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The two stages of evolution of spacetime/intrinsic spacetime and the associated space-
time/intrinsic spacetime geometries in a long range metric force field, isolated in previ-
ous papers, are particularized to the gravitational field. The theory of relativity on flat
four-dimensional spacetime(IE3, ct) and the intrinsic theory relativity on the underly-
ing flat two-dimensional intrinsic spacetime(φρ, φcφt), due to the presence of a metric
force field, as well as the absolute intrinsic metric theory (of the metric force field) on
curved ‘two-dimensional’ absolute intrinsic spacetime(φρ̂, φĉφt̂), which evolve at the
second (and final) stage of evolution of spacetime/intrinsic spacetime in a long range
metric force field, developed in the previous papers, become the theoryof gravitational
relativity (TGR) on the flat four-dimensional relativistic spacetime, the intrinsic theory
of gravitational relativity (φTGR) on the underlying flat two-dimensional relativistic
intrinsic spacetime and the metric theory of absolute intrinsic gravity(φMAG) on the
curved ‘two-dimensional’ absolute intrinsic spacetime in a gravitational field. The basic
aspects of these co-existing theories in every gravitational field are developed.

1 Spacetime/intrinsic spacetime geometries at the first
and second stages of evolution of spacetime/intrinsic
spacetime in a gravitational field

The geometry of Fig. 4 or Fig. 11 of [1], which evolves at the
first stage of evolution of spacetime/intrinsic spacetime in a
long-range metric force field and the global spacetime/intrin-
sic spacetime geometries of Figs. 1 and 3 and their inverses
Figs. 4 and 5 of [2], which evolve at the second stage, derived
in those papers, shall be adapted to the gravitational field in
this section.1

Only one external gravitational field source shall be con-
sidered in this paper in order to make this first paper on appli-
cation of the geometrical background within four-world pic-
ture developed in [3-6] and [7,1,2] concise, revealing only
the essential features, while extension to two and larger num-
ber of external gravitational field sources shall be considered
elsewhere.

Let us consider the reference spacetime/intrinsic space-
time geometry of Fig. 6 of [1] that exists in a universe as-
sumed to be devoid of a long-range metric force field, which
is now being taken to be the absence of gravitational field.
Consequently there is absence of absolute intrinsic Riemann-
ian spacetime geometry. This implies the absence of curved
‘two-dimensional’ absolute intrinsic spacetime(φρ̂, φĉφt̂)
and its underlying flat two-dimensional relativistic intrinsic
spacetime(φρ, φcφt) and flat four-dimensional relativistic
spacetime(IE3, ct) in such a universe, as is the case in Fig. 6
of [1].

Then let us introduce the absolute rest mass, to be denoted
byM̂0, of a gravitational field source at a pointŜ in the flat ab-

1Author’s name recently changed to Akindele Oluwole AdekugbeJoseph.
Will appear as Akindele Joseph in subsequent papers.

solute spaceÎE3 in Fig. 6 of [1] in our universe. The absolute
rest masseŝM0

0 ,−M̂
∗

0 and−M̂0∗
0 of the identical symmetry-

partner gravitational field sources will be automatically intro-
duced at the symmetry-partner pointsŜ0, Ŝ∗ and Ŝ0∗ in the
assumed initially empty flat absolute spacesÎE03,−ÎE3∗ and
−ÎE03∗ of the positive time-universe, negative universe and
negative time-universe respectively, simultaneously with the
introduction ofM̂0 at point Ŝ in ÎE3 in the positive (or our)
universe. This follows from the perfect symmetry of state
among the four universes established in section 2 of [6]. The
fact thatM̂0, M̂0

0 , −M̂∗

0 and−M̂0∗
0 are identical in magni-

tude, size and shape was also established in section 2 of [6].

As explained in section 1 of [6], the appearance ofM̂0 at
point Ŝ in ÎE3; M̂0

0 at point Ŝ0 in ÎE03; −M̂∗

0 at point Ŝ∗ in
−ÎE3∗ and−M̂0

0
∗ at pointŜ0∗ in −ÎE03∗, whereŜ, Ŝ0, Ŝ∗ and

Ŝ0∗ are symmetry-partner points, will lead to the appearance
of identical symmetry-partner ‘one-dimensional’ ab-
solute intrinsic rest massesφM̂0 in ‘one-dimensional’ ab-
solute intrinsic spaceφρ̂ directly underneathM̂0 in ÎE3 in
the positive (or our) universe; ofφM̂0

0 in φρ̂0 directly under-
neathM̂0

0 in ÎE03 in the positive time-universe; of−φM̂∗

0 in
−φρ̂ directly underneath−M̂∗

0 in −ÎE03∗ in the negative uni-
verse and of−φM̂0∗

0 in −φρ̂0∗ directly underneath−M̂0∗
0 in

−ÎE03∗ in the negative time-universe, as illustrated in Fig. 1.

As explained with the transformation of Fig. 2 to Fig. 8a
with respect to 3-observers in the Euclidean 3-spacesIE′3 and
−IE′3∗ of the positive (or our) universe and the negative uni-
verse in [5], the geometry of Fig. 1 must be replaced with that
of Fig. 2 with respect to ‘3-observers’ in the absolute spaces
ÎE3 and−ÎE3∗ of our universe and the negative universe. The
geometry of Fig. 2 will emerge automatically in the positive
(or our) universe and the negative universe as the absolute
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Fig. 1: The mutually orthogonal flat ‘three-dimensional’ absolute
spaces and their underlying straight line ‘one-dimensional’ absolute
intrinsic spaces of four symmetrical universes namely, the pos-
itive (or our) universe, the negative universe, the positive time-
universe and the negative time-universe, containing the identical
‘three-dimensional’ absolute rest masses in the absolute spaces and
‘one-dimensional’ absolute intrinsic rest masses in the absolute in-
trinsic spaces, directly underneath the absolute rest masses in the
absolute spaces, of symmetry-partner gravitational field sources at
symmetry-partner points in the absolute spaces in the assumed oth-
erwise empty universes.

rest massM̂0 of a gravitational field source is introduced at a
point Ŝ in the empty flat absolute spaceÎE3 in our universe,
which is being assumed to be initially devoid of gravitational
field source. This happens by virtue of the prefect symmetry
of state among the four universes.

Now the absolute intrinsic rest massφM̂0 will establish
non-uniform absolute intrinsic static speedsφV̂s (isolated in
section 3 of [1]) that has its maximum magnitude at pointL̂
at the edge ofφM̂0 (point Ŝ being at the base ofφM̂0) and
decreases continuously to zero magnitude at point O that is
far removed from point̂S. The absolute intrinsic rest mass
φÊ/φĉ2 (≡ φM̂0) in the absolute intrinsic time ‘dimension’
φĉφt̂ will likewise establish non-uniform absolute intrinsic
static speedsφV̂s that has its maximum magnitude at pointL̂0

at the edge ofφÊ/φĉ2 (point Ŝ0 being at the base ofφÊ/φĉ2)
and decreases continuously to zero magnitude at point O that
is far removed from point̂S0. (Recall from from discussion
in section 3 of [5] with the aid of Figs. 9a and 9b of that
paper thatφÊ/φĉ2 in φĉφt̂ possesses absolute intrinsic grav-
itational or absolute intrinsic inertial attributes like absolute
intrinsic rest massφM̂0

0 in φρ̂0 in Fig. 1).
The absolute rest masŝM0 (assumed spherical) will es-

tablish non-uniform absolute static speedV̂s that has max-
imum magnitude at the surface of̂M0 and decreases con-
tinuously to zero magnitude at point O along every radial
direction from its centre. The ‘one-dimensional’ absolute
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Fig. 2: The diagram of Fig. 1 in four universes naturally transforms
into flat ‘four-dimensional’ absolute spacetimes and the underlying
flat ‘two-dimensional’ absolute intrinsic spacetimes of the positive
(or our) universe and the negative universe, containing the absolute
rest masses at symmetry-partner positions in the absolute spacetimes
and absolute intrinsic rest masses in the absolute intrinsic spacetimes
directly underneath the absolute rest masses in absolute spacetimes,
of symmetry-partner gravitational field sources in the assumed oth-
erwise empty universes, with respect to ‘3-observers’ in the absolute
spaces in our universe and the negative universe.

rest massÊ/ĉ2 (≡ M̂0) in the absolute time ‘dimension’̂ct̂
(that possesses absolute gravitational and absolute inertial at-
tributes likeM̂0

0 in ÎE03 in Fig. 1), will likewise establish non-
uniform absolute static speedŝVs along ĉt̂, which has maxi-
mum magnitude at pointL0 and decreases continuously to
zero magnitude at point O.

The discussion in the last two paragraphs for(M̂0, Ê/ĉ
2)

in (ÎE3 , ĉt̂ ) and its underlying(φM̂0 , φÊ/φĉ
2) in (φρ̂ ,

φĉφt̂ ) in the positive (or our) universe, obtains for(−M̂∗

0 ,
−Ê∗/ĉ2) in (−ÎE3∗ , −ĉt̂∗ ) and its underlying(−φM̂∗

0 ,
−φÊ∗/φĉ2) in (−φρ̂∗ , −φĉφt̂∗) in the negative universe as
well.

We shall for convenience replace the representation of the
‘three-dimensional’ absolute spacesÎE3 and−ÎE3∗ by hori-
zontal plane surfaces in Fig. 2 by lines along the horizon-
tal. We shall also revert back to the notationsΣ and−Σ∗

respectively for Euclidean 3-spaces in [3-6]. That is, we shall
replaceÎE3 and−ÎE3∗ that appear in Fig. 2 and in the dia-
grams in [7,1,2] bŷΣ and−Σ̂∗ respectively henceforth. The
assumed spherical absolute rest massesM̂0 and−M̂∗

0 , rep-
resented by circles onÎE3 and−ÎE3∗ in Fig. 2, shall be rep-
resented by short line segments inΣ̂ and−Σ̂∗ respectively.
These representations are dummy with no consequence on
the theory being developed.

Further more, since we are now particularizing to the
gravitational field, the absolute intrinsic static speedφV̂s(φr̂)
at ‘distance’φr̂ from the basêS of φM̂0 in Fig. 2, shall be re-
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Fig. 3: The absolute rest masses of symmetry-partner gravitational
field sources in flat absolute spacetimes, establish non-uniform ab-
solute gravitational speeds in all their finite neighbourhoods in ab-
solute spacetimes and their absolute intrinsic rest masses in the
underlying absolute intrinsic spactimes, establish non-uniform ab-
solute intrinsic gravitational speeds in all their finite neighbourhoods
in absolute intrinsic spacetimes in the positive and negative uni-
verses.

denoted byφV̂g(φr̂) and alternatively referred to as absolute
intrinsic gravitational speed. The absolute static speedV̂s(r̂)
at radial distancêr from the centre ofM̂0 shall likewise be
re-denoted bŷVg(r̂) and alternatively referred to as absolute
gravitational speed.

As follows from the discussions in the foregoing five para-
graphs, Fig. 2 shall be replaced with Fig. 3, where only an
absolute intrinsic gravitational speedφV̂g(φr̂) at an arbitrary
‘distance’φr̂ alongφρ̂ from the basêS of φM̂0 in φρ̂ and at
equal ‘distance’φr̂ alongφĉφt̂ from the basêS0 of φÊ/φĉ2

in φĉφt̂, corresponding to absolute gravitational speedV̂g(r̂)

at an arbitrary radial distancêr in the absolute spacêΣ from
the centre ofM̂0 in Σ̂ are shown.

The line of absolute rest masŝM0 of lengthŜL̂ in Fig. 3
is actually a spherical absolute rest mass (as being assumed)
of radiusR̂0 = ŜL̂ and the segment̂SO of the line of uni-
versal absolute spacêΣ is actually a spherical region of ab-
solute space of large radiuŝSO with M̂0 at its centre. The
‘one-dimensional’ absolute intrinsic spaceφρ̂ is an isotropic
intrinsic dimension with respect to ‘3-observers’ in the ab-
solute spacêΣ. It can be considered to lie along any of the
radial direction from the centre of the spherical region of ab-
solute space of radiuŝSO, as illustrated along an arbitrary
radial direction in Fig. 4, with respect to ‘3-observers’ inΣ̂.
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Fig. 4: The absolute rest mass of a gravitational field source at the
centre of a large spherical region of the assumed otherwise empty flat
universal absolute space and its ‘one-dimensional’ absolute intrinsic
rest mass in the ‘one-dimensional’ universal isotropic absolute in-
trinsic space that can be considered to lie along any radial direction
from the centre of the spherical region with respect to ‘3-observers’
in the absolute space; where gravitational field can be considered to
vanish outside the spherical region of absolute space.

