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Abstract

Using noncommutative deformed canonical commutation relations, a model describing a non-

commutative complex scalar �eld theory is proposed. The noncommutative �eld equations are

solved, and the vacuum energy is calculated to the second order in the parameter of noncommu-

tativity. As an application to this model, the Casimir e¤ect, due to the zero point �uctuations of

the noncommutative complex scalar �eld, is considered. It turns out that in spite of its smallness,

the noncommutativity gives rise to a repulsive force at the microscopic level, leading to a modi�ed

Casimr potential with a minimum at the point amin =
q

5
84��.
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1. INTRODUCTION

In the last few years, many e¤orts have been made to understand the nature of space-

time at the microscopic level by using new ideas like quantum groups, deformation theory,

noncommutative geometry etc... This may shed a light on the real microscopic geometry and

structure of our universe. One approach, is the study of noncommutative space-time and its

implications to quantum �eld theories and other area of theoretical physics, the motivation

for this kind of investigation is that the e¤ects of noncommutativity of space may appear

at very short distances of the order of the Planck length, or at very high energies [1]-[10].

The discovery of noncommutative geometry has allowed the exploration of new directions

in theoretical physics, in particular, two-dimensional noncommutative harmonic oscillators

are an extremely active area of research [26] [11]-[20].

Our paper is organized as follows: In Section 2, we consider a noncommutative action

for a complex scalar �eld with self interaction, in section 3, we derive and solve the free

noncommutative �eld equations, in section 4, we consider the noncommutative Casimir

e¤ect. Finally, in section 5, we draw our conclusions.

2. NONCOMMUTATIVE ACTION

From quantum �eld theory we know that charged particles with spin zero are described

by a complex scalar �eld � (x), we also know that the equation of motion can be derived

from variation of an action S =
R
d4xL, where L is a Lagrangian density given by [21]-[25]

L = � (@��)� (@��)�m2���� g (���)2 (1)

here m is the mass of the charged particles, and g is a positive parameter. The metric

signature will be assumed to be �++..., in what follows, we take ~ = c = 1.
The complex scalar �eld can be quantized using the canonical quantization rules, for this

we express it in terms of its real and imaginary parts as � = 1p
2
('1 + i'2), where '1; '2 are

real scalar �elds; in terms of these real scalar �elds the Lagrangian density reads

L = �1
2
(@�'a)

2 � 1
2
m2 ('a)

2 � 1
4
g ('a'a)

2 = �1
2
(@�'a)

2 � 1
2
�2 ['] ('a)

2 (2)

where �2 ['] = m2 + 1
2
g ('a)

2 :
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Let �a be the canonical conjugate to 'a

�a =
@L

@
:
'a
=

�
'a (3)

The Hamiltonian density reads then

H = �a
�
'a � L=

1

2
(�a)

2 +
1

2

��!r'a�2 + 1
2
�2 ['] ('a)

2 (4)

To quantize the system, we split the Hamiltonian density H = H0+Hint into a free and
interaction terms [21]

H0 =
1

2
(�a)

2 +
1

2

��!r'a�2 + 1
2
m2 ('a)

2 (5)

Hint =
1

4
g ('a'a)

2 (6)

then we pass to the interaction picture. In the interaction picture the equation of motion

are given by

�
'a (x) =

�H0
��a (x)

,
�
�a (x) = �

�H0
�'a (x)

(7)

where H0 =
R
d3�!xH0 is the free Hamiltonian.

In the canonical quantization the canonical variables 'a and the canonical conjugates �a

are assumed to be operators satisfying the canonical commutation relations

['a (t;
�!x ) ; �b (t;�!y )] = i�ab�3 (�!x ��!y ) (8)

['a (t;
�!x ) ; 'b (t;�!y )] = 0

[�a (t;
�!x ) ; �b (t;�!y )] = 0

It is well known, since the birth of quantum �eld theory in the papers of Born, Dirac,

Fermi, Heisenberg, Jordan, and Pauli, that the free �eld behaves like an in�nite number

of coupled harmonic oscillators [21], using this analogy between free �elds and an in�nite

number of coupled harmonic oscillators, one can impose non commutativity on the con�gu-

ration space of dynamical �elds 'a, to do this we recall that the two-dimensional harmonic

oscillator noncommutative con�guration space can be realized as a space where the coor-

dinates bxa, and the corresponding noncommutative momentum bpa; are operators satisfying
the commutation relations
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[bxa; bxb] = i�2"ab [bpa; bpb] = 0 [bxa; bpb] = i�ab (9)

where � is a parameter with dimension of length, and "ab is an antisymmetric constant

matrix.

