an affine connection176   is 

defined as a curve      such that parallel transport177 along the curve 

preserves the tangent vector to the curve, so 

 
  ̇ ̇      

 

at each point along the curve, where  ̇ is the derivative with respect to t. 

More precisely, in order to define the covariant derivative of  ̇ it is 

necessary first to extend  ̇ to a continuously differentiable imaginary 

Hilbert field in an open set178. However, the resulting value of the 

equation is independent of the choice of extension. 

Using local coordinates179 on M, we can write the geodesic equation 

(using the summation convention180) as 

 

    

   
      

  
   

  
 
   

  
   

 

where xμ(t) are the coordinates of the curve      and    
  are the 

Christoffel symbols181 of the connection  . This is just an ordinary 

differential equation for the coordinates. It has a unique solution, given an 

initial position and an initial velocity.  

                                                                                                                                     
173 http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows  
174 http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation  
175 http://en.wikipedia.org/wiki/Hamiltonian_mechanics  
176 http://en.wikipedia.org/wiki/Affine_connection  
177 http://en.wikipedia.org/wiki/Parallel_transport  
178 http://en.wikipedia.org/wiki/Open_set  
179 http://en.wikipedia.org/wiki/Local_coordinates  
180 http://en.wikipedia.org/wiki/Summation_convention  
181 http://en.wikipedia.org/wiki/Christoffel_symbol  
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http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Affine_connection
http://en.wikipedia.org/wiki/Parallel_transport
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Local_coordinates
http://en.wikipedia.org/wiki/Summation_convention
http://en.wikipedia.org/wiki/Christoffel_symbol
http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows
http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Affine_connection
http://en.wikipedia.org/wiki/Parallel_transport
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Local_coordinates
http://en.wikipedia.org/wiki/Summation_convention
http://en.wikipedia.org/wiki/Christoffel_symbol
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From the point of view of classical mechanics, geodesics can be thought of 

as trajectories of free particles in a manifold. Indeed, the equation 

  ̇ ̇      means that the acceleration of the curve has no components in 

the direction of the surface (and therefore it is perpendicular to the 

tangent plane of the surface at each point of the curve). So, the motion is 

completely determined by the bending of the surface. This is also the idea 

of the general relativity where particles move on geodesics and the 

bending is caused by the gravity. 

Christoffel symbols 

If xi, i = 1,2,...,n, is a local coordinate system on a manifold M, then the 

tangent vectors 

 

     
 

   
             

 

define a basis of the tangent space of M at each point. The Christoffel 

symbols    
  are defined as the unique coefficients such that the equation 

 

           
     

 

holds, where    is the Levi-Civita connection182 on M taken in the 

coordinate direction   . 

The Christoffel symbols can be derived from the vanishing of the 

covariant derivative of the metric tensor gik: 

 

            
    

   
        

 
 –        

 
   

 

By permuting the indices, and re-summing, one can solve explicitly for 

the Christoffel symbols as a function of the metric tensor: 

 

                                                 
182 http://en.wikipedia.org/wiki/Levi-Civita_connection  
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http://en.wikipedia.org/wiki/Levi-Civita_connection
http://en.wikipedia.org/wiki/Levi-Civita_connection
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 – 
    
   
   

 

where the matrix (   ) is an inverse of the matrix (   ), defined as (using 

the Kronecker delta, and Einstein notation for summation)  

 

          
  

 

Although the Christoffel symbols are written in the same notation as 

tensors with index notation, they are not tensors, since they do not 

transform like tensors under a change of coordinates. 

Under a change of variable from (x1, …., xn) to (y1, …., yn), vectors 

transform as 

 
 

   
   
   

   
 
 

   
 

 

and so 

 

   
   
   

   
 
   

   
    
  
   

   
 
   

   
 
    

      
 

 

where the underline denotes the Christoffel symbols in the y coordinate 

frame. Note that the Christoffel symbol does not transform as a tensor, 

but rather as an object in the jet bundle. 

At each point, there exist coordinate systems in which the Christoffel 

symbols vanish at the point. These are called (geodesic) normal 

coordinates, and are often used in Riemannian geometry. 

The Christoffel symbols are most typically defined in a coordinate basis, 

which is the convention followed here. However, the Christoffel symbols 

can also be defined in an arbitrary basis of tangent vectors    by 
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The action along the live path 
The integrated action Sab is performed over a distance along the action 

trail or equivalently over a period of coordination time 

 

        ∫    
    

 

 

              

 

    ∫      √  – (
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  ∫     
  

  

 

 

m is the mass of the considered item.  

v is the speed in Q space.  

  is the Lagrangian. 

 

The first line of this formula can be considered as an integral along the 

trail in coordinate space or equivalently over the trail in Hilbert space. 

The next lines concern integrals over the corresponding path in observed 

space combined with coordinate time. It must be noticed that these spaces 

have different signature. 

 

          
  

  
 + matter terms 

 

In general relativity, the first term generalizes (includes) both the classical 

kinetic energy and interaction with the Newtonian gravitational potential. 

It becomes: 

 

     
  

  
      √      ̇    ̇  
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(2) 
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    is the rank 2 symmetric metric tensor which is also the gravitational 

potential. Notice that a factor of c has been absorbed into the square root. 

The matter terms in the Lagrangian   differ from those in the integrated 

action Sab. 

 

               ∫        
 

 

 

                    

 

The matter term in the Lagrangian due to the presence of an 

electromagnetic field is given by: 

 

          
  

  
     ̇     + other matter terms 

 

   is the electromagnetic 4-vector potential.  

Black hole 

Classical black hole 
According to classical mechanics the no-hair theorem183 states that, once a 

black hole achieves a stable condition after formation, it has only three 

independent physical properties:  

 mass,  

 charge, and  

 angular momentum.  

 

The surface gravity   may be calculated directly from Newton's Law of 

Gravitation184, which gives the formula 

 

  
  

  
 

 

                                                 
183 http://en.wikipedia.org/wiki/No-hair_theorem  
184 http://en.wikipedia.org/wiki/Newton%27s_Law_of_Gravitation  
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where   is the mass of the object,   is its radius, and   is the gravitational 

constant185. If we let         denote the mean density of the object, we 

can also write this as 

 

  
  

 
 ρ  

 

For fixed mean density ρ, the surface gravity   is proportional to the 

radius  . 

Sciama186 relates   to the potential that is raised by the community of 

particles. For fixed mean density   this is shown by 

 

 

    ∫
 

 
  

 

    ∫
  

  
       

 

  
   

 
 
   

     
 

 

Here   is the current radius of the universe. 

Simple black hole 
The Schwarzschild radius    for a non-rotating spherical black hole is 

 

   
   

  
 

 

General black hole 
More generally holds 

 

                                                 
185 http://en.wikipedia.org/wiki/Gravitational_constant  
186 Influence;Inertia 
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where  

   is the mass/energy,  

   is the horizon area, 

   is the angular velocity,  

   is the angular momentum,  

   is the electrostatic potential,  

   is the surface gravity,  

   is the electric charge. 

 

For a stationary black hole, the horizon has constant surface gravity. 

It is not possible to form a black hole with surface gravity.    . 

Quantum black hole 
When quantum mechanical effects are taken into account, one finds that 

black holes emit thermal radiation (Hawking radiation) at temperature 

 

   
 

  
 

 

A quantum black hole is characterized by an entropy   and an area  . 

The entropy of a black hole is given by the equation: 

 

  
    

   
 

 

The Bekenstein-Hawking Entropy of three-dimensional black holes 

exactly saturates the bound 

 

  
   
 

 

 

where    is the two-dimensional area of the black hole's event horizon in 

units of the Planck area,  

http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Surface_gravity
http://en.wikipedia.org/wiki/Hawking_radiation
http://en.wikipedia.org/wiki/Black_hole_thermodynamics#Black_hole_entropy
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. 

 

In the Hilbert book model this equals the number of granules that covers 

the horizon of the black hole. 

The horizon of the black hole is an event horizon because information 

cannot pass this horizon. (Near the horizon the speed of light goes to 

zero.) 

Holographic principle 
The holographic principle187 states that the entropy contained in a closed 

surface in space equals the entropy of a black hole that has absorbed 

everything that is contained in this surface.  

In the Hilbert book model it means that if the surface is considered as a 

sparsely covered horizon, then that sparse horizon contains as many 

granules as the densely covered horizon of the corresponding black hole. 

It also means that the maximum entropy that can be contained inside a 

surface corresponds to a dense coverage with granules of that surface. 

In the Hilbert book model, any dense or sparse horizon reflects via its 

contained entropy the number of granules that are contained in the 

corresponding volume. 

 

We might extend this picture by stating that the number of granules in a 

volume corresponds with the entropy in the volume. In the Hilbert book 

model the number of granules corresponds to the number of Hilbert 

vectors that are attached to a QPAD. It also corresponds to the number of 

anchor points of the primary physical fields. 

 

The eigenvectors of the strand operator correspond to quantum logical 

propositions that represent physical particles. These propositions have a 

binary yes/no value. In the extended model these propositions get extra 

content via the attached QPAD’s. 

                                                 
187 http://en.wikipedia.org/wiki/Holographic_principle  

http://en.wikipedia.org/wiki/Holographic_principle
http://en.wikipedia.org/wiki/Holographic_principle
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Chandrasekhar limit 
The Chandrasekhar limit188 is an upper bound on the mass of a stable 

white dwarf star: 
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(
  

 
)

 
 ⁄  

       
 

 

where: 

 is the reduced Planck constant 

 c is the speed of light 

 G is the gravitational constant 

 μe is the average molecular weight per electron, which depends 

upon the chemical composition of the star. 

 mH is the mass of the hydrogen atom. 

   
           is a constant connected with the solution to the 

Lane-Emden equation. 

Approximately: 
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Where 

 

   √
  
 ⁄  is the Planck mass 

Birth of the universe 
The unit sphere of the separable Hilbert space Ң is an affine space. All 

unit size eigenvectors end in this sphere.  

                                                 
188 http://en.wikipedia.org/wiki/Chandrasekhar_limit  

http://en.wikipedia.org/wiki/Chandrasekhar_limit
http://en.wikipedia.org/wiki/Lane-Emden_equation
http://en.wikipedia.org/wiki/Chandrasekhar_limit
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The eigenvectors of the strand operator are exceptional. They are 

surrounded by a QPAD that installs the tendency to keep these vectors 

together. The parameter of these distributions is taken from a background 

coordinate system. This means that also the eigenvectors of the strand 

operator possess a position in this background coordinate system. The 

background coordinate system is formed by the eigenspace of an operator 

that houses in the Gelfand triple Ħ of the Hilbert space Ң. The coupling 

between the eigenvectors of the strand operator and the eigenspace of the 

operator in the rigged Hilbert space that provides the background 

coordinate system is not precise. It is stochastic and of the order of the 

Planck-length. That is why the granules have this size. 

 

The eigenvectors of the strand operator all touch a granule. The relation 

with quantum logic means that the Hilbert vector stands for a proposition 

that has a yes/no value. In case of the Hilbert vectors that are attached to 

the granules the yes/no value represents group membership. Thus each 

granule represents a bit of information. 

 

For the eigenvectors vectors of the strand operator a densest packaging 

exists. It means that in that condition the QPAD’s have shrunk to their 

smallest possible location difference. 

 

Assumption 1: In that condition, due to the properties of the QPAD’s, the 

mutual tension works asymmetrically.  

 

This asymmetry means that in a surface that is formed by a set of densely 

packed granules the tension on one side is stronger than the surface 

tension at the other side. As a consequence the final configuration of a 

densest packaging becomes an empty bubble. 

 

In the starting condition all eigenvectors of the strand operator are 

densely packed in one assembly.  

 

Assumption 2: After that moment the packaging density relaxes.  
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The number of granules does not change. Thus, during this spreading the 

total entropy does not change.  

 

The package may fall apart in several separated subassemblies and a large 

series of single or more loosely packed granules. For the single and the 

more loosely packed granules the corresponding QPAD’s fold out. The 

densely packed subassemblies take again a bubble shape.  

 

This process may occur instantly or gradually, but most probably it will 

be done in a sequence of these two possibilities.  

 

First occurs a sudden change of scale between the strand operator in the 

separable Hilbert space Ң and the GPS operator that delivers the 

background coordinate system and that resides in the rigged Hilbert 

space Ħ. It is possible that originally the bubble covered the whole of the 

unit sphere of the Hilbert space Ң, or it may just cover a finite 

dimensional subspace of Ң. This means that the bubble contains an 

infinite or a finite amount of granules, which suddenly get diffused in a 

much larger space. That space is affine like the unit sphere of the Hilbert 

space Ң. The diffusion takes place at every occupied location in the 

background coordinate system.  

 

This kind of universe has no spatial origin or it must be the center of the 

outer horizon. With the aid of the background coordinate system, it will 

be possible to indicate a center of that universe. Each item in this universe 

has its own private information horizon. This horizon is set by the reach 

of the light that has been travelling since the birth of the universe. As long 

as this light does not reach the outer horizon that sub-universe looks 

isotropic. A multitude of such sub-universes exist that need not overlap. 

However, they all look at their border at an image of part of the start 

horizon. Such, sub-universes obey the cosmological principle189. 

                                                 
189 http://en.wikipedia.org/wiki/Cosmological_principle  

http://en.wikipedia.org/wiki/Cosmological_principle
http://en.wikipedia.org/wiki/Cosmological_principle
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In the next phase the further expansion occurs gradually. Because the 

QPAD’s that are attached to the granules install a tendency for the 

granules to stay together, a different motor must be present behind this 

expansion. This motor can be found in the fact that with increasing radius 

the number of pulling granules grows faster than the decrease of the 

forces that are executed by the fields of these granules that is caused by 

the increasing distance. In an affine space this is always and everywhere 

true. This effect is also the source of inertia. 

 

Due to local attraction, loosely packed and single granules may 

reassemble in bubble shaped subassemblies. These subassemblies are 

known as black holes. Single granules and small aggregates of granules 

are known as elementary particles, nuclei or atoms.  

 

Much larger aggregates may be formed as well but these are not densely 

packed. Elementary particles can be categorized according to the 

configuration of their private fields. The private fields determine whether 

the particle is matter, with other words whether it has mass or not. 

 

Inside the bubble the fact that the granule represents matter is not 

recognizable. It is only recognizable when the attached QPAD gets the 

chance to unfold. That condition is true when the granule is not part of a 

densely packed subassembly. 

 

The requirements for the birth of the universe are: 

1. The existence of a strand operator 

2. The existence of QPAD’s that install the tendency to keep these 

eigenvectors of the strand operator together 

3. When the large numbers of eigenvectors are densely packed, then 

the assembly forms a bubble, because due to the properties of the 

QPAD’s, the mutual tension works asymmetrically 

4. In advance the eigenvectors of the strand operator are densely 

packed in one bubble. 
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5. A non-zero probability exists that the package density will be 

relaxed and the package falls apart. This may happen in a two 

stage process 

a. A sudden reduction of scale occurs 

b. Next a force that pulls the granules further away from each 

other exists 

 

In the first episode of the universe the sudden scale change took place. 

This ripped the original bubble apart. Next a gradual further expansion 

took place.  

 

The granules that move freely can at the utmost take one space step at 

every progression step. When the ratio of the space step and the 

progression step is fixed, then this determines a maximum speed of 

granules. A certain type of granules takes a space step at every 

progression step. That type transports information at the maximum 

possible speed.  

 

When the path of these information transmitting particles is a straight 

line, then after a while, the other types of granules no longer get messages 

from the birth episode of the universe. But this need not be the case. 

 

Since the messenger has a finite speed, it brings information from the 

past. First of all the speedy messenger and the slow addressee may have 

started from different locations. Further, due to curvature of space the 

path of the speedy messenger may take much longer than the duration of 

the much straighter path that the much slower addressee has taken. The 

information about the past that is included in the message might be close 

to the episode in which the granules were combined in one large bubble. 

 

Thus despite the fact that most of the information that is generated during 

the birth of the universe is long gone, still some of that information may 

reach particles long after the instance of birth. When this information is 
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interpreted it gives the impression of a metric expansion of the 

universe190.  

Optics 
The optical Fourier transform (OTF) is an objective imaging quality 

characteristic for imaging devices in a similar way as the frequency 

transfer function qualifies the signal transfer function of a linearly 

operating electronic device. The transfer quality of a chain of linear signal 

transforming devices is characterized by the product of the frequency 

transfer functions of the elements of the chain. In a similar way the OTF of 

a chain of imaging devices is given by the product of the OTF’s of the 

elements of the chain. However, this is a profound simplification of 

reality. The product rule only holds when the transfer characteristics of 

the imaging devices are spatially uniform over the complete input field of 

the separate imaging components. Further, the conditions in which the 

OTF’s of the components are determined must be similar to the conditions 

in the chain. More in detail, this means that the angular distribution, the 

chromatic distribution and the homogeneity of the radiation must be 

identical. 

 

In optics, the image sided spread function equals the convolution of the 

object sided spread function and the point spread function (PSF, the 

image of a point). The Fourier transform of the image sided spread 

function is equal to the product of the Fourier transform of the object 

sided spread function and the optical Fourier transforms (OTF’s) of the 

imaging devices. When several imaging devices work in sequence, then 

the total optical transfer function of the imaging system equals the 

product of the transfer functions of the components.  

 

If we restrict to a static situation and include the “depth” of the image, the 

static PSF is a three parametric function. Thus the OTF must have the 

                                                 
190 http://en.wikipedia.org/wiki/Metric_expansion_of_space 

http://en.wikipedia.org/wiki/Metric_expansion_of_space
http://en.wikipedia.org/wiki/Metric_expansion_of_space
http://en.wikipedia.org/wiki/Metric_expansion_of_space
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same number of parameters. Like the PSF the three dimensional OTF has 

a longitudinal component and a two dimensional transverse component. 

In most cases only the transverse component is used as an imaging 

quality characteristic. On-axis the transverse component is rotationally 

symmetric. Off-axis its modulus, the MTF, is symmetric but not 

rotationally symmetric. On-axis the MTF is presented as a one parametric 

curve in which only the positive axis is given. Off-axis the two extremes 

of the MTF are given. They correspond to radial and tangential directions. 

 

Due to the fact that Hilbert fields are blurred Hilbert distributions, wave 

mechanics has much in common with wave optics. For each compact 

normal operator the Hilbert subspace that represents a physical item 

corresponds to a spread in Hilbert space and a corresponding spread in 

the eigenspaces of that normal operator. The distribution of this spread is 

represented in a wave function, or more correctly, in a probability 

distribution. For example the wave function that has the position as a 

variable corresponds to the triple consisting of a physical item, its Hilbert 

subspace representation and the position operator.  

 

After a move of a physical item its position related wave function has 

much in common with the spread function that characterizes the blur of 

the image sided pictures in a linear operating imaging system. The 

physical fields that influence the physical item have an equivalent in the 

chain of imaging devices that transfers the image. 

 

The product formula for the transfer functions relies on several 

preconditions. First of all it relies on the fulfillment of the requirement for 

sufficient spatial uniformity of the transfer. At all places where 

information is passed, the transfer characteristics must be sufficiently 

identical. The product formula has only validity in the spatial area where 

this requirement is fulfilled. 

 

The transfer characteristics will be different for each Fourier component. 

Their quality will reduce with higher spatial frequencies. 
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The final result can be computed in longitudinal direction by 

multiplication. In lateral direction these regions are restricted to areas 

where the transfer is locally sufficiently uniform. In the summation that is 

used to compute a sensible average the angular and chromatic 

distribution of the transferred information play a role. These distributions 

determine the summation coefficients. The extent of the region in which 

the considered transfer function is considered valid depends on the 

accuracy that is required for the result of the computation. Sign selections 

inside the radiation determine the polarization. Often in optics this 

feature and its influence is ignored. Coherence plays a role as well, but in 

practice optical imaging uses either nearly completely incoherent light or 

nearly completely coherent light. 

 

In wave mechanics the wave function, which is taken just before the item 

moves, gets the role of the object. After a movement through a region of 

the fields the wave function has been changed. Its Fourier transform then 

equals the product of the Fourier transform of the original wave function 

and the wave transfer functions (WTF’s) of the fields that influence the 

item. If several steps are taken in sequence, then the transfer functions of 

the passed field pieces must be multiplied in order to get the overall 

result. This transfer is affected in a similar way by spatial non-uniformity 

as the optical case. 

 

In cylindrical imaging systems Seidel aberrations take their toll. When the 

system is folded or when lenses are not perfectly in line, also non-

cylindrical influences will influence the imaging quality. The 

measurement and the specification of the OTF must cope with the spatial 

non-uniformity of the imaging characteristics of the imaging devices and 

with the angular and chromatic distribution of the radiation. The OTF 

also depends on the longitudinal location of the object and where the 

image is detected. This also occurs with the WTF of physical fields. Both 

in optics and in wave mechanics the precise locations of the “object” and 

the “image” are often not well determined. They are defined by spatial 
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distributions in three dimensions. In both cases the angular and chromatic 

distributions of the contributing radiation influence the transfer. The final 

result is constituted by the weighted sum of all contributions. 

 

With inhomogeneous (= incoherent) imaging the phases are ignored. 

These facts indicate the difference between the particle view and the wave 

view. From optics it is known that the modulation transfer function (MTF) 

is a proper imaging qualifier for inhomogeneous light imaging. In 

inhomogeneous imaging the imaging process can be properly described 

by ray tracing. Ray tracing has much similarities with the application of 

the path integral. However, ray tracing normally does not use arbitrary 

paths. In inhomogeneous imaging phases are scrambled. For holographic 

imaging the phase transfer function (PTF) or the whole OTF is the better 

measure. With holographic imaging the phases carry the depth 

information. Feynman’s path integral can cover arbitrary paths because, 

according to Feynman’s claim, interference via the phases eliminates the 

contributions of non-realistic paths. That is why in the path integral the 

angular distribution of the radiation plays no role. 

In optics the image space is often a surface. In optics the OTF depends on 

the position in the object space. Off axis the OTF is not rotationally 

symmetric. The OTF also depends on the angular distribution and the 

chromatic distribution of the radiation. These dependencies also hold for 

the WTF in wave mechanics.  

A longitudinal displacement of the image spread function with respect to 

the object spread function corresponds to an extra phase term in the 

longitudinal component of the Fourier transform of the image spread 

function. A lateral displacement corresponds to an extra phase term in the 

transverse component of the Fourier transform. In wave mechanics this 

holds for the respective components of the Fourier transform of the wave 

function after the move. 
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The resemblance between optics and wave mechanics becomes striking 

when the discrete lens pack is replaced by a medium with a continuously 

varying refraction. In optics this happens with electron optical lenses that 

are used in imaging with charged particles. 

When the point spread function is a function of three-dimensional 

position, then the OTF is also a three-parametric function of spatial 

frequency. The MTF is a symmetric function. However, the MTF is not 

rotationally symmetric (in 2D) or spherical symmetric (in 3D). On its 

vertical axis the MTF indicates the part of the energy of the radiation that 

is transferred by a given spatial frequency.  

Veiling glare and halo 
Due to reflections on refracting surfaces some of the energy of the 

radiation loses much of its spatial information content. As a consequence 

the MTF shows a sharp peak near zero spatial frequency. This 

phenomenon is called veiling glare. When the drop is not so fast the 

phenomenon is called halo. 

 

Equivalents of veiling glare and halo can also occur in wave mechanics. In 

this way spurious radiation and a spurious halo can enter space. This can 

happen in the form of energy or in the form of matter. Spurious radiation 

contains no spatial information. 
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Strands 
A strand is a notion introduced by Christoph Schiller191. In this e-paper I 

try to embed the notion of a strand into the context of a sequence of 

Hilbert spaces or similarly into the context of a sequence of traditional 

quantum logics. The strand interpretation used in this e-paper is a 

mixture of the interpretation of Christoph Schiller and my personal 

interpretation. Any difference with the original interpretation is for my 

account. The reader must take Schiller’s interpretation as the most 

original. See also braid theory192. 

 

In my interpretation: 

Strands are chains of granules in the eigenspace of a strand 

operator. One of the granules represents the current state of the 

chain. That granule is the anchor location of a QPAD. All granules 

in the chain obtain a position from a background coordinate 

system that is defined in the Gelfand triple. The anchor point 

coincides with a Hilbert vector, which is also an eigenvector of the 

strand operator. 

Schiller’s strands 
The fundamental principle of the strand model is: 

 
Planck units are defined through crossing switches of strands. 

 

An alternative fundamental postulate is: 

 
An event is the switch of a crossing between two strand segments. 

 

The original interpretation of strands can be found in Motion Mountain, 

volume VI193. In Schiller’s words: 

 

                                                 
191 http://www.motionmountain.net/research.html  
192 http://en.wikipedia.org/wiki/Braid_symmetry  
193 http://www.motionmountain.net/research.html  

http://www.motionmountain.net/research.html
http://en.wikipedia.org/wiki/Braid_symmetry
http://www.motionmountain.net/research.html
http://www.motionmountain.net/research.html
http://www.motionmountain.net/research.html
http://en.wikipedia.org/wiki/Braid_symmetry
http://www.motionmountain.net/research.html
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Strands are one-dimensional curves in three-dimensional space that are 

closed or reach the border of space (or a horizon). 

Strands exist in relation to a 3D background coordinate system. 

Strands are fluctuating. 

 

The one-dimensional strand curve fluctuates and as a 

consequence the fields in its surround exist. Fluctuation of a 

strand becomes apparent when the strand is averaged over a 

short time range. In this way the strands cause a blur. That blur 

represents the field that goes together with the strand. 

 

Simple elementary types are bosons. All tangles made of one strand are 

elementary particles of spin 1, thus, they are elementary vector bosons. 

Conversely, all elementary spin-1 particles are made of one strand, because other 

tangles do not reproduce the spin-1 behavior under rotations: only one-stranded 

tangles return to the original strand after a core rotation by 2π. 

 

According to the strand model no Higgs boson are required. 

 
The strand model predicts that apart from the six quarks and the graviton, no 

other two-stranded elementary particles exist in nature. 

 

Leptons correspond with triples of tangled strands. The strand model 

predicts that apart from the six leptons, no other elementary particles made of 

three strands exist in nature.  

 

More complex types are composed of the above mentioned elementary 

types.  

 

Interaction is caused by one of three processes.  

 The first process involves a single strand. It corresponds with 

normal electromagnetic interaction. It is characterized by the first 

Reidemeister move. 

 The second process involves two strands. It corresponds with the 

electro-weak force. It is characterized by the second Reidemeister 

move. 



351 

 

 The third process involves three strands. It corresponds with the 

electro-strong force. It is characterized by the third Reidemeister 

move. 

 

These interactions play in the direct environment of strand cores. 

According to Schiller, gravitational forces have their origin in the tails, 

relative far away of the cores. That is also the region where masses get 

their influence. 

 

Strands and their fluctuations are unobservable. The only things that 

become observable from a strand are its crossing switches with itself or 

with other strands. Drawings of strands are made in order to clarify 

strand behavior. In that case strands are pictured in 3D space and the 

rotations are represented by rotating cores or knots. 

 

The tangle function – the (short) time average of strand crossings – 

corresponds with a complex QPAD. 

 

The strand theory does not say anything about the transfer of information 

to quanta. 

Planck values 
Schiller: Up to a numerical factor, the limit for every physical observable 

corresponds to the Planck value. (The limit values are deduced from the 

commonly used Planck unit values simply by substituting    for  .) 

According to Schiller these limit values are the true natural units of 

nature. In fact, the ideal case would be to redefine the usual Planck values 

for all observables to these extreme values, by absorbing the numerical 

factor 4 into the respective definitions. In the strand model, Schiller calls 

the limit values the corrected Planck units and assumes that the factors 

have been properly included. 

Strand basics 
A crossing between two strands has a position and a direction. It is the position 

where the distance between the strands has a minimum. The distance is measured 
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in terms of a selected background coordinate system. The distance is measured in 

corrected Planck-length units. 

 

A crossing switch is a turn of the crossing over π radians. Via its infinitesimal 

geometry the crossing switch defines the action    , the corrected Planck-length 

   , the corrected Planck-time     and the Boltzmann constant  . 
 

Events are observable crossing switches of unobservable strands. Every event in 

nature is characterized by the corrected Planck-time, the corrected Planck-length, 

the Planck entropy, i.e., the Boltzmann constant  , and Planck’s quantum of 

action   (for a full turn) 

 

The distance between two particles is the maximum number of crossing switches 

that could appear between them. Length measurement is thus defined as counting 

corrected Planck-lengths. 

 

The time interval between two events is the maximum number of crossing 

switches that could appear between them. Time measurement is thus defined as 

counting corrected Planck-times. 

 

The physical action of a physical system evolving from an initial to a final state is 

the number of crossing switches that take place. Action measurement is thus 

defined as counting crossing switches. Physical action is thus a measure for the 

change that a system undergoes. 

 

The entropy of any physical system is related to the total number of crossing 

switches that are possible. Entropy measurement is thus defined through the 

counting of potential crossing switches. The strand model thus states that any 

large physical system – be it made of matter, radiation, empty space or horizons – 

has entropy. 

Strand table 
Typical strand configurations: 
Physical system Strands  Tangle type 

Vacuum  many infinite unknotted 

strands 

unlinked 

Dark energy many fluctuating infinite 

strands  

unlinked 

Elementary vector boson  one infinite strand  knotted or unknotted curve 

Quark two infinite strands rational tangle 
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Lepton three infinite strands braided tangle 

Meson,baryon  three or more infinite strands  rational tangle 

Higher-order propagating 

fermion 

two or more infinite strands  locally knotted or prime 

tangle 

Virtual particles open, unlinked and closed 

strands  

trivial tangles, knots, links 

Composed systems many strands separable tangles 

Graviton two infinite twisted strands specific rational tangle 

Gravity wave  many infinite twisted strands many graviton tangles 

Horizon many tightly woven infinite 

strands 

web-like tangle 

Earliest form of the universe Single closed strand No tangles 

 

See the Toolkit for more details on strands.   

file:///C:/Users/Hans/AppData/Roaming/Microsoft/Word/Toolkit.pdf
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Unique aspects of the model 

Fundament 
 The model takes as basis the axioms of traditional quantum logic. 