The spherical region of the universal absolute spaceΣ̂
within the gravitational field ofM̂0 (assuming the gravita-
tional field of M̂0 can be considered to vanish outside this
sphere), is just a portion of the vast ‘three-dimensional’ flat
universal absolute space, which is being assumed to be de-
void of the absolute rest mass of any other gravitational field
source at present.

The reference spacetime/intrinsic spacetime geometry of
Fig. 6 of [1] will endure for as long as a long-range absolute
metric force field is absent. On the other hand, the reference
geometry of Fig. 2 or 3 above, in which an absolute gravita-
tional field source is present in absolute spacetime and an ab-
solute intrinsic gravitational field source is present in absolute
intrinsic spacetime, will endure for no moment before trans-
forming into the geometry of Fig. 5 at the first stage of evo-
lution of spacetime/intrinsic spacetime within the symmetry-
partner gravitational fields in the positive and negative uni-
verses.

Again the line of rest massM0 of length S′L′ in Fig. 5
is actually a spherical rest massM0 (as being assumed) of
radiusR0 (=S′L′) and the line of proper physical Euclidean
3-spaceΣ′ is actually a spherical proper physical Euclidean
3-space of large radius S′O with M0 at its centre. The one-
dimensional proper intrinsic spaceφρ′ is an isotropic intrinsic
dimension with respect to 3-observers inΣ′. It can be consid-
ered to lie along any of the radial directions of the spherical
proper Euclidean 3-spaceΣ′, as illustrated along an arbitrary
radial direction in Fig. 6, with respect to 3-observers in the
proper Euclidean 3-spaceΣ′.

The spherical proper physical Euclidean 3-spaceΣ′ of
large radius S′O evolves around the rest massM0 of the grav-
itational field source at its centre, where the gravitational field
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Fig. 5: The spacetime/intrinsic spacetime geometry that evolves
from the reference geometry of Fig.3 at the first stage of evolu-
tion of spacetime/intrinsic spacetime in all finite neighbourhoods of
symmetry-partner gravitational field sources in the assumed other-
wise empty positive and negative universes.

of M0 can be taken to vanish outsideΣ′. Since this gravita-
tional field source is the only one in our universe, as being
assumed, the region of the universal 3-space outsideΣ′ (or
outside the gravitational field ofM0) remains the flat absolute
spacêΣ.

The segment̂SO of the straight line universal absolute
intrinsic spaceφρ̂ along the horizontal, containing the ab-
solute intrinsic rest massφM̂0 of the gravitational field source
within intervalŜL̂ at the origin of segment ÔS of φρ̂ in Fig. 3,
becomes curved towards the vertical as a plane curve on the
vertical (φρ′-φcφt′)-plane, projecting straight line isotropic
proper intrinsic spaceφρ′ along the horizontal, which is made
manifest outwardly in the proper physical Euclidean 3-space
Σ′ within the gravitational field. The line of absolute intrinsic
rest massφM̂0 located at the origin (or base) of the curved
segment ÔS of φρ̂, likewise ‘projects’ proper intrinsic rest
massφM0 at the origin (or base) of the projective proper in-
trinsic spaceφρ′ along the horizontal, which is made mani-
fest in the rest massM0 of the gravitational field source at the
centre of the spherical proper physical Euclidean 3-spaceΣ′.

The ‘one-dimensional’ absolute intrinsic rest massφM̂0

in the straight line absolute intrinsic spaceφρ̂ along the hori-
zontal andφÊ/φĉ2 in the straight line absolute intrinsic time
‘dimension’φĉφt̂ along the vertical, of the gravitational field
source in the reference geometry of Fig. 3, are indeed curved
along withφρ̂ andφĉφt̂ at the first stage of evolution of space-
time/intrinsic spacetime in the gravitational field. However

M

M

LS

0

0

O
O rR

Fig. 6: The large spherical region of proper Euclidean 3-spaceΣ′

containing the rest mass of the gravitational field source at its centre
and its intrinsic rest mass in isotropic proper intrinsic spaceφρ′ that
can be considered to lie along any radial direction ofΣ′ with respect
to 3-observers inΣ′, which evolves from reference diagram of Fig. 3
at the first stage of evolution of spacetime/intrinsic spacetime in the
gravitational field; where it is assumed that proper Euclidean 3-space
and proper intrinsic space do not evolve outside the spherical region
due to the vanishing of gravitational field.

the curvatures ofφM̂0 within segment̂LŜ of the curvedφρ̂
and the curvature ofφÊφĉ2 within segment̂L0Ŝ0 of the curv-
edφĉφt̂, shown in Fig. 5, are temporary. The final forms of
the segmentŝLŜ of the curvedφρ̂ containingφM̂0 andL̂0Ŝ0

of the curvedφĉφt̂ containingφÊ/φĉ2, shall be derived else-
where when the need for the spacetime/intrinsic spacetime
geometry at the interior of a gravitational field source arises.
On the other hand, the segments OL̂ of the curvedφρ̂ and and
OL̂0 of the curvedφĉφt̂ at the exterior of a gravitational field
source in Fig. 5 are valid.

It is being assumed that the absolute gravitational field
source(M̂0 , Ê/ĉ

2) introduced at point (̂S , Ŝ0) in (Σ̂ , ĉt̂ ) in
our universe and its symmetry-partner(−M̂∗

0 , −Ê
∗/ĉ2) in-

troduced simultaneously at the symmetry-partner point (Ŝ∗ ,
Ŝ0∗) in (−Σ̂∗ , −ĉt̂∗) in the negative universe in Fig. 2 or 3,
are the only gravitational field sources in our universe and
the negative universe. Consequently only the segmentŜO of
curved absolute intrinsic spaceφρ̂, its projective straight line
proper intrinsic spaceφρ′ between points S′ and O along the
horizontal and the outward manifestation ofφρ′ namely, the
large spherical proper physical Euclidean 3-spaceΣ′, exist
within the gravitational field in our universe, while the regions
of the flat universal absolute spacetime(Σ̂ , ĉt̂ ) underlied by
flat universal absolute intrinsic spacetime(φρ̂ , φĉφt̂ ) outside
the gravitational field of the introduced lone absolute gravita-
tional field source in our universe remain unchanged. Like-
wise for the lone symmetry-partner absolute gravitational
field source(−M̂∗

0 , −Ê
∗/ĉ2) introduced at point(Ŝ∗ , Ŝ0∗)

in (−Σ̂∗ , −ĉt̂∗) in Fig. 2 or 3 in the negative universe.
The segment ÔS0 of the straight line universal absolute

intrinsic time ‘dimension’φĉφt̂ along the vertical, contain-
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ing the line of absolute intrinsic rest massφÊ/φĉ2 (≡ φM̂0)
of the gravitational field source within interval̂L0Ŝ0 at the
origin (or base) of the segment OŜ0 of φĉφt̂ in Fig. 3, be-
comes curved towardsφρ′ along the horizontal, projecting
straight line proper intrinsic time dimensionφcφt′ along the
vertical within the gravitational field, which is made manifest
outwardly in the proper physical time dimensionct′ along
the vertical within the gravitational field. The line of ab-
solute intrinsic rest massφÊ/φĉ2 (≡ φM̂0) of the gravita-
tional field source at the origin (or base) of the curved seg-
ment ÔS0 of φĉφt̂ likewise projects a line of intrinsic rest
massφE′/φc2 (≡ φM0) at the origin (or base) of the projec-
tive proper intrinsic time dimensionφcφt′ along the vertical,
which is made manifest in rest massE′/c2 (≡ M0) at the
origin (or base) of the proper physical time dimensionct′.

The absolute intrinsic gravitational speed (an absolute in-
trinsic static speed)φV̂g(φr̂) at arbitrary ‘distance’φr̂ from
the basêS of φM̂0 along the straight line absolute intrinsic
spaceφρ̂ in Fig. 3, is now at an arbitrary ‘distance’φr̂ from
the basêS of φM̂0 along the curvedφρ̂ in Fig. 5. It invari-
antly projects absolute intrinsic gravitational speedφV̂g(φr̂)
into the projective straight line proper intrinsic spaceφρ′ at
the corresponding ‘distance’φr′ from the base ofφM0 in
φρ′, which is made manifest outwardly in absolute gravita-
tional speed̂Vg(r̂) at radial distancer′ from the centre ofM0

in Σ′, with respect to 3-observers inΣ′. The absolute intrinsic
gravitational speedφV̂g(φr̂) at ‘distance’φr̂ from the base of
Ŝ0 of φÊ/φĉ2 along the curved absolute intrinsic time ‘di-
mension’φĉφt̂, likewise invariantly projects absolute intrin-
sic gravitational speedφV̂g(φr̂) into the projective straight
line proper intrinsic time dimensionφcφt′, which is made
manifest outwardly in absolute gravitational speedV̂g(r̂) at
‘distance’r′ from the base ofE′/c2 in ct′, with respect to
1-observers inct′. The discussions for the first quadrant (or
in the positive universe) in Fig. 5 in the foregoing two para-
graphs and this equally obtain for the third quadrant (or in the
negative universe).

The invariance of absolute intrinsic gravitational speed in
the context of the theory of absolute intrinsic gravity/absolute
gravity (φAG/AG), (which is the theory that supports the geo-
metry of Fig. 5), represented graphically by the invariant pro-
jection ofφV̂g(φr̂) along the curvedφρ̂ andφĉφt̂ asφV̂g(φr̂)
along the projective straight lineφρ′ andφcφt′ in Fig. 5, have
been stated as invariance of absolute intrinsic static speed
and absolute static speed by Eqs. (79a) and (79b) of [1], in
the context of the absolute intrinsic metric phenomenon that
gives rise to the geometry of Fig. 11 of [1] in the one-world
picture, which corresponds to Fig. 5 here in the two-world
picture. It shall be re-stated as the invariance of absolutein-
trinsic gravitational speed and absolute gravitational speed in
the context of the theory of absolute intrinsic gravity/theory
of absolute gravity (φAG/AG) that gives rise to the geometry
of Fig. 5 within the symmetry-partner gravitational fields in

the positive and negative universes as follows

φV ′(φr′) = φV̂g(φr̂) (1a)

and
V ′(r′) = V̂g(r̂) (1b)

It is crucial to note that the line of intrinsic rest mass
φM0 of the gravitational field source inφρ′ with respect to
3-observers inΣ′ is not the source of the non-uniform ab-
solute intrinsic gravitational speedsφV̂g(φr̂) alongφρ′ and
that the three-dimensional rest massM0 of the field source
is not the source of the non-uniform absolute gravitational
speedsV̂g(r̂) along every radial direction from its centre in
Σ′ with respect to 3-observers inΣ′ in Fig. 5. Rather the non-
uniform absolute intrinsic gravitational speedsφV̂g(φr̂) along
φρ′ are the projections of the non-uniform absolute intrinsic
gravitational speeds thatφM̂0 at the origin of the curvedφρ̂
establishes along the curvedφρ̂ and the non-uniform absolute
gravitational speedŝVg(r̂) in Σ′ are the outward manifesta-
tions of the projective non-uniformφV̂ (φr̂) alongφρ′.

Likewise the non-uniform absolute intrinsic gravitational
speedsφV̂g(φr̂) along the proper intrinsic time dimension
φcφt′ with respect to 1-observers inct′, have not been estab-
lished byφE′/φc2 in φcφt′ and non-uniform absolute grav-
itational speedŝVg(r̂) along the proper time dimensionct′

with respect to 1-observers inct′ have not been established by
the rest massE′/c2 (≡ M0) of the gravitational field source
in ct′. Rather the non-uniformφV̂g(φr̂) alongφcφt′ are the
invariant projections along the vertical of non-uniform
φV̂g(φr̂) established along the curvedφĉφt̂ by φÊ/φĉ2 (≡

φM̂0) at the origin of the curvedφĉφt̂ andV̂g(r̂) alongct′ are
the outward manifestations of the projectiveφV̂g(φr̂) along
φcφt′.