It is well known that this noncommutative algebra can be mapped to the commutative

Heisenberg-Weyl algebra [26]-[28]

[xa; xb] = 0 [pa; pb] = 0 [xa; pb] = i�ab (10)

through the relations

bxa = xa � 1
2
�2"abpb bpa = pa (11)

To impose non commutativity on the con�guration space of dynamical �elds 'a, we

assume that the noncommutative canonical variables b'a and the noncommutative canonical
conjugates b�a satisfy the noncommutative commutation relations

[b'a (t;�!x ) ; b�b (t;�!y )] = i�3 (�!x ��!y ) �ab (12)

[b'a (t;�!x ) ; b'b (t;�!y )] = i�"ab�3 (�!x ��!y )
[b�a (t;�!x ) ; b�b (t;�!y )] = 0

where � is the parameter of noncommutativity, which is assumed to be a constant, and

"ab is a 2� 2 real antisymmetric matrix

"12 = �"21 = 1 (13)

The noncommutative Hamiltonian density is assumed to have the form

bH=1
2
(b�a)2 + 1

2

��!r b'a�2 + 1
2
�2 [b'] (b'a)2 (14)

It is easy to see that the noncommutative commutation relations (12) can be mapped

to the canonical commutation relations (8) if the noncommutative variables b'a and b�a are
related to the canonical variables 'a and �a by the relations
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b'a = 'a � 1
2
�"ab�b (15)

b�a = �a
Using these transformations, the noncommutative Hamiltonian density eq(14) can be

rewritten, up to a total derivative term and up to second order in the parameter �, as

bH=1
2
��M� � 1

8
�2��D� + ���N'+

1

2
'�B'+O

�
�3
�

(16)

where

M= I+
1

4
�2
�
m2I� "b�"� =M� (17)

b�ab = �2

�'a�'b

�
1

4
g ('�')2

�
= '�'�ab + 2'a'b

b� = ('�') I+ 2M ['] , Mab ['] = 'a'b

D=
�!r2I = D�

N=
1

2

�
m2 ��!r2 + g ('a)

2
�
" = �N�

B=
�
m2 ��!r2 +

1

2
g ('a)

2

�
I = B�

with I denotes the 2� 2 unit matrix, and A� denotes the transpose of the operator A:
From now on we keep only the modi�cations due to the noncommutativity up to second

order in the parameter �:

The relation between �a and
�
'a is given by

�
'a (x) =

� bH
��a (x)

(18)

where bH =
R
d3x bH: Using the expression of bH and the symmetry properties of the

operators M =M� and D = D�, one gets

�
'a (x) =Mab�b (x)�

1

4
�2Dab�b (x) + �Nab'b (x) (19)

From this relation we get the following iterative expression of �a
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�a = Kab
�
�
'b � �Nbc'c

�
+
1

4
�2KabDbc�c (20)

where K is the inverse of the matrix M

K =M�1 = I�1
4
�2
�
m2I� "b�"� (21)

Using the expression of the matrix K one gets, by iteration, the following expression of

�a

�a =

�
I+
1

4
�2D

�
ab

�
'b � �Nab'b (22)

where D = D� (m2I� "b�") = �!r2I� (m2I� "b�") = D�:
We note that the noncommutative Hamiltonian density can be derived from the following

noncommutative Lagrangian density

bL = 1

2

�
'a

�
I+
1

4
�2D

�
ab

�
'b + �'aNab

�
'b �

1

2
'a
�
B+�2N2

�
ab
'b (23)

bL = 1

2

�
'�
�
I+
1

4
�2D

�
�
'+ �'�N �

'� 1
2
'�
�
B+�2N2

�
'

via the usual Legendre transformation bL = �a
�
'a� bH. To get this expression we have

used the symmetry properties of the operators D, N and B:

3. NONCOMMUTATIVE FIELD EQUATIONS

Let us now consider the free theory, g = 0, the noncommutative free Hamiltonian density

reads

bH=1
2
��M� � 1

8
�2��D� + ���N'+

1

2
'�B' (24)

where

M=
�
1+
1

4
�2m2

�
I =M� , D=

�!r2I = D� (25)

N=
1

2

�
m2 ��!r2

�
" = �N�

B=
�
m2 ��!r2

�
I = B�
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The noncommutative �eld equations are given by

�
'a (x) =

� bH
��a (x)

(26)

�
�a (x) = �

� bH
�'a (x)

(27)

From the �rst equation we get

�a =

�
I+
1

4
�2D

�
ab

�
'b � �Nab'b (28)

with D =
�
m2 ��!r2

�
I.