 It exploits the isomorphism between the set of propositions in this 

logic and the set of closed subspaces of an infinite dimensional 

separable Hilbert space Ң in which the inner product is defined 

over the division ring of the quaternions. 

 A proposition that treats everything that can be said about a 

physical item represents that item. Thus, the model represents 

physical items. 

 Traditional quantum logic and its partner the separable Hilbert 

space Ң cannot represent physical fields and they cannot represent 

dynamics. 

 However, this basic model can be extended such that fields are 

attached to it. However, this extended model only represents a 

static status quo. 

 A sequence of such extended models can represent dynamics. 

 The separable Hilbert space Ң does not contain a useable GPS 

coordinate operator. Due to the granularity of its eigenspace, such 

a normal operator would introduce preferred directions in the 

imaginary part of that eigenspace. 

 Instead the corresponding continuous GPS operator that resides in 

the corresponding rigged Hilbert space Ħ can act as a background 

coordinate operator. Its eigenspace can be used to indicate the 

location of the field values. However, this operator cannot directly 

be used in order to locate the Hilbert vectors that represent 

particles. 
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 Instead a special normal operator whose eigenspace contains a set 

of freely located chains of granules can deliver the position 

observables. This operator is a strand operator. 

 In each chain one granule represents the current position. It divides 

the chain in a past part and a future part. 

 A QPAD takes care of the smoothness in the surround of the 

current granule. This attachment extends the separable Hilbert 

space. 

 Particles are represented by a single Hilbert vector or by a small set 

of Hilbert vectors. These vectors are eigenvectors of the strand 

operator they correspond with the current granule of a 

corresponding chain and are blurred by a spread function that can 

be interpreted as a QPAD. The blur of the set of Hilbert vectors 

represents the private field of the particle and describes the cloud 

of quanta that carry the observable information about the particle. 

The quanta represent positions where the particle can be detected. 

 The particle acts as the source or as the drain of these quanta. The 

cloud moves and rotates around a rotation axis. 

 The superposition of all private fields constitutes a covering field.  

 For a given coordinate system the static decomposition of the 

covering field into a rotation free part and one or two divergence 

free parts runs along curved lines. The local curvature value can be 

used to define a derived partner field of the covering field. This 

curvature field has all the characteristics of the gravitation field. 

 The private fields of bosons are attached to a single unit size 

Hilbert vector and touch all other unit size Hilbert vectors. 

 The private fields of quarks are attached to a pair of unit size 

Hilbert vectors and touch all other unit size Hilbert vectors. 
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 The private fields of leptons are attached to a triple of unit size 

Hilbert vectors and touch all other unit size Hilbert vectors. 

 In interactions bosons take care of the transfer.  

 Each electromagnetic interaction involves only one extra Hilbert 

vector. 

 Each weak interaction involves an internal and an extra Hilbert 

vector. 

 Each strong interaction involves two internal and one extra Hilbert 

vector. 

 There are no more elementary kinds of interactions.  

 The progression parameter that counts the subsequent Hilbert 

spaces is not our common notion of time, but it has certainly some 

relation with it.  

Insights 
 The Minkowski signature of spacetime must have its explanation 

in what occurs during a progression step.  

 The Minkowski signature of spacetime forbids that coordinate time 

acts as the fourth dimension that goes together with 3D coordinate 

space. 

 Momentum acts as a precondition of the next displacement step. 

 The fourth dimension must be as granular as the 3D displacement.  

 Fields act as a precondition for the next action step. 

 The displacement, measured in Planck-length units, the 

progression step measured in Planck-time units, the action step 

measured in Planck constant sized units and the entropy step in 

Boltzmann constant sized units form the basic steps during an 

observable event. 

 Action represents change. Entropy represents potential change. 

 A five-fold coverage of the separable Hilbert space exists 
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o A double coverage is done by the two extra members of the 

Gelfand triple that forms the corresponding rigged Hilbert 

space. This coverage delivers the background coordinate 

system. 

o Another double coverage is done by the primary fields. 

Together they form the covering field. However, the static 

covering field can be decomposed into a rotation free part 

and a divergence free part.  

o For a given coordinate system a curvature field can be 

derived from this covering field. This delivers the fifth 

cover. 

Together these six elements deliver a sandwich that can characterize a 

static status quo of the universe. 
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Discussion 

Macro and micro 
Up to so far, the treatise confines to macroscopic dynamics. Micro 

dynamics concerns movements that occur inside the representation of 

small physical items. For each small physical item, it concerns the 

movements that occur inside the subsequent subspaces that represent this 

item.  

In order to stay inside the item, the internal movements must be quasi 

periodical. They can be combinations of oscillations and rotations. The 

harmonics oscillator and the spherical harmonics are well known 

examples. 

The local manipulator can be seen as a complicated (Fourier?) transform. 

The functions, which describe quantum harmonic movements, seem to be 

invariant under the action of this manipulator. Thus it appears that micro 

dynamics occurs via a different process than macro dynamics. 

Dynamic logic 
The current trend in quantum logic development is to add axioms that 

change the static character of quantum logic in a more dynamic and 

operational logic. Logic of quantum actions (LQA194) adds unitary 

transforms as the source of dynamics. As we see in this article these 

transforms are not the real fundamental causes of dynamics. The fields 

that accompany the physical items form the more fundamental reason for 

the existence of dynamics. They control the redefinition of the actual 

propositions. To my knowledge the influences of physical fields are not 

yet covered by any dynamic logic theory. 

  

                                                 
194 http://www.vub.ac.be/CLWF/SS/BethPaper_Final.pdf  

http://www.vub.ac.be/CLWF/SS/BethPaper_Final.pdf
http://www.vub.ac.be/CLWF/SS/BethPaper_Final.pdf
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Conclusion 
The fact that the set of propositions in traditional quantum logic is lattice 

isomorphic with the set of closed subspaces of an infinite dimensional 

separable Hilbert space Ң offers the possibility to study with 

mathematical means what happens with the propositions.  

 

Quantum logic is only a partial description of the fundamentals of 

quantum physics. It only describes the static skeleton in which the 

quantum dynamics takes place. It does not treat physical fields. However, 

traditional quantum logic can be extended into a wider logic, such that 

fields are also included. When this is done, the task of the fields appears 

to bring coherence between past, current and future versions of extended 

quantum logics and dynamics can simply be considered as the 

simultaneous step from a future version, to a current version and from the 

current version to a past version.  

 

An important ruler of quantum dynamics is the influence that is exposed 

by the universe of items in the phenomenon inertia. It indicates the laws 

that govern the exchange of atomic predicates from enveloping 

propositions. It characterizes the fields as the sticky resistance of the 

universe of quantum logical propositions against unordered redefinition 

of their members. This shapes the dynamics of the logic that describes 

dynamic quantum physics.  

 

The fields consist of basic constituents that can be interpreted as QPAD’s. 

The covering field is the superposition of these basic constituents and the 

gravitation field is a curvature field that can be derived from the static 

decomposition characteristics of the covering field. This picture carries on 

the assumption that the configuration of the covering field causes the 

curvature of the coordinate system. 

 

Blurred Hilbert distributions form Hilbert fields. Blurred elementary 

Hilbert distributions form the private fields of corresponding elementary 

particles. The blurs can be interpreted as probability distributions and as 
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such they describe the sources of quantum noise. This means that the 

blurs also represent the probability of the generation, presence and 

annihilation of actual and virtual elementary particles.  

 

The dynamics of the life path of an item can be described by a geodesic 

equation. The live environment can be considered as sets of 2n-ons that 

locally resemble quaternion spaces or in a still smaller region resemble 

complex number spaces. These numbers constitute the values of the fields 

that influence the dynamics of the items. The analysis of the local 

infinitesimal dynamic step also reveals the origin of special relativity. 

 

In our model a universe wide progression stepper exists. This is the 

progression parameter clock. Due to this fact the redefinitions are 

universe wide synchronized. It also means that in the model universe is 

controlled by a single dynamic redefiner. However, its actions are locally 

influenced by fields, which are directly connected to the items that are 

present in this environment. 

 

Inertia influences macroscopic dynamics. Microscopic movements are 

governed by a different process. They are directly controlled by the local 

manipulator and relate to its invariant functions. 

 

Trying to implement a complex quantum logical proposition in Hilbert 

space is indeed an elucidating experience. 

 

In the Hilbert book model, fields have several functions and 

interpretations: 

 

 From the analysis of inertia you can derive that they represent the 

sticky resistance of the community of propositions/physical-items 

against unordered change. A uniform movement is still considered 

as a well ordered change. Acceleration is considered as unordered 

change and goes together with field activity. 
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 Fields are constituted of blurred sets of Hilbert vectors. With other 

words Hilbert fields are blurred Hilbert distributions.  

 The blur renders the field differentiable.  

 The blur can be interpreted as a QPAD.  

 Wave functions are probability amplitudes. No difference with 

private fields exists.  

 Blurs can be squeezed and can be looked at in another coordinate 

representation, such as the canonical conjugated coordinates. 

 Fields can be interpreted as the storage place of the conditions of 

future, present and past Hilbert spaces or equivalently as the 

storage place of the conditions of future, present and past versions 

of quantum logic systems.  

 Like the Hilbert spaces and the quantum logics, the static fields 

describe a static status quo. 

 Fields can be interpreted as the housing of annihilation and 

creation operators that act on actual or virtual particles. 

 The probalistic nature of the fields invites their interpretation as 

clouds of quanta. These quanta represent potential realizations of 

Hilbert vectors that on their turn represent the anchor points of 

actual or virtual particles in past, present or future versions of 

traditional quantum logic propositions. 

 In the view that uses the canonical conjugated coordinates the 

quantum cloud can be interpreted as a wave package. 
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Appendix 

History of quantum logic 
Around 1930 John von Neumann and Garrett Birkhoff were searching for 

an acceptable explanation of the results of experiments that showed that 

the execution of an observation of a very small object can completely 

destroy the validity of an earlier observation of another observable of that 

object. The Schrödinger equation that agreed with the dynamic behaviour 

of the particles already existed. Not much later Heisenberg’s matrix 

formulation became popular as well. Quite soon the conclusion was made 

that something was fundamentally wrong with the logic behind the 

behaviour of small particles. These small objects show particle behaviour 

as well as wave behaviour and they show quantization effects. It was 

found that the distribution axiom of classical logic had to be changed. 

Soon it became apparent that the lattice structure of classical logic must be 

weakened from an orthocomplementary modular form to an 

orthocomplementary weakly modular lattice. The quantum logic was 

born. The next step was to find a useful mathematical presentation of this 

new logic. A historic review of what happened can be found in: 

“Quantum Theory: von Neumann” vs. Dirac; 

http://www.illc.uva.nl/~seop/entries/qt-nvd/. It includes extensions of the 

concept of Hilbert space and application of these concepts to quantum 

field theory. Another source is: 

http://www.quantonics.com/Foulis_On_Quantum_Logic.html.  

Quantum logic 
Elementary particles behave non-classical. They can present themselves 

either as a particle or as a wave. A measurement of the particle properties 

of the object destroys the information that was obtained from an earlier 

measurement of the wave properties of that object.  

With elementary particles it becomes clear that that nature obeys a 

different logic than our old trusted classical logic. The difference resides 

in the modularity axiom. That axiom is weakened. The classical logic is 

congruent to an orthocomplemented modular lattice. The quantum logic 

http://www.illc.uva.nl/~seop/entries/qt-nvd/
http://www.quantonics.com/Foulis_On_Quantum_Logic.html
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is congruent to an orthocomplemented weakly modulare lattice. Another 

name for that lattice is orthomodular lattice. 
  

Lattices 

A subset of the axioms of the logic characterizes it as a half ordered set. A 

larger subset defines it as a lattice. 

A lattice is a set of elements        that is closed for the connections ∩ 

and ∪. These connections obey: 

  

 The set is partially ordered. With each pair of elements     belongs 

an element  , such that       and      .  

 The set is a ∩half lattice if with each pair of elements     an 

element   exists, such that       ∩   .  
 The set is a ∪half lattice if with each pair of elements     an 

element   exists, such that       ∪   .  
 The set is a lattice if it is both a ∩half lattice and a ∪half lattice. 

 

The following relations hold in a lattice:  

 

  ∩        ∩    
 

   ∩     ∩        ∩     ∩     
 

  ∩    ∪         

 

  ∪        ∪    
 

   ∪     ∪        ∪     ∪     
 

  ∪    ∩         

 

The lattice has a partial order inclusion  : 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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a   b   a   b = a 

 

A complementary lattice contains two elements   and   with each element 

a an complementary element a’ such that: 

 

  ∩   ’     
 

  ∩        
 

  ∩        

 

  ∪   ’     
 

  ∪        
 

  ∪        

 

An orthocomplemented lattice contains two elements   and   and with 

each element   an element    such that: 

 

  ∪         
 

  ∩         
 

          
 

                
 

  is the unity element;   is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

  ∩    ∪          ∩     ∪      ∩     

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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  ∪    ∩          ∪     ∩     ∪     
 

A modular lattice supports: 

 

   ∩     ∪    ∩         ∩    ∪     ∩      
 

A weak modular lattice supports instead: 

 

There exists an element   such that 

 

           ∪     ∩        ∪    ∩     ∪    ∩     
 

where   obeys: 

 

   ∪     ∩        
 

  ∩        
 

  ∩        
 

                             

 

In an atomic lattice holds  

 
                              

 
                          ∩                       ∩      

 

  is an atom 

 

Both the set of propositions of quantum logic and the set of subspaces of a 

separable Hilbert space Ң have the structure of an orthomodular lattice. 

In this respect these sets are congruent. 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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In Hilbert space, an atom is a pure state (a ray spanned by a single vector). 

 

Classical logic has the structure of an orthocomplemented distributive 

modular and atomic lattice. 

Quantum logic has the structure of an orthomodular lattice. That is an 

orthocomplented weakly modular and atomic lattice. The set of closed 

subspaces of a Hilbert space also has that structure.  

Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, one 

which affirms or denies a predicate of a subject. Propositions have binary 

values. They are either true or they are false. 

Propositions take forms like "This is a particle or a wave". In quantum logic 

"This is a particle." is not a proposition. 

In mathematical logic, propositions, also called "propositional formulas" 

or "statement forms", are statements that do not contain quantifiers. They 

are composed of well-formed formulas consisting entirely of atomic 

formulas, the five logical connectives195, and symbols of grouping 

(parentheses etc.). Propositional logic is one of the few areas of 

mathematics that is totally solved, in the sense that it has been proven 

internally consistent, every theorem is true, and every true statement can 

be proved. Predicate logic is an extension of propositional logic, which 

adds variables and quantifiers. 

In Hilbert space a vector is either inside or not inside a closed subspace. A 

proper quantum logical proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds with a subspace that is 

spanned be a single vector. 

                                                 
195 http://en.wikipedia.org/wiki/Logical_connective  

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
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Predicates may accept attributes and quantifiers. The predicate logic is 

also called first order logic. A dynamic logic can handle the fact that 

predicates may influence each other when atomic predicates are 

exchanged. 

Observation 

In physics, particularly in quantum physics, a system observable is a 

property of the system state that can be determined by some sequence of 

physical operations. This paper distinguishes between measurements and 

observations. 

 

 With an observation the state is considered as a linear combination 

of eigenvectors of the observable. An observation returns the 

statistical expectation value of the eigenvalue of the observable.  

 A measurement transforms the observed state to one of the 

eigenvectors of the observable. What happens depends on the 

characteristics of the measuring equipment. The measurement can 

be seen as a combination of a transformation and an observation. 

 

Depending on the characteristics of the measuring equipment a 

measurement and a clean observation can give the same result. 

 

With this interpretation of the concept of observation it is possible to let 

states observe other states. A state might do a transformation before doing 

an observation but in general it fails the equipment to arrange that 

transformation. In nature observations are far more common than 

measurements. 

Displacement in an isotropic medium 
The coordinate transformations between inertial frames that correspond 

to displacements in an isotropic medium196 form a group. They can be 

represented by a matrix. 

 

                                                 
196 http://en.wikipedia.org/wiki/Lorentz_transformation#Derivation  

http://en.wikipedia.org/wiki/Lorentz_transformation#Derivation
http://en.wikipedia.org/wiki/Lorentz_transformation#Derivation


368 

 

[
  

  
]  [
  
  
] [
 
 
] 

 

The group membership corresponds to relations between the elements 
            
 

Consider the uniform motion of the origin of the frame   . In the    frame 

it has coordinates          , while in the   frame it has coordinates 

        . This leads to  

 
      

 

The motion of the origin of the frame   gives 

 
      

 

With     the inverse transform will be 

 

[
 
 
]  

 

      
[
   
   

] [
  

  
] 

 

This inverse transform is similar to moving   with negative velocity. This 

means 

 
         

 

Define 

 

  
 

  
 

 

                         √      

 

This reduces the transform to 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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[
  

  
]    √     [

   
   

] [
 
 
] 

 

If   is positive, then there may be transformations with       which 

transform time into a spatial coordinate and vice versa. This is considered 

to be unphysical. 

The condition k = 0 corresponds to a Galilean transformation 

 

[
  

  
]  [

  
   

] [
 
 
] 

 

The condition       corresponds to a Lorentz transformation. We can set 

      , where   is an invariant speed that corresponds to the maximum 

of  . 

 

[
  

  
]    √       [       

   
] [
 
 
] 

 

The Lorentz transform can also be written as a hyperbolic transform 

 

[
   

  
]  [

           
           

] [
  
 
] 

 

The Lorentz transform corresponds to a length contraction 

 

   (      )√        

Where      is the proper length (the length of the object in its rest 

frame) and        is the length observed by an observer in relative 

motion with respect to the object. 

The Lorentz transform corresponds to a time dilatation 

 

    (            
 ) √        

 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Where    is the proper time (the time of the object in its rest frame) and    

is the coordinate time observed by an observer in relative motion with 

respect to the object. 

 

   
     

  
           

  
 

 

This determines the Minkowski signature           . 

In the neighborhood of large masses this is no longer correct. 

   
   (  ∑

    
    

 

)   
  
           

  
 

where: 

    is a small increment of proper time   ; 

    is a small increment in the coordinate time    

             are small increments in the three coordinates       of 

the clock's position;  

∑
   

  
  represents the sum of the Newtonian gravitational potentials 

due to the masses   in the neighborhood, based on their distances 

   from the clock.  

The coordinate velocity of the clock is 

  √
           

   
  

The coordinate time    is the time that would be read on a hypothetical 

"coordinate clock" situated infinitely far from all gravitational masses and 

stationary in the system of coordinates (v=0).  

(14) 

(15) 

(16) 
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Simultaneity 

 

    (            
 ) √        

 

If       then depending on   and     the time difference     is non-

zero. 

Relativistic momentum 
The relativistic classical momentum is 

 

     
   

√       
 

 

The rest mass is   . The relativistic mass is 

 

  
  

√       
 

 

Relativistic energy 

For      a Taylor expansion gives 

 

        
 [    (

 

 
)
 

   ⁄ (
 

 
)
 

    ⁄ (
 

 
)
 

       ] 

 
     

      
  

 

The first term at the right side is the rest energy. The second term is the 

Newton kinetic energy. The term at left is the relativistic energy. 

Quaternion coordinates 
This part of the appendix describes candidates for the coordinates on the 

coordinate sphere. 

(17) 

(18) 

(19) 

(20) 
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Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is (aτ, ax, ay, 

az) 

 

a = aτ + i·ax + j·ay ± i·j·az  

 

The equivalent to polar coordinates in quaternion space is  

 
     ‖ ‖         

 
     ‖ ‖                       

 
     ‖ ‖                       

 
     ‖ ‖               

 

      , where        , is known as the (imaginary) amplitude of the 

quaternion. Angle         is the (co-)latitude and angle          is 

the longitude.  

For any fixed value of     and   parameterize a 2-sphere of radius 

      , except for the degenerate cases, when   equals   or  , in which 

case they describe a point. 

 
This suggests the following structure of the argument   

 
    ‖ ‖            

 
  ‖ ‖                     

 
     ‖ ‖                

 

The imaginary number ĩ may take any direction.  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold without 

boundary. It is also simply-connected. What this means, loosely speaking, 

is that any loop, or circular path, on the 3-sphere can be continuously 

shrunk to a point without leaving the 3-sphere. The Poincaré conjecture197 

proposes that the 3-sphere is the only three dimensional manifold with 

these properties (up to homeomorphism)198. 

The round metric on the 3-sphere in these coordinates is given by 

                                   

The volume form is given by 

                               

 

The 3-dimensional volume (or hyperarea) of a 3-sphere of radius r is 

 
         

 

The 4-dimensional hypervolume (the volume of the 4-dimensional region 

bounded by the 3-sphere) is 

         

The 3-sphere has constant positive sectional curvature equal to     . 

 

The 3-sphere has a natural Lie group structure SU(2) given by quaternion 

multiplication. 

                                                 
197 http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture  
198 http://en.wikipedia.org/wiki/3-sphere  

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/3-sphere
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The 3-sphere admits non-vanishing vector fields (sections of its tangent 

bundle). One can even find three linearly-independent and non-vanishing 

vector fields. These may be taken to be any left-invariant vector fields 

forming a basis for the Lie algebra of the 3-sphere. This implies that the 3-

sphere is parallelizable. It follows that the tangent bundle of the 3-sphere 

is trivial. 

There is an interesting action of the circle group   on    giving the 3-

sphere the structure of a principal circle bundle known as the Hopf 

bundle. If one thinks of     as a subset of   , the action is given by 

                               

The orbit space of this action is homeomorphic to the two-sphere   . Since 

   is not homeomorphic to      , the Hopf bundle is nontrivial. 

Hopf coordinates 

Another choice of hyperspherical coordinates,          , makes use of the 

embedding of    in   . In complex coordinates           
  we write 

 
                    

 
                      

 

Here   runs over the range 0 to    , and    and    can take any values 

between 0 and   . These coordinates are useful in the description of the 3-

sphere as the Hopf bundle 

 
   →   →    

 

For any fixed value of η between 0 and    , the coordinates         

parameterize a 2-dimensional torus. In the degenerate cases, when   

equals 0 or    , these coordinates describe a circle. 

The round metric on the 3-sphere in these coordinates is given by 

(5) 

(1) 

(2) 

(3) 
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and the volume form by 

                              

Group structure 

Because the set of unit quaternions is closed under multiplication,    

takes on the structure of a group. Moreover, since quaternionic 

multiplication is smooth,    can be regarded as a real Lie group. It is a 

non-abelian, compact Lie group of dimension 3. When thought of as a Lie 

group    is often denoted       or     ℍ . 

It turns out that the only spheres which admit a Lie group structure are 

  , thought of as the set of unit complex numbers, and   , the set of unit 

quaternions. One might think that   , the set of unit octonions, would 

form a Lie group, but this fails since octonion multiplication is non-

associative. The octonionic structure does give    one important property: 

parallelizability199. It turns out that the only spheres which are 

parallelizable are   ,   , and   . 

By using a matrix representation of the quaternions, ℍ, one obtains a 

matrix representation of   . One convenient choice is given by the Pauli 

matrices: 

(                       )  [
                  
                   

] 

This map gives an injective algebra homomorphism from H to the set of 

2×2 complex matrices. It has the property that the absolute value of a 

quaternion q is equal to the square root of the determinant of the matrix 

image of q. 

                                                 
199 http://en.wikipedia.org/wiki/Parallelizability  

(4) 

(5) 

(1) 

http://en.wikipedia.org/wiki/Parallelizability
http://en.wikipedia.org/wiki/Parallelizability
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The set of unit quaternions is then given by matrices of the above form 

with unit determinant. This matrix subgroup is precisely the special 

unitary group SU(2). Thus,    as a Lie group is isomorphic to SU(2). 

Using our hyperspherical coordinates           we can then write any 

element of SU(2) in the form 

[
                                
                                  

] 

Another way to state this result is if we express the matrix representation 

of an element of SU(2) as a linear combination of the Pauli matrices. It is 

seen that an arbitrary element U  SU(2) can be written as 

          ∑      
       

 

The condition that the determinant of U is +1 implies that the coefficients 

    are constrained to lie on a 3-sphere. 

Versor 

Any unit quaternion   can be written as a versor: 

 
                              

 

This is the quaternionic analogue of Euler's formula. Now the unit 

imaginary quaternions all lie on the unit 2-sphere in Im ℍ so any such ĩ 

can be written: 

 
                                                

Symplectic decomposition 

Quaternions can be written as the combination of two complex numbers 

and an imaginary number k with unit length. 

(2) 

(3) 

(1) 

(2) 
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2n-on construction 
The 2n-ons use the following doubling formula 

 
                 –                                        

 
Up until the 16-ons the formula can be simplified to 

 
                  –                             

 
Up to the octonions the Cayley Dickson construction delivers the same as 

the 2n-on construction. From n>3 the 2n-ons are ‘nicer’. 

2n-ons 

Table of properties of the 2nons. See 

www.math.temple.edu/~wds/homepage/nce2.ps.  
Type name Lose 

1ons Reals.    

2ons Complex 

numbers 

z
*
 = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 0}. 

4ons Quaternions commutativity ab = ba;  

the algebraic closedness property that every univariate 

polynomial  equation has a root.   

8ons Octonions associativity ab · c = a · bc.  

16ons (not 

Sedenions!) 

rightalternativity x · yy = xy · y;  

rightcancellation x = xy · y
-1

 ;  

flexibility x · yx = xy · x; leftlinearity  (b + c)a = ba + 

ca;  

antiautomorphism ab = ba, (ab)
-1

 = b
-1

 a
-1

 ;  

leftlinearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

32ons  generalizedsmoothness of the map x → xy;  

rightdivision properties that xa = b has (generically) a 

solution x, and the uniqueness of such an x;  

the “fundamental theorem of algebra” that every 

(1) 

(2) 

http://www.math.temple.edu/~wds/homepage/nce2.ps
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polynomial having a unique “asymptotically  dominant 

monomial” must have a root; Trotter's formula: 

       [ 
       ]

 
        (  

   

 
)
 

       

 
Type name Retain 

2
n
ons  Unique 2sided multiplicative & additive identity elements 1 & 

0; 

Normmultiplicativity |xy|
2
 = |x|

2
·|y|

2
 ;  

Normsubadditivity |a + b| ≤ |a| + |b|; 

2sided inverse a
-1

 = a
*
/|a|

2
 (a # 0);  

a
**

 = a;  

(x ± y)* = x
*
 ± y

*
; 

(a
-1

) 
-1

 = a;  

(a
*
) 

-1
 = (a

-1
)
*
 ;  

|a|
2
 = |a|

2
 = a

*
a;  

Leftalternativity yy · x = y · yx;  

Leftcancellation x = y
-1

 · yx;  

Rightlinearity a(b + c) = ab + ac;  

r
th

 powerassociativity a
n
 a

m
 = a

n+m 
;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s real); 

Powerdistributivity  (ra
n
 + sa

m
)b = ra

n
 b + sa

m
 b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) of 

the product for pureimaginary 2
n
ons a,b regarded as  (2

n
  - 

1)vectors; 

xa,b = a,x*b, xa,xb = |x|2·a,b and x,y 

= x*,y* 

Numerous weakened associativity, commutativity, distributivity, 

antiautomorphism, and Moufang and Bol  properties including 

9coordinate ``niner'' versions of most of those properties; 

contains 2
n-1

ons as subalgebra. 

 

The most important properties of 2n-ons 

If a,b,x,y are 2n-ons, n ≥ 0, and s and t are scalars (i.e. all coordinates are 0 

except the real coordinate) then 

unit: A unique 2n-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2n-on 0 exists, with 0 + x = x + 0 = x and 0·x = x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 
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 x exists with x + ( x) = x   x = 0. 

norm: |x|2 = xx* = x*x. 

norm-multiplicativity: |x|2·|y|2 = |x·y|2. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x-1 exists, obeying x-1·x = x·x-1 = 1. It is x-1 = 

x·|x|-2. 

left-alternativity: x · xy = x2·y. 

left-cancellation: x · x-1·y = y. 

effect on inner products: x·a,b = a, x*·b, x,y = x*, y*,  x*·a, x-1·b = 

a,b,  

and x·a,x·b = |x|2·a,b. 

Conjugate of inverse: (x-1)* = (x*)-1. 

Near-anticommutativity of unequal basis elements: ek2 =  1 and ek·el* = 

 el·ek*  if k ≠ l.  

(Note: the case k; l > 0 shows that unequal pure-imaginary basis elements 

anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · ek·ek, and ek·ek 

·el = ek · ek·el. (However, when n ≥ 4 the 2n-ons are not flexible i.e. it is not 

generally true that x·y · x = x · y·x if x and y are 16-ons that are not basis 

elements. They also are not right-alternative.) 

Quadratic identity: If x is a 2n-on (over any field F with charF ≠ 2), then x2 

+ |x|2 = 2·x re x 

Squares of imaginaries: If x is a 2n-on with re x = 0 (“pure imaginary”) 

then x2 =  |x|2 is nonpositive pure-real. 

Powering preserves imx direction 

Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. The index 

starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px-1, px · p-1 = p · xp-1. 

9-right-alternativity xp · p = x · p2, px · x = p · x2. 
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9-right-cancellation xp-1 · p = x, px-1 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|2x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2n-ons 

If p, x = re p = re x = 0 then px =  xp. 

9-reflection If |a| = 1 and the geometric reflection operator is defined 

below then  (refl[a](y))0;:::;8 = (a · y*a)0;:::;8, and –{refl[a](y)}*0;:::;8 = (a*y · a*)0;:::;8, 

and 

if either a or y is a niner then  refl[a](y) = a · y*a and  refl[a](y) = a*y · a*. 

 

        (  )        
 〈     〉

     
   

What holds for the niners, also holds for the octonions. 