As discussed in section 2 of [1], the projective non-uni-
form absolute intrinsic gravitational speedsφV̂g(φr̂) along
the proper intrinsic spaceφρ′ and along the proper intrinsic
time dimensionφcφt′ in Fig. 5, cannot give rise to curvature
of these relative intrinsic dimensions (without hat label)or
produce any other effect on them. The absolute gravitational
speedŝVg(r̂) in the proper physical Euclidean 3-spaceΣ′ can
likewise not give rise to any detectable effect inΣ′.

Thus if the projective non-uniform absolute intrinsic grav-
itational speedsφV̂g(φr̂) along the straight line proper in-
trinsic spacesφρ′ and−φρ′∗ and straight line proper intrin-
sic time dimensionsφcφt′ and−φcφt′∗ are all that is possi-
ble and consequently the non-uniform absolute gravitational
speedsV̂g(r̂) in the proper physical Euclidean 3-spacesΣ′

and−Σ′∗ and the proper physical dimensionsct′ and−ct′∗

are all that is possible in Fig. 5, then the geometry of Fig. 5
will endure and evolution of spacetime/intrinsic spacetime
will terminate at the first stage within a gravitational field.

However the second stage of evolution of spacetime/in-
trinsic spacetime within a gravitational field is immutable.

A. (Adekugbe) Joseph. Particularization of spacetime/intrinsic spacetime geometries in a metric force field to the gravitational field. 5



This is so because, quite apart from the projective non-uni-
form absolute intrinsic gravitational speedsφV̂g(φr̂) along
the straight lineφρ′, φcφt′, −φρ′∗ and−φcφt′∗, the ‘pro-
jective’ intrinsic rest massφM0 in φρ′, as an intrinsic gravi-
tational field source, establishes non-uniform proper intrinsic
gravitational speedsφV ′

g(φr′) alongφρ′, whose magnitude
is maximum at the edgeL′ of φM0 and decreases continu-
ously to zero at point O that is far removed from the base
S of φM0. The ‘projective’ intrinsic rest massφE′/φc2 (≡
φM0) in φcφt′ likewise establishes non-uniform proper in-
trinsic gravitational speedsφV ′

g(φr′) along φcφt′, whose
magnitude is maximum at the edgeL0 of φE′/φc2 and de-
creases continuously to zero at point O.

The intrinsic rest mass−φM∗

0 in −φρ′∗ likewise estab-
lishes non-uniform proper intrinsic gravitational speeds
φV ′

g(φr′) along−φρ′∗ and−φE′∗/φc2 in −φcφt′∗ estab-
lishes non-uniform proper intrinsic gravitational speeds
φV ′

g(φr′) along−φcφt′ in Fig. 5.
Quite apart from the non-uniform absolute gravitational

speedŝVg(r̂) in Σ′ andct′ in Fig. 5, the rest massM0 in Σ′,
as a gravitational field source, establishes non-uniform proper
gravitational speedsV ′

g(r′) along every radial direction from
its centre inΣ′ and the rest massE′/c2 (≡ M0) in ct′ estab-
lishes non-uniform proper gravitational speedsV ′

g(r′) along
ct′. Likewise for−M∗

0 in −Σ′∗ and−E′∗/c2 in −ct′∗ in the
third quadrant.

The non-uniform proper intrinsic gravitational speeds
φV ′

g(φr′) established along the straight lineφρ′,φcφt′,−φρ′∗

and−φcφt′∗ by the intrinsic gravitational field sourcesφM0,
φE/φc2,−φM∗

0 and−φE′∗/φc2 respectively in these proper
intrinsic dimensions, as described above, will causeφρ′ and
φcφt′ to be curved into the first quadrant and second quadrant
respectively to form orthogonal curvilinear intrinsic dimen-
sions. The curvedφρ′ in the first quadrant will then project
a straight line relativistic intrinsic spaceφρ along the hori-
zontal, which is made manifest in a spherical region of rel-
ativistic physical Euclidean 3-spaceΣ in the first quadrant.
The curvedφcφt′ in the second quadrant will likewise project
straight line relativistic intrinsic time dimensionφcφt along
the vertical, which is made manifest outwardly in relativis-
tic physical time dimensionct along the vertical in the first
quadrant.

As discussed in the process of transforming Fig. 11 of
[1] into Fig. 1 of [2], Fig. 5 at the first stage of evolution
of spacetime/intrinsic spacetime in a gravitational field will
endure for no moment before transforming into Fig. 7 at the
second stage of evolution of spacetime/intrinsic spacetime in
a gravitational field.

Fig. 1 of [2] drawn within an attractive long-range metric
force field has simply been adapted to the gravitational fieldin
Fig. 7. Consequently the symmetry-partner gravitational field
sources in spacetimes and symmetry-partner intrinsic gravita-
tional field sources in intrinsic spacetimes in the positive(or
our) universe and the negative universe have been integrated

into the diagram in Fig. 7. The proper intrinsic static speeds
and proper static speeds denoted byφV ′

S,P andV ′

S,P in Fig. 1
of [2] have also been re-denoted byφV ′

g(φr′) andV ′

g(r′) and
referred to as proper intrinsic gravitational speeds and proper
gravitational speeds, as alternative names, in the case of grav-
itational field.

The line of relativistic massM of length SL in Fig. 7 is
actually a spherical relativistic massM (as being assumed)
of radiusR = SL and the line of relativistic Euclidean 3-
spaceΣ is actually a spherical relativistic Euclidean 3-space
of large radius SO withM at its centre. The relativistic intrin-
sic spaceφρ is an isotropic intrinsic dimension with respect
to 3-observers in the relativistic Euclidean 3-spaceΣ. It can
be considered to lie along any of the radial directions of the
spherical relativistic Euclidean 3-spaceΣ with respect to 3-
observers inΣ.

As illustrated in Fig. 7, the non-uniform proper intrinsic
gravitational speedsφV ′

g(φr′) along the curved proper in-
trinsic spaceφρ′ are projected invariantly as non -uniform
proper intrinsic gravitational speedsφV ′

g(φr′) along the pro-
jective straight line isotropic relativistic intrinsic spaceφρ
along the horizontal, which is made manifest in non-uniform
proper gravitational velocities~V ′

g(r′) along every radial di-
rection from the centre of the relativistic massM of the grav-
itational field source inΣ. The non-uniform proper intrinsic
gravitational speeds along the curved proper intrinsic time di-
mensionφcφt′, likewise invariantly project non-uniform pro-
per intrinsic gravitational speeds along the projective rela-
tivistic intrinsic time dimensionφcφt along the vertical,
which are made manifest in non-uniform proper gravitational
speedsV ′

g(r′) along the relativistic time dimensionct.
The foregoing paragraph describes the graphical repre-

sentation of the invariance of intrinsic gravitational speed and
gravitational speed in the context of the theory of relativein-
trinsic gravity and theory of relative gravity that transform
Fig. 5 into Fig. 7 at the second stage of evolution of space-
time/intrinsic spacetime in a gravitational field, expressed as
follows

φVg(φr) = φV ′

g(φr′) (2a)

and
Vg(r) = V ′

g(r′) (2b)

Eq. (2a) states that the non-uniform relativistic intrinsic
gravitational speedsφVg(φr) that are expected to be pro-
jected into the relativistic intrinsic spaceφρ by the non-uni-
form proper intrinsic gravitational speedsφV ′

g(φr′) along the
curved proper intrinsic spaceφρ′, are the same as the non-
uniform proper intrinsic gravitational speeds along the curved
φρ′ and Eq. (2b) states that the non-uniform relativistic grav-
itational speedsVg(r) that are expected to appear along every
radial direction from the centre of the relativistic massM of
the gravitational field source in the relativistic Euclidean 3-
spaceΣ in Fig. 7, are non-uniform proper gravitational speeds

6 A. (Adekugbe) Joseph. Particularization of spacetime/intrinsic spacetime geometries in a metric force field to the gravitational field.
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Fig. 7: The spacetime/intrinsic spacetime geometry at the second stage of evolution of spacetime/intrinsic spacetime within symmetry-
partner gravitational field sources in the positive and negative universes, with respect to 3-observers in the Euclidean 3-spaces in the two
universes, which evolves from the geometry of Fig. 5 at the first stage.

V ′

g(r′). Formal proofs of the invariance (2a) and (2b) along
with those of Eqs. (1a) and (1b) shall be given elsewhere with
further development.

The geometry of Fig. 7 will endure for as long as the ‘pro-
jective’ relativistic intrinsic massφM does not establish non-
uniform relativistic intrinsic gravitational speedsφVg(φr)
along the relativistic intrinsic spaceφρ, which could cause the
curvature ofφρ and as long as the ‘projective’ relativistic in-
trinsic massφE/φc2 (≡ φM) does not establish non-uniform
relativistic intrinsic gravitational speedsφVg(φr) along the
relativistic intrinsic time dimensionφcφt along the vertical,
which could cause the curvature ofφcφt.

Now the relativistic massM in the relativistic Euclidean
3-spaceΣ shall be identified as the inertial mass and passive
gravitational mass, which is non-trivially related to the rest
massM0 according to a relation that shall be derived else-
where with further development. The relativistic mass (i.e.
the inertial mass or passive gravitational mass) is not a gravi-
tational field source, the active gravitational massM0a being
the source of the Newtonian gravitational field [8]. Conse-
quentlyM is not a source of gravitational speed. This means
thatM cannot establish non-uniform relativistic gravitational
velocity ~Vg(r) radially from its centre inΣ and consequently
φM cannot establish non-uniform relativistic intrinsic gravi-
tational speedsφVg(φr) along the relativistic intrinsic space
φρ. The relativistic massE/c2 (≡M) in the relativistic time

dimensionct cannot establish non-uniform relativistic grav-
itational speeds alongct andφE/φc2 cannot establish non-
uniform relativistic intrinsic gravitational speeds along φcφt.

The non-existence of non-uniform relativistic intrinsic
gravitational speedsφVg(φr) along the relativistic intrinsic
dimensionsφρ, φcφt, −φρ∗ and−φcφt∗, either by projec-
tions from the curved proper intrinsic dimensionsφρ′, φcφt′,
−φρ′∗ and−φcφt′∗ or by establishments byφM , φE/φc2,
−φM∗ and−φE∗/φc2 as sources, as discussed in the forego-
ing paragraph, implies that the relativistic intrinsic spacesφρ
and−φρ∗ and relativistic intrinsic time dimensionsφcφt and
−φcφt∗ in Fig. 7, cannot be curved. This makes the geometry
of Fig. 7 to endure for as long as the symmetry-partner grav-
itational field sources in the positive and negative universes
exist. The consequence of this is that the evolutions of space-
time/intrinisic spacetime in a gravitational field terminates at
the second stage naturally. This immutable fact of nature shall
become solidly established upon this initial introductionto its
establishment elsewhere with further development.

The geometry of Fig. 7 is valid with respect to 3-observers
in the relativistic Euclidean 3-spaceΣ and−Σ∗ in the posi-
tive and negative universes, as indicated. It corresponds to
Fig. 1 of [2]. There is a complimentary diagram to Fig. 7,
which corresponds to Fig. 3 of [2], depicted in Fig. 8. Fig. 8
is valid with respect to 1-observers in the relativistic time di-
mensionsct and−ct∗ as indicated.

A. (Adekugbe) Joseph. Particularization of spacetime/intrinsic spacetime geometries in a metric force field to the gravitational field. 7
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Fig. 8: The complementary diagram to Fig. 7 that is valid with respect to 1-observers in the time dimensions in the positive and negative
universes.