The second equation gives
�
�a = �Nab�b � Bab'b (29)

The noncommutative �eld equations eq(28) and eq(29) may be written in the form

�
�A @

2

@t2
+ B @

@t
� C

�
' (x) = 0 (30)

where

A=
�
1� 1

4
�2
�
m2 ��!r2

��
I = A� (31)

C=
�
1� 1

4
�2
�
m2 ��!r2

���
m2 ��!r2

�
I = C�

B=�
�
m2 ��!r2

�
" = �B�

It is easy to see that the �eld equations eq(30)may be derived from the Lagrangian eq(23)

bL = Z d3�!x
�
1

2

�
'�A �

'+
1

2
'�B �

'� 1
2
'�C'

�
(32)

To get the general solution of eq(30) one begins by looking for solutions of the form [22]

uA (t;
�!x ) = �A (�!x ) e�i!At�A (33)

known as mode functions, where �A are the eigenvectors of the operator �
�!r2 with

eigenvalues �A

��!r2�A (
�!x ) = �A�A (�!x ) (34)
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and �A are 2� 1 constant columns.
Insertion of eq(33) into eq(30) leads to the eigenvector-eigenvalue problem

��
1� 1

4
�2�A

��
�A � !2A

�
+ i��A"!A

�
�A = 0 (35)

where we have used the abbreviation �A = m2 + �A:

This eigenvector-eigenvalue problem has a non trivial solution if and only if the frequencies

!A are roots of the equation

det

��
1� 1

4
�2�A

��
�A � !2A

�
+ i��A"!A

�
= 0 (36)

which can be written in the equivalent form�
1� 1

4
�2�A

�2 �
�A � !2A

�2 � �2�2A!2A = 0 (37)

Hence, the frequencies !A are the positive roots of the equations

!2A � ��A!A � �A = 0 (38)

The solutions are given by

!
(+)
A =

1

2

�
���A +

q
4�A + �2�

2
A

�
'
p
�A �

1

2
��A +

1

8
�2�

3
2
A (39)

!
(�)
A =

1

2

�
+��A +

q
4�A + �2�

2
A

�
'
p
�A +

1

2
��A +

1

8
�2�

3
2
A

Because the mode functions

u
(�)
A (t;�!x ) = �A (�!x ) e�i!

(�)
A t�

(�)
A (40)

form a complete set the general solution of eq(30) may be expanded in terms of them:

' (x) =
X
A

h
u
(+)
A (x) aA + u

(+)
A (x) aA

i
+
X
A

h
u
(�)
A (x) bA + u

(�)
A (x) bA

i
(41)

for some time independent complex numbers aA, bA and their complex conjugates aA,

bA; where u
(�)
A are the complex conjugates of the mode functions u(�)A . Starting from the

equations satis�ed by the mode functions u(�)A�
�A @

2

@t2
+ B @

@t
� C

�
u
(�)
A (x) = 0 (42)
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one can see, after some algebraic operations [22], that these mode functions satisfy the

Wronskian relations

�i
Z
d3�!x u(+)�A

 !
Wu(+)B = �AB + i

Z
d3�!x u(+)�A

 !
Wu(+)B = �AB (43)

� i
Z
d3�!x u(+)�A

 !
Wu(+)B = 0 + i

Z
d3�!x u(+)�A

 !
Wu(+)B = 0

�i
Z
d3�!x u(�)�A

 !
Wu(�)B = �AB + i

Z
d3�!x u(�)�A

 !
Wu(�)B = �AB (44)

� i
Z
d3�!x u(�)�A

 !
Wu(�)B = 0 + i

Z
d3�!x u(�)�A

 !
Wu(�)B = 0

�i
Z
d3�!x u(+)�A

 !
Wu(�)B = 0 + i

Z
d3�!x u(+)�A

 !
Wu(�)B = 0 (45)

� i
Z
d3�!x u(�)�A

 !
Wu(+)B = 0 + i

Z
d3�!x u(�)�A

 !
Wu(+)B = 0

�i
Z
d3�!x u(+)�A

 !
Wu(�)B = 0 + i

Z
d3�!x u(+)�A

 !
Wu(�)B = 0 (46)

�i
Z
d3�!x u(�)�A

 !
Wu(+)B = 0 + i

Z
d3�!x u(�)�A

 !
Wu(+)B = 0

where
 !
W (x) = �A (x)

�!
@

@t
+A (x)

 �
@

@t
+ B (x) (47)

is the Wronskian operator corresponding to the di¤erential operator [22]

F = �A @
2

@t2
+ B @

@t
� C (48)

The Wronskian operator
 !
W has the following symmetry and reality properties:

 !
W� = � !W ,

 !
W � = � !W (49)

Here O;O�and O�denote the complex conjugate, the Hermitian conjugate and the trans-
pose of the matrix (or the operator ) O, respectively.
In order that these Wronskian relations must hold, the operatorsA and C must be positive

de�nite operators, but the eigenvalues of the operators A and C are given by
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Au(�)A (x) =