 

Regular quaternionic functions 
See: http://www.zipcon.net/~swhite/docs/math/quaternions/analysis.html 

and http://world.std.com/~sweetser/quaternions/ps/Quaternionic-

analysis-memo.pdf ). 

The differential    is given by 

 

    
  
   
     

  
   
     

  
   
     

  
   
    

 

A regular function   obeys: 

 
  

   
  
  

   
  
  

   
  
  

   
   

 

In addition the regular function   obeys: 

 

(3) 

(1) 

(2) 

http://www.zipcon.net/~swhite/docs/math/quaternions/analysis.html
http://world.std.com/~sweetser/quaternions/ps/Quaternionic-analysis-memo.pdf
http://world.std.com/~sweetser/quaternions/ps/Quaternionic-analysis-memo.pdf
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∫    
 

   

 

where C is any smooth closed 3-manifold in ℍ.    is the quaternion representing an element  C 

of the 3-manifold, its magnitude being equal to the volume of  C and its direction being normal 

to  C. 

 

      
 

   
 ∫ {
       

      
       }

 

 

 

where   is a domain in ℍ in which   is regular and   is a point inside  . 

 
                                                             

                    

 
                       

 
                                                  

 
Here       is the external vector product between vectors a and b. It is not the 

quaternionic external product. 

 
           

 

 [
       

      
]            (

 

      
)                            

 

where   is the Laplacian on ℝ  and                       is the standard 

volume 4-form. Since 
 

      
 is the Green’s function for the Laplacian in ℝ , 

(4) follows from (9). 

 

    
  
 

   
 
  
  
 

   
 
  
  
 

   
 
  
  
 

   
 
 

 

If   is regular in an open set U, then it has a power series expansion about 

each point of U. Thus, point-wise differentiability, together with the four 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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real conditions (2) on the sixteen partial derivatives of  , is sufficient to 

ensure analyticity. 

 

The set of homogeneous regular functions of degree   forms a 

quaternionic vector space of dimension             ;  

This is true for any integer   if for negative   it is understood that the 

functions are defined and regular everywhere except at 0. The functions 

with negative degree of homogeneity correspond to negative powers of a 

complex variable, and occur in the quaternionic Laurent series which 

exists for any regular function which is regular in an open set except at 

one point. 

 

On the unit sphere in ℍ the homogeneous regular functions form a group 

isomorphic to SU(2). The harmonic analysis of these functions bears the 

same relation to quaternionic analysis as the theory of complex Fourier 

series does to complex analysis. 

 

Because the quaternions are four-dimensional, there is no counterpart to 

the geometrical description of complex analytic functions as conformal 

mappings. The zeros of a quaternionic regular function are not necessarily 

isolated, and its range is not necessarily open; neither of these sets needs 

even be a sub-manifold of ℍ. 

 

Definition: A function    ℍ   ℍ is quaternion-differentiable on the left 

at   if the limit 

 
  

  
    
   

             

 
 

 

exists. 

 

Theorem: Suppose the function   is defined and quaternion-differentiable 

on the left throughout a connected open set U. Then on U,   has the form: 

 

(11) 
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for some    ∈ ℍ. 

 
Even if   is quaternion-differentiable, it will not in general satisfy Cauchy’s theorem in the form  

 

∫          

 
where the integral is round a closed curve; in fact the only functions satisfying this equation for all 

closed curves are the constant functions. 

 
Definition 2: A function    ℍ   ℍ is left-regular at  ∈ ℍ if it is real-differentiable at   and 

there exists a quaternion   
     such that 

 
                     

     

 
It is right-regular if there exists a quaternion   

     such that 

 
                  

      : 

 
Clearly, the theory of left-regular functions will be entirely equivalent to the theory of right-

regular functions. For definiteness, we will only consider left-regular functions, which we will 

call simply regular. We will write 

 
           

      

 
and call it the derivative of   at  . 

 
Theorem2: (about the Cauchy-Riemann-Fueter equations) 

A real-differentiable function   is regular at   if and only if 

 
  

   
  
  

   
  
  

   
  
  

   
   

 

This is formula (2) 
Theorem 3: A differentiable function   is regular at   if and only if 

 
            

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Theorem 4: If   is regular at every point of the 4-parallelepiped C, 

 

∫    
 

     

 

This is equivalent to formula (3). 

 

      
   

    
  

 

Note that 

 

          
 

    
     

 

    
 

 

It follows that  ̅      , i.e.   is regular except at 0. 

 

Theorem 5: A function which is regular in an open set U is real-analytic in 

U 

This follows from (4). 

 

Theorem 6: (Cauchy’s theorem for a differentiable contour) 

Suppose   is regular in an open set U, and let C be a differentiable 3-chain 

in U, which is homologous to 0 in the differentiable singular homology of 

U, i.e         for 

some differentiable 4-chain     in U. Then 

 

∫    
 

     

 

In order to state the general form of the integral formula, we need an 

analogue of the notion of the winding number of a curve round a point in 

the plane. 

 

(18) 

(19) 

(20) 

(21) 
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Definition 3: Let q be any quaternion, and let   be a closed 3-chain in 

ℍ      Then   is homologous to a 3-chain            , where   is the unit 

sphere with center  . 

The wrapping number of   about   is the degree of the map   . 

 

Theorem 7: (The integral formula for a differentiable contour) 

Suppose   is regular in an open set U. Let  ∈  , and let   be a 

differentiable 3-chain 

in       which is homologous, in the differentiable singular homology of 

     , to 

a 3-chain whose image is    for some ball    . Then 
 

 

   
 ∫ {
       

      
              }

 

 

 

where   is the wrapping number of   about  . 

 

Formulas (21) and (22) also hold for a rectifiable 3-chain C. 

 

Since regular functions are harmonic, they satisfy a maximum-modulus 

principle and a Liouville theorem. As with functions of a complex 

variable, Liouville’s theorem follows immediately from the Cauchy-

Fueter integral formula. 

 

Theorem 8: (Morera’s theorem) Suppose that the function   is continuous in 

an open set   and that 

 

∫    
 

     

 

for every 4-parallelepiped   contained in  . Then   is regular in  . 

 

Theorem 9: Let   be a real-valued function defined on a star-shaped open 

set  ∈ ℍ. 

(22) 

(21) 
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If   is harmonic and has continuous second derivatives, there is a regular 

function   defined on   such that       . 

 

This shows that there are as many regular functions of a quaternion 

variable as there are harmonic functions of four real variables. However, 

these functions do not include the simple algebraic functions, such as 

powers of the variable, which occur as analytic functions of a complex 

variable. 

The separable Hilbert space Ң 

Notations and naming conventions 

{fx}x means ordered set of fx . It is a way to define functions. 

  

The use of bras and kets differs slightly from the way Dirac uses them. 

  

|f> is a ket vector, f> is the same ket 

<f| is a bra vector, <f is the same bra 

  

A is an operator. |A is the same operator 

A† is the adjoint operator of operator A. A| is the same operator 

| on its own, is a nil operator 

|A| is a self-adjoint (Hermitian) operator 

  

We will use capitals for operators and lower case for quaternions, 

eigenvalues, ket vectors, bra vectors and eigenvectors. Quaternions and 

eigenvalues will be indicated with italic characters. Imaginary and anti-

Hermitian objects are often underlined and/or indicated in bold text. 

  

∑k means: sum over all items with index k. 

∫x means: integral over all items with parameter x. 

Quaternionic Hilbert space 

The Hilbert space is a linear space. That means for the elements |f>, |g> 

and |h> and numbers a and b: 
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Ket vectors 

For ket vectors hold 

 

|f> + |g> = |g> + |f> = |g + f> 

 

(|f> + |g>) + |h> = |f> + (|g> + |h>) 

 

|(a + b) f > = |f>·a + |f>·b 

 

(|f> + |g>)·a = |f>·a + |g>·a 

 

|f>·0 = |0> 

 

|f>·1 = |f> 

 

Depending on the number field that the Hilbert space supports, a and b 

can be real numbers, complex numbers or (real) quaternions. 

Bra vectors 

The bra vectors form the dual Hilbert space Ң† of Ң . 

  

<f| + <g| = <g| + <f| = |g + f> 

 

 (<f| + <g|) + <h| = <f| + (<g| + <h|) 

 

<f (a + b)> = <f|·a + <f|·b = a*·<f| + b*·<f| 

 

 (<f| + <g|)·a = <f|·a + <g|·a = a*·<f| + a*·<g| 

 
0·<f| = <0| 

 

1·<f| = <f| 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Scalar product 

The Hilbert space contains a scalar product, also called inner product, 

<f|g> that combines Ң and Ң† in a direct product that we also indicate 

with Ң. 

The scalar product <f|g> satisfies: 

 

<f|g + h> = <f|g> + <f|h> 

 

<f|{|g>·a}g = {<f|g>}g·a 

  

With each ket vector |g> in Ң belongs a bra vector <g| in Ң† such that for 

all bra vectors <f| in Ң† 

 

<f|g> = <g|f>* 

 

<f|f> = 0 when |f> = |0> 

 

<f|a g> = <f|g>·a = <g|f>*·a = <g a|f>* = (a*·<g|f>)* = <f|g>·a 

 

In general is <f|a g> ≠ <f a|g>. However for real numbers r holds <f|r g> = 

<f r|g> 

 

Remember that when the number field consists of quaternions, then also 

<f|g> is a quaternion and a quaternion q and <f|g> do in general not 

commute. 

 

The scalar product defines a norm: 

 

||f|| = √(<f|f>) 

 

And a distance: 

 

D(f,g) = ||f – g|| 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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The Hilbert space Ң is closed under its norm. Each converging row of 

elements of converges to an element of this space. 

Separable 

 In mathematics a topological space is called separable if it contains a 

countable dense subset; that is, there exists a sequence        
  of elements 

of the space such that every nonempty open subset of the space contains 

at least one element of the sequence. 

Every continuous function on the separable space Ң is determined by its 

values on this countable dense subset. 

Base vectors 

The Hilbert space Ң is separable. That means that there exist a countable 

row of elements {fn>} that spans the whole space. 

  

If <fn|fm> = δ(m,n) = [1 when n = m; 0 otherwise]  

then {|fn>} forms an orthonormal base of the Hilbert space. 

A ket base {|k>}of Ң is a minimal set of ket vectors |k> that together span 

the Hilbert space Ң. 

Any ket vector |f> in Ң can be written as a linear combination of elements 

of {|k>}. 

  

|f> = ∑k (|k>·<k|f>) 

  

A bra base {<b|}of Ң† is a minimal set of bra vectors <b| that together 

span the Hilbert space Ң†. 

Any bra vector <f| in Ң† can be written as a linear combination of 

elements of {<b|}. 

  

<f| = ∑b (<f|b>·<b|) 

  

Usually base vectors are taken such that their norm equals 1. Such a base 

is called an othonormal base. 

(1) 

(2) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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Operators 

Operators act on a subset of the elements of the Hilbert space.  

Linear operators 

An operator Q is linear when for all vectors |f> and |g> for which Q is 

defined and for all quaternionic numbers a and b: 

 

|Q·a f> + |Q·b g> = |a·Q f> + |b·Q g> = |Q f>·a + |Q g>·b = 

  
Q (|f>·a + |g>·b) = Q (|a f> + |b g>) 

 

B is colinear when for all vectors |f> for which B is defined and for all 

quaternionic numbers a there exists a quaternionic number c such that: 

 

|B·a f> = |a·B f> = |B f> c·a·c-1 

If |f> is an eigenvector of operator A with quaternionic eigenvalue a, then 

is |b f> an eigenvector of A with quaternionic eigenvalue b·a·b-1. 

A| = A† is the adjoint of the normal operator A. |A is the same as A. 

  

<f A| g> = <fA†|g>* 

 

A† † = A 

 

(A·B) † = B†·A† 

  

|B| is a self adjoint operator. 

| is a nil operator.  

 

The construct |f><g| acts as a linear operator. |g><f| is its adjoint 

operator. 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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∑n {|fn>·an·<fn|}, 

 

 where a n is real and acts as a density function. 

 

The set of eigenvectors of a normal operator form an orthonormal base of 

the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

 

{<q|f>}q is a function f(q) of parameter q.  

{<g|q>}q is a function g(q) of parameter q. 

  

When possible, we use the same letter for identifying eigenvalues, 

eigenvalues and the corresponding operator. 

So, usually |q> is an eigenvector of a normal operator Q with eigenvalues 

q.  

  

{q} is the set of eigenvalues of Q.  

{q}q is the ordered field of eigenvalues of q. 

{|q>}q  is the ordered set of eigenvectors of Q. 

{<q|f>}q is the Q view of |f>. 

Normal operators 

The most common definition of continuous operators is: 

  

A continuous operator is an operator that creates images such that 

the inverse images of open sets are open.  

  

Similarly, a continuous operator creates images such that the 

inverse images of closed sets are closed. 

  

A normal operator is a continuous linear operator. 

A normal operator in Ң creates an image of Ң onto Ң. It transfers closed 

subspaces of Ң into closed subspaces of Ң.  

  

(7) 
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Normal operators represent continuous quantum logical observables.  

  

The normal operators N have the following property. 

  

N: Ң  Ң 

  

N commutes with its (Hermitian) adjoint N† 

  

N·N† = N†·N 

  

Normal operators are important because the spectral theorem holds for 

them.  

Examples of normal operators are 

  

 unitary operators: U† = U−1 , unitary operators are bounded; 

 Hermitian operators (i.e., self-adjoint operators): N† = N;  

 Anti-Hermitian or anti-self-adjoint operators: N† = −N;  

 Anti-unitary operators: I† = −I = I−1 , anti-unitary operators are 

bounded;  

 positive operators: N = MM†  

 orthogonal projection operators: N = N† = N2  

Spectral theorem 

For every compact self-adjoint operator T on a real, complex or 

quaternionic Hilbert space Ң, there exists an orthonormal basis of Ң 

consisting of eigenvectors of T. More specifically, the orthogonal 

complement of the kernel (null space) of T admits, either a finite 

orthonormal basis of eigenvectors of T, or a countable infinite 

orthonormal basis {en} of eigenvectors of T, with corresponding 

eigenvalues {λn}   R, such that λn → 0. Due to the fact that Ң is separable 

the set of eigenvectors of T can be extended with a base of the kernel in 

order to form a complete orthonormal base of Ң. 

 

(1) 

(2) 

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Countable_set
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If T is compact on an infinite dimensional Hilbert space Ң, then T is not 

invertible, hence σ(T), the spectrum of T, always contains 0. The spectral 

theorem shows that σ(T) consists of the eigenvalues {λn} of T, and of 0 (if 0 

is not already an eigenvalue). The set σ(T) is a compact subset of the real 

line, and the eigenvalues are dense in σ(T). 

 

 A normal operator has a set of eigenvectors that spans the whole Hilbert 

space Ң.  

In quaternionic Hilbert space a normal operator has quaternions as 

eigenvalues.  

 

The set of eigenvalues of a normal operator is NOT compact. This is due 

to the fact that Ң is separable. Therefore the set of eigenvectors is 

countable. As a consequence the set of eigenvalues is countable. Further, 

the eigenspace of normal operators has no finite diameter.  

 

A continuous bounded linear operator on Ң has a compact eigenspace. 

The set of eigenvalues has a closure and it has a finite diameter.  

Eigenspace 

The set of eigenvalues {q} of the operator Q form the eigenspace of Q 

Eigenvectors and eigenvalues 

For the eigenvector |q> of normal operator Q holds  

 

|Q q> = |q q> = |q>·q 

 

<q Q†| = <q q*| = q*·<q| 

 

      ∈                                
          

           

 

The eigenvalues of 2n-on normal operator are 2n-ons  

  

(1) 

(2) 

(3) 

(4) 
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   ∑     

   

   

 

 

The    are self-adjoint operators. 
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Generalized Trotter formula 

For bounded operators      hold: 

 

   
   
(∏     
 

   

)

 

     (∑  

 

   

)      
   
(  
∑   
 
   

 
)

 

 

In general  

 

   (∑  

 

   

)    ∏   

 

   

 

Unitary operators 

For unitary operators holds: 

  

U† = U−1 

Thus 

  

U·U† = U†·U =1 

 

Suppose U = I + C where U is unitary and C is compact. The equations 

U U* = U*U = I and C = U − I show that C is normal. The spectrum of C 

contains 0, and possibly, a finite set or a sequence tending to 0. Since U = I 

+ C, the spectrum of U is obtained by shifting the spectrum of C by 1. 

The unitary transform can be expressed as: 

 

U = exp(Ĩ·Φ/ħ) 

 

ħ = h/(2·π) 

 

Φ is Hermitian. The constant h refers to the granularity of the eigenspace. 

Unitary operators have eigenvalues that are located in the unity sphere of 

the 2n-ons field.  

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 
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The eigenvalues have the form: 

  

u = exp(i·φ/ħ) 

 

φ is real. i is a unit length imaginary number in 2n-on space. It represents 

a direction.  

u spans a sphere in 2n-on space. For constant i, u spans a circle in a 

complex subspace.  

Polar decomposition 

Normal operators N can be split into a real operator A and a unitary 

operator U. U and A have the same set of eigenvectors as N. 

  

N = ||N||·U = A·U 

 

N = A·U = U·A  

 

= A· exp(Ĩ·Φ)/ħ) 

 

= exp (Φr+ Ĩ·Φ)/ħ)  

 

Φr is a positive normal operator. 

Ladder operator 

General formulation 

Suppose that two operators X and N have the commutation relation: 

 [N, X] = c·X 

for some scalar c. If |n> is an eigenstate of N with eigenvalue equation, 

 

|N n> = |n>·n 

 

(5) 

(1) 

(2) 

(1) 

(2) 
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then the operator X acts on |n> in such a way as to shift the eigenvalue by 

c: 

 

|N·X n> = |(X·N + [N, X]) n> 

= |(X·N + c·X) n> 

= |X·N n> + |X n>·c 

= |X n>·n + |X n>·c 

= |X n>·(n+c) 

 

In other words, if |n> is an eigenstate of N with eigenvalue n then |X n> is 

an eigenstate of N with eigenvalue n + c.  

The operator X is a raising operator for N if c is real and positive, and a 

lowering operator for N if c is real and negative. 

If N is a Hermitian operator then c must be real and the Hermitian adjoint 

of X obeys the commutation relation: 

[N, X†] = - c·X† 

In particular, if X is a lowering operator for N then X† is a raising operator 

for N and vice-versa. 

Unit sphere of Ң 

The ket vectors in Ң that have their norm equal to one form together the 

unit sphere  of Ң. 

Base vectors are all member of the unit sphere. The eigenvectors of a 

normal operator are all member of the unit sphere.  

The end points of the eigenvectors of a normal operator form a grid on 

the unit sphere of Ң. 

 Closure 

The closure of Ң means that converging rows of vectors converge to a 

vector of Ң. 

  

(3) 

(4) 
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In general converging rows of eigenvalues of Q do not converge to an 

eigenvalue of Q. 

Thus, the set of eigenvalues of Q is open.  

At best the density of the coverage of the set of eigenvalues is comparable 

with the set of 2n-ons that have rational numbers as coordinate values. 

With other words, compared to the set of real numbers the eigenvalue 

spectrum of Q has holes. 

The set of eigenvalues of operator Q includes 0. This means that Q does 

not have an inverse. 

  

The rigged Hilbert space Ħ can offer a solution, but then the direct 

relation with quantum logic is lost. 

 

Canonical conjugate operator P 

The existence of a canonical conjugate represents a stronger requirement 

on the continuity of the eigenvalues of canonical eigenvalues.  

Q has eigenvectors {|q>}q and eigenvalues q. 

P has eigenvectors {|p>}p and eigenvalues p. 

For each eigenvector |q> of Q we define an eigenvector |p> and 

eigenvalues p of P such that: 

  
                               

 

           is a scaling factor.       is a quaternion. ȋ is a unit length 

imaginary quaternion. 

Displacement generators 

Variance of the scalar product gives: 

 
                       

 
                       

 

(1) 

(1) 

(2) 
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In the rigged Hilbert space Ħ the variance can be replaced by 

differentiation.  

Partial differentiation of the function <q|p> gives: 

 
                          

 
                           

Gelfand triple 
The rigged Hilbert space Ħ that belongs to a separable Hilbert space Ң is 

a Gelfand triple. 

A rigged Hilbert space is a pair       with Ң a Hilbert space,   a dense 

subspace, such that   is given a topological vector space structure for 

which the inclusion map i is continuous. 

Identifying Ң with its dual space Ң*, the adjoint to i is the map 

           

The duality pairing between   and    has to be compatible with the inner 

product on Ң, in the sense that: 

 
〈   〉            

 

whenever  ∈     and  ∈         . 

 

The specific triple          is often named after the mathematician 

Israel Gelfand). 

Note that even though   is isomorphic to    if   is a Hilbert space in its 

own right, this isomorphism is not the same as the composition of the 

inclusion i with its adjoint i* 

              

(3) 

(4) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand
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Gamma matrices 
A sign inversion of all three imaginary base vectors of quaternion number 

space is equivalent to a switch from right handedness to left handedness. 

The sign of the real base vector need not be affected by this inversion. The 

two sign selections and the number space form three items. Together n 

items have n(n-1) relations. Thus the three items have four relations. Thus 

with respect to these relations, four types of fields exist. 

 

  [
  
    
]     [

   
   
]     [

     
     
] 

 

The fact that the quaternionic imaginary base vectors are represented by 

the 2×2 Pauli    matrices200, indicates the properties of their external 

vector product      . However, the sign selection of the handedness is 

reflected by the combination of the   matrix and the   matrix in the   

matrices. 

 

   [
    
  
]     [ 

   
  

]     [
  
   

] 

 

   [
  
   

]     [
  
   

]     [
  
   

] 

 

  [
  
  
] 

 

In Dirac representation, the four contravariant gamma matrices are 

 

   [

    
    
     
     

]     [

    
    
     
     

]   

 

                                                 
200 http://en.wikipedia.org/wiki/Pauli_matrices  

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Covariance_and_contravariance
http://en.wikipedia.org/wiki/Pauli_matrices
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   [

     
    
    
     

]     [

    
     
     
    

]  

 

It is useful to define the product of the four gamma matrices as follows: 

 

                 [

    
    
     
     

] 

 

The gamma matrices as specified here are appropriate for acting on Dirac 

spinors written in the Dirac basis; in fact, the Dirac basis is defined by 

these matrices. In the Dirac basis201: 

 

   [
  
   

]     [    

    
]      [

  
  
] 

 

This corresponds with     
 ,      . 

Apart from the Dirac basis, a Weyl basis exists 

 

       [
  
  
]     [    

    
]      [

   
  

] 

 

The Weyl basis has the advantage that its chiral projections202 take a 

simple form: 

 

          
    [

  
  
]               

    [
  
  
]   

 

   [
  
  
]  

                                                 
201 http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis  
202 http://en.wikipedia.org/wiki/Chirality_(physics)  
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Lagrangian general principles 
The least action principle leads to an equation of motion of the type 

 
  

   
   

 

where the action, , is a functional of the dependent variables       with 

their derivatives and   itself 

 

 [   
   
  
]  ∫ [      

      

   
   ]     

 

and where        denotes the set of   independent variables of the 

system, indexed by             

The Euler–Lagrange equations of this action are 

 
 

   
  

   
   

 
  

   
   

 

The energy tensor     is 

 

     ∑[
  

   
   

   
   
       ]

 

 

 

     is regarded as an expression for the Hamiltonian density  . With   as 

a special parameter, we define 

 

    ̇ 
  

  ̇ 
     ̇      

 

   
  

  ̇ 
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  ̇  

 
  

  
  
  

  
 

 

The Euler-Lagrange equations are 

 
 

  

  

  ̇ 
  ̇  

  

   
 

 

For an elementary particle with private field   and the field ϕ in its 

environment this means 

 

 (   ̇ ϕ ϕ̇)   ∫ (   ̇ ϕ ϕ̇)    ∫  (   ̇ ϕ ϕ̇)    

 

  ∫  (   ̇ ϕ ϕ̇)     

 

For the action   to be Lorentz invariant the Lagrangian density   must be 

a Lorentz scalar. 

 

The equations of motion obtained from this functional derivative are the 

Euler–Lagrange equations of this action. Dynamical systems whose 

equations of motion are obtainable by means of an action principle on a 

suitably chosen Lagrangian are known as Lagrangian dynamical systems. 

Examples of Lagrangian dynamical systems range from the classical 

version of the Standard Model, to Newton's equations, to purely 

mathematical problems such as geodesic equations and Plateau's problem 

Continuity equation 

Density must have the dimension [   ] and be a 0-component of a 4-

vector satisfying the continuity equation 

(7) 

(8) 

(9) 

(10) 

(11) 

http://en.wikipedia.org/wiki/Functional_derivative
http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equations
http://en.wikipedia.org/wiki/Standard_Model
http://en.wikipedia.org/wiki/Newton%27s_laws
http://en.wikipedia.org/wiki/Geodesic
http://en.wikipedia.org/wiki/Plateau%27s_problem
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The zero index term is charge density. (Mass is a version of charge). 

 
    

  
 

The other terms concern current density. 

Derivation of the one dimensional Euler Lagrange 

equation 
This is taken from Wikipedia203. 

Equation 

The Euler–Lagrange equation is an equation satisfied by a function,  , of a 

real204 argument,  , which is a stationary point of the functional205 

 

     ∫  (        ̇   )
 

 

    

where: 

  is the function to be found:  

 
        ℝ    
                           ̇    

 

such that   is differentiable,          , and          ; 

 ̇ is the derivative of  :  

 
 ̇              

                  ̇    
 

                                                 
203 http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange  
204 http://en.wikipedia.org/wiki/Real_number  
205 http://en.wikipedia.org/wiki/Functional_(mathematics)  
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http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Functional_(mathematics)
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   being the tangent bundle of   (the space of possible values of 

derivatives of functions with values in  ); 

  is a real-valued function with continuous206 first partial derivatives207:  

 
             ℝ 
                                      

 

The Euler–Lagrange equation, then, is given by 

 

  (        ̇   )  
 

  
  (        ̇   )  

  

  
 
 

  

  

  
   

 

where    and    denote the partial derivatives of   with respect to the 

second and third arguments, respectively. 

If the dimension of the space   is greater than 1, this is a system of 

differential equations, one for each component: 

 
  

   
 
 

  

  

   
           

Derivation 

Given a functional 

 

  ∫  (            )   
 

 

 

on           with the boundary conditions          and         , we 

proceed by approximating the extremal curve by a polygonal line with   

segments and passing to the limit as the number of segments grows 

arbitrarily large. 

Divide the interval       into       equal segments with endpoints 

                        and let               . Rather than a smooth 

function      we consider the polygonal line with vertices 

                                                 
206 http://en.wikipedia.org/wiki/Continuous_function  
207 http://en.wikipedia.org/wiki/Partial_derivatives  
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http://en.wikipedia.org/wiki/Tangent_bundle
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Partial_derivatives
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Partial_derivatives
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                     , where       and           . Accordingly, our 

functional becomes a real function of n variables given by 

 

            ∑ (             
  
)   

 

   

 

 

Extremes of this new functional defined on the discrete points            

correspond to points where 

 
            

   
   

 

Evaluating this partial derivative gives 

 
  

   
   (             

  
)       (                 

  
)

   (             
  
) 

 

Dividing the above equation by Δt gives 

 
  

     
   (             

  
) 

  
   (                 

  
)    (             

  
)

  
 

 

and taking the limit as      of the right-hand side of this expression 

yields 

 

   
    

  
   

 

(2) 

(3) 

(4) 

(5) 

(6) 
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The left hand side of the previous equation is the functional derivative208 
  

  
 of the functional  . A necessary condition for a differentiable functional 

to have an extremum on some function is that its functional derivative at 

that function vanishes, which is granted by the last equation. 

Euler Lagrange equations of field 

First order equations 
The Dirac Lagrangian density is 
 

    [  ( 
 

   
    )   ]  

 
The corresponding Euler-Lagrange equation 
 

[  ( 
 

   
    )   ]    

 
The Dirac 4-current is 
 

         
 
The density is the 0-component 
 

        
   

 
The Dirac Hamiltonian density is 
 

   
  

  ̇
 ̇      [  ( 

 

   
    )       ]  

 

       〈      〉          
 
The Dirac equation runs 
 

                                                 
208 http://en.wikipedia.org/wiki/Functional_derivative  
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      〈      〉          
 

 [
  
    
]     〈      〉     [

  
    
]   [

  
  
] [
  
    
] 

 

   〈      〉     [
  
    
]   [

  
    
] 

 
                                    

 
                                  

 

The mass m couples    and   . The fact     decouples    and   . 
 
The Dirac Hamiltonian density (6) as well as the Dirac Hamiltonian (7) do 

not contain a derivative of   with respect to time. 
 
Now, the form of an energy eigenfunction is 
 

                    
 

      〈      〉           

Lagrangians in quantum field theory 

Dirac Lagrangian 

The Lagrangian density for a Dirac field209 is:  

 

  
   

 
( ̅   

  

   
     

  ̅

   
)         ̅  

 

where   is a Dirac spinor210 (annihilation operator),  ̅ is its Dirac adjoint211 

(creation operator) 

 

                                                 
209 http://en.wikipedia.org/wiki/Fermionic_field#Dirac_fields  
210 http://en.wikipedia.org/wiki/Dirac_spinor  
211 http://en.wikipedia.org/wiki/Dirac_adjoint  
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 ̅        

Quantum electrodynamic Lagrangian 

The Lagrangian density for quantum electro dynamics212 is: 

 

     
   

 
( ̅          

    ̅)      
   ̅  

 

   
    

   

 

where     is the electromagnetic tensor213, is the gauge covariant 

derivative. 

 

    
   
   
  
   

   
 

[
 
 
 
 
 
 
   

  
 
 
  

 
 
  
 

  
 

      

  

 
      

  
 
      ]

 
 
 
 
 
 
 

 

 
    

            

 

This is a Lorentz scalar. 