The global spacetime/intrinsic spacetime diagram of
Fig. 7 and its complimentary diagram of Fig. 8, evolve at the
second stage of evolution of spacetime/intrinsic spacetime in
a gravitational field. The remarkable feature of the diagrams,
as has been made for Figs. 1 and 3 of [2] in a long-range
metric force field in general, is that the four-dimensional rela-
tivistic metric spacetime(Σ, ct) in which the observers are lo-
cated and its underlying two-dimensional relativistic intrinsic
metric spacetime(φρ , φcφt) are everywhere flat in a gravita-
tional field. This fact has been solidly established by demon-
strating local Lorentz invariance in a long-range metric force
field in general in [2]. Gravitational local Lorentz invari-
ance (GLLT) shall be established within a gravitational field
shortly in this paper.

Although the extended two-dimensional proper intrinsic
metric spacetimes(φρ′, φcφt′) and (−φρ′∗ , −φcφt′∗) are
curved in a gravitational field in Figs. 7 and 8, they are or-
thogonal curvilinear intrinsic dimensions. This means that
they possess intrinsic Lorentzian metric tensor at every point
of them with respect to 3-observers in the relativistic Euclid-
ean 3-spacesΣ and−Σ∗ and 1-observers in the relativistic
time dimensionsct and−ct∗, as has been demonstrated in a
long-range metric force field in general in [2].

The only curved spacetime with sub-Riemannian metric
tensor in Figs. 7 and 8 at the second stage of evolution of
spacetime/intrinsic spacetime in a gravitational field in our
universe, so to speak, is the ‘two-dimensional’ absolute in-
trinsic metric spacetime(φρ̂ , φĉφt̂) with absolute intrinsic

sub-Riemannian metric tensor with respect to 3-observers in
the relativistic Euclidean 3-spacesΣ and−Σ∗ , as has been
established within a long-range metric force field in general
in [2]. The curved(φρ̂ , φĉφt̂) in Figs. 7 and 8 at the second
stage of evolution of spacetime/intrinsic spacetime in a gravi-
tational field, has been brought forward from the geometry of
Fig. 5 at the first stage.

For completeness and in order to be able to derive the in-
verse intrinsic gravitational local Lorentz transformation (in-
verseφGLLT) and inverse GLLT, we must also draw the in-
verses to the global geometries of Figs. 7 and 8, shown as
Figs. 9 and 10 respectively.

1.1 Simultaneous progression at the speed of light of the
first and second stages of evolution of spacetime/in-
trinsic spacetime away from the location of a gravi-
tational field source

The evolution of the extended curved ‘two-dimensional’ ab-
solute intrinsic metric spacetime(φρ̂ , φĉφt̂ ) between point
(Ŝ, Ŝ0) and point O in spacetime in Fig. 5, does not happen
instantaneously, following the introduction of the absolute
rest massM̂0 of the gravitational field source at pointŜ in
the flat absolute spacêΣ and the consequent introduction of
the absolute rest masŝE/ĉ2 (≡ M̂0) of the gravitational field
source at point̂S0 in the absolute time ‘dimension’̂ct̂ in the
reference geometry of Fig. 3, as would happen if gravita-
tional effect propagated at infinite speed in spacetime. How-
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1-obser-

1-obser-

vers

vers

g

g

g

g

g
g

g

g

g

g

g

g

g

g

g

g

r

r

r

r

r

r

r
r

r

r

r

r

r

r

r

r

r

r

r

r

(

(

(

(

(

(

(
(

(

(

(

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)
)

)

)

)

)

)

)

)

)

)

)

)

)

g r( )

g r( )

g r( )

g r( )

g

g

g

g
M

M

M

M
M

M

M

M

V

V

V

V

V

V

L
LL

L

L

V

L

V

V

V

S

S

S

S

E

E

E
E

E

E

E
E

/

/

/
/

/
/

/
/

c

c

c
c

c

c

c
c

2

2 2

2
2

2

2

2

Fig. 9: The inverse to the spacetime/intrinsic spacetime geometry to Fig. 7 at the second stage of evolutions of spacetimes/intrinsic spactimes
within symmetry-partner gravitational fields in the positive and negative universes that is valid with respect to 1-observers in the relativistic
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ever the curvature of the flat(φρ̂ , φĉφt̂ ) in Fig. 3 starts from
point (Ŝ, Ŝ0) at the moment(M̂0 , Ê/ĉ

2) is introduced at this
point and progresses at the speed of light away from the point
(Ŝ, Ŝ0), since gravitational effect propagates at the speed of
light in spacetime. It therefore took a long time for curvature
of (φρ̂ , φĉφt̂ ) to propagate from point(Ŝ, Ŝ0) to the distant
point O.

Likewise the curvature of two-dimensional proper intrin-
sic metric spacetime(φρ′, φcφt′) at the second stage of evolu-
tion of spacetime/intrinsic spacetime in a gravitational field,
starts from the point (S′,S′0) where the proper gravitational
field source(M0, E

′/c2) is located in Fig. 5 and progresses
at the speed of light away from this point. It therefore took
a long time for curvature of(φρ′, φcφt′) to propagate from
point (S′,S′0) to the distant point O in Fig. 7.

The point to be established in this sub-section is that the
curvature of the proper intrinsic metric spacetime(φρ′ ,
φcφt′) at the second stage of evolution of spacetime/intrinsic
spacetime in a gravitational field did not start after a long time
taken by curvature of the absolute intrinsic metric spacetime
(φρ̂, φĉφt̂ ) to propagate from point(Ŝ, Ŝ0) of location of the
gravitational field source to the distant point O in Fig. 5, but
that the curvatures of(φρ̂, φĉφt̂ ) and(φρ′, φφt′) commence
simultaneously from point(Ŝ, Ŝ0) at the moment(M̂0, Ê/ĉ

2)
is introduced at point(Ŝ, Ŝ0) in Fig. 3 and progress simultane-
ously at the speed of light away from this point to simultane-
ously reach the distant point O after a long time following the
introduction of(M̂0, Ê/ĉ

2) at point(Ŝ, Ŝ0) in Fig. 3, while
the intermediate diagram of Fig. 5 did not appear. This fact is
consolidated with the argument that follows.

Figure 5 represents a situation where the intrinsic rest
massφM0 of the gravitational field source ‘projected’ into the
straight line proper intrinsic metric spaceφρ′ along the hor-
izontal and the intrinsic rest massφE′/φc2 (≡ φM0) ‘pro-
jected’ into the straight line proper intrinsic metric timedi-
mensionφcφt′ along the vertical, have not established non-
uniform proper intrinsic gravitational speedsφV ′

g(φr′) along
φρ′ andφcφt′ respectively from their locations. Consequent-
ly the rest massM0 has not established non-uniform proper
gravitational speedsV ′

g(r′) along every radial direction from
its centre in the proper physical Euclidean 3-spaceΣ′ and the
rest massE′/c2 (≡ M0) in the proper physical time dimen-
sionct′ has not established non-uniform proper gravitational
speedsV ′

g(r′) alongct′.
Thus Fig. 5 represents a situation that must be described

as the presence of absolute gravity and absolute intrinsic grav-
ity, but the absence of relative gravity and relative intrinsic
gravity, since only projective non-uniform absolute intrinsic
gravitational speedsφV̂g(φr̂) are present along the straight
line φρ′ andφcφt′ and only non-uniform absolute gravita-
tional speedŝVg(r̂) are present along every radial direction
from the centre of the rest massM0 in Σ′ and along the proper
time dimensionct′ from the base ofE′/c2 (≡ M0) in ct′ in
Fig. 5. The extended flat four-dimensional proper spacetime

(Σ′, ct′) and its underlying extended flat two-dimensional
proper intrinsic spacetime(φρ′, φcφt′) in Fig. 5 in a gravi-
tational field, will endure for as long as this situation persists.
The clarifications of the concepts of relative static speed and
relative metric force field done in sub-section 3 of [2] are
directly applicable to the concepts of relative gravitational
speed and relative gravitational field being introduced in this
paper.

However the situation of absence of relative gravity/rela-
tive intrinsic gravity but the presence of absolute gravity/ab-
solute intrinsic gravity, which Fig. 5 represents, discussed in
the preceding two paragraphs, is hypothetical; it does not ex-
ist in reality. This is so because as the evolution of curved
‘two-dimensional’ absolute intrinsic metric spacetime(φρ̂,
φĉφt̂ ) starts from the point(Ŝ, Ŝ0) on the flat absolute space-
time(Σ̂, ĉt̂ ) where the absolute gravitational field source(M̂0,
Ê/ĉ2) is introduced in the reference geometry of Fig. 3 and
progresses at the speed of light from this point towards point
O that is far removed from the point(Ŝ, Ŝ0), as mentioned
earlier, the evolution of the projective flat two-dimensional
proper intrinsic metric spacetime(φρ′, φcφt′) containing the
projective intrinsic rest mass(φM0, φE

′/φc2) of the gravita-
tional field source at point (S′,S′0) at the origin (or base) of
the projective flat(φρ′, φcφt′), as well as the evolution of the
flat four-dimensional proper metric spacetime(Σ′, ct′) con-
taining the rest mass(M0, E

′/c2) at the point (S′,S′0), start
from this point of location of the gravitational field source
and progress at the speed of light towards the distant point O,
simultaneously with the progression at the speed of light of
curvature of(φρ̂, φĉφt̂ ) from point(Ŝ, Ŝ0).

However the momentφM0 appears within a short seg-
ment∆φρ′ containingφM0 projected along the horizontal at
point S′ andφE′/φc2 (≡ φM0) appears within a short seg-
mentφc∆φt′ containingφE′/φc2 projected along the verti-
cal at point S′0, at the beginning of the evolution of curved
absolute intrinsic spacetime(φρ̂, φĉφt̂ ) at the point(Ŝ, Ŝ0),
the intrinsic rest massφM0 contained in the projective in-
terval ∆φρ′ starts to establish non-uniform proper intrinsic
gravitational speedsφV ′(φr′) within ∆φρ′ located at point
S′ along the horizontal andφE′/φc2 contained in the projec-
tive φc∆φt′) starts to establish non-uniform proper intrinsic
gravitational speedsφV ′

g(φr′) within φc∆φt′ located at point
S′0 along the vertical.

Even the establishment of non-uniform proper intrinsic
gravitational speedsφV ′

g(φr′) progresses at the speed of light
from point S′ along the proper intrinsic spaceφρ′ that is
evolving along the horizontal and the establishment of non-
uniform proper intrinsic gravitational speedsφV ′

g(φr′) pro-
gresses at the speed of light from point S′0 along the proper
intrinsic time dimensionφcφt′ that is evolving along the ver-
tical. Since the evolution ofφρ′ also starts from point S′ and
progresses at the speed of light away from this point along the
horizontal and the evolution ofφcφt′ also starts from point
S′0 and progresses at the speed of light along the vertical, it
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follows that at some timet′ of the commencement of evolu-
tion of curved absolute intrinsic spacetime(φρ̂, φĉφt̂ ), some
lengths ofφρ′ andφcφt′ have evolved along the horizontal
and vertical respectively andφM0 at the point S′ has estab-
lished non-uniform proper intrinsic gravitational speedsalong
the whole lengthφρ′ that has evolved after the timet′ and
φE′/φc2 at point S′0 at the origin of the evolvedφcφt′ has es-
tablished non-uniform proper intrinsic speedsφV ′

g(φr′) along
the whole length ofφcφt′ that has evolved after the timet′.

Now the establishment of non-uniform proper intrinsic
gravitational speedsφV ′

g(φr′) along the whole length of the
evolving proper intrinsic spaceφρ′ at all times byφM0 lo-
cated at the origin (or base) S′ of the evolvingφρ′ does not
allow the evolvingφρ′ to remain along the horizontal, but
causes it to become curved anti-clockwise into the first quad-
rant with respect to 3-observers inΣ as in Fig. 7. Like-
wise the establishment of non-uniform proper intrinsic gravi-
tational speedsφV ′

g(φr′) along the whole length of the evolv-
ing φcφt′ at all times byφE′/φc2 located at the origin (or
base)S0 of the evolvingφcφt′, does not allow the evolving
φcφt′ to remain along the vertical, but causes it to become
curved anti-clockwise into the second quadrant with respect
to 3-observers inΣ as in Fig. 7.