�
1� 1

4
�2
�
m2 ��!r2

��
u
(�)
A (x) =

�
1� 1

4
�2�A

�
u
(�)
A (x) (50)

Cu(�)A (x) =

�
1� 1

4
�2
�
m2 ��!r2

���
m2 ��!r2

�
u
(�)
A (x) =

�
1� 1

4
�2�A

�
�Au

(�)
A (x)

so these eigenvalues are not positive for all indices A, to solve this problem we use the fact

that � � 10�13m [26]-[29], so
�
1� 1

4
�2�A

�
> 0 for all indices A such that �A < 4

�2
� 1026, to

make the spectrum of the operators A and C bounded we impose the following boundary

conditions on the eigenfunctions �A (
�!x ) of the operator ��!r2���� @@xj�A (x1; :::; xj:::; xD)

�����!x=�!a � �� j = 1; 2; :::; D (51)

at some arbitrary point �!x = �!a , and � is some constant with dimension (length)�
3
2 :

Note that in the classical limit where � ! 0 this condition is trivially satis�ed.

As an example we consider the free scalar �eld con�ned in a D-dimensional rectangular

box of volume V = LD and impose periodic boundary conditions on the walls of the box,

the normalized eigenfunctions �A (
�!x ) of the operator ��!r2, are [39]

r
1

V
exp

"
DX
k=1

2�ink
L

xk

#
with nk = 0;�1;�2; :::; for each k = 1; 2; :::; D (52)

in this case the boundary conditions eq(51) read

���� @@xj�A (x1; :::; xj:::; xD)
�����!x=�!a =

r
1

V

����2�njL
���� � �� j = 1; 2; :::; D (53)����2�njL

���� � �
p
V

�
j = 1; 2; :::; D

if we choose � = 1p
DV
we get

�A � �n1n2:::nD =
DX
k=1

�
2�nk
L

�2
� �

2DV

�2
(54)

1

4
�2�A =

1

4
�2

"
m2 +

DX
k=1

�
2�nk
L

�2#
� 1
4
�2m2 +

�2DV

4
< 1
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where we have used the fact that � is an in�nitesimal parameter such that �2m2 < 1:

Hence A and C are positive de�nite operators.
As a second example, we consider the free scalar �eld con�ned in a D-dimensional rec-

tangular box of volume V = LD and impose Dirichlet boundary conditions on the walls of

the box, the normalized eigenvectors �A of �
�!r2 with Dirichlet boundary conditions on the

walls of the box

�A (0; x2; x3; :::; xD) = �A (L; x2; x3; :::; xD) = 0 (55)

�A (x1; :::; xk�1; 0; xk+1; :::; xD) = �A (x1; :::; xk�1; L; xk+1; :::; xD) , k = 2; :::; D

are given by [39]

��!r2�A (
�!x ) = �A�A (�!x ) (56)

�A (
�!x ) =

r
2

V
sin
��n1
L
x1

�
exp

"
DX
k=2

2�ink
L

xk

#

with n1 = 1; 2; ::: and nk = 0;�1;�2; ::: for k = 2; 3; :::; D.
The eigenvalues are given by

�A � �n1n2:::nD =
��n1
L

�2
+

DX
k=2

�
2�nk
L

�2
(57)

in this case the boundary conditions eq(51) read

���� @@xj�A (x1; :::; xj:::; xD)
�����!x=�!a =

r
2

V

���sin��n1
L
a1

���� ����2�njL
���� � �� , j = 2; :::; D (58)����2�njL

���� � 1��sin ��n1
L
a1
��� �
p
Vp
2�

,
L

a1
=2 N , j = 1; 2; :::; D���� @@x1�A (x1; :::; xj:::; xD)

�����!x=�!a =
r
2

V

���n1�
L
cos
��n1
L
a1

���� � �
�

(59)���n1�
L

��� � 1��cos ��n1
L
a1
��� �
p
Vp
2�

,
L

a1
=2 N , j = 1; 2; :::; D (60)

if we choose � =
q

a1
L(D�1)V and a1 � 0 we get
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�A � �n1n2:::nD =
��n1
L

�2
+

DX
k=2

�
2�nk
L

�2
�
"

1��cos ��n1
L
a1
���2 + D � 1��sin ��n1

L
a1
���2
#
�2V

2�2
(61)

�A ��
"
2
1 + cos2

�
�n1
L
a1
�
(D � 2)

sin
�
2n1�
L
a1
� #

�2V

2�2
� D � 1n1�

L
a1

�2V

2�2
� (D � 1)L

�a1

�2V

2�2

1

4
�2�A =

1

4
�2

"
m2 +

��n1
L

�2
+

DX
k=2

�
2�nk
L

�2#
� 1
4
�2m2 +

(D � 1)L
a1

�2V

8�
< 1

where we have used the fact that � is an in�nitesimal parameter such that �2m2 < 1:

Hence A and C are positive de�nite operators.
From now on, we make the assumption that

�
1� 1

4
�2�A

�
> 0 for all indices A:

Quantization of the noncommutative complex scalar �eld theory is straightforward via

the Peierls bracket ( see [22] for more details ). In the quantum theory, the �eld ' becomes

a Hermitian operator, and the operator version of eq(41)

' (x) =
X
A

h
u
(+)
A (x) aA + u

(+)
A (x) a�A

i
+
X
A

h
u
(�)
A (x) bA + u

(�)
A (x) b�A

i
(62)

holds for some constant operators aA, bA and their Hermitian conjugates a�A, b
�
A. By using

the Wronskian relations eq(43)�eq(46) we get

aA = �i
Z
d3�!x u(+)�A (x)

 !
W' (x) a�A = + i

Z
d3�!x u(+)�A (x)

 !
W' (x) (63)

bA = �i
Z
d3�!x u(�)�A (x)

 !
W' (x) b�A = + i

Z
d3�!x u(�)�A (x)

 !
W' (x)

The quantum theory is obtained by setting

['a (x) ; 'b (y)] = i eGab (x; y) (64)

where eG is the commutator matrix
eG (x; y) = �iX

A

u
(+)
A (x)u

(+)�
A (y) + i

X
A

u
(+)
A (x)u

(+)�
A (y)

� i
X
A

u
(�)
A (x)u

(�)�
A (y) + i

X
A

u
(�)
A (x)u

(�)�
A (y)
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Using the Wronskian relations eq(43)�eq(46) one can see that the commutator matrixeG is the unique function that solves the Cauchy problem:
' (x) =

Z
d3�!y eG (x; y) !W (y)' (y) at the same time t = x0 = y0 (65)

Moreover the commutator matrix eG satis�es the equation�
�A @

2

@t2
+ B @

@t
� C

� eG (x; y) = 0 (66)

Using eq(64) and the Wronskian relations eq(43)�eq(46) we get the commutation rela-
tions

[aA; a
�
B] = �AB ; [aA; aB] = [a�A; a

�
B] = 0 (67)

[bA; b
�
B] = �AB ; [bA; bB] = [b�A; b

�
B] = 0

[aA; b
�
B] = [aA; bB] = [a�A; b

�
B] = [a�A; bB] = 0

The noncommutative Hamiltonian operator is given by eq(24)

bH =

Z
d3�!x bH=Z d3�!x

�
1

2
��M� � 1

8
�2��D� + ���N'+

1

2
'�B'

�
(68)

It is easy to show, by substituting the expression of � eq(28)

� =

�
I+
1

4
�2D

�
�
'� �N' = A �

'� 1
2
B' (69)

into eq(68), that the noncommutative Hamiltonian operator can be written as

bH =
1

2

Z
d3�!x '� (x) !W (x)

�
' (x) (70)

using the Wronskian relations eq(43)�eq(46), and the expression of ' eq(62), the non-
commutative Hamiltonian operator bH of the system can be expressed as

bH =
X
A

�
!
(+)
A a�AaA + !

(�)
A b�AbA

�
+
1

2

X
A

�
!
(+)
A + !

(�)
A

�
(71)

where the commutation relations have been used to get this form.

The noncommutative vacuum energy Evac reads

Evac = hvacj bH jvaci = 1

2

X
A

�
!
(+)
A + !

(�)
A

�
(72)
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Hence

Evac =
1

2

X
A

�
!
(+)
A + !

(�)
A

�
=
X
A

�p
�A +

1

8
�2�

3
2
A

�
(73)

Evac =
X
A

�p
m2 + �A +

1

8
�2
�
m2 + �A

� 3
2

�
where the summation over A is constrained by the condition eq(51). The noncommutative

vacuum energy Evac, in the case were the free scalar �eld is con�ned in a D-dimensional

rectangular box of volume V = LD with periodic boundary conditions on the walls of the

box, can be written as

Evac =
X

n1;n2;:::;nD

0@"m2 +
DX
k=1

�
2�nk
L

�2# 1
2

+
1

8
�2

"
m2 +

DX
k=1

�
2�nk
L

�2# 3
2

1A (74)

where the summation over n1; n2; :::; nD is constrained by the condition eq(53)

jnkj �
L

2�
p
D�

k = 1; 2; :::; D

In the limit L!1 we can approximate the sums that occur in eq(74) with (divergent)

integrals

Evac = V

Z
dD�!p
(2�)D

���!p 2 +m2
� 1
2 +

1

8
�2
��!p 2 +m2

� 3
2

�
Although these integrals are mathematically meaningless, one can use some sort of reg-

ularization technique that makes the integrals �nite. Using the ��function regularization
(see the de�nitions and intermediate stages of the calculation in Section 4) [39], we get the

following expression for the vacuum energy Evac

Evac =

"
V [m2]