 

The equation of motion is  

 
            

          

 

The left-hand side is like the original Dirac equation and the right-hand 

side is the interaction with the electromagnetic field. 

 

   
     ̅      

 

                                                 
212 http://en.wikipedia.org/wiki/Quantum_electrodynamics  
213 http://en.wikipedia.org/wiki/Electromagnetic_tensor  
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Now, if we impose the Lorenz-Gauge condition, i.e., that the divergence of the 

four potential vanishes then we get 

 

       ̅      

 

The d’Alembert operator   is defined as: 

 

     
      

    
  

   
 
  

   
 
  

   
 
  

   
 

 

 
  

   
    

  

   
   

 

Quantum chromodynamic Lagrangian 

The Lagrangian density for quantum chromodynamics214: 

 

     
   

 
( ̅   

          
      ̅ )       

  ̅    
 

 
   
   
  

 

 

where is the QCD gauge covariant derivative, n = 1...6 counts the 

quark types, and    
  is the gluon field strength tensor. 

  

                                                 
214 http://en.wikipedia.org/wiki/Quantum_chromodynamics  
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Zak transform 
(See also http://eom.springer.de/Z/z130030.htm) 

Definition 

The Weil-Brezin-Zak transform       of a function f is defined by  

                    √ ∑                        

 

    

 

Where α > 0 and t and ω are real. When α =1, one denotes     by   . 

If f represents a signal, then its Zak transform can be considered as a 

mixed time-frequency representation of f , and it can also be considered as 

a generalization of the discrete Fourier transform of f in which an infinite 

sequence of samples in the form            , k = 0, ±1, ±2,…, is used  

Elementary properties. 

1)  (linearity): for any complex numbers α and β, 

 
                                                      

 

2)  (translation): for any integer m,  

 
                                                            

 

in particular,  

 
                                                     

3)  (modulation):  

 
                                                                      

 

4)  (periodicity): The Zak transform is periodic in with period one, 

that is,  

(1) 

(2) 

(3,4) 

(5) 

(6) 

http://eom.springer.de/Z/z130030.htm
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5)  (translation and modulation): By combining 2) and 3) one obtains 

 

      
                              
                                       

 

6)  (conjugation):  

 

                  (   )̅           ̅̅ ̅̅ ̅̅ ̅       

 

7)  (symmetry): If f is even, then  

 
                                            

 

and if f is odd, then  

 
                                             

 

From 6) and 7) it follows that if f is real-valued and even, then  

 

                ̅̅ ̅̅ ̅̅ ̅                     

 

Because of 2) and 4), the Zak transform is completely determined by its 

values on the unit square              . 

8)  (convolution): Let  

 

                         ∫              
 

  
 

then  
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                               ∫                        
 

 
    

Analytic properties. 

If f is a continuous function such that 

 
                                        

 

Then     is continuous on Q. A rather peculiar property of the Zak 

transform is that if     is continuous, it must have a zero in Q. The Zak 

transform is a unitary transformation from    ℝ  onto      . 

Inversion formulas. 

The following inversion formulas for the Zak transform follow easily 

from the definition, provided that the series defining the Zak transform 

converges uniformly:  

 

     ∫              
 

 

        

 ̃         
 

√   
∫                              
 

 

 

 

and  

 

         
 

√   
∫                 (   ̃)        
 

 

 

 

where  ̃ is the Fourier transform of f, given by  

 

 ̃    
 

√   
∫                    
 

  

 

Applications. 

The Gabor representation problem can be stated as follows: Given 

 ∈    ℝ  and two real numbers, α, β, different from zero, is it possible to 

represent any function  ∈    ℝ  by a series of the form  

(13) 

(1) 

(1) 

(2) 

(3) 

(4) 
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  ∑ ∑    
 
           

 
     , 

 

where        are the Gabor functions, defined by: 

 
                              

 

and     are constants? And under what conditions is the representation 

unique? 

 
Fix a coordinate x in a line ℝ; the family of functions in ℝ 
 

         √ 
 
                                

 

are called Gabor functions. Here λ = (p, θ) is a point in the phase space Φ = ℝ 

⊗ℝ ′ 

 

The operators 

 

    
 

   
 
 

  
     

 

      
 

   
 
 

  
     

 

in    are adjoint one to another. They are called the annihilation and the 
creation 

operators. 

 

Any Gabor function is an eigenvector of the annihilation operator: 

 
           

 

where  

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 



415 

 

          

 

and  

 
         

 

For any φ in the domain of the operator a we have 
 

             
 

    
 

   
   (
 

  
  
 

  
)      

Thoughts 
The following texts represent collections of thoughts that still have to be 

brought in proper order and in mutual consistency. 

Spin and dyadic product 

As factors of the dyadic product we consider imaginary quaternionic 

numbers or vectors in ℝ3. The product corresponds to a matrix. This 

matrix acts as an operator. 

 

 ⊗   [

  
  
  
]          [

            
            
            

] 

 

The product of quaternions contains sign selections. For the imaginary 

parts this selection has to do with the handedness of the external product. 

Dyadic products are well suited to store the product such that the sign 

selections are stored as well. The sign selection plays its role in the dyad 

ij, which consists of two imaginary base numbers. The dyad ij = ji, and k 

can be ± ij. Let us apply this to the definition of Sz. 

 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 
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       [

           

           

   

]

   [

        

       

   

] 

 

This shows that the definition of Sz via the dyadic product reflects the 

choice in handedness of the external product of ex and ey. 

Wave package 

The linear momentum is interpretable as a displacement operator. This 

operator is better treated in Fourier space than in configuration space. In 

Fourier space a particle becomes a wave package. The Fourier transforms 

of the fields describe the wave package. 

Operator P has eigenfunctions  ̃    with eigenvalues p: 

 

         ̃                      (  
   

 
)  

 
            

 

A pure particle can be represented by a single Hilbert vector |f>. Its wave 

function is given by: 

 
            

 

Or by: 

 

 ̃           

 

A mixed particle takes a Hilbert distribution215 in order to define its 

presence. 

 

                                                 
215 Functions and fields; Distributions in quaternionic Hilbert space 
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A blurred Hilbert distribution is a Hilbert field. 

 
                

 

A different type of blur gives a different type of Hilbert field. 

The wave functions216 and private Hilbert fields represent particles. Their 

Fourier transforms represent wave packages. A very particular Hilbert 

field is a probability density that is based on a probability density 

operator217. 

A single wave mode represents a plane wave. Look at the linear 

momentum of the field contained in a volume V surrounded by surface S: 

 

 

 

       ∫         

 

 ∫        

 

 ∫  〈    〉    ∮〈 ̂   〉  
 

 

 

 

For each temporal Fourier mode of the field in free space (vanishing 

charge density ρ0, no variance of scalar potential ϕ0), where Eϕ falls off 

rapidly, we can neglect the first and the third term. 

 

       ∫  〈    〉   

 

 

 

Further: 

 
               

 

                                                 
216 States 
217States; State definition; Probability density  
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        ∫  〈      〉   

 

 

 

 ∫  〈  ̃    ̃〉    
  

 

 

 ∫   〈 ̃    ̃〉    
  

 

 

 ∫      〈 ̃  ̃〉    
  

 

 

If the function 〈 ̃     ̃   〉 gives the probability density for eigenvalue p. 

Then, this gives reason to interpret  〈         〉 as probability density for 

the position q of the particle. 

Fourier mode 

A Fourier mode is a single frequency wave. It can be interpreted as a 

“particle” or as a train of particles whose charge is blurred by a very wide 

spread function. The corresponding current is blurred by that same 

spread function. It means that the divergence along the wave reduces to 

zero. 

 

Often waves of the same frequency that belong to different mutually 

perpendicular fields combine to form polarized waves. The waves may 

differ in their phase shifts. The combination then forms a polarized wave. 

Depending on the phase difference it may be an elliptical polarized wave, 

a circular polarized wave or a linearly polarized wave. 

Systems 

A system is a local assembly of physical items that act as a single physical 

item. Its state218 is mixed. When a redefinition of physical items in terms of 

                                                 
218 States 
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atomic predicates goes together with influences between items in the form 

of fields, then a redefinition of a system in terms of its components will 

certainly also have such effects. The redefinition may take different forms. 

It may be represented by an emission or absorption of a component or it 

may be a reshuffling of the components. The simplest case of reshuffling 

is a permutation of items that belong to the same category. A more 

complex situation is a periodic movement of one or more components 

within the realm of a system. In addition each sequence of creation and 

annihilation is a form of redefinition. 

 

The system has its own characteristic vectors. The wave function may 

depend on the permutation state of the system. For example for fermions 

an odd permutation changes the sign of the (position related) wave 

function. For bosons a permutation does not affect the wave function. 

Permutations of different categories of components go together with their 

own type of influence. Thus, there are fermionic fields and there are 

bosonic fields. Each of these fields has its own type of creation and 

annihilation. Being fermion or boson relates to the spin type of the 

component. The annihilation and creation operators are closely related to 

the type of components involved and are also closely related to the type 

of fields involved. The annihilation/creation operators of fermions anti-

commute and the annihilation/creation operators of bosons commute. 

Entropy 

A system is a local assembly of physical items219 that act as a single 

physical item. The Density operator ρ relates to the currently considered 

observable Q. A pure state is a ray spanned by an eigenvector of the 

operator Q.  

 

The von Neumann entropy220 S(ρ)  of a physical system that is 

characterized by a state221 |ψ> is given by 

                                                 
219 Logic; Items 
220 http://en.wikipedia.org/wiki/Von_Neumann_entropy  
221 States 

http://en.wikipedia.org/wiki/Von_Neumann_entropy
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  ∑{|      |}  

 

∑{     }

 

 

          

           
  

 

          ∑{         }

 

 

 

The entropy S(ρ) describes the departure of the system from a pure state. 

In other words, it measures the degree of mixture (entanglement222) of the 

state |ψ>. 

Some properties of the von Neumann entropy: 

 S(ρ) is only zero for pure states. 

 S(ρ) is maximal and equal to log2N for a maximally mixed state, N 

being the dimension of the Hilbert space. 

 S(ρ) is invariant under changes in the basis of ρ, that is, S(ρ) = 

S(UρUϯ), with U a unitary transformation. 

 S(ρ) is concave, that is, given a collection of positive numbers λq 

which sum to unity (Σqλq= 1) and density operators ρq, we have 

 (∑  
 

  )  ∑  
 

 (  ) 

 S(ρ) is additive. Given two density matrices ρA,ρB describing 

independent systems A and B, then 

                                                 
222 http://en.wikipedia.org/wiki/Quantum_entanglement  
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    ⊗                 
 

Instead, if ρA,ρB are the reduced density operators of the general state ρAB, 

then 

                                 

While in Shannon's theory the entropy of a composite system can never 

be lower than the entropy of any of its parts, in quantum theory this is not 

the case, i.e., it is possible that S(ρAB) = 0 while S(ρA) > 0 and S(ρB) > 0. 

Intuitively, this can be understood as follows: In quantum mechanics, the 

entropy of the joint system can be less than the sum of the entropy of its 

components because the components may be entangled223. The left-hand 

inequality can be roughly interpreted as saying that entropy can only be 

canceled by an equal amount of entropy. If system A and system B have 

different amounts of entropy, the lesser can only partially cancel the 

greater, and some entropy must be left over. Likewise, the right-hand 

inequality can be interpreted as saying that the entropy of a composite 

system is maximized when its components are uncorrelated, in which 

case the total entropy is just a sum of the sub-entropies. 

 The von Neumann entropy is also strongly sub-additive. Given three 

Hilbert spaces, A,B,C, 

                             

Isolated systems 

With isolated systems we mean systems in a geometrically compound 

environment where influences from the environment compensate each 

other, possibly including the influences on the environment that are 

caused by the system under consideration. This includes e.g. the 

gravitation field. The gravitation potential cannot be zero, but the 

                                                 
223 http://en.wikipedia.org/wiki/Quantum_entanglement  
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influence of other items can be negligible. Internal influences are 

internally compensated such that they are not felt by other systems. For 

example the sum of the charges, which are related to electromagnetic 

fields is zero. It means that the Fourier transforms of the local fields 

consist of linear combinations of discrete terms. This holds for the 

electrostatic fields and the magneto-static fields. It holds for rectangular 

components as well as for polar components. These components are the 

germs of quanta and are the source of creations and annihilations. 

For example consider the vector potential A. Its Fourier transform can be 

written as: 

 
        

 

 ∑ ∑ {             (      )    ̅   ̅     

       

    (       )}  

 

Where eμ are unit sized polarization vectors. They depend on the 

orthonormal vectors ex and ey that represent quaternionic imaginary base 

numbers. The index μ labels the photon spin. The product eμ·aμ represents 

a quaternionic imaginary number. The number i can be interpreted as a 

base imaginary number in the direction of k. 

 

   
  

√ 
(       ) 

 

    
 

√ 
(       ) 

 
         

 

(    )    

 

[           
  ]    
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[        
 
    

  ]    

 

[       
 
    

  ]            

 

Here the √
 

     
      are the operator equivalents of the coefficients     

and ω = c |k| = ck. 

This results in: 

 

       ∑√
 

     
{                 (      )    ̅      

 
          (       )}

   

 

 

         ∑√
 

     
{                 (      )    ̅      

 
          (       )}

   

 

 

        is an annihilation operator and          is a creation operator. 

 

                   √    

 

                  

 

                  √  

 
               

 

[      ( 
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]  (     )

 
 

 

The Hamiltonian is: 

 

       ∑{  
                }
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The number operator Nμ gives the number of quanta: 

 

           
               

 

The quanta discussed here are bosons. With the electromagnetic field they 

are photons. Photons have integer spin 1. With the dyadic product ⨂ 

follows: 

 

      (  ⊗     ⊗  ) and cyclically for x → y → z → x 

 

[     ]       

 
           

 

Fermions have half integer spin. With fermions the creation and 

annihilation operators a and aϯ have different commutation relations. 

Instead of commuting, these operators anti-commute. 

Measurement 

We differentiate between a measurement using a piece of equipment and 

an observation as is done between items in universe. In the particle view 

the measuring equipment scrambles the phases. After that scrambling an 

observation is done. In the wave view the measuring equipment takes 

care that the phases stay intact, while the amplitudes are ignored during 

the next observation. 

 

In measurement terms the scramble of the phases is called de-coherence. 

In the same sense the care to keep phases pure and the neglecting of the 

amplitudes could be called re-coherence. Both actions can be related with 

the Fourier transforms that convert the wave view into the particle view 

or vice versa. 

Measurement preparation 

In a measurement the observation follows after a preparation phase by 

the measuring equipment. Such a preparation may squeeze the shape of 

(17) 

(18) 

(19) 

(20) 
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the private field that represents the item. For example, a preparation for 

precise position measurement may squeeze the private field and change 

the item’s subspace such that its range of covered position eigenvectors 

becomes very short and that its range of covered momentum eigenvectors 

extends very far. Similarly, when a preparation is made for precise 

momentum measurement then the item’s private field is squeezed and its 

subspace is changed in the other direction, such that it covers a huge 

range of position eigenvectors and a very short range of momentum 

eigenvectors. A Fourier transform does not change the item’s subspace. It 

changes the private field of the item from position based coordinates to 

momentum based coordinates or vice versa. 

 

Changing the item’s subspace such that its range of covered position 

eigenvectors becomes very short and that its range of covered momentum 

eigenvectors extends very far is called decoherence. In case of a system it 

reduces the entanglement of that system. 

Hamilton-Jacobi 

The Hamilton-Jacobi equation shows how the Hamiltonian relates to the 

action S of the current manipulator. In this section we consider t to be the 

manipulator time! 

 

            
   
  
  

 

For the eigenvalues holds 

 
             

 

Thus, we can put 

 

         (
   
  
)      

 

(1) 

(2) 

(3) 

(4) 
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      (
   
  
) 

 

For the expectation values    of the action operator    holds  

 

      
   

  
              

   

 
        

  
       

 
  

 

–       
  
           
  

          

 

This derivation is completely independent from the observation of Q. 

Thus    has nothing to do with the Minkowski metric that appears during 

observations of position.  

The Lagrangian 

The Lagrangian is equivalent to the local geodesic equation. 

The Lagrangian    is related with the action   . 
 

    ∫     
 

 

 

 

The integral is taken over the trail with the observed path. The index   of 

the action    is the trail progression parameter. The integration parameter 

stands for the coordinate time. The right side of the equation plays in 

Lorentzian space. 

 

The Euler Lagrange equations explicitly use observations. For that reason 

the Lagrangian is considered to be a function of the observed  , the 

velocity   ̇  and the coordinate time τ. The velocity is measured with the 

coordinate time. 

 
            ̇  

 

 ̇   
  

  
 

(5) 

(1) 

(2) 

(3) 
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The Euler-Lagrange equations are: 

 
         ̇ 

   
  
 

  

         ̇ 

  ̇ 
   

 

for i = x, y, z 

 

When the Lagriangian does not vary with one or more of its parameters, 

then this corresponds with a corresponding symmetry of the system. By 

Noether's theorem224, such symmetries of the system correspond to 

conservation laws225. In particular, the invariance of the Lagrangian with 

respect to time τ implies the conservation of energy. 

By partial differentiation of the above Lagrangian, we find: 

         ̇ 

   
  
  

   
    

 
         ̇ 

  ̇ 
    ̇     

 

where the force is F = − U (the negative gradient of the potential, by 

definition of conservative force), and p is the momentum. By substituting 

these into the Euler–Lagrange equation, we obtain a system of second-

order differential equations for the coordinates on the particle's trajectory, 

   
    ̇  

  
     ̈    ̇ 

                                                 
224 http://en.wikipedia.org/wiki/Noether%27s_theorem  
225 http://en.wikipedia.org/wiki/Conservation_law  

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Conservation_law
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which is Newton's second law. 

The world’s action 

The action    represents the influences that the rest of the world via 

unitary operator    release onto the state {|f>s}s. 

 

In his book about quantum gravity Rovelli writes: 

"In the general relativistic parlance 'matter' is anything which is not the 

gravitational field. As far as current physics knows, the world is made up 

of the gravitational field, Yang Mills fields, fermion fields and, 

presumably, scalar fields."226 

 

All these fields give a contribution to the action S. 

 

S(e, ω, A, ψ, φ)  

 
= SGR[e, ω] + Smatter[e, ω, A, ψ, φ] = SGR[e, ω] + SYM[e, A] + Sf(e, ω, A, ψ) +Ssc[e, A, φ) 

 

e is the gravitational field. 

A(q) is the electromagnetic field. 

ω(q) is the spin connection. It is a one form in the Lie algebra of the 

Lorentz group so(3,1) 

ψ(q) is a scalar field, possibly with values in the representation of the 

Yang Mills group. 

φ(q) is a field in the spinor representation of the Lorenz group. 

A(q) has a non Abelian connection to the Yang Mills group. 

 

The local characteristics of these fields must be represented in the 

eigenvalue of the current manipulator. 

Representing multiple fields 

Professor Mendel Sachs recently wrote a few books in which he promotes 

the inclusion of more terms in the metric than Einstein did. Sachs uses a 

                                                 
226 Carlo Rovelli, book: Quantum gravity, 2004, chapter 2, paragraph 2.1.2 

(1) 
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four vector with quaternionic coefficients in order to specify the metric. 

Sachs uses all sixteen terms, while Einstein skipped six due to symmetry 

considerations. The argument of Sachs is that the symmetry is broken due 

to the characteristics of the quaternion number space. See: 

http://www.compukol.com/mendel/publications/publications.html.  

 

16-ons contain the required 16 real numbers that can be arranged as a four 

vector with quaternion coefficients. Sachs still uses the Minkowski metric. 

So, his view concerns observed spacetime.  

  

http://www.compukol.com/mendel/publications/publications.html
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Planck limits for all physical observables 
This is taken from: http://www.motionmountain.net/research.html . 

Basic measures 

The basic measures of physics are: 

 

The Planck-length,     √                 
      

 

The Planck-time,      √                
      

 

The Planck energy is given by:       √              

Fundamentals 

A large part of modern physics can be summarized in four simple and 

fundamental statements on motion: 

 
quantum theory on action:       
thermodynamics on entropy:       
special relativity on speed:       
general relativity on force:  

   
   

  
  

 

These limits are valid for all physical systems, whether composite or 

elementary, and for all observers. Note that the limit quantities of special 

relativity, thermodynamics, quantum theory and general relativity can 

also be seen as the right-hand sides of the respective indeterminacy 

relations: 

 
length   and acceleration              
the displacement   and momentum 

         
 

 
 

temperature   and energy   
 
 

 
    

 

 
 

Energy flow   and size   
      

  

  
 

 

(1) 

(2) 

(3) 

http://www.motionmountain.net/research.html
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By combining the three fundamental limits, we can obtain limits on a number of 

physical 

observables.The following limits are valid generally, for both composite and 

elementary 

systems: 

 

time interval: 

    √
   

  
                

time-distance product: 
     

   

  
                  

acceleration: 

     √
  

   
                   

angular frequency: 

       √
  

   
                 

 

Adding the knowledge that space and time can mix, we get: 

 

distance: 
    (

   

  
)
   

                

area: 
    
   

  
                  

volume: 
    (

   

  
)
   

                   
curvature: 

    
  

   
                  

mass density: 
    

  

     
                   

 

Elementary particles 
A particle is elementary if the system size   is smaller than any conceivable 

dimension, thus for elementary particles:  

    
 

  
 

 

(1) 
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Using this limit, we find the well-known mass, energy and momentum limits, 

valid only for elementary particles: 

 

    √
   

  
                                     

 

    √
    

  
                                

 

 

    √
    

  
                                 

Virtual particles 

Virtual particles do not obey the mentioned limits. 

EM limits 
Our discussion of limits can be extended to include electromagnetism. Using the 

(lowenergy) 

electromagnetic coupling constant  , we get the following limits for physical 

systems interacting electromagnetically: 

 

electric charge     √                       

electric field 

     √
  

         
  
  

   
                 

magnetic field 

    √
  

         
  
  

   
               

Voltage 

     √
  

       
    √

   

  
               

Inductance 

     
 

     
√
   

  
  
 

  
√       

                

(2) 

(3) 

(4) 
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With the additional assumption that in nature utmost one particle can occupy one 

Planck volume, we get 

 

charge density 

     √
    

    
  

 
    √

  

      
 

                  
Capacitance 

         √
   

  
     √ 

  

   
  

               
 

For the case of a single conduction channel, we get 

 

electric resistance 
    

 

      
                  

electric conductivity               
              

electric current 

    √
      

 
     √

  

   
                

 

Indeterminacy relations: 
 

  capacity and   potential 

difference 
          

Electric current   and time             
 

Derived limits 

The ratio of angular momentum   to energy   times length   has the 

dimensions of inverse speed. Since speeds are limited by the speed of 

light, we get 

 

          
 

 
    

 

The action limit 

(1) 
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is not exceeded in any physical process. 
Since action values in nature are limited from below by  , we get a limit for the 

speed of a system: 

 

            
  
 

  
 

 

This is not a new result; it is just a form of the indeterminacy relation of quantum 

theory. 

Thanks to the connection         between action , force  , distance   and 

time  , we can deduce 

 

          
 

  
  
 

  
  

 
The power   emitted by a system of size   and mass   is limited by 

 

   
  

 
                

 

  
  

 
In 1973 Bekenstein discovered a famous limit that connects the entropy   of a 

physical system with its size and mass. No system has larger entropy than one 

bounded by a horizon. The larger the horizon surface, the larger the entropy.  

 
 

      
    

 

      
  

 

which gives 

 

     
  

   
     

 

where   is the surface of the system. Equality is realized only for black holes. 

We assume that the limits for vacuum are opposite to those for matter. 

We can then write  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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for the vacuum. 

Using 
 

         
    

 

         
  
 

         
  
         
 
  

 

we get 

 

    
   

 
      

    

 
    

 

This is called Bekenstein’s entropy bound. 

 
A lower limit for the temperature   of a thermal system can be found using the 

idea that the number of degrees of freedom of a system is limited by its surface, 

or more precisely, by the ratio between the surface and the Planck surface. We 

get the limit 

 

    
   

   
  
 

  
  

 
Lower limit for the electric field  : 

 

        
  

    
  

 
Lower limit for the magnetic field  : 

 

    
   

 
 
  

    
 

Cosmological limits 

Cosmology is characterized via the cosmological constant   by the 

inequality: 

 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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For single particles, the absolute lower speed limit, the cosmological 

speed limit, is given by: 
 

            
√     

         
                √            

        

 
The negative energy volume density          corresponds to a force value  

 

    
   

  
                 

 
This is also the gravitational force between two corrected Planck masses 

located at the cosmological distance √     . 

 
In nature there is a minimum time interval,            , the Planck-time. 

 

A recent prediction derived from the standard model of elementary 

particles give as an upper limit for the electron dipole moment    a value 

of 

 
    

 
             

 

The mass m of any elementary particle is constrained by the Planck mass 
    

 

    
 

     
   √

  

 
                 

                         .  

 

The maximum possible value for mass density     is 

 

      
  

   
                    

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Within a factor of order one, we find 

 

    
  

  
                     

 
as a limit for the surface curvature   in nature. In other words, the universe has 

never been a point, never had zero age, never had infinite density, and never had 

infinite curvature. 

Limit quality 
Nature provides two limits for each observable: a Planck limit and a cosmological 

limit.  

All measurements are limited in precision. 

Because of the fundamental limits to measurement precision, the measured values 

of physical observables do not require the full set of real numbers. In fact, limited 

precision implies that observables cannot be described by the real numbers. 

At Planck scales it is impossible to distinguish between matter and vacuum. 

Vacuum and matter do not differ at Planck scales. Similarly, at the Planck-length 

it is impossible to distinguish between positive and negative time values: so 

particles and antiparticles are not clearly distinguished at Planck scales. 

 

The strictest upper limits are those with the smallest exponent for length, and the 

strictest lower limits are those with the largest exponent of length. 

The accuracy of time measurements is limited by the Planck-time    . 
The accuracy of length measurements is limited by the Planck-length    . 
All measurements – be they measurements of position, speed, mass or any other 

observable – are electromagnetic. In other words, all measurements in nature are 

detection of photons. And in strand theory photon absorption and detection are 

intimately related to the crossing switch. 

All electromagnetic information is communicated by directed information 

carrying quanta in the form of shot noise. However, secondary information can be 

derived from the shape of the quantum cloud. 

References: 
More useful stuff is collected in the toolkit 

Axiomatic Quantum Theory, W. Lücke, http://arxiv.org/PS_cache/quant-

ph/pdf/9510/9510024v2.pdf  

(7) 

http://www.scitech.nl/English/Science/Toolkit.pdf
http://arxiv.org/PS_cache/quant-ph/pdf/9510/9510024v2.pdf
http://arxiv.org/PS_cache/quant-ph/pdf/9510/9510024v2.pdf
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An overview of gravity theories: 

http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.4672v2.pdf.  

  

http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.4672v2.pdf
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On the Origin of Physical Fields 

Abstract 
Physical fields form the solution of nature for the problem that the set of 

observations is overwhelming the set of underlying variables. 

On the origin of physical fields. 
The Hilbert book model is a simple model of physics that is strictly based 

on traditional quantum logic and on the lattice isomorphic model; the set 

of subspaces of an infinite dimensional separable Hilbert space for which 

the inner product is specified by using quaternions227. 

This restriction results in the fact that all sets of variables are countable. 

At the same time most observations are taken from a continuum. As a 

result the set of potential observations overwhelms the set of variables228. 

The situation is comparable to the situation in which the number of 

equations is far larger than the number of variables that should form the 

result. In such cases, probably, the set of equations will appear to be 

inconsistent. In order to cure the situation, it is common to assume that 

the observations are inaccurate. The inaccuracy must be stochastic or with 

other words the observation result must be blurred. 

Nature applies a similar solution, but instead of a simple spread function 

in the form of a probability density distribution, nature applies a 

quaternionic probability amplitude distribution (QPAD). This QPAD can 

be split into a real part that represents a “charge” density distribution and 

an imaginary part that represents a corresponding “current” density 

distribution. The “charge” represents the set of properties of the thing that 

is being observed. The parameter of the distribution represents the 

location at which the “charge” is observed. The squared modulus of the 

                                                 
227 See: http://www.crypts-of-physics.eu/HilbertBookModelEssentials.pdf 
228 A continuum has a higher cardinality than a countable set.  
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QPAD represents the probability density of the presence of the “charge” 

at the location that is specified by the parameter. 

This approach transfers the dynamics of the observation into a streaming 

problem. The equation of motion of the “charge” becomes a continuity 

equation229. 

The properties of particles move according to the above principle. With 

each elementary particle belong one or more QPAD’s that act as private 

fields of the particle and that determine its dynamic behavior when it 

moves freely. However, these fields overlap. In this way these fields and 

the corresponding particles interact. 

A subset of the elementary particles is massless. These particles 

correspond to a single QPAD. That does not say that their fields cannot 

overlap with other QPAD’s.  

All other elementary particles are identified by an ordered pair of QPAD’s 

that are two field sign flavors of the same base field. The coordinate 

system, whose values are used as field parameter, has its own field sign 

flavor and acts as a sign flavor reference. 

Categories of fields 
Two categories of fields exist; QPAD’s and administrator fields. 

Primary fields 

The first category consists of quaternionic probability amplitude 

distributions (QPAD’s). The QPAD’s may overlap and through this 

superposition they may form covering fields. The QPAD’s exist in four 

sign flavors. The same holds for the covering fields. The QPAD’s may 

interact. When different sign flavors interact the strength of the local 

interaction is characterized by a coupling factor. The members of this 

category will be called primary fields. 

Secondary fields 

The second category consists of administrator fields. These fields 

administer the effect of interactions on the local curvature of the 

                                                 
229 Another name for “continuity equation” is “balance equation”. 
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positioning coordinate system. For all properties that characterize a 

coupling of sign flavors of primary fields an administrator field exist that 

registers the influence of that property during interactions on the local 

curvature. 