It follows from the foregoing paragraph that there is no
time lag between the evolution of the curved ‘two-dimen-
sional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂ ) at the
first stage of evolution of spacetime/intrinsic spacetime in a
gravitational field and the evolution of the curved two-dimen-
sional proper intrinsic metric spacetime(φρ′, φcφt′) at the
second stage. In other words, the evolutions of curved(φρ̂ ,
φĉφt̂ ) and curved(φρ′, φcφt′) in Fig. 7 begin simultaneously
from the location(Ŝ, Ŝ0) of introduction of the gravitational
field source
(M̂0, Ê/ĉ

2) in the reference geometry of Fig. 3 and progress
simultaneously at the speed of light away from this point to-
wards point O in that figure.

The evolutions of the projective flat two-dimensional rel-
ativistic intrinsic metric spacetime(φρ, φcφt) and its outward
manifestation namely, the flat four-dimensional relativistic
spacetime(Σ, ct) in Fig. 7, start from the location(Ŝ, Ŝ0)
at which(M̂0, Ê/ĉ

2) is introduced in Fig. 3 and progress at
the speed of light towards the distant point O, simultaneously
with the evolutions and progression at the speed of light of
the curved(φρ̂, φĉφt̂ ) and curved(φρ′, φcφt′), thereby trans-
forming Fig. 3 to Fig. 7 after a long time, without actually
passing through the intermediate Fig. 5.

Thus the evolutions of curved ‘two-dimensional’ absolute
intrinsic metric spacetime(φρ̂, φĉφt̂ ) and curved two-dimen-
sional proper intrinsic metric spacetime(φρ′, φcφt′) and con-
sequently the evolutions of flat two-dimensional relativistic
intrinsic metric spacetime(φρ, φcφt) and its outward mani-
festations namely, the flat four-dimensional relativisticmet-
ric spacetime(Σ, ct), have progressed simultaneously at the
speed of light from the location(Ŝ, Ŝ0) on the flat absolute

spacetime(Σ̂, ĉt̂ ) in Fig. 3, where the absolute rest mass
(M̂0, Ê/ĉ

2) of the gravitational field source was suddenly in-
troduced, to some near neighbourhood of the point(Ŝ, Ŝ0) af-
ter a given timeT ′ of introduction of(M̂0, Ê/ĉ

2) at the point
(Ŝ, Ŝ0), and the effect of the gravitational field of the suddenly
introduced field source can be felt on flat four-dimensional
relativistic spacetime(Σ, ct) (that has evolved) at every point
within such near neighbourhood at timeT ′.

On the other hand, some distant neighbourhoods of the
point (Ŝ, Ŝ0) have not yet experienced the evolutions of curv-
ed (φρ̂, φĉφt̂ ), curved(φρ′, φcφt′), flat (φρ, φcφt) and flat
(Σ, ct), established by the suddenly introduced gravitational
field source at point(Ŝ, Ŝ0) at the given timeT ′ after the sud-
den introduction of the gravitational field source. The flat
absolute spacetime(Σ̂, ĉt̂ ) and its underlying flat absolute
intrinsic spacetime(φρ̂, φĉφt̂ ) of the reference geometry of
Fig. 3 still exist in those distant neighbourhoods. Conse-
quently the effect of the gravitational field of the suddenly
introduced field source will not be felt in those distant neigh-
bourhoods of point(Ŝ, Ŝ0) at the given timeT ′ after the sud-
den introduction of the gravitational field source at point
(Ŝ, Ŝ0).

It has so far been assumed that the gravitational field
source introduced at the point(Ŝ, Ŝ0) in (Σ̂, ĉt̂) in Fig. 3
is the only one in our universe. However let us now relax
this assumption and assume that other existing gravitational
field sources had already established curved absolute intrinsic
metric spacetime(φρ̂, φĉφt̂ ), curved two-dimensional proper
intrinsic metric spacetime(φρ′, φcφt′), flat two-dimensional
relativistic intrinsic metric spacetime(φρ, φcφt) and flat four-
dimensional relativistic metric spacetime(Σ, ct) at the distant
neighbourhoods of the suddenly introduced gravitational field
source at point(Ŝ, Ŝ0). Then the effect of the gravitational
fields of these existing field sources will be felt on flat rela-
tivistic spacetime, while the effect of the gravitational field of
the suddenly introduced field source at point(Ŝ, Ŝ0) will not
be felt on flat relativistic spacetime at those distant neighbour-
hoods of point(Ŝ, Ŝ0) at the given time theT ′ of the sudden
introduction of the gravitational field source at point(Ŝ, Ŝ0).

It follows from the foregoing that the effect of the grav-
itational fields of a great multitude of very distant stars and
galaxies formed billions of years ago have not yet reached the
earth. The foregoing also explains why if the Sun is suddenly
annihilated, the earth will not be aware of this until about
nine seconds required for the effect of gravity to propagated
at speed of light from the location of the Sun to the surface of
the earth.

Apart from the evolutions of curved absolute intrinsic
metric spacetime(φρ̂, φĉφt̂ ), curved proper intrinsic metric
spacetime(φρ′, φcφt′), flat relativistic intrinsic metric space-
time (φρ, φcφt) and flat relativistic metric spacetime(Σ, ct),
all of which propagate simultaneously at the speed of light
to distant places from the location of a suddenly introduced
gravitational field source and their annihilation, which also
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propagate simultaneously at the speed of light to distant
places from the location of the suddenly annihilated gravi-
tational field source, the perturbation of the source of a grav-
itational field, (such as will arise from sudden decrease or
sudden increase of the rest mass of the gravitational field
source), will lead to perturbations in curvatures of(φρ̂, φĉφt̂ )
and(φρ′, φcφt′), as well as perturbations in flat relativistic in-
trinsic metric spacetime(φρ, φcφt) and flat relativistic metric
spacetime(Σ, ct) established by the gravitational field source.
These perturbations will also propagate simultaneously atthe
speed of light from the location of the perturbed gravitational
field source to distant places.

Although perturbations in flat relativistic spacetime(Σ,
ct) will be very faint at distant places from the perturbed grav-
itational field source, but it can be measured (as perturbations
in gravitational length contractions of space intervals orob-
jects and of gravitational time dilations of time intervals) in
principle. (The concepts of gravitational length contraction
and gravitational time dilation in the context of the theoryof
gravitational relativity (TGR) that operates on the flat rela-
tivistic spacetime(Σ, ct) in Fig. 7, shall be established in the
next section.) However nothing in this discussion suggests
that perturbations in curved(φρ̂, φĉφt̂ ), curved(φρ′, φcφt′),
flat (φρ, φcφt) and flat(Σ, ct) propagate as waves at the speed
of light. The results and conclusions reached by qualitative
discussion in this sub-section shall be supported quantita-
tively by actual calculations elsewhere with further develop-
ment.

The next step in this paper is to adapt the new results de-
rived in section 2 of [2] from the local spacetime/intrinsic
spacetime geometries of Figs. 6 – 9 of that paper, at the sec-
ond stage of evolution of spacetime/intrinsic spacetime in a
long-range metric force field in general, to the gravitational
field. Those results are the intrinsic local Lorentz transfor-
mation (φLLT) in terms of proper intrinsic static speedφV ′

s ;
local Lorentz transformation (LLT) in terms of proper sta-
tic speedV ′

s ; intrinsic local Lorentz invariance (φLLI) and
local Lorentz invariance (LLI) implied byφLLT and LLT re-
spectively; intrinsic time dilation and intrinsic length contrac-
tion formulae in terms of proper intrinsic static speedφV ′

s

and time dilation and length contraction formulae in terms of
proper static speedV ′

s. This shall be accomplished in the next
section.

2 The theory of relativity /intrinsic theory of relativity
associated with the presence of relative gravitational
field /relative intrinsic gravitational field at the second
stage of evolution of spacetime/intrinsic spacetime in a
gravitational field

As stated above, the programme of this section is to adapt
the results of section 2 of [2] in a long-range metric force
field in general to the gravitational field. We must simply re-
place the proper intrinsic static speedφV ′

S,P and proper static

speedV ′

S,P that appear in those results by the proper intrinsic
gravitational speedφV ′

g(φr′) and proper gravitational speed
V ′

g(r′) respectively, whereφV ′

g(φr′) must be related to the
proper intrinsic gravitational parameters andV ′

g(r′) must be
related to the proper gravitational parameters of the external
gravitational field.

It thus follows that the place to start this section is deriva-
tion of expressions forφV ′

g(φr′) andV ′

g(r′), as well as for

absolute intrinsic gravitational speedφV̂g(φr̂) that will ap-
pear in the absolute intrinsic metric tensorφĝij , absolute in-
trinsic Ricci tensorφR̂ij and absolute intrinsic line element
of the metric theory of absolute intrinsic gravity (φMAG)
on curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂ ) with respect to 3-observers in the relativistic
Euclidean 3-spaceΣ in Fig. 7.

2.1 Relating gravitational speed/intrinsic gravitational
speed to gravitational parameters/intrinsic gravita-
tional parameters

The geometry of Fig. 5 is a valid geometry at the first stage of
evolution of spacetime/intrinsic spacetime in a gravitational
field. It does not exist in a gravitational field however be-
cause there was no time for it to be formed, since the sec-
ond stage of evolution of spacetime/intrinsic spacetime com-
mences at the same moment that the geometry of Fig. 5 at
the first stage begins to evolve, thereby yielding the geome-
try of Fig. 7 of combined first and second stages of evolution
of spacetime/intrinsic spacetime in a gravitational field as the
geometry that exists in every gravitational field, as explained
in sub-section 1.1.

Now let the ‘one-dimensional’ absolute intrinsic rest mass
φm̂0 of a test particle be in absolute intrinsic fall (at increas-
ing absolute intrinsic dynamical speedφV̂d) along the curved
absolute intrinsic spaceφρ̂ towards the absolute intrinsic rest
massφM̂0 of the gravitational field source at the origin of
the curvedφρ̂ in our universe in Fig. 5. In perfect symmetry,
the symmetry-partner test particle of negative absolute intrin-
sic rest mass−φm̂∗

0 is in absolute intrinsic fall (at increas-
ing absolute intrinsic dynamical speedφV̂d) along the curved
absolute intrinsic space−φρ̂∗ towards the negative absolute
intrinsic rest mass−φM̂∗

0 of the symmetry-partner gravita-
tional field source at the origin of the curved−φρ̂∗ in the
negative universe. However only the absolute intrinsic grav-
itational fall of the absolute intrinsic rest massφm̂0 of the
test particle in the first quadrant (or in our universe) shallbe
considered in the derivation hereunder, since there is no inter-
action between the identical geometries in the first and third
quadrants (or in the positive and negative universes) in Fig. 5.

Let the absolute intrinsic rest massφm̂0 of the test parti-
cle in our universe possess absolute intrinsic dynamical speed
φV̂d upon falling along the curvedφρ̂ to a position P of ‘dis-
tance’φr̂ from the basêS of φM̂0 located at the origin of the
curvedφρ̂. It will acquire the absolute intrinsic gravitational
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speedφV̂g(φr̂), (which is an absolute intrinsic static speed)
at the position P, of the non-uniform absolute intrinsic gravi-
tational speeds established along the curvedφρ̂ by φM̂0.

Thus the absolute intrinsic rest massφm̂0 of the test par-
ticle will possess absolute intrinsic dynamical speedφV̂d and
absolute intrinsic gravitational speedφV̂g(φr̂) it acquires at
position P upon falling to this position along the curvedφρ̂.
Its absolute intrinsic total energyφÛ at the position P is then
given classically in terms of the absolute intrinsic speedsφV̂d

andφV̂g(φr̂) as follows

φÛ =
1

2
φm̂0φV̂

2
d −

1

2
φm̂0φV̂g(φr̂)

2 (3)

The negative sign of the absolute intrinsic gravitational en-
ergy− 1

2φm̂0φV̂g(φr̂)
2 comes from the negativity of gravita-

tional energy.
The expression (3) has been written by a hypothetical

‘one-dimensional’ absolute intrinsic observer (with absolute
intrinsic rest mass) located at the position P along the curved
φρ̂where Eq. (3) is written. This ‘observer’ will be referred to
as the proper Riemannian observer for brevity. The absolute
intrinsic 1-observers located located at other positions along
the curvedφρ̂ are Riemannian observers, as has been adopted
in an earlier paper, see section 4 of [9].