D+1
2

(4�)
D
2

�
l2m2

�� s
2
�
�
s�D�1

2

�
�
�
s�1
2

� +
1

8
�2
V [m2]

D+3
2

(4�)
D
2

�
l2m2

�� 3s
2
�
�
3s�D�3

2

�
�
�
3s�3
2

� #
s!0

(75)

If D is even the right-hand side of eq(75) is analytic at s = 0 with the result

Evac =
V [m2]

D+1
2

(4�)
D
2

�
�
�D+1

2

�
�
�
�1
2

� �
1 +

1

8
�2
3m2

D + 1

�

=
V [m2]

D+1
2

(4�)
D
2

(�2)
D
2

1:3:5::: (D + 1)

�
1 +

1

8
�2
3m2

D + 1

�
(76)
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where we have used the following properties of the ��function [39] [23]

z� (z) = � (z + 1)

�

�
1

2
� n

�
=

(�2)n
p
�

1:3:5::: (2n� 1) , n = 1; 2; 3; :::

When D is odd the right-hand side of eq(75) is not analytic at s = 0; it has simple poles

at s = 0; one simple pole from �
�
s�D�1

2

�
and another simple pole from �

�
3s�D�3

2

�
. If we

expand eq(75) about the pole, in the case where D = 3, we �nd

Evac = �
V

2

�
m2

4�

�2��
1 +

m2

48
�2
�
2

s
� 1
2

�
1 +

5m2

24
�2
�
�
�
1 +

m2

16
�2
�
ln
l2m2

4

�
to get this expression the following formula has been used [39] [23]

� (�n+ �) = (�1)n

n!

�
1

�
�  + 1 + 1

2
+ :::+

1

n

�
+O (�)

where n is a positive integer or zero, and  is the Euler constant.

The vacuum energy, when D is odd, is divergent, this is just one example of a variety

of ultraviolet divergences that are encountered in quantum �eld theory, they arise in a

continuum theory due to the in�nite number of degrees of freedom that exist even in a

�nite volume, they can be reabsorbed into a rescaling of the �elds and into a rescaling of

coupling constants. These ultraviolet divergences can be eliminated by hand since only

energy di¤erences can be observed, they are only important if we worry about gravitational

phenomena, since in general relativity any form of energy contributes to the gravitational

interaction [21] [24].

4. NONCOMMUTATIVE CASIMIR EFFECT

The Casimir e¤ect is a non-classical electromagnetic, attractive force which is concerned

with vacuum �uctuations in the electromagnetic �eld between two uncharged parallel con-

ducting plates [30]. The size of this force was �rst predicted and calculated in 1948 by

Casimir, who found that there is an attractive force per unit area between two parallel,

uncharged, perfectly conducting plates separated by a distance a

FCasimir = �
~c�2

240a4
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This was �rst looked for by Sparnaay (1958), and recently has been con�rmed by Lam-

oreaux, Mohideen and Roy, and recently by Chan, Aksyuk, Kleiman, Bishop, and Capasso

[30][32]-[38].

Casimir e¤ect is of great interest for both the theoretical and the experimental sides,

it �nds applications in various physical phenomena, for example in quantum re�ection of

atoms on di¤erent surfaces and Bose-Einstein condensation [31].

In this section we will consider the complex scalar �eld analogue of the Casimir e¤ect, for

this we consider a massive complex scalar �eld in a D-dimensional rectangular box, satisfying

Dirichlet boundary conditions at x1 = 0 and x1 = a, but is uncon�ned in the remaining

directions, let L1 = a, L2 = L3 = ::: = LD = L be the sides of the box, and V = L1L2L3...

LD its volume, ultimately we will let L becomes in�nitely large [39].