 

One of these administrator fields is the gravitation field. It administers the 

influence of the strength of the coupling between sign flavors of primary 

fields on the local curvature.  

The electromagnetic fields administer the influence of the electric charge 

on the local curvature. 

 

The angular momentum including the spin also influences the local 

curvature. Also this effect is administered 

 

The members of this category will be called secondary fields or 

administrator fields. 

Metric 

The local metric is a tensor. It intends to register the influence of fields on 

the local curvature. In order to do this it requires a coordinate system and 

a way to qualify the influence that the local value of the fields has on the 

selected coordinate system. It can do this via “charges”, thus the 

properties that characterize the local QPAD’s. Or it can use the values of 

the administrator fields. For example the Kerr Newman metric uses the 

local mass (density), the local electric charge (density) and the local 

angular momentum (density) in order to relate these to the local 

curvature230.  

Geo-cavities 
The massive elementary particles correspond to two shearing QPAD’s, 

which are sign flavors of the same base field. This combination is capable 

of generating a geo-cavity at the center location of the particle231. 

                                                 
230 See next part. 
231 See: http://www.crypts-of-physics.eu/OriginOfMass.pdf  

http://www.crypts-of-physics.eu/OriginOfMass.pdf
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Nothing exists in universe, but QPAD’s and geo-cavities. 
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Part four 
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On the Origin of Mass 
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On the Origin of Mass 

Abstract 
Mass is caused by fields of elementary particles that are able of creating 

geo-cavities at their center. Another cause is the presence of a different 

geometric anomaly such as a black hole. 

Geo-cavities 
Geo-cavities are geometrical abnormalities in the form of holes in the local 

geometry of a (pseudo)-Riemannian manifold.  

 

A Riemannian manifold 232is a real differentiable manifold in which each 

tangent space is equipped with an inner product, a Riemannian metric, 

which varies smoothly from point to point. On a pseudo-Riemannian 

manifold233 the metric tensor need not be positive-definite. Instead a 

weaker condition of non-degeneracy is imposed. 

 

The environment of a geo-cavity is described by a metric. The value of the 

metric depends on a selected coordinate system. Spherical geo-cavities 

require that the local geometry is specified using spherical coordinates. 

 

Inside the hole no coordinates exist. Thus, the coordinates must 

circumvent the geo-cavity. 

 

As a consequence, geo-cavities are surrounded by a very strong local 

curvature that follows the skin of the geo-curvature. 

 

                                                 
232 http://en.wikipedia.org/wiki/Riemannian_manifold  
233 http://en.wikipedia.org/wiki/Lorentzian_manifold  

http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Lorentzian_manifold#Lorentzian_manifold
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Nothing is present inside a geo-cavity. A quaternionic probability 

amplitude distribution234 (QPAD) can be interpreted as the combination of 

a charge density distribution and a current density distribution. The 

squared modulus of this QPAD is a distribution of the presence of the 

load of properties that the QPAD transports. Thus QPAD that is defined 

in the neighborhood of the geo-cavity goes to zero when its parameter 

approaches the geo-cavity. 

 

Information can neither enter nor leave the geo-cavity. 

 

Geo-cavities have a skin and that skin has an area. 

 

All geo-cavities have a virtual mass. This mass relates to the area of its 

skin.  

The curvature in the surround of the geo-cavity corresponds to a 

gravitational potential that depends on the mass of the geo-cavity. 

 

When the area of the skin is large enough, then a geo-cavity has entropy. 

In that case the entropy is proportional to the area of its skin. Entropy has 

an integer value. The unit of entropy is set by Boltzmann’s constant. 

 

Geo-cavities may have electrical charge. This charge corresponds to an 

electrostatic potential. Electric charge has an integer value. The unit of 

electrical charge is fixed. Some elementary particles (quarks) have a 

charge which is ⅓ or ⅔ of that unit value. 

 

The metric is a function of the properties of the geo-cavity. 

 

Geo-cavities generate a gravitation field and when appropriate a 

Coulomb field. Both fields are administrators. The gravitation field 

administers the curvature that corresponds with the metric. The Coulomb 

                                                 
234 http://www.crypts-of-physics.eu/OriginOfPhysicalFields.pdf  

http://www.crypts-of-physics.eu/OriginOfPhysicalFields.pdf
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field administers the scalar and vector potential that is caused by the 

electric charge. 

Reference coordinates 
The situation can be described by two coordinate systems. One is a flat 

reference system the other is mostly flat, but it can locally be strongly 

curved. The reference system can be used to locate the center of the geo-

cavities. The values of the curved coordinate system are used as 

positioning parameters. 

Classes of geo-cavities 
Several classes of geo-cavities exist. 

 

One class of geo-cavities is generated and supported by a set of shearing 

fields. These fields are quaternionic probability amplitude distributions 

(QPAD’s). Their squared modules are probability density distributions 

that describe the probability of the presence of a load of properties that 

characterize the set of coupled fields. We indicate the density distribution 

of the probability of presence with the shorthand PPDD. Inside the skin of 

the geo-cavity the PPDD does not exist and on approach of the skin the 

PPDD goes to zero. 

The elementary particle geo-cavities share their properties with the fields 

that generate and support them. In this way, the geo-cavities relate to the 

gravitation field and the Coulomb field. Both fields are administrators. 

 

Another class of geo-cavities is formed by the black holes. The event 

horizon of the black hole forms the skin of the geo-cavity.  

 

As an alternative to the Big Bang, the start of the universe can also be 

thought to be implemented by a start-cavity. 
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Elementary particles 
The equation of motion of an elementary particle is a continuity equation. 

It means that describing the motion of elementary particles is in fact a 

streaming problem. The general form of the equation of free motion of a 

massive elementary particle is235: 

 
             

 

Here the quaternionic nabla operator is the transporter    indicates the 

transported quaternionic field sign flavor236.    indicates the coupled 

quaternionic field sign flavor and   is the coupling factor. 

The ordered pair         identifies the quantum type. The field 

configuration determines the coupling factor. 

The coupling factor   follows from: 

 

  ∫            
 

     ∫           
 

     ∫        
 

     

 

The two fields shear. At the location of the sign switch the fields produce 

a geo-cavity. The size of this geo-cavity is determined by the strength of 

the coupling factor  . 

This geo-cavity is surrounded by a curvature of the geometry that is so 

strong that information cannot pass the skin of the geo-cavity. Outside of 

the geo-cavity the curvature follows a pattern that corresponds to the rest 

mass of the particle. 

The gravitation field administrates this curvature237. 

The surround of the geo-cavity is described by a metric, which is a 

function of the properties of the ordered pair        . Many of these 

properties are combined in the “charge” that is transported by the field 

  . These properties are: 

                                                 
235 http://www.crypts-of-physics.eu/EssentialsOfQuantumMovement.pdf  
236 Quaternionic fields have sign flavor. Elementary particles have flavor. 

http://en.wikipedia.org/wiki/Flavour_(particle_physics)  
237 http://www.crypts-of-physics.eu/TheCauseOfGravitation.pdf  

(1) 

(2) 

http://www.crypts-of-physics.eu/EssentialsOfQuantumMovement.pdf
http://en.wikipedia.org/wiki/Flavour_(particle_physics)
http://www.crypts-of-physics.eu/TheCauseOfGravitation.pdf
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 The coupling factor m 

 The electric charge. 

 The color charge. 

 The spin. 

The coupling factor and the electric charge are isotropic properties. 

The color charge and the spin are anisotropic properties. 

The coupling factor and the spin are integral properties. 

 

The geo-cavity that is produced by an electron does not have the values of 

the Kerr–Newman metric that characterize black holes. Already the 

structure of the pair of field sign flavors that surround the geo-cavity 

differs from the structure of the EM field that is supposed to surround a 

charged black hole. 

 

The heaviest top quark has a mass of             

In physics, the Planck mass (  ) is the unit of mass in the system of 

natural units known as Planck units238. It is defined as 
 

   √
   

 
                                          

 

The Planck mass is approximately the mass of the Planck particle239, a 

hypothetical minuscule black hole who’s Schwarzschild radius equals the 

Planck length.  

 

    √                 
     . 

 

                                                 
238 http://en.wikipedia.org/wiki/Planck_units  
239 http://en.wikipedia.org/wiki/Planck_particle  

(3) 

(4) 

http://en.wikipedia.org/wiki/Planck_units
http://en.wikipedia.org/wiki/Planck_particle
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The Planck mass is the smallest possible mass for an observable black 

hole. 

This also leads to the conclusion that the elementary particle geo-cavity 

differs from the black hole geo-cavity. 

 

The elementary particle geo-cavity cannot be limited by the Planck mass. 

At a significant distance from its skin it must still deliver the proper 

curvature and the corresponding gravitation field. This means that the 

elementary particle geo-cavity is a pure classical geo-cavity. On radii 

below the Planck scale the curvature   is specified by the strictly 

geometric formula: 

 
       

 

The elementary particle geo-cavity is considered to have a radius defined 

by: 

 

   
   

  
 

 

The radius is far below the Planck length. 

Thus, the unit of entropy does not fit into the elementary particle geo-

cavity. 

For deeper investigation, see: http://arxiv.org/abs/0802.2914 . 

Black holes 

When considered as an observed item, a black hole fulfills the 

specification of a geo-cavity240. The main difference with the usual notion 

of a black hole is that a geo-cavity is per definition empty. Within its skin 

nothing is present. A black hole is surrounded by a very strong curvature 

field such that information can no longer pass the skin of the hole. 

Therefore the hole can as well be completely empty. What happens to the 

                                                 
240 Usually a black hole is not considered to be empty. However, it is impossible to check 

this fact. 

(5) 

(6) 

http://www.linkedin.com/redirect?url=http%3A%2F%2Farxiv%2Eorg%2Fabs%2F0802%2E2914&urlhash=-sLQ&_t=tracking_disc
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material that is sucked up by the black hole? Well, that will be ripped 

apart into its smallest possible parts. Part of the debris is used to widen 

the skin of the hole. The other part escapes from the absorption process 

and is reflected back. The hole gets bigger, but that only becomes visible 

via the enlargement of the skin. The surface of the skin gives an indication 

of the mass, which the hole represents. The curvature around the black 

hole is in correspondence with this mass. However, the hole itself is 

empty.  

The black hole fulfills the definition of a geo-cavity. However, it is a rather 

large one. 

The skin of the black hole can be seen as a collection of ground states of 

absorbed particles. Each of these ground states occupies a very small part 

of the surface and each represents a minimum amount of information. In 

this way is the entropy of a black hole relates to the surface of the skin. 

Black holes fulfill the no-hair theorem241. 

The surround of a black hole is described by a Kerr-Newman metric242.  

Black hole creation 

Black holes are believed to be created when a huge star collapses under its 

own weight. However this is a far too simple picture. Indeed the 

enormous pressure near the center of a huge stage is required to generate 

the germ of a black hole that in different environmental conditions would 

easily fall apart. However this germ is surrounded by plenty of food such 

that it can grow quickly into a more durable black hole. As long as there is 

sufficient supply of star-matter the size of the black hole will increase. 

After a while, all of the star-matter is consumed or pushed away, out of 

reach of the black hole. The consumed matter is ripped apart and attached 

to the skin of the black hole. That skin grows. It is the carrier of all 

properties of the black hole. Instead of the consumed star, now the black 

hole is attracting matter from its environment.  

 

                                                 
241 http://en.wikipedia.org/wiki/No-hair_theorem  
242 http://en.wikipedia.org/wiki/Kerr%E2%80%93Newman_metric  

http://en.wikipedia.org/wiki/No-hair_theorem
http://en.wikipedia.org/wiki/Kerr%E2%80%93Newman_metric
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So, the center of the star does not collapse, it is converted into a black hole 

that eats the star from inside out. During the process the outer part of the 

star collapses in the direction of the much smaller black hole. 

Creating a black hole germ 

Even when creating a black hole germ would mean that it is very short 

lived under normal conditions, it may hold the opportunity that under 

the proper conditions the germ can grow into a more durable form before 

it normally should collapse. 

This fact makes the creation of black hole germs an interesting subject. 

The start cavity 
At its start the universe may have consisted of space that was empty 

except for a large geometric abnormality. It was a geo-cavity with nothing 

outside its skin and nothing inside its skin.  

The skin consisted of ground states of particles. This cavity appeared to be 

instable and imploded243. The debris spread through the space that came 

available. The ground state obtained energy and their fields unfolded. 

The size of the start cavity was huge and so was the mass that it 

represented. This mass was converted to energy, which became attached 

to the ground states. 

The start cavity fits in the definition of a geo-cavity. 

Metrices 

Kerr-Newman metric 
The Kerr–Newman metric describes the geometry of spacetime in the 

vicinity of a rotating mass M with charge Q. The formula for this metric 

depends upon what coordinates or coordinate conditions are selected. 

Spherical coordinates 

The line element    in spherical coordinates is given by: 

 

                                                 
243 This differs from the picture that corresponds to the Big Bang.  
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where the coordinates         ϕ are the parameters of the standard 

spherical coordinate system. The length-scales   ρ       have been 

introduced for brevity. 

 

  
 

   
 

 
                  

 

            
    

  

 

   is the Schwarzschild radius244 (in meters) of the massive body, which is 

related to its mass   by 

 

   
   

  
 

 

where   is the gravitational constant245.  

 

Compare this with the Planck length,     √       

The Schwarzschild radius is radius of a spherical geo-cavity with mass  . 

The escape speed from the surface of this geo-cavity equals the speed of 

light. Once a stellar remnant collapses within this radius, light cannot 

escape and the object is no longer visible. It is a characteristic radius 

associated with every quantity of mass. 

 

                                                 
244 http://en.wikipedia.org/wiki/Schwarzschild_radius  
245 http://en.wikipedia.org/wiki/Gravitational_constant  
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(5) 

http://en.wikipedia.org/wiki/Schwarzschild_radius
http://en.wikipedia.org/wiki/Gravitational_constant
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   is a length-scale corresponding to the electric charge   of the mass 

 

  
  
   

      
 

 

where 
 

    
 is Coulomb's force constant246. 

Cartesian coordinates 
The Kerr–Newman metric can be expressed in "Kerr–Schild" form, using a 
particular set of Cartesian coordinates  
 

                
 

  
    

        
           

 

   
       

     
 

 

   
       

     
 

 
     

 

Notice that   is a unit vector. Here   is the constant mass of the spinning 

object,   is the constant charge of the spinning object,   is the Minkowski 

tensor, and   is a constant rotational parameter of the spinning object. It is 

understood that the vector   is directed along the positive z-axis. The 

quantity   is not the radius, but rather is implicitly defined like this: 

 

  
     

     
 
  

  
 

 

                                                 
246 http://en.wikipedia.org/wiki/Coulomb%27s_law  
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http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Minkowski_space#Standard_basis
http://en.wikipedia.org/wiki/Minkowski_space#Standard_basis
http://en.wikipedia.org/wiki/Coulomb%27s_law
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Notice that the quantity   becomes the usual radius   √         

when the rotational parameter   approaches zero. In this form of solution, 

units are selected so that the speed of light is unity      .  

 

In order to provide a complete solution of the Einstein–Maxwell 

Equations, the Kerr–Newman solution not only includes a formula for the 

metric tensor, but also a formula for the electromagnetic potential:  

 

   
    

        
   

 

At large distances from the source (R>>a), these equations reduce to the 

Reissner-Nordstrom metric247 with: 

 

   (           ) 

 

The static electric and magnetic fields are derived from the vector 

potential and the scalar potential like this: 

 
      

 
      

Schwarzschild metric 

Schwarzschild coordinates 

Specifying a metric tensor248 is part of the definition of any Lorentzian 

manifold249. The simplest way to define this tensor is to define it in 

compatible local coordinate charts and verify that the same tensor is 

defined on the overlaps of the domains of the charts. In this article, we 

                                                 
247 http://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric  
248 http://en.wikipedia.org/wiki/Metric_tensor  
249 http://en.wikipedia.org/wiki/Lorentzian_manifold  

(7) 

(8) 

(9) 

(10) 

http://en.wikipedia.org/wiki/Einstein%27s_field_equation#Einstein.E2.80.93Maxwell_equations
http://en.wikipedia.org/wiki/Einstein%27s_field_equation#Einstein.E2.80.93Maxwell_equations
http://en.wikipedia.org/wiki/Reissner-Nordstrom_metric
http://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Lorentzian_manifold
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will only attempt to define the metric tensor in the domain of a single 

chart. 

In a Schwarzschild chart250 (on a static spherically symmetric spacetime), 

the line element    takes the form 

 

     (    )
 
   (    )

 
                  ϕ   

 
                         ϕ    

 

In the Schwarzschild chart, the surfaces           appear as round 

spheres (when we plot loci in polar spherical fashion), and from the form 

of the line element, we see that the metric restricted to any of these 

surfaces is 

 
     

              ϕ            ϕ    

 

That is, these nested coordinate spheres do in fact represent geometric 

spheres with 

surface area 

 
      

  

 

And Gaussian curvature 
      

  

 

That is, they are geometric round spheres. Moreover, the angular 

coordinates     are exactly the usual polar spherical angular coordinates: 

  is sometimes called the colatitude and   is usually called the longitude. 

This is essentially the defining geometric feature of the Schwarzschild chart. 

 

With respect to the Schwarzschild chart, the Lie algebra of Killing vector 

fields is generated by the time-like irrotational Killing vector field    and 

                                                 
250 http://casa.colorado.edu/~ajsh/schwp.html 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Locus_(mathematics)
http://en.wikipedia.org/wiki/Surface_area
http://en.wikipedia.org/wiki/Gaussian_curvature
http://en.wikipedia.org/wiki/Killing_vector_field
http://en.wikipedia.org/wiki/Killing_vector_field
http://casa.colorado.edu/~ajsh/schwp.html
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three space-like Killing vector fields 
                                                      

Here, saying that    is irrotational means that the vorticity tensor of the 

corresponding time-like congruence vanishes; thus, this Killing vector 

field is hyper-surface orthogonal. The fact that our spacetime admits an 

irrotational time-like Killing vector field is in fact the defining 

characteristic of a static spacetime. One immediate consequence is that the 

constant time coordinate surfaces        form a family of (isometric) 

spatial hyper-slices. (This is not true for example in the Boyer-Lindquist 

chart for the exterior region of the Kerr vacuum, where the time-like 

coordinate vector is not hyper-surface orthogonal.) 

 

It may help to add that the four Killing fields given above, considered as 

abstract vector fields on our Lorentzian manifold, give the truest expression 
of both the symmetries of a static spherically symmetric spacetime, while the 
particular trigonometric form which they take in our chart is the truest 
expression of the meaning of the term Schwarzschild chart. In particular, the 
three spatial Killing vector fields have exactly the same form as the three 
non-translational Killing vector fields in a spherically symmetric chart on E3; 
that is, they exhibit the notion of arbitrary Euclidean rotation about the 
origin or spherical symmetry. 
However, note well: in general, the Schwarzschild radial coordinate does not 
accurately represent radial distances, i.e. distances taken along the space-
like geodesic congruence which arise as the integral curves of   . Rather, to 
find a suitable notion of 'spatial distance' between two of our nested spheres, 
we should integrate        along some coordinate ray from the origin: 
 

   ∫       
  

  

 

 
Similarly, we can regard each sphere as the locus of a spherical cloud of 
idealized observers, who must (in general) use rocket engines to accelerate 
radially outward in order to maintain their position. These are static 
observers, and they have world lines of form                     , 
which of course have the form of vertical coordinate lines in the 
Schwarzschild chart. 

(4) 

http://en.wikipedia.org/wiki/Static_spacetime
http://en.wikipedia.org/wiki/Boyer-Lindquist_coordinates
http://en.wikipedia.org/wiki/Boyer-Lindquist_coordinates
http://en.wikipedia.org/wiki/Kerr_metric
http://en.wikipedia.org/wiki/Proper_length
http://en.wikipedia.org/wiki/Integral
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In order to compute the proper time interval between two events on the 
world line of one of these observers, we must integrate        along the 
appropriate coordinate line: 
 

   ∫       
  

  

 

Schwarzschild metric 

In Schwarzschild coordinates251, the Schwarzschild metric has the form: 
 

       (  
  
 
)        (  
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                   ϕ   

 
where: 

   is the proper time (time measured by a clock moving with the 
particle) in seconds, 

   is the speed of light in meters per second, 
   is the time coordinate (measured by a stationary clock at infinity) in 

seconds, 
   is the radial coordinate (circumference of a circle centered on the 
             by                

   is the colatitude (angle from North) in radians, 
   is the longitude in radians, and 
    is the Schwarzschild radius (in meters) of the massive body. 

Lemaître coordinates 
In Schwarzschild coordinates the Schwarzschild metric has a singularity. 
Georges Lemaître was the first to show that this is not a real physical 
singularity but simply a manifestation of the fact that the static 
Schwarzschild coordinates cannot be realized with material bodies inside 
the gravitational radius252. Indeed inside the gravitational radius everything 
falls towards the center and it is impossible for a physical body to keep a 
constant radius. 
A transformation of the Schwarzschild coordinate system from       to the 
new coordinates      , 
 

                                                 
251 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
252 http://en.wikipedia.org/wiki/Lemaitre_coordinates  

(5) 

(6) 

http://en.wikipedia.org/wiki/Proper_time
http://en.wikipedia.org/wiki/World_line
http://en.wikipedia.org/wiki/Proper_time
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Schwarzschild_radius
http://en.wikipedia.org/wiki/Schwarzschild_coordinates
http://en.wikipedia.org/wiki/Lemaitre_coordinates
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leads to the Lemaître coordinate expression of the metric, 
 

        
  
 
                       

 
Where 
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In Lemaître coordinates there is no singularity at the gravitational radius, 

which instead corresponds to the point 
       

 
   . However, there remains 

a genuine gravitational singularity at the centrum, where      , which 
cannot be removed by a coordinate change. 
The Lemaître coordinate system is synchronous, that is, the global time 
coordinate of the metric defines the proper time of co-moving observers. The 
radially falling bodies reach the gravitational radius and the center within 
finite proper time. 
Along the trajectory of a radial light ray, 
 

   (   √    )    

 
therefore no signal can escape from inside the Schwarzschild radius, where 
always        and the light rays emitted radially inwards and outwards 
both end up at the origin. 
 

  

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Gravitational_singularity
http://en.wikipedia.org/wiki/Synchronous_coordinates
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How the brain works 

Abstract 
This paper analyses the associative capabilities of the brain and takes the 

consequences of that capability. 

Pre-processing 
A study on how the environment is observed and interpreted should start 

with an investigation of how the sense-organs and the brain cooperate. 

Between the sense-organs and the brain exists a series of pre-processors 

that encode and pre-interpret the incoming signals. This process also 

performs some noise filtering, such that later stages of the processing are 

not bothered by misinformation. For that reason the pre-processors act as 

decision centres where the signal transfer is blocked when the signal to 

noise ratio stays underneath a given level, e.g. 2.3 (Crozier’s law. The 

level may differ in different persons.). In this way the visual trajectories 

run via a cross-over to the cortex. The cross-over encodes and adds depth 

information. After a series of additional pre-processing steps the signal 

arrives in the fourth cortex layer. Here about four square millimetres is 

devoted to the direct environment of each receptor of the fovea. In this 

area a complete geometric encoding of the local geometry and dynamics 

of the perceived picture is presented. This includes whether the detected 

detail is a line or an edge or another form, in which direction it is 

positioned and whether the detail moves. (See the papers of Hubel and 

Wiesel on the visual trajectory and the visual cortex for more detailed 

information).  

Processing 
Thus, the brain does not work with a pictorial copy of the picture that is 

received on the fovea. In further steps the encoded map is interpreted. 
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That part of the brain tries to associate the details of the map with 

remembered and recognized items. When dynamics is considered then it 

must also be considered that the eyes are continuously scanning the input 

scene. 

Image intensification 
I studied visual perception because I needed this to specify useful 

measuring standards for night vision and X-ray imaging equipment 

(~1975). Many of the known visual illusions are due to the pre-processing 

in the visual trajectory. The viewing chain includes lenses, image 

intensifier tubes and either a camera or the human visual system. This last 

component includes the eye ball. The object is noisy and can be 

considered as a Poisson process. With respect to the noise the optical 

components act as binomial processes. Their point spread functions act as 

integration area. Image intensification is usually a Poisson process, but 

channel plates are characterized by an exponential distribution rather 

than by a Poisson distribution. Chains that include Poisson processes and 

binomial processes can be considered as one generalized Poisson process. 

Thus, imaging chains that include channel plates are more difficult to 

characterize.  

Imaging quality characteristics 
When the imaging chain can be characterized by a Poisson process, then 

its quantum detection efficiency can be characterized by the Detective 

Quantum Efficiency (DQE). Its optical imaging quality can be 

characterized by the Optical Transfer Function (OTF). With 

inhomogeneous light imaging it is sufficient to use the modulus, the 

Modulation Transfer Function (MTF). The MTF of the chain is the product 

of the MTF’s of the components of the imaging chain.  
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Vision of noisy images 
The intensification of image intensifiers is such that at low radiation levels 

the output image is formed by large numbers of separate light dots that 

together give the impression of a snowy picture. The visual trajectory 

contains a sequence of pre-processors that each performs a part of the 

encoding of the object. At its input the visual cortex gets an encoded 

image rather than an optical image of the perceived scene. This encoded 

image is further encoded and interpreted in channels higher in the brain. 

This is done by associating the elements of the encoded image that is 

entering the visual cortex. The folded visual cortex offers about four 

square millimetres for the encoding of the environment of each separate 

receptor in the fovea. The pre-processors act as decision centres. When the 

offered signal to noise ratio is too low then nothing is passed. This is a 

general principle in the encoding process and also governs the association 

of encoded data in other parts of the brain. 

 

The research resulted in a significant contribution of our laboratory to the 

world standards for the measurement of the OTF and the DQE. 

Information association 
The associative nature of the process is common for al kinds of objects 

and parts of objects. That includes objects that did not enter through one 

of the sense-organs. For example a house is not stored in the brain as a 

complete concept. It is stored as a series of details that can be associated to 

the concept. If a sufficient number of these details are detected then a 

decision centre in the brain decides that the whole concept is present. In 

this way not only a particular house can be recognized, the process can 

recognize a series of objects that resemble the original house. It classifies 

houses. By adding details that can be associated with it, the concept of a 

house can be widened. The resulting information, i.e. the information that 

passed the decision centre, is used for further reasoning. Together with 

other details the same details can also be used to detect other concepts by 

a different association. When the association act still produces too much 
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noise, then the information is not produced and further reasoning is 

neither disturbed nor triggered by this fact. High enough in the hierarchy 

individuals can be discerned. The brain is not static. The network of 

communication paths and decision centres is dynamically adapted to the 

changing needs. 

Noise filter 
The decision level for the signal to noise ratio may vary from person to 

person. If the level becomes too low the person may start hallucinating. 

Further, the level may be influenced by body owned messenger stuff, 

drugs, poisons and medicines.  

Brain waves 
On the other hand one must not underestimate the positive value of noise. 

Noise may be the stimulus of new thoughts. These are built upon existing 

association networks to which via noise or via a new impression a new 

aspect is added. This may lead to several conclusions that did not exist 

before. 

Reasoning 
The brain is capable to perform complex reasoning. However it must be 

trained to perform the reasoning in a logical way. For example, it must 

learn that the start from a false presumption can cause the deduction of 

any conclusion, just or false. When a path of reasoning is helpful, then it is 

stored in a similar way as an observation. Not the reasoning itself is 

stored, but the details that are part of the reasoning path. Also here 

association of the details and a suitable noise threshold plays its role. The 

reasoning can be identified as a theory and its concept can be widened. 

The brain can also generate new details that together with existing details 

can act as a reasonable theory. Even noise can generate such signals. 

These details can be perceived as a dream or as a newly invented theory. 

It depends whether the theory is accepted as realistic. That means that the 
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brain must be capable of testing the realism of a theory. This testing can 

be improved by training. The brain can forget stored details and stored 

concepts. This holds for objects as well as theories. Valuable concepts are 

regularly refreshed and become better remembered. 

Other species 
Hubel and Wiesel did their experiments on several kinds of vertebrates, 

such as goldfishes, cats and humans. Their main target was visual 

perception. Where the handling of the signals of sense organs in the 

brains is quite similar for all vertebrates, the handling of paths of 

reasoning by humans is superior in comparison to other vertebrates.  

Humans 
Humans have an advantage over other vertebrates. Apart from direct 

observation the theories and the concepts of things can also be retrieved 

by communication with other parties. This occurs by education, 

discussion, reading books, papers or journals, seeing films or videos or 

surfing the internet. These media can also act as a reference medium that 

extends the storage capacity of the brain. 

Science 
Mathematics is a particularly helpful tool that extends the capability of 

the brain to perform reasoning in a logical and precise way. Physics 

extends this capability further with focus on observables. Philosophy 

adds self-reflection and focuses on the why and how of existence. Every 

branch of science adds to the capabilities of the individuals and to the 

effectiveness of the community. 

Physical reality 
Our brain has a limited storage capability. We cannot comprehend things 

that have an enormous complexity. However we can detect regularities. 
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Our brain is optimized to detect regularities. The laws of physics appear 

regularly in our observations or can be deduced from regularly returning 

observations. More complex laws are derived using tools and in 

combination with other people. Nature is not only controlled by laws. It is 

also controlled by boundary conditions. These boundary conditions may 

be caused by the influence of items that lay beyond the reach of our direct 

observations. The number and complexity of boundary conditions far 

outgrows the number of recognized laws of nature. The laws of nature 

play a role in our theories. However, the boundary conditions play a 

much smaller role. This is because the laws of nature that we detect treat a 

simplified version of the environment. In this abstraction the boundary 

conditions play no realistic role. This is another reason why our theories 

differ from physical reality. 

Theories 
These deliberations learn that theories are a product of our mind. They 

can be used as a looking glass that helps in the observation and 

interpretation of physical reality. However, it is false to interpret the 

theories as or as part of physical reality. When a theory fits, then it is 

congruent, to some extent, with physical reality. That does not say that we 

as human beings and the environment from which we take our 

observations are not part of reality. It says that what our brain produces is 

another thing than physical reality. 