Equation (3) takes on the classical mechanics form with
respect to the proper Riemannian observer for two reasons: (i)
it involves absolute (and not relative) intrinsic speeds and (ii)
the curved absolute intrinsic spaceφρ̂ is locally straight (or
Euclidean) at point P with respect to the proper Riemannian
observer. Recall from [1] that the curved ‘two-dimensional’
absolute intrinsic metric spacetime(φρ̂, φĉφt̂ ) in Fig. 5 pos-
sesses absolute intrinsic Lorentzian metric tensor at every
point of it with respect to the proper Riemannian observer
located at each point of it. The valid absolute intrinsic metric
tensor on curved(φρ̂, φĉφt̂ ) with respect to the proper Rie-
mannian observer is the absolute intrinsic Lorentzian metric
tensor and not the absolute intrinsic sub-Riemannian metric
tensorφĝij that is valid with respect to every 3-observer (or
every Euclidean observer) in the proper Euclidean 3-spaceΣ′

in Fig. 5, as developed in [1].
On the other hand, the expression (3) is given in the usual

Newtonian form as follows

φÛ =
1

2
φm̂0φV̂

2
d −

GφM̂0

φr̂
(4)

A comparison of Eqs. (3) and (4) gives the following expres-
sion forφV̂g(φr̂)

2

φV̂g(φr̂)
2 = 2GφM̂0/φr̂ (5a)

φV̂g(φr̂) = −

√

2GφM̂0/φr̂ (5b)

where the negative sign of the absolute intrinsic gravitational
speed introduced by hand shall be discussed shortly.

The absolute intrinsic gravitational potential is dependent
on the absolute intrinsic gravitational speed as follows

φΦ̂(φr̂) = −
1

2
φV̂g(φr̂)

2 = −
GφM̂0

φr̂
(6)

Also because of the absolute intrinsic Lorentzian metric ten-
sor at point P along the the curvedφρ̂ where Eqs. (3)-(6) have
been written with respect to the proper Riemannian observer
(at this point), the proper Riemannian observer obtains the
absolute intrinsic gravitational acceleration (or absolute in-
trinsic gravitational) field at the point P from definition as
follows

φĝ(φr̂) =
1

2

d(φV̂g(φr̂)
2)

dφr̂
= −

d(φΦ̂(φr̂))

dφr̂
= −

GφM̂0

φr̂2

(7)
The absolute intrinsic gravitational speedφV̂g(φr̂) is

taken to be the negative root of2GφM̂0/φr̂ in Eq. (5b) be-
cause of the attractive nature of the gravitational field. Itis
for this reason that the absolute intrinsic gravitational poten-
tial and absolute intrinsic gravitational field possess negative
sign in Eqs. (6) and (7). However the negative sign of the ab-
solute intrinsic gravitational speed shall be derived formally
and shown to be the origin of the negative sign ofφΦ̂(φr̂) and
φĝ elsewhere with further development.

By removing the symbolφ from Eqs. (5a-b)-(7), we ob-
tain expressions for absolute gravitational speed, absolute
gravitational potential and absolute gravitational acceleration
respectively as follows

V̂g(r̂)
2 = 2GM̂0/r̂ (8a)

V̂g(r̂) = −

√

2GM̂0/r̂ (8b)

Φ̂(r̂) = −
1

2
V̂g(r̂)

2 = −
GM̂0

r̂
(9)

ĝ(r̂) =
1

2

d(V̂g(r̂)
2)

dr̂
= −

d(Φ̂(r̂))

dr̂
= −

GM̂0

r̂2
(10)

It is crucial to note that among the absolute intrinsic gravi-
tational speedφV̂g(φr̂), absolute intrinsic gravitational poten-
tial φΦ̂(φr̂) and absolute intrinsic gravitational acceleration
φĝ(φr̂), defined by Eqs. (5b), (6) and (7) at point P on the
curved absolute intrinsic spaceφρ̂ at ‘distance’φr̂ from the
basêS of the absolute intrinsic rest massφM̂0 of the gravita-
tional field source at the origin of the curvedφρ̂, the absolute
intrinsic gravitational speed is the most fundamental absolute
intrinsic parameter, as can be seen directly from the depen-
dence ofφΦ̂(φr̂) andφĝ(φr̂) onφV̂g(φr̂) in those equations.

Indeed it is by virtue of establishment of non-uniform ab-
solute intrinsic gravitational speed (which is an absolutein-
trinsic static speed) along the straight line absolute intrinsic
spaceφρ̂ along the horizontal byφM̂0 and along the straight
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line absolute intrinsic time ‘dimension’φĉφt̂ by φÊ/φĉ2 (≡
φM̂0), in the reference geometry of Fig. 3 that curved ab-
solute intrinsic spaceφρ̂ and curved absolute intrinsic time
‘dimension’φĉφt̂ in Fig. 4 evolve, and not by virtue of es-
tablishment of the secondary absolute intrinsic parameters
φΦ̂(φr̂) and φĝ(φr̂). Recall that absolute intrinsic static
speed has been isolated as an absolute intrinsic geometrical
parameter along the curvedφρ̂ and curvedφĉφt̂ in section 2
of [1], as illustrated in Fig. 11 of that paper.

In order to derive expressions for the proper intrinsic grav-
itational speedφV ′

g(φr′), proper intrinsic gravitational poten-
tial φΦ′(φr′) and proper intrinsic gravitational acceleration
φg′(φr), which correspond to Eqs. (5a-b), (6) and (7) for the
respective absolute intrinsic parameters, and expressions for
proper gravitational speedV ′

g(r′), proper gravitational poten-
tial Φ′(r′) and proper gravitational accelerationg′(r′), which
correspond to Eqs. (8a-b)-(10) for the respective absolutepa-
rameters, let us revisit Fig. 5 again.

It is inherently assumed that the intrinsic rest massφM0

in the projective proper intrinsic spaceφρ′ along the horizon-
tal and the intrinsic rest massφE′/φc2 (≡ φM0) in the pro-
jective proper intrinsic time dimensionφcφt′ along the verti-
cal of the gravitational field source, have not established non-
uniform proper intrinsic gravitational speedsφV ′

g(φr′) along
φρ′ andφcφt′ respectively in Fig. 5 and consequently the rest
massesM0 in Σ′ andE′/c2 (≡ M0) in ct′ have not estab-
lished non-uniform proper gravitational speeds along every
radial direction from the centre ofM0 in Σ′ and alongct′

respectively in that figure. However in reality,φM0 in φρ′

establishes non-uniform proper intrinsic gravitational speeds
φV ′

g(φr′) along the straight lineφρ′, causingφρ′ to become
curved anti-clockwise into the first quadrant andφE′/φc2 in
φcφt′ establishes non-uniform proper intrinsic gravitational
speedsφV ′

g(φr′) along the straight lineφcφt′, causingφcφt′

to be curved anti-clockwise into the second quadrant, with
respect to 3-observers in the resulting relativistic Euclidean
3-spaceΣ, so that the curvedφρ′ andφcφt′ constitute or-
thogonal curvilinear intrinsic dimensions with respect to3-
observers inΣ, as illustrated in Fig. 7.

The absolute intrinsic rest massφm̂0 of the test particle
that has undergone absolute intrinsic gravitational fall to ‘dis-
tance’φr̂ from the base of the absolute intrinsic rest mass
φM̂0 along the curvedφρ̂, where it possesses absolute intrin-
sic dynamical speedφV̂d and acquires absolute intrinsic grav-
itational speedφV̂g(φr̂) in the geometry of Fig. 5, retains this
situation in the geometry of Fig. 7. In other words, the ab-
solute intrinsic rest massφm̂0 of the test particle at ‘distance’
φr̂ from the base ofφM̂0 along the curvedφρ̂ (not shown) in
Fig. 7, possesses absolute intrinsic dynamical speedφV̂d and
acquires absolute intrinsic gravitational speedφV̂g(φr̂).

The proper intrinsic rest massφm0 of the test particle
(not shown in Fig. 5) that possesses projective absolute in-
trinsic dynamical speedφV̂d and acquires projective absolute
intrinsic gravitational speedφV̂g(φr̂) at ‘distance’φr′ from

the base ofφM0 in the straight lineφρ′ along the horizontal
(not shown) in Fig. 5, is now at ‘distance’φr′ from the base
of φM0 along the curved proper intrinsic metric spaceφρ′

in Fig. 7, where it still possesses absolute intrinsic dynam-
ical speedφV̂d and still acquires absolute intrinsic gravita-
tional speedφV̂g(φr̂). In addition,φm0 also acquires proper
intrinsic gravitational speedφV ′

g(φr′) at ‘distance’φr′ from
the base ofφM0 along the curvedφρ′ in Fig. 7, of the non-
uniform proper intrinsic gravitational speeds thatφM0 estab-
lishes along the curvedφρ′.

It shall quickly be added that as long as the intrinsic rest
massφm0 of a test particle is in intrinsic gravitational fall
directly along the curved proper intrinsic spaceφρ′, it is in
absolute intrinsic fall at increasing absolute intrinsic dynam-
ical speedφV̂d, just as the intrinsic motion of the projective
intrinsic rest massφm0 directly along the straight line proper
intrinsic spaceφρ′ along the horizontal in Fig. 5 is an absolute
intrinsic motion.

As follows from the penultimate paragraph, the intrin-
sic rest massφm0 of the test particle in absolute intrinsic
gravitational fall to the position of ‘distance’φr′ from the
base ofφM0 along the curved proper intrinsic metric space
φρ′ (not shown) in Fig. 7, possesses three intrinsic speeds
namely, absolute intrinsic dynamical speedφV̂d, absolute in-
trinsic gravitational speedφV̂g(φr̂) and proper intrinsic grav-
itational speedφV ′

g(φr′) at this location. Since expression

has been derived forφV̂g(φr̂) earlier, our interest now is to
derive expression forφV ′

g(φr′).
Now the curved two-dimensional proper intrinsic met-

ric spacetime(φρ′, φcφt′) with orthogonal curvilinear intrin-
sic dimensionsφρ′ andφcφt′ possesses the Lorentzian met-
ric tensor a every point of it with respect to the intrinsic 1-
observers (with intrinsic rest masses) inφρ′ and 3-observers
in Σ. Consequently the intrinsic 1-observer located at ‘dis-
tance’φr′ from the base ofφM0 along the curvedφρ′ where
the particle is located, will formulate theory of combined in-
trinsic gravity and intrinsic motion with the proper intrinsic
gravitational speedφV ′

g(φr′) and its absolute intrinsic dy-

namical speedφV̂d alongφρ′ at his location and write the
proper intrinsic total energy of the intrinsic rest mass of the
test particle as follows

φU ′ =
1

2
φm0φV̂

2
d −

1

2
φm0φV

′

g(φr′)2 (11)

Eq. (11) takes on take the Newtonian form in terms of the
proper (or classical) intrinsic gravitational potential function
as follows

φU ′ =
1

2
φm0φV̂

2
d −

GφM0φm0

φr′
(12)

A comparison of Eqs. (15) and (11) yields the following
expressions for proper intrinsic gravitational speed,

φV ′

g(φr′)2 = 2GφM0/φr
′ (13a)

14 A. (Adekugbe) Joseph. Particularization of spacetime/intrinsic spacetime geometries in a metric force field to the gravitational field.



φV ′

g(φr′) = −
√

2GφM0/φr′ (13b)

The negative root of2GφM0/φr
′ is chosen in the definition

of φV ′

g(φr′), as done in the definition ofφV̂g(φr̂) in Eq. (5b),
because of the attractive nature of the gravitational field.