The normalized eigenvectors �A of �
�!r2 with Dirichlet boundary conditions on the walls

of the box

�A (0; x2; x3; :::; xD) = �A (a; x2; x3; :::; xD) = 0 (77)

�A (x1; :::; xk�1; 0; xk+1; :::; xD) = �A (x1; :::; xk�1; L; xk+1; :::; xD) , k = 2; :::; D

are given by [39]

��!r2�A (
�!x ) = �A�A (�!x ) (78)

�A (
�!x ) =

r
2

V
sin
��n1
a
x1

�
exp

"
DX
k=2

2�ink
L

xk

#
with n1 = 1; 2; ::: and nk = 0;�1;�2; ::: for k = 2; 3; :::; D.
The eigenvalues are given by

�A � �n1n2:::nD =
��n1
a

�2
+

DX
k=2

�
2�nk
L

�2
(79)

The noncommutative vacuum energy Evac is given by

Evac =
X
A

�p
m2 + �A +

1

8
�2
�
m2 + �A

� 3
2

�
(80)

Evac = E
(C)
vac + E

(NC)
vac
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where E(C)vac is the classical vacuum energy

E(C)vac =
X
A

p
m2 + �A =

1X
n1=1

1X
n2=�1

:::
1X

nD=�1

vuutm2 +
��n1
a

�2
+

DX
k=2

�
2�nk
L

�2
(81)

and E(NC)vac is the pure noncommutative vacuum energy

E(NC)vac =
1

8
�2
X
A

�
m2 + �A

� 3
2

=
1

8
�2

1X
n1=1

1X
n2=�1

:::

1X
nD=�1

"
m2 +

��n1
a

�2
+

DX
k=2

�
2�nk
L

�2# 3
2

(82)

To deal with the in�nite sum of zero point energies in eq(81) and eq(82), we must intro-

duce a regularization method to extract �nite expression [39][40][41][23]. One elegant way

for doing this is to use ��function regularization [39], the idea of the method is to de�ne
the divergent sum

P
AEA over zero-point energies in eq(81) and eq(82) by the analytic con-

tinuation of a convergent sum. First, we consider the in�nite sum in eq(81), we de�ne the

energy ��function by

E (s) =
X
A

EA (lEA)
�s (83)

where EA =
p
m2 + �A; s is a complex variable and l is a constant with units of length,

introduced to keep(lEA) dimensionless. This ensures that E (s) has dimensions of energy

for all values of s.

The classical vacuum energy can be written as

E(C)vac = lim
s!0
E (s) = E (0) (84)

where the energy ��function E (s) is given by

E (s) = l�s
1X
n1=1

1X
n2=�1

:::

1X
nD=�1

"
m2 +

�n1�
a

�2
+

DX
k=2

�
2�nk
L

�2# 1�s
2

(85)

In the limit L ! 1, we can replace the sums over n2; n3; :::; nD with integrals, so the
energy ��function becomes
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E (s) = l�s
V

a

1X
n1=1

Z
dD�1�!p
(2�)D�1

��n1�
a

�2
+�!p 2 +m2

� 1�s
2

(86)

Using the identity

a�z =
1

� (z)

Z 1

0

dttz�1e�at (87)

which holds for Re(z) > 0 and Re(a) > 0, where � (z) is Gamma function

� (z) =

Z 1

0

dttz�1e�t (88)

de�ned for Re(z) > 0, we obtain the following expression for the energy ��function

E (s) = l�s
V

a

1X
n1=1

1

�
�
s�1
2

� Z dD�1�!p
(2�)D�1

Z 1

0

dtt
s�3
2 exp

�
�
��n1�

a

�2
+�!p 2 +m2

�
t

�
(89)

= l�s
V

a

1X
n1=1

1

�
�
s�1
2

� Z 1

0

dtt
s�3
2 exp

�
�
��n1�

a

�2
+m2

�
t

�Z
dD�1�!p
(2�)D�1

exp
�
��!p 2t

�
Finally, integrating over �!p , and using the identity (87) one �nds the following expression

E (s) = l�s
V

(4�)
D�1
2 a

�
�
s�D
2

�
�
�
s�1
2

� 1X
n1=1

��n1�
a

�2
+m2

�D�s
2

(90)

When m! 0, the energy ��function becomes

E (s) = l�s
V

(4�)
D�1
2 a

�
�
s�D
2

�
�
�
s�1
2

� 1X
n1=1

�n1�
a

�D�s
(91)

E (s) = l�s
V

(4�)
D�1
2 a

��
a

�D�s � � s�D
2

�
�
�
s�1
2

� � (s�D)
where � (s) =

1X
n=1

n�s is the Riemann ��function.

Let us now consider the interesting case where D = 3; in this case the energy ��function
takes the form

E (s) =
V

4�a

��
a

�3 �
l
�

a

��s � � s�3
2

�
�
�
s�1
2

�� (s� 3) (92)

E (s) =
V �2

4�a4
2

s� 3

�
l
�

a

��s
� (s� 3)
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In the limit s! 0, we get

E (0) = � �
2

6a4
� (�3) = � �2

720a4
(93)

Hence the vacuum energy is

E(C)vac = �
�2A

720a3
(94)

where A = L1L2 = L2 is the area of the parallel (uncharged conducting) plates.