Inventions of the human mind 
Infinity is typically an invention by the human mind. There exist strong 

indications that nature does not support infinity. In the same sense 

unlimited precision real numbers are prohibited in the physical universe 

by the holographic principle and the Bekenstein bound. However, we can 

embed the results of our observations in a model that includes infinities 

and unlimited precision. For example classical mechanics and field 

theories use these concepts. Quantum mechanics shows us that as soon as 
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we introduce unlimited precision we are immediately confronted with 

Heisenberg’s uncertainty principle. We need infinity and unlimited 

precision in order to resolve the paradoxes that otherwise creep into our 

theories. We use theories that are in direct conflict with each other. One 

forbids infinity, the other theory uses and requires it. This says at least 

one thing; none of the theories describes physical reality correctly. Thus 

none of the theories can replace the concept of physical reality. Still it 

appears useful to use both theories side by side. It means that great care 

must be taken with the interpretation of the theories. 

History 
Mathematical theories and physical theories tend to build upon the 

results of other exact theories. After some generations a very complex 

building is obtained. After a while it becomes humanly impossible to 

check whether the building elements are correct and whether the binding 

is done correctly. So, complex exact theories should be questioned. 

Dreams 
In this sense, only when we study our own dreams, fantasies or theories, 

then we observe these items and the dreams; fantasies and theories 

become part of "physical reality". If the theory is congruent with a part of 

physical reality, it will become useful as a view on physical reality. 
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Part six 
PART SIX 

A Law of Nature 
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A Law of Nature 

Abstract 
Complexity plays an important role in all kinds of human activity as well 

as in nature. Complexity can be defined in terms of the number of 

relations that must be handled accounted relative to the number of 

potential relations. Modularization is an efficient methodology that helps 

reducing the number of relevant relations. It has the property that it 

becomes more efficient when the availability and the diversity of modules 

that can be coupled increase. Its efficiency can grow exponentially when 

modules can be generated out of simpler modules. In nature this effect 

leads to the generation of very complex creatures, such as intelligent 

species. In fact it is possible to interpret this tendency as a new law of 

nature. 

Complexity 
Relations can be encountered in several areas of physics and in human 

interactions. 

We will define complexity in terms of the number potential relations 

divided by the number of relevant relations.  

 

There exists a tendency in nature to reduce complexity via 

modularization.  

 

This tendency grows when more suitable modules become available.  

Finally this tendency enables nature to create very sophisticated and 

intelligent creatures. 
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Potential complexity 
Potential complexity of a set of objects is a measure that is defined by the 

number of potential relations that exist between the members of that set. 

Actual complexity of a set of objects is a measure that is defined by the 

number of relevant relations that exist between the members of the set.  

It takes time and other resources to determine whether a relation is 

relevant or not. Only an expert has the knowledge that a given relation is 

relevant. Thus it is advantageous to have as little irrelevant potential 

relations as is possible, such that mainly relevant and preferably usable 

relations result. 

If there are n elements in the set, then there exist n*(n-1) potential 

relations. 

Physical relations 
Physics is based on relations. Quantum logic is a set of axioms that restrict 

the relations that exist between quantum logical propositions. Via its 

isomorphism with Hilbert spaces quantum logic forms a fundament for 

quantum physics. Classical logic is a similar set of restrictions that define 

how we can communicate logically. Quantum logic only describes static 

relations. Traditional quantum logic does not treat physical fields and it 

does not touch dynamics. However, traditional logic can be extended 

such that physical fields are included as well and by assuming that 

dynamics is the travel along subsequent versions of extended quantum 

logics, also dynamics will be treated. The set of propositions of traditional 

logic is isomorphic with the set of closed subspaces of a Hilbert space. 

This is a mathematical construct in which quantum physicists do their 

investigations and calculations. In this way fundamental physics can be 

constructed. Here holds very strongly that only relevant relations have 

significance. 
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Modularization 
Actual complexity can be reduced by modularization, by applying 

standard module interfaces and standard inter-module communications, 

by increasing the diversity of modules and by increasing the availability 

of modules. Another important factor is the ease of modular system 

configuration. 

Modularization can easily reduce the relational complexity of large 

complex systems by several orders of magnitude. The resources needed to 

devise and generate that system reduce by the same factor. 

Nature secures its modules literally by brute force or when those binding 

forces are not available by enveloping the module in a skin such that only 

controlled access must be accepted by the module. 

Modular system design 
The system configuration process profits most from modularization, but 

reuse of modules and interfaces also saves resources and building time. 

The capability to create modules out of simpler modules gives the 

improvement an enormous boost. 

The complexity of a modular system can be many orders of magnitude 

less than the complexity of a monolith.  

Systems can be atoms, molecules, (in-) organic stuff, organs, living objects, 

products, modules, modular subsystems, organizations, governments, 

stars, galaxies, et cetera.  

Two kinds of modular system design exist. Modularization can be done 

randomly, as is done in nature by the evolution process, or it can be done 

in an intelligent way as is done by human system designers.  

1. Stochastic module and modular system design. In this way 

modules and their coupling are created via stochastic processes. 

This way of system creation is used by nature. 

2. Intelligent module and modular system design. In this way 

modules and their coupling are designed via well planned 

processes that are controlled by intelligent individuals. 
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The efficiency of modular system generation is influenced by the 

following factors: 

 Resources needed to generate modules 

 Availability of modules 

 Diversity of modules 

 Availability of provide interfaces  

 Availability of require interfaces  

 Diversity of interfaces 

 Mutual static adaptation of provide and require interfaces 

 Mutual dynamic adaptation of modules via their interfaces 

In intelligent modular system design the following extra factors play an 

important and stimulating role: 

 Public knowledge of available modules and their static and 

dynamic specification 

 Public knowledge of available interfaces and their specification 

 Availability of standardized module design tools 

 Availability of standardized interface design tools 

 Availability of standardized modular system configuration 

tools 

 A market of standardized modules 

 Publicly accessible repositories where automatically and 

humanly readable modules are published 

 Publicly accessible repositories where automatically and 

humanly readable interfaces are published 

A large availability, couple-ability and diversity of modules ease and 

stimulate the system configuration both in the random trial and error 

approach as well as in the case of intelligent system configuration. 

Too much diversity works negative. So there exists an optimum diversity 

both for modules and for interfaces. 

The same holds for availability. Too much availability exhausts precious 

resources, which are not used effectively and could be better used 

otherwise. 
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Intelligent modularization 
Generation, management, improvement and support of modular systems 

normally cost a fraction of the time and the resources that the equivalent 

for a monolith or a layered system takes. 

In intelligent modularization publication of the capabilities of modules 

and interfaces will reduce the complexity and increase the efficiency of 

system configuration and will increase the effectiveness of module and 

interface design.  

Intelligent designers of modular systems secure the integrity of their 

modules by power such as a patent mechanism or by proper 

encapsulation. The first measure secures the intelligence property that 

went into the design. The second measure guards against unwanted 

access that may hamper the integrity of the module. Still the module must 

have publicly accessible interfaces. 

Providing tools for component and interface generation and providing 

system configuration tools will also reduce the complexity of system 

generation. Via modularization the complexity of system configuration 

can be reduced so strongly that it becomes possible to automate the 

configuration process. 

In intelligent modularization interfaces make only sense when they are 

standardized, when they are well known and when their use is widely 

spread. 

When they are well known, connected interfaces can be seen as a single 

relevant relation. In this way they replace a number of potential relations. 

Coupling 
Provide interfaces couple the server module with the require interface(s) 

of one or more client modules. Communication occurs via relations and 

via relation paths. It must be done via a well-defined protocol. Otherwise 

the communication makes no sense. Interfaces can couple modules 

directly or they can couple via communication channels. Another way of 

coupling occurs via broadcasting controls or messages. 
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Intelligent communication is usually regulated via standardized 

protocols. The regulation may concern a handshake, a send with 

immediate return or a single send or receive. A broadcast is a special type 

of communication.  

In high urgency communication and in message streaming measures 

must be taken against deadlocks and race conditions. 

An important aspect of functioning of interfaces is the quality of coupling. 

It is important with which partner they couple. It might even be a matter 

of life and death. If the serving partner has no intention to save the 

integrity of the coupled module and the module has insufficient defense 

against such attacks, than that client module may get disturbed. 

When the modules have the capability to generate siblings, as is the case 

in biologic systems, then the quality of mating is important for the success 

of the siblings. Thus in evolution not the survival of the fittest, but the 

quality of coupling is of crucial importance for the survival of species. In 

more abstract sense, the quality of coupling is important for the 

abundance of module types. 

Interfaces 
Interfaces have a type definition. Not only the static aspects of the 

interface coupling play a role, also the dynamic properties may be 

important.  

Interfaces have several general aspects. Interfaces have static 

characteristics and dynamical characteristics that mostly can be specified 

separately. An interface can be a require-interface or it is a provide-

interface. Often a require-interface and a provide-interface are combined 

in a single physical realization. In intelligent system design the require-

interface is often just a link with a type definition. It may fit at several 

types of provide-interfaces. The capabilities of this server may be larger 

than required by the client. 

For example in software there exist SW-SW interfaces, SW-HW interfaces, 

streaming interfaces and notification interfaces. A given environment may 

ask for an adapted physical implementation of the interface. 
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Communication-channels may connect require interfaces to provide 

interfaces. 

In nature in most cases physical fields play the role of interfaces. In 

biology and technology all kinds of interfaces are explored. 

Thus, there is a lot to be said about abstract interfaces. 

Principle of minimal action 
The principle of minimal action is based on the tendency of the fields to 

keep coherence between subsequent dynamical steps.  

 

If you accept that action stands for change, thus for change of properties 

of particles, thus for change in the relations between particles and that 

entropy stands for potential change, then the ratio of action and entropy 

stands for the relational complexity of nature. Thus the principle of 

minimal action stands for minimizing the relational complexity. Thus, 

even in its fundaments, nature has a built-in tendency to minimize 

relational complexity. 

The power of modularization 
Modularity enables and stimulates nature to create sophisticated 

creatures via a random process called evolution.  

The intelligent modular system creation process enables humans to create 

very sophisticated systems in much shorter time than nature took in order 

to create smart individuals. 

The laws of entropy are directed towards the increase of chaos. The 

tendency to reduce complexity via modularization works in the reverse 

direction. When more capable modules come into being, then it becomes 

possible to generate more complex systems and it becomes also possible 

to construct more complex modules out of these modules. 

Both nature and intelligent system designers make use of the advantages 

of modularization. It enabled nature to create intelligent and very 

sophisticated creatures, such as human beings. 
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Evolution is a stochastic process. Set against the fact that the system 

generation process acted by human individuals profits from the 

intelligence of the actor, nature has enormous resources like time, energy 

and matter. This gives nature an enormous potential. If one starts from 

the assumption that universe is its own creator, then it creates all of its 

parts. That also holds for such immensely complex creatures as human 

beings. The law of increasing complexity reduction via advancing 

modularization forces nature to create such hyper-complex things. 

Modularization is a very complex concept. Its aspects may easily fill a 

thick book. 

It would be best to put the influence of modularization into a law of 

nature, but due to the complexity of the modularization process it is 

difficult to formulate such a law. 

Abusing modularization 
The fact that the advantages of modularization can be denied is shown by 

several human system generation processes. The most prominent are the 

ways software is generated and the way that fusions of large 

organizations are promoted. 

See: 

Story of the war against software complexity.pdf; part six of this book 

Managing the generation process.pdf ;part seven of this book 

 

Software 
The fact that modularization is not or hardly applied in software is 

responsible for the exponential growth of the costs of the development 

and generation of complex software systems. The software industry is 

responsible for this deficiency. Their customers suffer.  

A demo project showed that if modularization is fully implemented in 

embedded software generation, then: 

file:///C:/web/NewWebSite/English/Technology/Storyofthewaragainstsoftwarecomplexity.pdf
file:///C:/web/NewWebSite/English/Technology/Managingthegenerationprocess.pdf
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 The whole world can contribute in the design of a large variety of 

modules. 

 The operating systems can be generated by the system 

configuration tool from dedicated modules that are adapted to the 

needs of the collected application modules. 

 The configuration tool can simulate and test a large part of the 

envisioned system that is generated from such a dedicated 

operating system and skeleton components that are generated on 

the basis of specifications that are taken from machine readable 

repositories. The skeletons can be replaced one by one by real 

binaries and the system can be tested at each phase.  

 Such a generation process can be largely automated and can be 

controlled by a creative system designer rather than by a genial 

system architect that takes a high risk to get a burnout when the 

project fails. 

 The overall system generation will take a few weeks of a few 

specialists compared to the hundreds of man years that are 

currently spent on comparable projects. 

 Compared to the current way of system generation the process is 

very democratic. Everybody who knows a niche of expertise can 

contribute his modules.   

 Compared to the open software solution, everybody who generates 

modules is allowed to earn money from the investment of his 

intelligent property. 
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Part seven 
PART SEVEN 

Story of a War against Software Complexity 
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Story of a War  
against Software Complexity 

Abstract 
This is the account of the course of a project that had the aim to improve 

the efficiency of embedded software generation with several orders of 

magnitude. All factors that determined the success of the project are 

treated honestly and in detail. 

Prelude  
In 1995 the physicist Hans van Leunen was employee of an internal 

software house of a large electronics company. His speciality was the 

creation of scientific software. Then he got the invitation from a software 

strategist Henk de Vries to join the semiconductor department in order to 

resolve a quickly emerging problem. The costs of complex embedded 

software were growing exponentially and this would cause severe 

problems in the next future. The reasons why the costs of software 

generation grow exponentially are the growing size and the growing 

complexity of the embedded software that goes into high-tech appliances. 

One of the reasons of the non-linear growth of costs is the growth of 

complexity. But the exponential growth of costs is mainly caused by 

surpassing of the available resources, which on its turn required measures 

against expected internal and external damage claims. In many cases 

software projects were stopped when the costs were expected to explode, 

or when they did not seem to reach the expected result. 

Analysis 
There exist several possible solutions to this dilemma. One is to move the 

software development to low wage countries. Another is to apply open 

source software. A third possibility is to increase the quality of the 
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software generation process. One way to do this is to improve the control 

of the flow of the generation process. Another way is to improve the way 

that software is generated. The management of the electronics company 

tried all these possibilities. Improving the control of the flow of the 

software generation process has little sense when the generation process 

itself has severe defects. 

Setting 
The electronics company is successful in the generation of hardware. This 

is for a large part due to the fact that hardware is generated via a modular 

approach. This is one of the reasons that the research lab of the firm 

created a dedicated way to create modular embedded software. However, 

this is a rather closed system and it is directed to the direct need, the 

generation of software for consumer appliances. Still it is intuitively felt 

that a modular approach will improve the effectiveness of software 

generation. There are also many objective reasons for this point of view. 

History 
The electronics firm was not very successful with its software projects. 

Many software projects were stopped after having burned hundreds of 

man years and millions of dollars, leaving the project leaders, system 

architects and the software designers back in despair. For that reason 

relief was sought in outsourcing of the software generation. One form of it 

is the use of open source software. Parallel to it the internal software 

generation was moved for a significant part to low wage countries like 

India. This was only a short time solution. The exponential growth of 

costs took its toll there as well.  

 

Also the switch to open source software was no smart decision. The 

electronics firm had no control over the way that the open source 

software was evolving and the open source software generation suffered 

the same bad habits as the present-day commercial software generation 



484 

 

process does. Commercial software generation and open source software 

generation are both non-modular. There exists no healthy and lively 

software modules market that stimulates the diversity, availability, 

accessibility and favourable quality/price ratio that characterizes the 

hardware modules market. Thus, the high-tech hardware appliances 

industry is still confronted with the negative aspects of the current 

software generation technology. It drives their costs high and the fragility 

of the software is transferred to the hardware products that include the 

software. The ineffectiveness of the software generation affects the 

affordability and the time to market of the hardware products. 

Strategy 
A small group of experts consisting of the software specialist Hans van 

Leunen, the software strategist Henk de Vries and a software marketing 

specialist William Vanderboon Ringer studied the resulting possibilities 

and concluded that a drastic change in the way that software is generated 

is a promising solution of the problem. The way that hardware is 

generated was taken as an example. Hardware is generated mostly in a 

modular way. Modularization reduces the relational complexity of the 

design and construction process. It also enables partition and delegation 

of the design and construction work. It even enables a flourishing 

modules market.  

Approach 
The group tried to interest vendors of embedded software generation 

tools to join the enterprise. It was obvious that international standards 

would play a crucial role. So, the group stimulated the management of the 

electronics firm to involve other electronics firms and the OMG. All these 

measures lacked sufficient success. The tool vendors were interested, but 

used the opportunity to monitor whether their current way of operation 

was endangered. They did not really take part in the development. The 

other electronics companies took the role of an observer and asked for a 
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convincing demo of the concept. OMG lets standards create by the 

interested parties. It is not usage that the standard is introduced by a 

single company. 

What happened 
The group encountered severe resistance against their intentions from 

internal software development groups, because it was expected that the 

generation of the modules would be outsourced to the suppliers of the 

software modules market. This fear is realistic. On the other hand it 

became more and more clear that the internal software generation 

capabilities were not measured up against the task to create large and 

complex embedded software systems. Several costly debacles proved this. 

Especially managers, including the managers of software groups, showed 

that they lacked a proper feeling for the factors that influence complex 

software generation. 

Attack 
The group decided to create a demo version of the modular software 

generation system that included major parts of the envisioned system. 

This includes software module development tools, system configuration 

tools, web and local file based repositories that act as searchable exchange 

places for machine and humanly readable specifications of modules and 

interfaces and central services that act as a marketplace for software 

modules. The module development tool can generate skeleton modules 

and it can generate the interface definitions from specifications that are 

retrieved from web based or local repositories. The tool helps filling the 

skeletons with working code. The configuration tool retrieves 

specifications of modules and interfaces from the repositories. It can 

retrieve the binaries of modules from the market place or from a local 

store. It enables the mostly automatic assembly of modules into target 

systems.  It adds a dedicated RTOS that consists of automatically 

generated modules. The RTOS provides automatic memory garbage 
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collection. The central service collects specifications from the module 

developers and distributes these to the web based repositories. The 

central service also collect the binaries of the modules and stores the 

specifications and the binaries in its banks. The central service acts as a 

modules market. 

Set-back 
The project of the group was severely hampered by the dot com crisis in 

2001. This stopped all long term research projects and brought the 

funding of the group to a minimum. The development of the demo 

continued at a low pace and stopped in 2004. At that time most planned 

parts of the demo worked at least for a large part.  

Remnants 
The central service worked partly. The development tools are functioning. 

Modules can be generated and the configuration tool can assemble 

systems from these modules and add a service layer that consists of 

automatically generated dedicated modules. The service layer includes 

garbage collection. It uses connection schemes and scheduling schemes 

that dynamically control the switch between system modes. The created 

system does not contain a HAL and it does not contain interrupt services. 

Instead it relies on the services of a virtual machine or a POSIX OS. This is 

not the target to work on top of hardware but it is good enough for most 

demonstration purposes. The tools generate software in C++, but as a 

bonus it can deliver C# code. That code works on top of a dotNet virtual 

machine. The tools and central services are written in C#. 

 

Apart from SW/SW interfaces the modules may contain HW/SW 

interfaces. Streaming interfaces and the notification interfaces that handle 

interrupts were planned. The skeleton of the modules are modelled after 

Microsoft’s Component Object Model (COM), but the IUnknown interface 

is replaced by the IAccessor interface. That interface replaces the AddRef 
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and Release functions with a ResetInstance routine. Instead of the 

designer, the system is made responsible for the garbage collection. For 

that reason the new module skeleton is named Robust Component Object 

Model (RCOM). 

Goal 
The demo was planned to demonstrate the generation of real-time 

embedded software. That goal is not reached. However, many aspects of 

the planned target are shown in the completed part of the demo. That part 

offers trust in the feasibility of the final goal.  

Lessons 
The project also learned many valuable lessons.  

 

 The current suppliers of software generation tools are not 

interested in a drastic change in the way that software is generated. 

 Despite the fact that embedded software is causing major 

problems, the companies that produce high-tech appliances or 

high-tech systems are hesitating to cooperate in improving the 

software generation process. Software generation is not their 

strength. 

 This world is not good in organizing actions that are rather 

complex. For that reason it is difficult to arrange standards on new 

subjects. 

 It is difficult to motivate management to enter new inroads when 

the reasons are not very simple and require insight in the topic.  

 Managers of these days are interested in short term low risk 

solutions. They are not interested in long term solutions even when 

they promise high profits. 

 The same holds for today’s investors. 

 Although most involved people intuitively see that a modular 

approach provides a better effective generation process and easier 
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support management, most of these people forget that without a 

suitable modules market the modules are too expensive and too 

scarce to make the assumption true. 

 A modular system generation approach has no sense when it does 

not include an integrated and well functioning modules market. 

This also means that a system of web based and local repositories 

that contain the specifications of modules and specifications must 

be involved as well. 

 Given enough resources, even a tiny group of determined software 

experts can design and construct a working version of a modular 

software generation system that includes all essential parts. 

Conclusions 
This world is not good at creating new standards. However, we are good 

in accepting default standards. Large electronic firms seem incapable of 

creating a suitable software generation system. Understandably, the 

existing software industry appears not willing to give up the profits that 

they retrieve from the current deplorable way of software generation.  

Way out 
There still exists a possible way to get out of this misery. When a small 

group of enthusiastic software developers and venture capital investors 

start with a project that establishes a working version of a modular 

software generation system that includes all ingredients to get a 

successful result, then they may cause the seed that will extend like an oil 

drop and smother the current way of software generation. 

 

In a world where such a system exists the complex software assemblies 

are no longer created by a genial system architect and hundreds of man 

years of expensive programmers but instead by a creative modular 

system assembler that uses automated tools to construct his target in a 

fraction of the time, with a fraction of the resources and with a fraction of 
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the costs compared to his present-day colleague. He retrieves his modules 

from a modules market and he may also design and produce some 

missing modules. In a later phase he may decide to offer these new 

modules on the market.  

 

His present-day colleague produces software systems, whose structure 

resembles a layered set of patchwork blankets. Even the most ingenious 

architect cannot oversee the details of this complex architecture. Therefore 

the system cannot be completely described properly. Thus, it cannot be 

tested fully and nobody can guarantee its proper functioning. Modular 

systems are inherently less complex. Especially its system configuration is 

orders of magnitude less complex. This results in a better manageability 

of the complexity and a higher robustness. On its turn it results in a better 

chance to be able to guarantee its proper functioning. 

Discussion 
The modules market is very democratic. Everybody that owns an 

appropriate modules development system can participate and fill a niche 

of the modules market. The modules market is a good replacement of the 

market for open source software. It has the advantage that the module 

developers can earn money for the intellectual property that they invested 

in the design and construction of the module. Still the products stay very 

affordable. In contrast the open source software community is non-

democratic. In many cases the community forbids the contributing 

software developers to earn money from their intellectual property 

investments. 
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Part eight 
PART EIGHT 

Managing the Software Generation Process   
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Managing the Software 
Generation Process 

Abstract 
The current software generation process is rotten. This paper analyses 

why that is the case and what can be done about it. 

Software complexity 
It is no secret that the generation of complex software poses great 

problems for its producers. The cost is growing exponentially with their 

size and the time from conception to finalization grows likewise. The 

resulting products are fragile and force the vendors to reserve sufficient 

resources to cope with future warranty and damage claims. Buyers are 

aware of this situation but without reasonable alternative they are ready 

to live with the situation. The source of the misery is the complexity of the 

software and this complexity is mainly due to the relational complexity of 

its constituents. A radical modular approach as is applied in hardware 

system generation would cure the problem, but that requires a completely 

different way of software generation and software marketing. 

Introduction 
First the factors that hamper efficient system generation are treated 

independent of the application area. Then the solutions for eliminating 

these factors are given. Next the differences between the hardware area 

and the software area are shown in an historic view. Finally a possible 

improvement of the software case is sketched. 
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Managing complexity 

Breaking level 
Managing simple projects hardly ever poses problems. However, a 

situation in which complexity surpasses the boundary where a quick view 

no longer reveals potential problems requires special methods. These 

measures compensate or cure the lack of overview. The level of the 

boundary depends on the number of items involved in the process and on 

the nature of the relations between these items.  

Measure of complexity 
The number of potential relations between the items involved in the 

process explains a close to quadratic growth of potential complexity with 

the number of items involved. Between N items exist N×(N-1) potential 

relations. Usually only a small percentage of the potential relations are 

truly relevant relations. Dynamically relevant relations are the potential 

carriers of communication and control signals. They carry the activity and 

determine the capabilities of the considered system. It takes expertise 

knowledge to decide whether a potential relation is dynamically relevant. 

Gaining this expertise takes time and other resources. This explains why 

all potential relations have a direct impact on manageability. For that 

reason, the number of potential relations may act as a rough measure of 

potential complexity. Similarly the number of dynamically relevant 

relations may act as a rough measure of the actual complexity of the 

system. More precise measures will also consider the type of the relations. 

The type of the relation determines how that relation must be treated. 

 

Procedures such as modularization of the system and categorization and 

grouping of the interrelations into interfaces significantly reduce the 

actual complexity of system design and creation. Each interface represents 

a well defined group of dynamically relevant relations. Well known 

interfaces contribute significantly to the reduction of complexity. They 

reduce a set of interrelations to a single relation. Modules can be 

assembled into systems by connecting them via compatible interfaces. 
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Both the modules and the interfaces that couple these modules are of 

crucial importance for managing the complexity of system generation.  

Extreme complexity 
Very high degrees of complexity may introduce secondary effects that 

impair manageability far more severely than can be explained by the 

number of potential relations between the items involved in the system 

generation process. This occurs when it becomes humanly impossible to 

properly specify the activity of all dynamically relevant relations.  

 

The inability to specify the product, implicates the inability to test it and 

as a consequence it implicates the inability to guarantee the proper 

functionality of the system. The implications of the lack of resources that 

are required to cope with complexity and the inability to specify the 

situation in sufficient detail can easily raise costs in an exponentially 

increasing way. Apart from causing unacceptably growing costs, the 

system generation process yields fragile results. The resulting product 

may even endanger the environment where it is applied. This requires 

reserving resources to insure resistance against future claims.  

The modular approach 

Modularization 
The reasons why modularization significantly improves manageability of 

the generation process are manifold. For example, it may be possible to 

delegate the design or the creation of modules to other parties. Potential 

reuse of existing modules or their design is another important reason. 

However, the most important reason for applying modularity is the fact 

that proper encapsulation of the modules and the use of well known 

interfaces significantly reduce the number of dynamically relevant 

relations.  

 

A simple example may explain this. A monolithic system consisting of 

1000 items contains 999.000 potential relations. Its relational complexity 



495 

 

can be characterized by this number. A comparable modular system that 

consists of ten modules contains far less potential relations. Let the 

modules be coupled by well-known interfaces and let part of the 

interfaces be similar. Not every module connects to every other module. 

Let the largest module contain 200 items and let the total number of 

interfaces between any pair of modules be less than 5. The largest module 

has a potential relational complexity of 39.800. The complexity of the 

other modules is less. Thus the relational complexity met by the module 

designers is less than 40.000 and for most modules the relational 

complexity is less than 10.000. Between modules the interfaces take the 

role of the relations that are the internal members of these interfaces. The 

system designer is confronted with a relational complexity that is less 

than 100. The benefits of the reuse of interfaces and the advantages of the 

possible reuse of modules should also be considered. Thus compared to 

the monolithic case there is an increase in manageability of several orders 

of magnitude. Modularization of larger systems may offer benefits that 

are much higher. Diminishing relational complexity translates directly in 

lower man costs and in shorter time to realization. Further it has a very 

healthy effect on the robustness and reliability of the end product.  

Modular system design 
The system designer gets the strongest benefit from the modularization. 

Modularization simplifies system assembly significantly. This opens the 

possibility to automate the system integration process. 

 

Modularization reaches its highest effectiveness when the design and 

creation process enables the assembly of modules out of other modules. In 

this way the microelectronics industry reaches the exponential growth of 

the capabilities of integrated components that is known as Moore’s law.  

Interfaces 
In the design of a system the introduction of an interface increments the 

number of potential relations. However, because the interface 

encapsulates a series of dynamically relevant relations, the total relational 
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complexity will decrease. The new relation will only play a dynamic role 

when the corresponding modules are coupled or decoupled. This 

coupling can be done at system assembly time or during the operation of 

the system. At instances where no coupling or decoupling is performed 

the new relation acts as a static relation. It relays the communication and 

control signals to the dynamically relevant relations that are members of 

the interface. In the count for complexity a well known interface replaces 

the combined contributions of its members. In that view, it can be 

considered as a single dynamically relevant object. 

 

Dynamically relevant relations are carriers of information or control 

signals. Depending on the direction of the control signal the 

corresponding interface member belongs to the require part of the 

interface or to the provide part of the interface. In the first case it acts as 

the sender of control signals. The require part of the interface contains 

members that belong to the current client module. If the interface member 

acts as the receiver of control signals, then the interface member belongs 

to the provide part of the interface. In return the interface member causes 

the module to deliver corresponding services. The provide part of the 

interface belongs to the module that acts as the current server. In order to 

become active the require part of the interface of the client module must 

be connected to the provide part of the interface of the module that acts as 

the server. 

 

A module may act as a server at one instance and it may act as a client at 

other instances. In each of its roles it will use the appropriate provide or 

require interface parts. Multitasking modules may provide parallel 

actions. 

 

In the assembly the coupling of the require interface part and a 

corresponding provide interface part may be stationary or it may be 

temporally. The provide interface part of an interface may serve one or 

more other interfaces. The service may be presented in parallel or in 

sequential order. The specifications of the provide interface part must at 
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least cover the requirements of each of its customers. With respect to its 

potential capabilities, the provide interface part may offer more than is 

requested by a coupled require interface part. The specification of the 

provide interface part must be in accordance with the specification of the 

require interface part, but this only holds for the part that covers the 

services that the require interface part may demand. 