The proper intrinsic gravitational potential is dependent
on the proper intrinsic gravitational speed as follows

φΦ′(φr′) = −
1

2
φV ′

g(φr′)2 = −
GφM0

φr′
(14)

Also because of the intrinsic Euclidean metric tensor at point
P along the the curvedφρ′ where Eqs. (11)-(14) are written
with respect to an intrinsic 1-observer (at this point), this in-
trinsic 1-observer obtains the proper intrinsic gravitational ac-
celeration (or proper intrinsic gravitational field) at thepoint
P from definition in Euclidean geometry as follows

φg′(φr′) =
1

2

d(φV ′

g(φr′)2)

dφr′
= −

d(φΦ′(φr′))

dφr′
= −

GφM0

φr′2

(15)
By removing the symbolφ from Eqs. (13a-b)-(15) one ob-

tains expressions for proper gravitational speed (or velocity),
proper gravitational potential and proper gravitational accel-
eration respectively as follows

V ′

g(r′)2 =
2GM0

r′
(16a)

~V ′

g(r′) = −

√

2GM0

r′
~r ′

r′
(16b)

Φ′(r′) = −
1

2
V ′

g(r′)2 = −
GM0

r′
(17)

and

~g ′(r′) =
1

2

d(V ′

g(r′)2)

dr′
= −

d(Φ′(r′))

dr′
= −

GM0~r
′

r′3
(18)

It is again important to note that among proper intrinsic
gravitational speedφV ′

g(φr′), proper intrinsic gravitational
potentialφΦ′(φr′) and proper intrinsic gravitational acceler-
ationφg′(φr′), defined by Eqs. (13b), (14) and (15) at point P
on the curved proper intrinsic spaceφρ′ at ‘distance’φr′ from
the base S′ of the intrinsic rest massφM0 of the gravitational
field source at the origin of the curvedφρ′, the proper in-
trinsic gravitational speed is the most fundamental, as canbe
seen directly from the dependence ofφΦ′(φr′) andφg′(φr′)
onφV ′

g(φr′) in those equations.
Indeed it is by virtue of establishment of non-uniform

proper intrinsic gravitational speeds (which is a proper in-
trinsic static speed) along the straight line proper intrinsic
spaceφρ′ along the horizontal byφM0 and along the straight
line proper intrinsic time ‘dimension’φcφt′ by φE′/φc2 (≡
φM0) in the geometry of Fig. 5 that curved proper intrinsic
spaceφρ′ and curved proper intrinsic time dimensionφcφt′

in Fig. 7 evolve, and not by virtue of virtue of establishment
of the secondary proper intrinsic parametersφΦ′(φr′) and
φg′(φr′).

2.2 Deriving intrinsic gravitational local Lorentz trans-
formation and gravitational local Lorentz transfor-
mation and establishing intrinsic gravitational local
Lorentz invariance and gravitational local Lorentz
invariance in a gravitational field

The intrinsic local Lorentz transformation and its inversein
terms of proper intrinsic static speedφV ′

s , as well as the in-
trinsic local Lorentz invariance, intrinsic time dilationand in-
trinsic length contraction formulae they imply, derived with
the aid of the local spacetime/intrinsic spacetime geometries
of Figs. 6 and 7 and their inverses of Figs. 8 and 9 of [2],
on flat two-dimensional intrinsic metric spacetime within a
long-range metric force field, in sub-section 2.2 of [2] and the
outward manifestations of those results namely, local Lorentz
transformation and its inverse in terms of proper static speed
V ′

s , as well as local Lorentz invariance, time dilation and
length contraction formulae they imply on flat four-dimens-
ional metric spacetime in a long-range metric force field, shall
be adapted to the gravitational field in this sub-section.

The counterparts in the gravitational field of the local
spacetime/intrinsic spacetime geometries of Figs. 6-9 of [2]
in a long-range metric force field in general must be drawn
from the global geometries of Figs. 7-10 of this paper in a
gravitational field (just as Figs. 6-9 of [2] have been drawn
from Figs. 1 and 3 and Figs. 4 and 5 of that paper). This is an
easy task since the counterpart local geometries to be derived
from Figs. 7-10 of this paper are exactly the same as Figs. 6-9
of [2], except that the proper intrinsic static speedφV ′

s that
appear in Figs. 6-9 of [2] in a long-range metric force field
in general, must be replaced by proper intrinsic gravitational
speedφV ′

g(φr′) in those figures in a gravitational field.
We shall for completeness of this paper present the coun-

terpart in a gravitational field of Fig. 6 of [2] in a long-range
metric force field in general as Fig. 11.

The local geometry of Fig. 11, drawn from the global
geometry of Fig. 7, is valid with respect to 3-observers in the
relativistic Euclidean 3-spacesΣ and−Σ∗. This is so because
the anti-clockwise rotation of the proper intrinsic spacetime
intervalsdφρ′ andφcdφt′ relative to their projective relativis-
tic intrinsic spacetime intervalsdφρ andφcdφt by positive
intrinsic angle in Fig. 11 is valid with respect to these 3-
observers.

The partial intrinsic metric spacetime interval transforma-
tion that can be derived with respect to 3-observers inΣ in the
first quadrant from Fig. 11, which follows from the derivation
of Eq. (5) from Fig. 6 in [2], is the following

dφρ′ = dφρ secφψg(φr
′) − φcdφt tanφψg(φr

′);

(w.r.t. 3 − observers in Σ)

}

(19)
The counterpart in a gravitational field to Fig. 7 of [2] in a

long-range metric force field in general, is depicted in Fig.12.
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Fig. 11: Local spacetime/intrinsic spacetime geometry derived from the global geometry of Fig. 1 with respect to 3-observers in the
relativistic Euclidean 3-spaces in the positive and negative universes.

The local geometry of Fig. 12, drawn from the global geom-
etry of Fig. 8, is valid with respect to 1-observers in the rel-
ativistic time dimensionsct and−ct∗. This is so since the
clockwise rotation of the proper intrinsic spacetime intervals
dφρ′ andφcdφt′ relative to their projective relativistic intrin-
sic spacetime intervalsdφρ andφcdφt by a positive intrinsic
angle in Fig. 12 is valid with respect to these 1-observers.

The partial intrinsic metric spacetime interval transforma-
tion that can be derived with respect to 1-observers inct in the
first quadrant from Fig. 12, which follows from the derivation
of Eq. (6) from Fig. 7 in [2], is the following

φcdφt′ = dφt secφψg(φr
′) − dφρ tanφψg(φr

′);

(w.r.t. 1 − observers in ct)

}

(20)

By collecting Eqs. (19) and (20) we obtain the full intrin-
sic metric spacetime interval transformation with respectto
3-observers inΣ and 1-observers inct at ‘distance’φr′ along
the curved proper intrinsic spaceφρ′ from the base S′ of the
intrinsic rest massφM0 of the gravitational field source at the
origin of the curvedφρ′ in Fig. 11 and 12 as follows

φcdφt′ = dφt secφψg(φr
′) − dφρ tanφψg(φr

′);

(w.r.t. 1 − observers in ct)

dφρ′ = dφρ secφψg(φr
′) − φcdφt tanφψg(φr

′);

(w.r.t. 3 − observers in Σ)























(21)
There is an inverse to system (21), which must be derived

from the inverses to Figs. 11 and 12. The inverse to Fig. 11 is
the counterpart in a gravitational field to Fig. 8 of [2] in a long
range metric force field in general. It is depicted in Fig. 13.

The inverse local geometry of Fig. 13, derived from the
inverse global geometry of Fig. 9, is valid with respect to
1-observers in the relativistic time dimensionsct and−ct∗.
This is so since the clockwise rotation of the relativistic intrin-
sic spacetime intervalsdφρ andφcdφt relative to the proper
intrinsic spacetime intervalsdφρ′ andφcdφt′ by negative in-
trinsic angle in Fig. 13, is equivalent to clockwise rotation
of the proper intrinsic spacetime intervalsdφρ′ andφcdφt′

relative to relativistic intrinsic spacetime intervalsdφρ and
φcdφt by positive intrinsic angle, as in Fig. 12. Consequently
Figs. 12 and 13 are both valid with respect to 1-observers in
the relativistic time dimensionsct and−ct∗.

The partial intrinsic metric spacetime interval transforma-
tion that can be derived with respect to 1-observers inct in the
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Fig. 12: Local spacetime/intrinsic spacetime geometry derived from the global geometry of Fig. 3 with respect to 1-observers in the
relativistic time dimensions in the positive and negative universes; the complementary diagram to Fig. 11.
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Fig. 13: The inverse to Fig. 11 with respect to 1-observers in the relativistic time dimensions in the positive and negative universes.
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Fig. 14: The inverse to Fig. 12 with respect to 3-observers in the relativistic Euclidean 3-spaces in the positive and negative universes.

first quadrant (or in the positive universe) from Fig. 13, which
follows from the derivation of Eq. (8) from Fig. 8 in [2], is the
following

dφρ = dφρ′ secφψg(φr
′) + φcdφt′ tanφψg(φr

′);

(w.r.t. 1 − observers in ct)

}

(22)
Finally the inverse to Fig. 12 is the counterpart in a gravi-

tational field to Fig. 9 of [2] in a long range metric force field
in general. It is depicted in Fig. 14. The inverse local geom-
etry of Fig. 14, derived from the inverse global geometry of
Fig. 10, is valid with respect to 3-observers in the relativis-
tic Euclidean 3-spacesΣ and−Σ∗. This is so because the
anti-clockwise rotation of the relativistic intrinsic spacetime
intervalsdφρ andφcdφt relative to the proper intrinsic space-
time intervalsdφρ′ andφcdφt′ by negative intrinsic angle in
Fig. 14, is equivalent to anti-clockwise rotation of the proper
intrinsic spacetime intervalsdφρ′ andφcdφt′ relative to rela-
tivistic intrinsic spacetime intervalsdφρ andφcdφt by posi-
tive intrinsic angle, as in Fig. 11. Consequently Figs. 11 and
14 are both valid with respect to 3-observers in the relativistic
Euclidean 3-spaceΣ and−Σ∗.

The partial intrinsic metric spacetime interval transforma-
tion that can be derived with respect to 3-observers inΣ in the
first quadrant (or in the positive universe) from Fig. 14, which
follows from the derivation of Eq. (9) from Fig. 9 in [2], is the

following

φcdφt = φcdφt′ secφψg(φr
′) + dφρ′ tanφψg(φr

′);

(w.r.t. 3 − observers in Σ)

}

(23)
By collecting Eqs. (22) and (23) we obtain the full inverse

intrinsic spacetime interval transformation with respectto 3-
observers inΣ and 1-observers inct at ‘distance’φr′ along
the curved proper intrinsic spaceφρ′ from the base S′ of the
intrinsic rest massφM0 of the gravitational field source at the
origin of the curvedφρ′ in Figs. 13 and 14 as follows

φcdφt = φcdφt secφψg(φr
′) + dφρ′ tanφψg(φr

′);

(w.r.t. 3 − observers in Σ)

dφρ = dφρ′ secφψg(φr
′) + φcdφt′ tanφψg(φr

′);

(w.r.t. 1 − observers in ct)























(24)
where, as follows from the derived relations (12)-(13a-b) of
[2],

dφρ

φcdφt
= sinφψg(φr

′) (25)

sinφψg(φr
′) =

φV ′

g(φr′)

φc
= φβg(φr

′) (26a)
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secφψg(φr
′) = (1 −

φV ′

g(φr′)2

φc2
)−1/2 = φγg(φr

′) (26b)

By using Eqs. (26a) and (26b) in systems (21) and (24)
we obtain the counterparts in a gravitational field to systems
(14) and (15) of [2] in a general long-range metric force field
respectively as follows

dφt′ = φγg(φr
′)(dφt−

φV ′

g(φr′)

φc2
dφρ)

(w.r.t. 1 − observers in ct)

dφρ′ = φγg(φr
′)(dφρ− φV ′

g(φr′)dφt)

(w.r.t. 3 − observers in Σ)



























(27)

and

dφt = φγg(φr
′)(dφt′ +

φV ′

g(φr′)

φc2
dφρ′)

(w.r.t. 3 − observers in Σ)

dφρ = φγg(φr
′)(dφρ′ + φV ′

g(φr′)dφt′)

(w.r.t. 1 − observers in ct)



























(28)

Finally by using the expression (13b) forφV ′

g(φr′) in
Eq. (26a) and (26b) we obtain the following relations for the
intrinsic angleφψg(φr

′)

sinφψg(φr
′) =

φV ′

g(φr′)