By the same steps we will now calculate the noncommutative vacuum energy E(NC)vac , let

E (s) be the energy ��function

E (s) = l�3s
1X
n1=1

1X
n2=�1

:::
1X

nD=�1

"
m2 +

�n1�
a

�2
+

DX
k=2

�
2�nk
L

�2# 3(1�s)
2

(95)

then

E(NC)vac = lim E (s)
s!0

= E (0) (96)

In the limit L ! 1, we can replace the sums over n2; n3; :::; nD with integrals, so the
energy ��function becomes

E (s) = l�3sV
a

1X
n=1

Z
dD�1�!p
(2�)D�1

��n�
a

�2
+�!p 2 +m2

� 3(1�s)
2

(97)

using the relation(87), one gets

E (s) = l�3sV
a

1X
n=1

1

�
�
3
2
(s� 1)

� Z 1

0

dtt
(3s�5)

2

Z
dD�1�!p
(2�)D�1

e
�
h
(n�a )

2
+�!p 2+m2

i
t (98)

integrating over �!p , and using the identity (87) one �nds

E (s) = l�3s V

a (4�)
D�1
2

1

�
�
3
2
(s� 1)

� 1X
n=1

��n�
a

�2
+m2

�� (3s�D�2)
2

Z 1

0

dtt
(3s�D�2)

2
�1e�t

E (s) = l�3s V

a (4�)
D�1
2

�
�
(3s�D�2)

2

�
�
�
3s�3
2

� 1X
n=1

��n�
a

�2
+m2

�� (3s�D�2)
2

(99)

When m! 0, the energy ��function becomes
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E (s) = V

a (4�)
D�1
2

��
a

�D+2 �� (3s�D�2)2

�
�
�
3s�3
2

� �
l�

a

��3s
� (3s�D � 2) (100)

In the case where D = 3; the energy ��function takes the form

E (s) = V �4

4a6
2

3s� 5

�
l�

a

��3s
� (3s� 5) (101)

In the limit s! 0, we get

E (0) = � �
4

4a6
2

5
� (�5) = + �4

2520a6
(102)

Hence the noncommutative vacuum energy is

E(NC)vac = E (0) = �4A

2520a5
(103)

The total vacuum energy Evac = E
(C)
vac + E

(NC)
vac , is given by

Evac = E
(C)
vac + E

(NC)
vac = �~c�

2A

720a3
+
1

8
�2
~c�4A
2520a5

(104)

Evac = �
~c�2A
720a3

�
1� �

2�2

28a2

�
The Casimir force reads

FCasimir = �
@Evac
@a

= �~c�
2A

240a6

�
a2 � 5

84
�2�2

�
(105)

where the �rst term represents the classical attractive Casimir force, while the second

term represents the noncommutative Casimir force, which is repulsive.

From eq(105) we see that the total vacuum energy Evac has a minimum at

amin =

r
5

84
�� , � 6= 0 (106)

At the equilibrium point amin, the total vacuum energy Evac takes the value

Eminvac = Evac (amin) = �
~c�2A
720a3min

�
1� 1

28

�2�2

a2min

�
= �

�
3: 849 7� 10�28 Jm

� A
�3

(107)
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It is well known that the motion near the equilibrium may be approximately described as

harmonic oscillations, indeed near the equilibrium we may write a = amin + �, if we expand

the total vacuum energy Evac in a Taylor series

Evac (a) = Evac (amin) + E
0
vac (amin) � +

1

2
E 0vac (amin) �

2 + ::: (108)

we get

Evac (a) = �
~c�2A
720a3

�
1� 1

28

�2�2

a2

�
' � ~c�2A

1800a3min
+
1

2

�
~c�2A
120a5min

�
�2 (109)

Hence the equation of motion near the equilibrium may be derived from the following

( harmonic oscillator ) Lagrangian

L =
1

2
�A

�
�
2

� 1
2

�
~c�2A
120a5min

�
�2 =

1

2
�A

�
�
2

� 1
2
�A!2�2 (110)

where � is the density of the parallel plate, and ! is the angular frequency of vibration

! =

s
~c�2

120�a5min
=
3: 949 9� 10�13

p
�

1

�
5
2

(111)

5. CONCLUSION

Thought this work we have considered a noncommutative complex scalar �eld theory with

self interaction, by imposing non commutativity to the canonical commutation relations. The

noncommutative �eld equations are derived and solved, the vacuum energy is calculated to

the second order in the parameter of non commutativity. As an example, we have considered

the Casimir e¤ect, due to the zero point �uctuations of the noncommutative complex scalar

�eld. It turns out that in spite of its smallness, the noncommutativity gives rise to a repulsive

force at the microscopic level, leading to an e¤ective Casimr potential with a minimum at

the point amin =
q

5
84
��.
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