 

In many cases the trigger of a provide interface member by a connected 

require interface member will not only result in an action of the server 

module. It may also cause the return of a response via the same 

connection. The response can be used for synchronization purposes and it 

may contain requested information. 

 

In general an interface may contain both a provide part and a require part 

and the partition may change dynamically. It is difficult to understand 

and handle such mixed interfaces. When manageability is strived for, then 

mixed interfaces must be avoided. An exception exists when the 

communication requires a handshaking process. Preferably pure 

interfaces should be used. A pure interface contains either a require part 

or a provide part but not both. In the simplest case the specification of a 

require interface closely matches the specification of the corresponding 

provide interface.  

Proper modules 
Proper modules are properly encapsulated. A proper module hides its 

internals. Securing the intelligent property that went in its design is one of 

the reasons for this strict measure. Preventing unwanted access to the 

module is another reason. Proper modules can only be accessed through 

publicly known and well specified provide interfaces. A module is a part 

of an actual system or it is targeted as a part of one or more possible 

future systems. Proper modules take care that each access through an 

interface keeps the functional integrity of the module intact. An exception 

may be that the module signals to its environment that it is no longer in a 
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valid state. The environment may then decide to ignore the module in 

future actions or it may reset the module to a valid state. 

 

A proper module must be able to perform one or more actions. These 

actions may be controlled via one or more of its provide interfaces. Purely 

static objects are never considered as proper modules. 

Properties and actions 
Each proper module has a set of properties that together describe its 

status. Besides of that, each proper module provides a series of actions. 

Each module interface offers indirect access in order to control the 

members of a well defined and ordered subset of these actions. The 

properties cannot be accessed directly. However, a given action may 

enable the reading of the value of a property or it may enable the direct or 

indirect setting of one or more properties. 

Costs of modularization 
Modularization has its price. The design and generation of modules and 

the organization of compatible interfaces is relatively expensive. Only 

extensive reuse of modules may render modularization economic. Reuse 

of modules and the availability of compatible well known interfaces 

between modules may significantly improve the manageability of the 

design and creation of complex systems. However, reuse implicates 

standardization and it asks for actions that promote availability, 

accessibility and diversity. These requirements are best provided by a 

healthy and lively modules market and media that publish the 

specification of the characteristics of available modules and interfaces. An 

open market may ensure a healthy price to quality ratio. It also stimulates 

the continuous improvement of the quality of the modules that become 

available. Preparing modules for an open market requires the hiding of 

the intellectual property that is invested in the design and creation of the 

module. On the other hand the specification of provide interfaces must be 

publicly known. Promoting other uses of the provide interfaces and the 

require interfaces that are applied in a given module will in its turn 
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promote the use of that module. It will increase the chance that other 

modules will become compatible with the considered module. 

Abuse 
Modularization can also be abused. Wrong access to a module may 

rupture its integrity. In that case the module is no longer trustworthy. A 

proper modularization technology must prevent improper access to 

modules. It means that access that bypasses the official interfaces of the 

module must be prevented. Clients of a module may be systems or other 

modules. During its actions a module may run through a sequence of 

states. A client of a module must only access the module while the 

module is in a state that is known to be save for this access. Properly 

created modules will then take care that their integrity will not be 

impaired. If the state of a module is not known, then the client may decide 

to reset the module to a save known state.  

 

Abuse of modularity is stimulated by the misuse of the terms ‘module’ 

and ‘component’. It often occurs that a system part is called ‘component’ 

or ‘module’ while it is far from properly encapsulated. Such system parts 

are not designed to preserve their integrity. People that do not have 

sufficient expertise may fall into this trap and may think that by 

assembling such improper components a similar reduction of complexity 

can be achieved as can be achieved with proper modules. 

Modularization success cases 
The success of modularization is widely demonstrated in the design and 

generation of hardware. Electronic appliances, autos, buildings, clothes, in 

fact most assembled products are not affordable without the fact that they 

are constructed from components. Many of the constituting components 

are themselves assembled from components. More important, the price, 

quality, diversity and availability of these components depend strongly 

on the corresponding lively components markets. The beneficial effects of 

the open market depend strongly on trustable specification of the 
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characteristics of the components and on media that report on availability 

and quality of these products. 

 

Even nature relies on modularization. Most living creatures contain 

organs and are constituted from multiple cells. Human communities use 

modularity in the hierarchical structure of their organizations. This is best 

shown in a town hall or a post office where dedicated counters belonging 

to corresponding departments offer publicly known services to their 

customers.  

 

The application of modularization in the software industry is far from a 

great success. Proper software modules exist, but their application is 

sparse. The current software development tools do not support the 

assembly of systems from modules. The software components rely on the 

support that is offered by the operating system that embeds these 

components. Most software components are designed to operate as 

singles in a larger non-modular environment. Generally, these modules 

do not couple with other modules. Currently the software industry does 

not offer a technology that enables the construction of modules out of 

other modules.  

Requirements for success 
When applied properly, modularization may significantly improve the 

system design and creation process. Keywords are the standardization, 

the diversity and the availability of modules and interfaces and the ease 

of the system integration process. The existence of a lively and effective 

modules market is also a very important aspect. System integration may 

be automated, but this requires the proper tuning of component 

specification, the system design tools and the matching components 

market. The technology must enable the construction of modules out of 

simpler modules. Using these preconditions the microelectronics industry 

provides very complex and tremendously capable integrated circuits.  
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With a proper automated design and assembly organization in place the 

modular system creation time will shrink to a small fraction of the time 

required by the manual non-modular equivalent. Where manual design 

and assembly of a complex monolithic target requires a genius as the 

system architect, a creative human operator may burn far less resources 

and achieve a similar or even better result by using an appropriate 

automated modular approach. Automation of the system design and 

creation process puts high demands on trustworthy and machine 

readable specifications of modules and interfaces. 

Difficulties posed by modularization 
The requirements posed by modularization are also the reasons why 

modularization is never a straightforward solution. 

Diversity 
The requirement of a high degree of diversity is in direct conflict with the 

requirement of sufficient standardization. An interface has both static and 

dynamic aspects. Dynamic requirements may ask for different interfaces 

that have similar static characteristics but different dynamic behavior. 

Environmental requirements may ask for specially adapted interfaces. 

Interfaces may be replaced by other interfaces that have a wider scope or 

a better performance. Similar considerations hold for modules.  

In order to increase market profits, to simplify component discovery and 

to ease system integration the diversity of similar interfaces must be kept 

within sensible bounds. The same holds for modules. 

Compatibility 
In order to enable successful assembly, the selected modules must be 

mutually compatible. This translates to the requirement that the interfaces 

that couple the modules must be compatible. Provide interfaces must 

cover the demands of the coupled require interfaces. The requirements 

include both static and dynamic characteristics.  
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Real time behavior of modules may require measures that prevent or cure 

deadlock and race conditions. The design tools must enable the 

installation of these measures. Other measures must prevent that the 

system runs out of essential resources. The modules must be designed to 

support these measures. When all relevant data of the constituting 

modules are known, then the system design tools can help the system 

designer to implement sufficient resources and to take the appropriate 

measures. 

Platforms 
Components may be designed for different application areas. For example 

software may be designed for desktop purposes, for servers or for 

embedding in electronic appliances. In each of these cases there exists a 

choice of hardware platforms. Electronic hardware platforms require 

adapted software components and will certainly influence the dynamical 

characteristics of the interfaces of the software components. Mechanical 

modules may target automotive systems, avionics, nautical systems, 

stationary instruments or other mechanical systems. Each application area 

and supporting platform may require its own range of modules and 

interfaces. Each application area requests an adapted components market 

and an adapted system assembly technology. 

Hiding intellectual property 
In some application areas the hiding of the intellectual property that went 

into the design and the creation of modules is provided by their physical 

form or by market conditions such as a patent system. However, some 

application areas currently lack sufficient means to hide the design of the 

components. Without proper IP hiding a component’s creator can never 

make profit in an open components market. In the past, this fact has 

certainly prevented that the software industry developed a healthy and 

lively software components market. This does not say that it is impossible 

to generate an effective IP hiding system for software modules. 
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Availability 
Availability is assured when several suppliers exist for popular modules. 

An easily accessible publication organization must promote and enable 

the discovery and the selection of existing modules. 

Specification 
The specification must be accurate and complete. The specification must 

contain sufficient details such that the system integrator can determine 

how the considered module can be assembled with other modules into a 

target system. Automated assembly asks for a machine readable and 

therefore well standardized specification format. This requires a 

dedicated XML format. The format can be defined in an XSD document. 

For humans, an XML document is not easily readable. The XML 

document can be made readable for humans via one or more XSL 

documents. The specification of the statical characteristics of an interface 

is well established. Currently there exists much less support for 

standardized specification of the dynamical characteristics of interfaces.  

Hardware versus software 

History 
The hardware industry booked far more success with the application of 

modularization than the software industry. Partly the volatile nature of 

software is responsible for this fact. However, the differences in the 

evolution of the corresponding design and creation technologies had 

more influence on the success of modularization. 

 

Long before the birth of electronic computers, modularization took its 

position in hardware industry. Computer hardware became affordable 

through far reaching application of modularization. The early computer 

programmers used machine code as the language to communicate with 

the computers. Soon the burden of inputting all these codes separately 

was eased by an assembly compiler that translated assembly terms into 

corresponding machine code sentences. Program parts could become 
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reusable routines. Libraries of these routines became products that could 

be applied in different programming projects. The next step was the 

introduction of the third generation languages. These tools offered a 

better readable and much more flexible coding of the functionality that 

the programmers had to write. Powerful compilers translated the source 

code and combined it with the precompiled library members that were 

called by the written program.  

Basic architecture trends  
Up to so far this was no more than easing the process of producing 

machine code. The growing complexity of the programs demanded 

software development tools that enable a better overview of the 

architecture of the design. At this point two trends developed.  

 

Functional analysis 

The first trend, phrased ‘structural analysis’ created a split between the 

handling of properties and the handling of the actions that influence these 

properties. The methodology collected properties in ‘data stores’, actions 

in ‘processes’, data messages in ‘data flows’ and control messages in 

‘control flows’. The graphical representation of the result of the analysis 

was called a ‘data flow diagram’. In advance, the approach proved very 

successful. It led to the introduction of several important software 

development items such as, routine libraries, file systems, communication 

systems and data bases. Most third generation programming languages 

and the early software development tools supported the ‘structural 

analysis’ approach. 

Abstract data types 

The second trend promoted the modular approach. It used ‘abstract data 

types’ introduced by David Parnas as its modules. In design phase the 

‘abstract data type’ acted as an individual. It was well encapsulated and 

could only be accessed through one or more interfaces. In the seventies of 

the last century the complexity of most software projects did not enforce a 

modular approach. For that reason this modular design methodology was 
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not well supported by programming languages and by corresponding 

modular software development tools. 

 

Object orientation 

In a later phase the complexity of the software design increased such that 

a more modular approach became necessary. Instead of taking the proper 

modular approach of the ‘abstract data type’ the main software 

development turned to object orientation. Here the objects resemble 

‘abstract data types’, but the objects are not properly encapsulated. Access 

via interfaces is possible, but the client of the object may also access the 

actions of the objects more directly. More severely, often the internal 

properties of the object can be altered directly by external actors. The 

possibility to inherit functionality from an object with a simpler design 

was given much more attention. The result was the development of 

libraries of classes of objects with a deep inheritance hierarchy.  

 

Currently, object orientation is well supported by software languages and 

software development tools. Pity enough, current object oriented software 

development tools do not promote the use of popular interfaces. 

 

Object orientation has some severe drawbacks. Without sufficient 

precautions, classes taken from different class libraries cannot be 

combined in programs. A class library with a deep inheritance hierarchy 

may become obsolete when its top classes contain services that are no 

longer up to date with current technology.  

Current software components 

The software industry also came with more proper software modules. 

Examples are Microsoft’s COM components and the Java Beans. COM 

components are supported by some operating systems and Java Beans are 

supported by the Java virtual machine.  

 

The support for COM in software languages and in software development 

tools is small. The design of the architecture of the COM skeleton 
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prevents trustworthy memory garbage collection management in cases 

where the module can be removed dynamically. COM is supported on 

some embedded systems that use UNIX or an operating system that 

supports POSIX. 

 

Both Java Beans and COM components are not designed to construct 

components from components and need the support of an operating 

system or a virtual machine. 

 

There exists a small open market for these software components. Most of 

them target desktop applications. 

State of affairs 

At this moment the software industry does not apply modularization in a 

serious way. There exists no theoretical reason why modularization in 

software system generation can not be as successful as the current 

modularization in hardware system generation currently is. However, 

effective modular software generation asks for a completely different way 

of software generation than is accomplished by the present software 

development industry. 

Implementing proper modularization will offer chances to parties that are 

now excluded by the power of companies that control software 

development tools and software development processes. With the 

appropriate services in place, everybody who has access to a software 

component development environment can produce products that fill a 

market need. Future institutions that support software component 

development and component based system assembly will help the 

component developer in marketing the created components. In that case 

the current powers in the software industry will endanger losing market 

control. It is to be expected that they will battle to stay in control. 
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Coupling the market and the design and creation 

of software modules and interfaces 

Standardization and marketing 
Modularization asks for a dedicated and powerful standardization of 

specifications, interfaces and coupling procedures. A globally accessible 

service must support the distribution of the public documents. For 

example, dedicated web based repositories may contain standardized and 

categorized specification documents that can be discovered by an 

appropriate search mechanism. The development tools must be able to 

access the specification contents contained in these documents. Another 

globally accessible service must support the gathering, the sale and the 

delivery of the corresponding components. Both services must cooperate. 

 

The tools and the services must intimately interact to enable the quick and 

efficient design of interfaces, components and target systems. At the same 

time the services must ensure that the intelligent property that is invested 

in the uploaded components keeps hidden from the public world. It must 

also be guaranteed that the component designers will get their rightful 

fee. It is very difficult to organize a properly controllable pay per copy of 

the components binary. It is suggested that the customers pay per project 

for each used binary.  

Designing and generating components 
The component designer collects the required interfaces from web based 

or local repositories or he designs one or more new interfaces. Then he 

designs and creates one or more components. He must test these 

thoroughly. When ready he uses the components for local system design 

or he packs one or more components into a package and sends this 

together with the appropriate documents to the institute that will market 

his products. The institute checks the contributions and after a positive 

conclusion the institute puts the binaries and documents in its banks. The 

institute will put the documents in the appropriate repositories where 

they become publicly accessible. Users of the components may buy the 
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components from the institute. The institute will ensure the payment of 

the developer that has put the product in the bank. 

Versions and diversity 
Versions and diversity of components both impede and support the 

manageability of the system integration process. Therefore the number of 

versions must be limited. Diversity of components must be made 

manageable by reducing the number of supported platforms and by 

limiting the number of supported environments. Development and 

creation of close copies of existing components must be avoided. Breaking 

these rules can easily destroy the advantages of modular system design. 

Hiding intelligent property 
Hiding intelligent property that is invested in the design of the 

component is one of the most difficult points of software component 

technology. It can be arranged by power: excluding customers from 

future membership when they offense the ‘rules’. Or it can be ensured by 

a combination of encryption en recompilation supported by a hardware 

decryption. Every project gets its own encryption key. It must be ensured 

that a system designer can still use components that he himself has 

designed and created. 

Automating system integration 
The system integrator starts with collecting the required application 

components and with creating the necessary connection and scheduling 

scripts. The components are put in packages and a project document 

defines the target. Because of the fact that at the start of the system 

integration practically all relevant data are known, the system integration 

tool can automatically add a dedicated supporting operating system that 

includes automatic memory garbage collection. The retrieved component 

specifications suffice to enable the construction of skeleton systems. After 

linking, these skeleton components can already be tested. However, the 

‘empty’ components do not produce much activity. During system 

development the skeleton components can be replaced step by step by 

fully operational binaries. 
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Publishing 
Publications related to modularization comprise specifications, market 

promotion media and product quality comparison reports. The internal 

code of components is normally hidden. If the institution that designed 

the component wants this, it is possible to make this code public as part of 

the component specification.  

A fully fledged software components industry 

Sketch 
There exists no theoretical reason why proper modularization cannot be 

achieved for software as it is done for hardware. The realization of some 

aspects will be easier while the achievement of other aspects will be 

harder. It is easier to send software products over internet. It is easy to 

search the document repositories of the component shops for interesting 

components and compatible interfaces. Using XML it becomes feasible to 

automate the design and creation process that makes use of these web 

based repositories, which contain machine readable specification 

documents that describe components and interfaces. A local file based 

equivalent of such a repository may store retrievals and new designs and 

serve both the system designer and the components developer. The 

repositories contain a search machine that looks for categorization terms 

that classify the specification documents for specific application areas. 

New designs can be uploaded to a central service that will check the 

information and store it in the worldwide accessible repositories. A 

webservice that acts as a dedicated web based shop may offer the 

corresponding modules. In the background of the webservice, binary 

banks will hold the binaries of the modules. The webservice will use a 

dedicated money bank to support the financial part of its activity. Via the 

webservice the component designers may upload their results to the 

central institution that will then market their products. Component 

development tools and system assembly tools interact with the 
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repositories and the webservices to implement an integrated design, 

assembly and marketing environment. 

The demo 
This is a very sketchy view of a possible implementation of an integrated 

software components creation and marketing system. In order to 

investigate the feasibility of this sketchy picture a demonstration system is 

built that contains working versions of all important constituents.  

 

The demonstration system supports: 

 Embedded software and desktop software1 

 Provide interfaces 

 Require interfaces2 

 Memory mapped hardware interfaces 

 Streaming interfaces 

 Notification interfaces3 

 Package4 of a coherent set of components. 

 Components5 that consist of simpler components.  

 Automatic creation of the supporting operating system from 

dedicated modules6 

 Stepwise system build-up from a mix of skeleton components, 

partially functional components and fully functional components 

 Automatic memory management 

 System modes7 
 

1In embedded software the generated system interacts directly with the 

hardware. The system assembly tool adds the HAL.  

 
2Require interfaces are implemented as placeholders for special types that 

represent a reference to a provide interface. 

 
3Notification interfaces accept hardware triggers. 
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4A package is a library of a coherent set of components. A component 

supplier will preferably deliver his products in the form of packages. A 

system designer will save his subsystems in the form of packages. 
 

5A composed component is a dedicated package accompanied by a 

dedicated (fixed) connection scheme and a dedicated (fixed) scheduling 

scheme. 

  
6In embedded software the system integration tool generates operating 

system modules in C++ source code. In desktop software the system 

design tool generates a layer that interacts with the virtual machine. This 

layer is generated in source code that corresponds with that virtual 

machine (C# or java). 

  
7System modes are controlled by connection schemes and scheduling 

schemes. Dynamic removal or creation of modules should be restricted to 

the instances where the system mode changes. Memory management is 

also restricted to these instances. 

 

A standard RTOS schedules threads by stopping and starting routines. In 

a component based environment the real time scheduler must stop, reset 

and start modules. Eventually the modules must be reconnected 

according to the currently valid connection scheme. 

 

The demonstration system consists of the following components: 

 An example of a web based repository 

o This repository exists of a hierarchy of directories that 

contain  

 XML documents, which contain structured 

specifications. Each document contains a series of 

categorization tags. 

 XSD documents, which define the structure of the 

specifications 
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 XSL documents, which help convert XML documents 

into humanly readable documents 

o The repository has a hierarchical structure. Components 

and interfaces are assembled in separate directories. 

o The repository is publicly accessible. Using the XSL files the 

XML documents are humanly readable via a modern web 

browser. 

o The repository contains a search machine that uses the 

attached category tags to find corresponding documents. 

 An example of a local file based repository 

o This repository exists of a hierarchy of directories and has 

the same structure as the web based repository. This 

includes the search capability. 

o  The local repository contains a larger variety of documents 

than the web based repository. 

o It acts as a local store for information that is retrieved from 

one or more web based repositories. 

o It acts as a local store for documents that are prepared to be 

send to a general institute that may put these documents on 

a web based repository. 

o The XML documents specify: 

 Component 

 Interface 

 Require interface 

 SW/SW 

 HW/SW 

 Streaming 

 Notification 

 Types 

 Plain type 

 Enum type 

 Interface type  

 Sequence type 

 Structure type 
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 Package description 

 Connection scheme 

 Scheduling scheme 

 State chart 

 Project description 

 An example of a webservice that may act as the representative of a 

central institute. This institution serves the community that creates 

or uses software components. Components may appear as 

packages of simpler components. 

o The institute owns a local repository that contains all 

specifications of interfaces that exist in the domain of the 

webservice. 

o The institute owns a binary database that holds the binaries 

of all available software components. 

o The institute owns a local repository that contains all 

specifications of software components that exist in the 

domain of the webservice. 

o The webservice uses the binary databases and the local 

repositories to automatically serve the customers of the 

institute. Customers have no direct access to these stores. 

o The webservice helps partners of the central institute to 

distribute documents to their specialized web based 

repositories. 

o The webservice helps customers in buying software 

components and retrieving the corresponding binaries from 

the binary bank 

o The webservice helps software component developers to 

upload the binaries and corresponding specifications of 

their products. 

o The central institute takes care that the software component 

developers get paid for products that are downloaded via 

the webservice. 

 A repository browser tool 
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o The tool helps with searching local or web based 

repositories for existing interfaces and components. 

Selected documents can be transferred from the web based 

repository to the local repository. 

 An interface and component design tool 

o The tool helps with specifying new interfaces. This 

includes: 

 Software-software interfaces 

 Software-hardware interfaces 

 Streaming interfaces 

 Notification interfaces 

o The tool helps in specifying other design documents that go 

into the repositories. 

o The tool helps with searching local or web based 

repositories for existing interfaces. 

o The tool helps designing and creating the skeleton of a 

software component 

o The tool helps with filling the skeleton with dedicated code 

o The ‘internal’ code is normally hidden. However, it is 

possible to make this code public with the rest of the 

specification. 

 A system assembly tool 

o The tool helps with searching local or web based 

repositories for existing software components. It can 

retrieve the corresponding binaries from web based or local 

binary banks. 

o The tool can work with components that are still in skeleton 

form. 

o The tool can check whether components can fit together. 

o The tool assembles selected components and adds a 

dedicated component based operating system. 

 

Some hard rules must be obeyed. 
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 All components and all interfaces have a globally unique 

identifier. 

 Any binary and any specification document that is uploaded to the 

central institute and that is accepted by this institute must never be 

changed or removed. 

 New versions of an item are related to the previous version via a 

relation document that is attached to the specification document. 

 The number of new versions of an item must not surpass 4. 

 Close copies of items, that are not new versions, will not be 

accepted. 

Software availability 
The project that is discussed in this paper produced a large amount of 

software. The author of the paper owns this software and makes the C# 

source code available for free access at: 

https://docs.google.com/leaf?id=0B8ZNOnNHFrbrODU
3YmNkNzQtMDE0ZC00MzNkLWJiZTktN2U2MGVkOTAzY
Tkw&hl=en 
  

https://docs.google.com/leaf?id=0B8ZNOnNHFrbrODU3YmNkNzQtMDE0ZC00MzNkLWJiZTktN2U2MGVkOTAzYTkw&hl=en
https://docs.google.com/leaf?id=0B8ZNOnNHFrbrODU3YmNkNzQtMDE0ZC00MzNkLWJiZTktN2U2MGVkOTAzYTkw&hl=en
https://docs.google.com/leaf?id=0B8ZNOnNHFrbrODU3YmNkNzQtMDE0ZC00MzNkLWJiZTktN2U2MGVkOTAzYTkw&hl=en
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Part nine 
PART NINE 

Physics and Religion 
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Physics and Religion 
I am not knowledgeable in religions. However, I know something of 

physics and of mathematics. It is easy for me to find a creator that is 

supported by the laws of physics and the theorems of mathematics. I soon 

give you a sketch. It is much more difficult if not impossible to find the 

thing that created and controls the creator. I will also explain why.  

Universe as a creator 

Let us first take the easy part and start with the habits of multi-

dimensional Fourier transforms. A Fourier transform converts 

something that is very localized into something wide spread 

and vice versa. At the same time the parameter space turns into 

its canonical conjugate equivalent. Now take the universe as a 

subject and do the Fourier transform. It may be necessary to do 

some coordinate transformations in order to get a proper 

Fourier transform, but that is a secondary consideration. The 

universe is something that is very wide spread in its position 

coordinate system. Thus in the corresponding canonical 

conjugate (momentum) coordinate system the result of the 

transformation is very much localized. You could view it as an 

individual located in momentum space. If you do the same 

thing for the time domain then finally you get an individual in 

the momentum-energy domain. 

We know that universe is evolving and during that evolution 

very complex items are created. Thus, universe as an 

individual is its own creator. A mechanism called 
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modularization achieves that when conditions are favorable, 

the result is that very complex systems arise. If modules can be 

generated out of modules this process can go very far. It even 

achieves the generation of intelligent species. Those specimens 

can use their intelligence to speed up the evolution process. 

What in the beginning was a purely stochastic process then 

turns into an intelligence driven creation process. Thus nature 

builds conglomerates; starting from pure energy it creates 

particles, then atoms and molecules, then living species, then 

intelligent species and then God knows what. Nature appears 

to possess a built in tendency to reduce complexity and at the 

same time it builds more and more complicated systems.  

The upper creator 

Now comes the hard part. Consider the creator of the discussed 

creator. He is the creator of the universe. He tolerates that the 

first creator uses a very harsh way to achieve his goal. The 

evolution process is very hard for the subjects that fall off in the 

creation process. They are torn apart and the debris is used as 

resource for new creations. We humans do not see that as a big 

problem as long as it concerns dead stuff, but as soon as it 

concerns living species and especially when it concerns animals 

or humans, then we feel pity for the victims.  

Religions nearly all suggest that this upper creator of the 

primary creator shows concern with what happens to the living 

species. At least he must take care of the intelligent species. 

However, if he does that, then he must intervene in the first 
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creation process. With other words, he must change the laws 

that govern the first creation process. Despite the fact that 

many humans believe that this is possible, physics does not 

show that such things actually happen. Which law of nature 

has built in controls such that the upper creator can control 

those laws?  

However, laws are one part of the story. What actually 

happens is not only controlled by the laws of nature. It is also 

controlled by (boundary) conditions. A much larger amount of 

influential boundary conditions exists than the number of laws 

of nature. The upper creator can control the boundary and 

starting conditions of the primary creation process. That is a 

huge task, but he is almighty. It means that from the moment 

that it started, everything is already set. So it has little sense to 

pray to this almighty upper creator, then he already planned 

everything. He even planned your prayer.  

Still religion can be good. It keeps communities together. It can 

give their members a happy and secure feeling. On the other 

hand religions can also be intolerant with respect to other 

religions. Wars are fought for economic reasons but they are 

also fought for reasons of religious nature. That is not good. 

Animals and even plants fight wars for economic reasons. Only 

humans fight for religious purposes, which if you think about 

it, is pure madness. Intelligent species should know better.  
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http://www.crypts-of-physics.eu ; (Deep cellar, Nesle, France, http://www.croxculture.com ) 

http://www.crypts-of-physics.eu/
http://www.croxculture.com/


523 

 

  



524 

 

 

Part ten 
PART TEN 

The Hilbert Book Model 
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The Hilbert Book Model 

Abstract 
This paper introduces a new model of physics. It is based on logic. It 
uses the congruence between the logic of quantum physics and a 
mathematical construct that got its name from David Hilbert. The 
Hilbert book model extends this construct such that fields and 
dynamics also fit in the new model. 

Introduction 
Every time when I read an article about the phenomena, which occur 
far from us in the universe, I'm surprised about the attention that 
this Farawayistan gets compared to the phenomena in the world of 
the smallest. Everything that happens there is dismissed with 
collective names such as “quantum mechanics” and “field theory”. 
Rarely or never the treatise goes deeper. In this sub-nano-world 
spectacular images, such as appear in stories about the cosmos are 
not available. 

What's playing? 
Still, this part of our environment is at least as interesting and 
mysterious as the cosmos. What makes it even more interesting is 
that the fundamentals of physics can largely be found in this area. 
This gets enforced by the growing awareness that our knowledge of 
these foundations contains a lot of gaps. 

Quantum Theory 
Quantum mechanics and the corresponding quantum field theory 
have been developed mainly in the beginning of the last century. 



526 

 

This development occurred fairly violently and in many cases, 
scientists were already happy with a limited understanding that 
nevertheless brought enough usable formulas so that one could 
analyze quantum phenomena and could construct useful 
applications.  

History 
In the early days of quantum mechanics the approach was based on 
adapting equations of motion that were in use in classical mechanics. 
These equations were quantified via an intuitive process. In 
Schrödinger’s approach the time dependence is placed in the state 
function of the particle. The operators that act on these state 
functions are kept static. The approach of Heisenberg positions the 
time dependence in the operators that act on the (static) state 
function. This difference in approach ultimately has no consequence 
for the properties of the physical particles. That means that the state 
function and the operators only play a background game. In contrast, 
the properties of the particles play the foreground act. The 
discovered indifference means that time does not belong to the 
properties of a particle. With respect to the state functions and the 
operators time only plays the role of a parameter. Apparently it does 
not matter whether you place this role in the state functions or in 
the operators. This parameter characterizes the progress of the 
dynamics253. On the other hand, position belongs to the properties of 
a particle. This indicates a fundamental difference between the role 
of space and the role of time. 
 
The biggest confusion arose when it became clear that the smallest 
things could behave both as a particle and as a wave package. This 
confusion continues because it also means that nature is 

                                                 
The role of time becomes clear in the paragraph about the Hilbert book.253  
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unpredictable in the behavior of its smallest parts. Many are unable 
or unwilling to accept this fundamental property. 

Clarification 
Already early on in the last century some solid explanations were 
given. Garret Birkhoff and John von Neumann showed that nature is 
not complying with the laws of classical logic. Instead nature uses a 
logic in which exactly one of the laws is weakened when it is 
compared to classical logic. As in all situations where rules are 
weakened, this leads to a kind of anarchy. In those areas where the 
behavior of nature differs from classical logic, its composition is a lot 
more complicated. That area is the site of the very small items. 
Actually, that area is in its principles a lot more fascinating than the 
cosmos. The cosmos conforms, as far as we know, nicely to classical 
logic. In scientific circles the weakened logic that is mentioned here 
is named traditional quantum logic. 

Hilbert space model 
Birkhoff and von Neumann went a step further. They discovered the 
fact that a mathematical structure, which more than a century 
earlier was discovered by mathematician David Hilbert, is in many 
respects similar to the structure of this quantum logic. This structure 
is a space with infinitely many dimensions. A position in this Hilbert 
space can be specified by using numbers. For each position that must 
be done with infinitely many numbers. Fortunately, that what is 
happening in this infinite dimensional separable Hilbert space can 
also be specified with functions. Luckier wise a lot was already 
known about functions that suit this purpose. 
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Numbers 
The numbers that can be used, need not be limited to the real 
numbers, which we use in order to measure our three dimensional 
living environment. Constantin Piron found that these numbers at 
least must be members of a so-called division ring. There are only 
three division rings: the real numbers, the complex numbers and the 
quaternions. Virtually no one still knows the quaternions. William 
Rowan Hamilton discovered quaternions already in the nineteenth 
century. They are hyper complex numbers with a one-dimensional 
real part and a three-dimensional imaginary part.  

Hilbert operators 
Here you see appear an immediate reason for our three dimensional 
world. It also delivers a mystery, because the structure of Einstein's 
space-time differs from the structure of the quaternions. However, 
there are more puzzles. 
 
Although the Hilbert space has an infinite number of dimensions, this 
infinity is countable. Countable means that in principle, a label with 
an ascending integer can be attached to each dimension. The set of 
real numbers is uncountable, but the set of rational numbers is 
countable and the set of rational quaternions is that too. So, to each 
dimension of the Hilbert space a rational quaternion can be 
attached. Mathematicians use the name operators for the 
mathematical things that can do this. The real numbers describe a 
continuum and the set of quaternions does that too. But the set of 
rational quaternions does not do this. This means that it is 
impossible to accurately describe smooth phenomena with the 
model obtained so far. 
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Graininess 
The reality is even worse. There is increasing evidence that in its 
smallest form nature is grainy. So-called Planck units exist. These are 
unit sizes for time, place, action and entropy. It is basically 
impossible to measure the corresponding quantities more accurately 
than these Planck unit sizes indicate. It is as if within these limits the 
world does not exist or else, that nature steps over these regions.  

GPS 
Now suppose that we want to design a three-dimensional GPS 
system for nature by using the three-dimensional part of 
quaternions. This system would have to take into account the 
graininess of length. However, this is a great problem. A lattice 
consisting of a tightly packed collection of grains is afflicted with 
preferential directions. Such directions appear in nature in solids but 
they are not omnipresent in the universe. Therefore we need to find 
a different solution for the customized GPS system.  
 
This solution must not use multidimensional collections of grains, 
because that would pose the same problem. This restriction only 
concerns the assignment of positions to particles. The horizons that 
also belong to the eigenspace of the operator do consist of densely 
packed granules. 

Grain chains 
A potential solution is a GPS that works with one-dimensional chains 
of grains. The chains represent paths. Not actual paths, but 
hypothetical paths. They can freely move in 3D space. There is one 
grain in the chain that represents the current position on this path. 
Only the direct environment of this grain corresponds to an actual 
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path. Now remains the problem to give each grain in the chain its 
own position.  
 

In addition to the Hilbert space with countable dimension the 
mathematicians developed a Gelfand triple. As a kind of sandwich 
the two outer parts of this triple attach to the previously described 
separable Hilbert space. Because this triple directly associates to the 
separable Hilbert space, this sandwich is also known as a “rigged 
Hilbert space”. In fact this name is incorrect because the triple is not 
a proper Hilbert space.  
 
Fortunately, the rigged Hilbert space has an uncountable number of 
dimensions and can easily deliver a GPS system that can act as a 
continuum background coordinate system. The grain chains also 
have an equivalent in this rigged Hilbert space and this fact can be 
used to attach a position in the background coordinate system to 
each of the grains of a selected chain. However, this coupling is not 
accurate. The inaccuracy is stochastic and in its ground state it is of 
the order of the Planck-length. That is why the size of the granules 
has this magnitude. (In this region the QPAD is effectively zero). 

Anchor Points 
The grains of the chains that occupy the current position in the 
chain’s "path" are in fact anchor points of elementary particles. 
Depending on its type an elementary particle has one or more of 
these anchor points.  
 
Per time step the anchor point can at the utmost take one space 
step. If it does that, then it lands in the next grain of the chain. It can 
also stay at rest. That is why the chain represents a kind of path. The 
ratio between space step and time step is fixed and is equal to a 
constant c. That number equals the speed of a freely moving light 
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particle. In each time step a photon invariably takes a space-step. It 
also means that no particle can go faster than such a freely moving 
light particle. 

Fields 
The chains are not allowed to move arbitrarily. There is something 
that ensures that the chain keeps its smooth shape. This is provided 
by a probability distribution that is associated with the anchor point. 
In fact, it's a hyper complex function whose squared modulus equals 
the mentioned probability distribution. This function has quaternions 
as its function values and accepts quaternions as a parameter. The 
three-dimensional imaginary part of the hyper complex parameter 
may indicate a position. In that case, the probability distribution 
gives the probability that the next grain will be located at the value 
of the parameter. Our common notion of time does not fit into the 
real part of the quaternion. Our common notion of time is the time 
of the observer and not the time of the observed particle. In the 
Hilbert space the real part of the position operator is not used254. 
 
The form of the probability distribution ensures that only minimal 
changes occur. The quaternionic function contributes to the local 
field. It is the part of the field that corresponds to the considered 
grain chain. 

Private Fields 
An elementary particle can have one or more anchor points. In this 
way the corresponding hyper complex functions together form the 
private field of the elementary particle. This private field has the 

                                                 
254 The Hilbert space does not represent dynamics. However, the Hilbert book model 

does represent dynamics. 
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same properties as the wave function of the particle. Quantum 
mechanical scholars use this wave function in order to describe the 
behavior and the properties of the elementary particle.  
 

Together, all the private fields of particles form a joint covering field 
that, like the separate private fields, covers the whole Hilbert space. 
In our model, this joint covering field is part of the physical fields in 
the environment of the particles. 
The private fields overlap and because they are all probability 
amplitude distributions (QPAD’s) their superposition causes an 
interaction between the particles that anchor on these fields. 

Field Theory 
According to field theory each static field can be split in a rotation 
free (longitudinal) part and a solenoidal (divergence free, transverse) 
part. Due to the configuration of the field, this split may run along 
curved lines. This defines a local curvature. Due to the curvature the 
paths of particles that should be straight get curved and shapes that 
should stay fixed become spatially variant. 
 
The curvature value can be used to define a new field. It is derived 
from the joined covering field. We can call that new field the 
curvature field. It has all the aspects of the gravitational field. We 
can take the part of the curvature field that belongs to a particle as 
its private curvature field. From this private curvature field the mass 
of the particle can be computed. Physicists usually apply this 
relationship in the reverse order. 

The field model 
The field model, which is applied here, differs significantly 

from the common field model. Usually the electromagnetic 
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fields and the gravitational field are assumed to be 

independent of each other and the gravitational field is 

assumed to cause a curvature in the coordinate system that 

must be taken into account in the treatment of the 

electromagnetic fields. 
 

In this new model the cause of the local curvature is laid down 

in the properties and the configuration of the covering field, 

which consists out of the superposition of all fields except the 

gravitational field. The covering field also contains the fields 

that match the wave functions of particles. The curvature field 

is then derived from the local curvature. In other words, in this 

new model the gravitational field is a derived field. This 

approach causes an immediate unification of field theories. 

Creation and annihilation 
Chains can split and they can merge. The corresponding creation and 
annihilation occurs during a progression step and is controlled by 
QPAD’s that are attached to the current granules. 

Hilbert sandwich 
The Hilbert space itself has no place for fields. Each private field 
covers the whole Hilbert space. However, in the same manner as 
described above for the Gelfand triple, it is possible to expand the 
aforementioned sandwich with three additional layers, which 
respectively represent the two decomposition parts of the covering 
field and the curvature field. Therefore, all in all, the expanded 
Hilbert sandwich consists of six layers. 
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Hilbert book 
Each sandwich describes a static condition. Thus, this combination 
can still not describe any dynamics. This lack can be solved by putting 
a whole series of these sandwiches in an ordered sequence. In this 
way, a Hilbert book can be formed, in which each page represents a 
Hilbert sandwich. Glancing through this book then gives a picture of 
the dynamics of our universe. The page number acts as a progression 
step counter. This counter is not our common notion of time, but it 
has certainly something to do with it. 

Other view 
It might seem that the pages of the Hilbert book are mutually 

independent. However, this is not so. Each page contains the 

conditions that determine the contents of the following page. 

These preconditions are contained in another view of the data. 

That view can be obtained via a so-called Fourier 

transformation. This transfers the original coordinate system 

into an associated coordinate system. The function of position 

is replaced by the function of displacement. This displacement 

indicates where the relevant position in the next page moves. 

In jargon this second coordinate system is called the canonical 

conjugate of the first coordinate system. The original view 

gives a good picture of the "particle behavior" of the considered 

subject, while the new view gives a good picture of the wave 

behavior of the same subject. 

 

Also the quaternionic fields store the current condition and the 

prerequisites for the next page. The real part of the field value 

stores the probability density. The squared modulus of the 
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value stores another probability density and the imaginary part 

stores a probability current density. 

Discussion 
What is described here is only a model. It is not more than a 
reflection of reality. The events we see in the cosmos are largely 
determined by the curvature field. The new GPS operator knows an 
outside horizon beyond which no chains exist. That operator also has 
internal horizons inside of which no chains exist. We know these 
internal horizons as the exterior of black holes. These horizons are 
covered with granules that are attached to eigenvectors of the 
position operator. Each granule carries a bit of information. That bit 
belongs to the Hilbert vector and indicates membership of the set of 
eigenvectors of the position operator. This corresponds to the fact 
that the Hilbert vector represents a quantum logical proposition and 
that proposition has a binary yes/no value. 
 
The most controversial aspect of the Hilbert book model is the fact 
that this book consists of pages, each of which represents a static 
state of the universe. When displacements Lorentz transformations 
are considered, then usually both inertial frames are distributed over 
a range of Hilbert book pages. It is possible to locate maximally one 
of the two uniformly moving frames of reference entirely within a 
single page of the Hilbert book. Phenomena such as length 
contraction and time dilation and relativity of simultaneity fall within 
the Hilbert book model. 
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Part eleven 
PART ELEVEN 

A Tall Quantum Tale 
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A Tall Quantum Tale 

 

I state you a proposition 

and that proposition indicates  

how the world works 

 

 

 

Story 

Prelude  
A group of elderly Magi sit in a circle and discuss what happens around 

them. That is not much. The youngest of them gets bored and starts 
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considering their discussion. The chat appears regulated, because if they 

start from a false proposition they will be able to draw any inference, 

whether true or not true, and then the conversation ends only in 

balderdash ad infinitum.  

 

After some time, he has collected the rules. These rules prevent the 

conversations from getting out of control. He proposes these rules to his 

companion discussers. They are very pleased. From this moment on, 

every conversation runs fluently. The inventor writes his finding in a 

book and calls that book "Logic".  

 

However, in their environment still little occurs that is worth a proper 

discussion. Since the talks no longer get out of control, most of the time 

passes in silence. The inventor feels bored again and therefore he tries to 

invent something else. He realizes that if he changes the rules in his book 

a little, then as a result, the discussions could be become much more 

interesting. He writes a new book that contains the changed rules. Next 

he changes the forest that exists in their neighbourhood in order to reflect 

the discussion rules.  

 

After finishing this book and the forest, the situation has completely 

changed. Continuously, things appear in the forest around them that keep 

their conversations for ever alive. The writer calls the second book 

“Quantum Logic” and he renames his first book “Classical Logic”. The 

toolkit that he uses to create the new structure of the forest also has a 

name. It is called “Mathematics”. 
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 M                       S  
 

The encounter 
An old, very experienced senior meets a young curious guy, which is full 

of questions about the things that he has observed during his trip through 

his world. The youngster asks the elder whether he can ask him a few of 

his most urging questions. The senior reacts positively by nicking shortly. 

However, already the first question of the studious guy startles him: 

 

S: Mister, can you explain me how the world works? 

 

The elder thinks a while very deeply and comes then with his answer: 

 

M: That would be a hell of a job, but I can at least give it a try. Please, sit 

down on that stone, because this will take some time. 

 

The lad sits down and looks expectantly to his narrator. The old man 

takes a breath and starts: 

 

M: This can be done in the form of a tale. It could be done better in the 

form of a truck load of formulas, but I doubt that you would understand 

these formulas. Do you accept that I pack the story in a tale? 
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S: Well I like a tale much better than a truck load of formulas. I probably 

would not understand one of them. So please start with your tale. 

 

The elder takes a breath and starts his tale. 

 

 

 

M: The world is governed by a book of laws. It must conform to these 

laws. There is no punishment in not following the laws, but the world 

cannot do anything else then operate according to the rules that are 

written in the book of laws. 

 

S: Where is that book and how is it called? 

 

M: It is in the possession of the governor of Hilbert’s bush. The book’s 

name is “The rules of quantum logic”. 

 

S: What is in that book? 

 

M: The book contains a small set of rules that regulate what the relations 

are between propositions that can be made about things that live in our 

world. 

 

S: What things? 

 

M: Well, anything that has an identity and that stores the condition it is 

in. Let us call such a thing an item or a particle and let us use the name 

state for the condition it is in. Mostly the concerned things are very small. 

However, these things can be very large. 

 

S: What is different with that logic? I know only one kind of logic. 
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M: You know the kind of logic that humans base their reasoning on. They 

use the rules of logic in their discussions when they start with truth and 

want to stay with truth. Nature uses a kind of logic that has a much richer 

structure. However, in that logic only one rule is different. 

 

S: How many rules contains the book and what do these rules mean? 

 

M: The book contains somewhat more than twenty rules and they specify 

the structure of the relations between the allowable propositions. 

 

S: There are not much rules in the book! How can that book rule the 

world? 

 

M: You are right about this, but these rules are very powerful. 

 

S: Please explain that. 

 

M: Well, the structure of the propositions is reflected in the structure of 

Hilbert’s bush. Hilbert’s bush is a huge and dense forest and is connected 

to our world. Via these connections Hilbert’s bush controls how the world 

works. 

 

S: Thus, if I visit Hilbert’s bush, then I can see how the world works? 

 

M: No, if you visit Hilbert’s bush, then you can see how the world is 

controlled.  

 

S: How, can I visit Hilbert’s bush? 

 

M: Well, you can join me on a virtual trip to Hilbert’s bush. I will be your 

guide. 

 

S: Fine. How does Hilbert’s bush look? 
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The man describes a very strange environment. The chap follows the old 

man in his mind and shows astonished. However, in advance his guide 

warned that he would present a tale. So, he must belief what the man 

tells. 

 

M: It is like a huge forest of poles. All poles have the same length and the 

feet of all poles are hooked at the same point in the centre of the bush. In 

this way the poles form an enormous sphere. 

 

S: Where do these poles stand for? 

 

M: The poles are the axes of a multidimensional cube that has an 

enormous dimension. First think of a three dimensional cube. Take a 

corner of it and take the three axes at that corner. You can identify the 

position of all points in the cube by three positions on rulers that are taken 

along the three axes.  

Now, as in an umbrella, fold these axes together, such that they form a 

small bundle. Next add a large amount of axes to that bundle. Give every 

axis a unique label in the form of one or more numbers. Add a ruler to 

each of these axes. You can still define the position of each point in the 

multidimensional cube by stating the corresponding positions on the 

rulers. Next increase the number of dimensions until it reaches infinity.  

The axes now form a dense ball and they all are numbered with a unique 

label. Finally unfold in your imagination the “umbrella” again until all 

axes are again perpendicular to each other. You can start counting the 

dimensions of the cube, but you will never finish counting. 

 

S: Thus the poles are a plain set of axes. 

 

M: Yes, but the space between the perpendicular axes can also be filled 

with poles. In this way several sets of mutually perpendicular axis poles 

can be found.  

 

S:What is the function of these axis poles? 
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M: The axis poles have colours. Some axis poles are green poles. Together 

they form a base in which the position of all other poles can be expressed. 

Another set of axis poles are red. Also they form a base. Some of the poles 

are silver white. They are not necessarily axis poles. The silver white poles 

appear in bundles. 

 

S: That is a strange kind of forest! 

 

M: Indeed, but it is not the only thing that is strange about Hilbert’s bush. 

Let me tell more about the silver white poles. The bundles of white poles 

represent and at the same time control the items in our world. 

 
S: How is that arranged? 

 

M: The items in our world are reflections of the bundles of white poles in 

Hilbert bush. What happens to the bundles will happen to the items. 

 

The student tries to imagine the strange situation. Apparently two worlds 

exist. One in which he lives and one from where his live is controlled. He 

visualizes the forest in his brain. 

 

S: What is the function of the green and red poles? 

 

M: At their top these other poles contain a data store in the form of a 

label. The data stores of the green poles contain position data. They are a 

kind of kilometre indications that you find along our roads. Instead of a 

single number the stores contain all three coordinates. It works like a kind 

of primitive GPS system.  

 

S: With some trouble I can understand what you paint for me. 



545 

 

 

M: The data stores of the red poles contain speed data, or better said 

momentum data. In this way a bundle of silver white poles can determine 

the current position and the momentum of the moves of its pupil in the 

real world. 

 

S: Why are there two types of data poles? 

 

M: The governor arranged it that way. In this way the bundle cannot 

determine both types of data at the same time. It is another detail of how 

the governor models our world. The stores of the poles contain the values 

of the properties of the type observation to which the pole belongs. 

Mathematicians call these values eigenvalues and the corresponding 

poles eigenvectors. With this trick the governor leaves us uncertain about 

our exact condition. 

 

S: What are mathematicians? 

 

M: Mathematicians are scientists that amongst other things study the 

mechanisms, which determine the structure and behaviour of Hilbert’s 

forest. The creator of the forest used mathematics to give it its 

functionality. 

 

S: Can white poles read data? 

 

M: No, in fact a shepherd that takes care of the silver white bundle does 

that. The forest is very dense. So, the shepherd can walk on top of these 

poles and guard his herd of sheep. From now on, I will call the silver 

white poles the shepherd’s sheep. 

 

S: How does the shepherd read the data? 

 

M: The shepherd must turn to the data pole in order to read its data. If he 

is close to a green pole, then he is rather far from a red pole. In fact he 
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may be at nearly the same distance from a series of red poles. He will 

usually read the nearest data pole. The same holds when the shepherd 

looks at other colours. Thus, the governor plays a strange trick with our 

world. 

For the insiders: This is the source for the existence of Heisenberg’s 

uncertainty principle. It is the cause of the quantum behaviour of small 

particles.  

 

S: I must say, that is a strange situation! 

 

M: Yes, let me proceed. It will become even much stranger. 

 

S: Please, go on. 

 

 
 

M: The shepherd drives his sheep through Hilbert’s bush. He does that 

guided by the smells that he receives from other silver white bundles. The 

smells are mixtures of perfumes that are attractive and perfumes that are 

repellent. The shepherd reacts on these smells. 
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S: What is causing these smells? 

 

M: These smells are caused by the properties of the sheep. They hang as a 

blurring mist around each white pole, thus around each individual sheep. 

The sheep may also move inside the scope of the herd. That movement 

may also be caused by the influence of the emitted smells. 

 

S: How does the shepherd keep his sheep together? 

 

M: Well, that happens in a particular way. The bush is so dense, that it is 

impossible to let the poles move. Instead at each of his steps the shepherd 

redefines the poles that belong to his herd. These poles turn silver white. 

The poles that get outside of the herd obtain their original green or red 

colour. The smells create a tendency to minimize action of the cheap. 

Further there exists another mechanism, which is called inertia. 

 

S: What is inertia? 

 

M: The smells invoke a sticky resistance of the system of all herds against 

change. Inertia represents the combined influence of all other herds. The 

most distant herds together form the largest part of the set of herds. So, 

they have the largest effect. The influence of each individual herd 

decreases with distance. However, the number of herds increases faster 

with distance. The difference between the distant herds averages away. 

As a consequence the distant herds form a uniform background influence. 

 

S: What is the effect of inertia on a herd? 

 

M: Locally the inertia produces an enormous smell pressure. A smooth 

uniform movement does not disturb this potential. When the herd 

accelerates it stirs the perfumes and in this way the inertia produces a 

smell that goes together with this movement. 
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S: I understand now how position is treated. What about time? 

 

M: The shepherd owns a simple clock. That clock counts his steps. His 

steps are all the same size. When he drives his sheep around, he follows a 

track in Hilbert’s bush. All shepherds take their steps in synchrony. In 

facts at each of their steps the complete forest is redefined. In this process 

the smells act as a guide. They store the current condition of the forest and 

these represent the preconditions for the new version of the forest. You 

can say that the smells represent potential versions of the forest. This 

includes potential versions of sheep. These potential sheep are virtual 

sheep. 

 

S: So, compared to space, time is handled quite differently. 

 

M: You understand it quickly and perfectly! You understand it better than 

the physicists of the last few centuries. Most of them were wrong with 

this subject. They think that time and space belong in one inseparable 

observable characteristic. 

 

S: How many of these herds exist? 

 

M: As many as there are particles in our world. So, there exist an 

enormous number of herds, but they are still countable. They can all be 

identified. All shepherds take their own track through Hilbert’s bush. 

 

S: That must make Hilbert’s bush very large! 

 

M: It is. Let me proceed. It must be obvious now that the herds influence 

each other’s movements via their smells. 

 

The lad reflects and pictures the forest in his mind as an enormous sphere. 

On top of that sphere a large number of shepherds push their own herd of 

silver white lights forward on curving tracks that are determined by the 

smells that other herds produce. At each of the shepherd’s steps Hilbert’s 
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forest is reconfigured. The old man must have a strange image of the 

world. Nonetheless, he must have his reasons. 

 

S: So, the shepherds play a crucial role! 

 

M: Yes, they manipulate their own herd. However, the smells of their 

sheep influence for other shepherds the observation of the position and 

momentum of other herds. 

 

S: How do the smells influence that observation? 

 

M: They give the data that are transmitted in the smell an extra turn. It 

means that other shepherds do not get a proper impression of the position 

and momentum data that are sent by other herds. 

 

S: Is there a good reason for this confusing behaviour? 

 

M: No, there is no reason. It is just a built in habit of all sheep. On the 

other hand, the governor established that habit when he designed 

mathematics. He designed mathematics such, that Hilbert’s bush and its 

inhabitants behave according to the rules in his book. 

 

S: What is the consequence of this strange behaviour? 

 

M: The consequence is that the particles in the world get the wrong 

impression of the position and momentum of other items. For them it 

appears that there exists a maximum speed. And these items think that 

they live in a curved space. 

For the insiders: This is the source of the existence of relativity as it was 

discovered, but not explained by Einstein. 

 

S: Do they think that? 

 

M: For them, it is the truth! 
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S: So, I live in a curved space and for me there exists a maximum speed. 

 

M: That is right. You properly understand how the world is controlled. 

As long as you do not interpret that maximum speed as the limit set by 

your local police officer. 

 

S: What happens inside a herd? 

 

M: The sheep inside a well-shaped herd perform rhythmic movements. 

You could say that they are dancing. Physicists call it harmonic 

movements. These dances occur under the control of the shepherd. He 

considers them as his own possession.  

 

S: What do you mean with a well-shaped herd? 

 

M: A well-formed herd represents in our world a well-formed object, such 

as an atom. 

 

S: Why is everything set up in such a strange way? 

 

M: The governor of Hilbert’s bush is very intelligent, but also very lazy. 

He does not want to create many rules, so that he does not have to write 

much in his law book. That is why he invented Hilbert’s bush. He builds 

the consequences of all his rules into the structure and the dynamics of 

Hilbert’s bush. That structure is in principle very simple. The same holds 

for the dynamics. In this way he does not have to take care on how the 

world evolves. However, this leaves an enormous freedom for what 

happens in the world that is controlled by Hilbert’s bush. That on itself 

results in an enormous complexity of the world we live in. That renders 

the governor very, very smart and very, very lazy. 

 

S: How did Hilbert’s bush get its name? 
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M: Hilbert was the first human that discovered the governor’s bush. So 

people give it his name. 

 

S: Can everybody visit Hilbert’s bush? 

 

M: In principle yes. Everybody that possesses sufficient imagination can 

visit Hilbert’s bush. There exist two guides. A mister Schrödinger tells the 

story as we did. He tells the story as if the bundle of silver white poles 

moves through the bush of green and red poles. The other guide, mister 

Heisenberg tells the story as if the bundle of white poles is stationary and 

the bush of green and red poles moves around. For the world it does not 

matter what moves. It only senses the relative motion. 

 

S: How did intelligent creatures like us enter that world? 

 

M: The governor installed a tendency to reduce complexity by means of 

modularization into his forest. When more compatible modules become 

available it becomes easier to construct more capable modules and more 

capable items from these modules. Given enough time, more and more 

capable items are created, which finally result in intelligent creatures. 

Scientists call this process evolution. It is a chaotic process, but it 

possesses a powerful tendency. 

 

S: Uch. Can I tell this to my friends? 

 

M: Yes, you can. And if you have learned to read formulas and work with 

them you can come back and I will tell you the same story in a cart load of 

formulas. 

 

S: Thanks. I will come back when I am grown up. Can I still ask a final 

question? 

 

M: You are a sauce-box, but you are smart. Go ahead. 
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S: What are you going to do after this? 

 

M: I will visit a very old and very wise scientist, called Mendel. He claims 

that he has a cohesive explanation for all smells that shepherds react to.  

 
 

 

S: Why is that important? 

 

M: If his claim is right, then he has found the Holy Grail of physics. 

 

S: Gosh! 

 

After this the boy departs. Later he will become a good physicist.  
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Interpretation 
The book of laws contains a number of axioms that define the structure of 

traditional quantum logic as an orthomodular lattice. 

 

Hilbert's bush stands for an infinite dimensional separable Hilbert space 

that is defined over the number field of the quaternions. The set of the 

closed subspaces of the Hilbert space has the same lattice structure as 

traditional quantum logic. 

 

The green poles represent an orthonormal base consisting of eigenvectors 

of the normal operator Q. This operator represents an observable 

quantity, which indicates the location of the item in space. 

 

The red poles represent an orthonormal base consisting of eigenvectors of 

the normal operator P. This operator is the canonical conjugate of Q and 

represents an observable quantity, which indicates the momentum of the 

item. 

 

The bundle of silver white poles and the herd of sheep represent a closed 

subspace of the Hilbert space that on its turn represents a particular 

quantum logical statement. This statement concerns a particle or a wave 

packet in our surroundings. Q describes the thing as a particle. P 

describes the thing as a wave packet. 

 

The shepherd represents a complicated operator Ut that pushes the 

subspace, which is represented by his herd, around in the Hilbert space. 

The operator Ut may be seen as a trail of infinitesimal unitary operators. It 

is a function of the trail progression parameter t. The progression 

parameter differs from our common notion of time, which is the 

coordinate time. 

 

Traditional quantum logic defines only the stationary structure of what 

happens in Hilbert’s bush. The dynamics are introduced by the shepherds 

that react on the smells. 
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The smells correspond to physical fields. The fields transport information 

about the conserved quantities that characterize the movements of the 

item and its elements. Each type of preserved quantity has its own field 

type. The operators Ut react on these fields. Inertia shows how these 

operators reflect the actions of the fields. Any acceleration of the item goes 

together with a reconfiguration of the fields. 

 

The operator Ut transforms the observation operators Q and P into 

respectively 

 

Qt = Ut-1·Q·Ut  

 

and  

 

Pt = Ut-1·P·Ut  

 

.This distorts the correct observation and ensures that the observer 

experiences a speed maximum and a curved space. 

 

The eigenvalues of Q and P and the trail progression parameter t 

characterize the space-time in our live space. As already indicated t is not 

the same as our common coordinate time. 

 

De eigenfunctions of Ut control the (harmonic) internal movements of the 

particles.  

 

The sheep represent the elements/properties of the particle. 

 

The effect of modularization is treated in http://www.crypts-of-

physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf.; 

part four of this book 

 

http://www.crypts-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
http://www.crypts-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
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On the origin of physical dynamics 

Author: Hans van Leunen 

 

This book reports the current state of a running project that investigates the origin of 

physical dynamics. 

It starts from the axioms of traditional quantum logic and extends this model such that 

it incorporates physical fields as well as dynamics. 

It uses the isomorphism between the set of propositions of traditional quantum logic 

and the set of closed subspaces of an infinite dimensional separable Hilbert space that 

uses quaternions in order to specify its inner products. 

The book finds solutions for the anomalies that are raised by the countability of the 

eigenspaces of normal quaternionic operators. It also takes the consequence of the 

observation that all information about nature becomes available in the form of clouds 

of information carrying quanta. 

The book unifies all fields, such that except for the curvature field, all fields including 

the wave functions are considered as QPAD’s. The curvature field is derived from the 

curvature of the superposition of all these primary fields. The curvature follows from 

the decomposition of this covering field in rotation free and divergence free parts. 

In order to implement dynamics, the developed model applies a sequence of extended 

quantum logics or equivalently a sequence of extended separable Hilbert spaces. Each 

of the members of the sequence represents a static status quo of the universe. This 

leads to a new model of physics:  

 

The Hilbert book model 
 

Apart from this main subject the book contains a series of related papers. 
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