φc
=

√

2GφM0

φr′φc2
= φβg(φr

′)

(29a)

secφψg(φr
′) = (1 −

φV ′

g(φr′)2

φc2
)−1/2

= (1 −
2GM0

φr′φc2
)−1/2 = φγg(φr

′) (29b)

Systems (21) and (24) or systems (27) and (28) are then
given in terms of the intrinsic gravitational parameter
2GφM0/φr

′φc2 respectively as follows

dφt′ = φγg(φr
′)(dφt−

√

2GφM0

φr′φc4
dφρ)

(w.r.t. 1 − observers in ct)

dφρ′ = φγg(φr
′)(dφρ−

√

2GφM0

φr′
dφt)

(w.r.t. 3 − observers in Σ)











































(30)

and

dφt = φγg(φr
′)(dφt′ +

√

2GφM0

φr′φc4
dφρ′)

(w.r.t. 3 − observers in Σ)

dφρ = φγg(φr
′)(dφρ′ +

√

2GφM0

φr′
dφt′)

(w.r.t. 3 − observers in ct)











































(31)

Systems (21) and (24), systems (27) and (28) and sys-
tems (30) and (31) are alternative forms of intrinsic gravita-
tional local Lorentz transformation (φGLLT) and its inverse
on flat two-dimensional intrinsic metric spacetime in every
gravitational field. They are referred to as intrinsic gravita-
tional local Lorentz transformation and its inverse, as shall
be done henceforth for two reasons. First, because they are
valid within an intrinsic local Lorentz frame located at arbi-
trary ‘distance’φr′ along the curved proper intrinsic metric
spaceφρ′ from the base ofφM0, which corresponds to ‘dis-
tance’φr along the straight line relativistic intrinsic metric
spaceφρ from the base ofφM in Fig. 7. The proper intrinsic
gravitational speedφV ′

g(φr′) has a constant value within this
intrinsic local Lorentz frame. Secondly, because they pertain
to the intrinsic theory of relativity associated with the pres-
ence of relative intrinsic gravitational field in intrinsicmetric
spacetime that involves proper intrinsic gravitational speed
φV ′

g(φr′), which is a relative intrinsic static speed, as shown
explicitly by systems (27) and (28).

There is the counterpart intrinsic local Lorentz transfor-
mation (φLLT) and its inverse within local Lorentz frames in
every gravitational field, which involves relative intrinsic dy-
namical speedφv in the context of primed intrinsic special
theory of relativity (φSR′) on flat two-dimensional proper (or
primed) intrinsic metric spacetime(φρ′, φcφt′) (in Fig. 5) in
the assumed absence of relative gravitational field and un-
primed intrinsic special theory of relativity (φSR) on flat two-
dimensional relativistic intrinsic metric spacetime(φρ, φcφt)
(in Fig. 7) in a relative gravitational field, to be derived else-
where with further development.

Either system (21) or its inverse (24) or the more explicit
forms (27) or (28) in terms of proper intrinsic gravitational
speed or yet most explicit form (30) or (31) in terms of intrin-
sic gravitational parameters2GφM0/φr

′, leads to intrinsic
gravitational local Lorentz invariance (φGLLI)

φc2dφt2 − dφρ2 = φc2dφt′2 − dφρ′2 (32)

Equation (32) is referred to as intrinsic gravitational local
Lorentz invariance (φGLLI) because it has arisen as a conse-
quence of the intrinsic gravitational local Lorentz transforma-
tion (φGLLT) or its inverse. There is intrinsic local Lorentz
invariance (φLLI) in the context of intrinsic special theory of
relativity (φSR), within intrinsic local Lorentz frames on flat
intrinsic metric spacetime in a gravitational field, which is im-
plied by intrinsic local Lorentz transformation (φLLT) or its
inverse in the context ofφSR, within intrinsic local Lorentz
frames in every gravitational field, to be developed elsewhere
with further development.

The intrinsic gravitational local Lorentz transformation
(φGLLT) of elementary proper intrinsic metric spacetime in-
tervalsdφρ′ andφcdφt′ into elementary relativistic intrinsic
metric spacetime intervalsdφρ and φcdφt of system (21),
(27) or (30), is valid within intrinsic local Lorentz frame at
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every point on the flat two-dimensional relativistic intrinsic
metric spacetime(φρ, φcφt) with respect to 3-observers in
the relativistic Euclidean 3-spaceΣ and 1-observers in the rel-
ativistic time dimensionct (or with respect to 4-observers on
flat four-dimensional relativistic spacetime(Σ, ct)) in a gravi-
tational field of arbitrary strength in Figs. 7 and 8. The inverse
φGLLT of system (24), (28) or (31) is likewise valid within
intrinsic local Lorentz frame at every point on the flat two-
dimensional relativistic intrinsic spacetime(φρ, φcφt) with
respect to 4-observers on the flat relativistic metric spacetime
(Σ, ct) in every gravitational field in Figs. 9 and 10. It then
follows that the two-dimensional relativistic intrinsic metric
spacetime(φρ, φcφt) possesses intrinsic Lorentzian metric
tensor at every point and is consequently everywhere flat in
a gravitational field of arbitrary strength, as illustratedby the
extended straight lineφρ andφcφt in Figs. 7 – 10.

Let us collect the partial intrinsic gravitational local
Lorentz transformations of elementary intrinsic metric space-
time coordinate intervals with respect to 3-observers in the
relativistic 3-spaceΣ in systems (21) and (24) to have as fol-
lows

dφρ′ = secφψg(φr
′)(dφρ− sinφψg(φr

′)φcdφt);

dφt = secφψg(φr
′)(dφt′ +

sinφψg(φr
′)

φc
dφρ′);











(33)
(w.r.t 3-observers inΣ).

Now when a hypothetical intrinsic 1-observer in the rel-
ativistic intrinsic metric spaceφρ underlyingΣ picks his in-
trinsic laboratory rod to measure the relativistic intrinsic met-
ric space interval involved in an intrinsic event in the relativis-
tic intrinsic metric spacetime, in the first equation of system
(33), he will be able to measure the termdφρ secφψg(φr

′)
but not the term−φcdφt tanφψg(φr

′) at the right-hand side
of that equation with his intrinsic laboratory rod. Likewise
when the hypothetical intrinsic 1-observers inφρ picks his
intrinsic laboratory clock to measure the intrinsic metrictime
interval involved in the same intrinsic event in the second
equation system (33), he will be able to measure the term
dφt′ secφψg(φr

′) but not the term(dφρ′/φc) sinφψg(φr
′)

with his intrinsic laboratory clock. By removing the terms
that cannot be measured with intrinsic laboratory rod and in-
trinsic laboratory clock from system (35) we have

dφρ = dφρ′ cosφψg(φr
′);

dφt = dφt′ secφψg(φr
′);

}

(34)

(w.r.t 3-observers inΣ). System (34) gives the intrinsic length
contraction and intrinsic time dilation formulae in terms of
the intrinsic angleφψg(φr

′) with respect to 3-observers in
the relativistic Euclidean 3-spaceΣ in the context of the in-
trinsic theory of relativity associated with the presence of rel-
ative intrinsic gravitational field in intrinsic spacetime(with

the global geometry of Figs. 7 and 8).
System (34) is given in terms of the proper intrinsic grav-

itational speed by virtue of relation (25b) as follows

dφρ = dφρ′(1 −
φV ′

g(φr′)2

φc2
)1/2;

dφt = dφt′(1 −
φV ′

g(φr′)2

φc2
)−1/2;



















(35)

(w.r.t 3-observers inΣ).
And system (35) is given in terms of the intrinsic gravi-

tational parameter2GφM0/φr
′ by virtue of Eq. (29b) as fol-

lows

dφρ = dφρ′(1 −
2GφM0

φr′φc2
)1/2;

dφt = dφt′(1 −
2GφM0

φr′φc2
)−1/2















(36)

(w.r.t 3-observers inΣ).
Now the intrinsic theory of relativity in the intrinsic met-

ric spacetime associated with the presence of relative intrinsic
gravitational field in intrinsic metric spacetime, will be made
manifest in a theory of relativity in metric spacetime due to
the presence of relative gravitational field in metric space-
time. Consequently the intrinsic gravitational local Lorentz
transformation (φGLLT) of system (21) and its inverse of
system (24) within an intrinsic local Lorentz frame on flat
two-dimensional intrinsic metric spacetime within a gravita-
tional field, in terms of the intrinsic angleφψg(φr

′), will be
made manifest outwardly in gravitational local Lorentz trans-
formation (GLLT) and its inverse within the corresponding
local Lorentz frame on flat four-dimensional metric space-
time within the gravitational field. We must simply remove
the symbolφ from systems (21) and (24) to have their out-
ward manifestations in spacetime respectively as follows

cdt′ = cdt secψg(r
′) − dr tanψg(r

′);

(w.r.t. 1 − observers in ct);

dr′ = dr secψg(r
′) − cdt tanψg(r

′);

r′dθ′ = rdθ; r′ sin θ′dϕ′ = r sin θdϕ;

(w.r.t. 3 − observers in Σ)































(37)
and

cdt = cdt′ secψg(r
′) + dr′ tanψg(r

′);

(w.r.t. 3 − observers in Σ);

dr = dr′ secψg(r
′) + cdt′ tanψg(r

′);

rdθ = r′dθ′; r sin θdϕ = r′ sin θ′dϕ′;

(w.r.t. 1 − observers in ct)































(38)

The appearance of the angleψg(r
′) in system (37) and

(38) conveys the impression that the coordinatesr′ andct′ of
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the proper metric spacetime(Σ′, ct′) ≡ (r′, r′θ′, r′ sin θ′ϕ′,
ct′) are curved with non-uniform curvature relative to dimen-
sionsr and ct respectively of the relativistic metric space-
time (Σ, ct) ≡ (r, rθ, r sin θϕ, ct) in a gravitational field. It
must be noted however that there is no curvature of the four-
dimensional spacetime or of dimensions of the four-dimen-
sional spacetime in the new geometrical background to the
theory of relativity and gravitation within a four-world pic-
ture presented as Figs. 7 - 10 of this paper.

Only the proper intrinsic metric spacetime dimensions
φρ′ and φcφt′ are actually curved relative to their projec-
tive relativistic intrinsic metric spacetime dimensionsφρ and
φcφt respectively in Figs. 7 and 8 and their inverses Figs. 9
and 10. The curvature of the dimensions of the physical
spacetime implied by systems (37) and (38) is an intrinsic
and not observable (or actual) curvature, which is what the
curvatures of intrinsic spacetime in Fig. 7 - 10 represent.

Systems (37) and (38) correspond to systems (20) and
(21) of [2]. The coordinates of the proper Euclidean 3-space
Σ′ represented byx′1, x′2 and x′3 and of the relativistic
Euclidean 3-spaceΣ represented byx1, x2 andx3 in systems
(20) and (21) of [2], are replaced respectively by the spheri-
cal coordinater′, r′θ′ andr′ sin θ′ϕ′ that originate from the
centre of the rest massM0 of the gravitational field source in
the proper Euclidean 3-spaceΣ′ (in Fig. 5), whereM0 is be-
ing assumed to be spherical at present andr, rθ andr sin θϕ
that originate from the centre of the relativistic massM of the
gravitational field source in the relativistic Euclidean 3-space
Σ (in Fig. 7), whereM is also being assumed to be spherical
at present.

The straight line isotropic proper intrinsic metric space
φρ′ along the horizontal can be taken to lie along any ra-
dial direction from the centre ofM0 in Σ′ with respect to
3-observers inΣ ′ in Fig. 5 and the straight line isotropic rel-
ativistic intrinsic metric spaceφρ along the horizontal can
be taken to lie along any radial direction from the centre of
M in Σ with respect to 3-observers inΣ in Fig. 7. It is
for this reason that the outward manifestation in spacetimeof
systems (21) and (24) have taken the forms of systems (37)
and (38) respectively, where the unprimed coordinatesrθ and
r sin θϕ of Σ, along whichφρ does not lie, which are hence
non-relativistic coordinates, transform into the corresponding
proper (or primed) coordinatesr′, rθ′ and r′ sin θ′ϕ′ of Σ′

trivially as r′θ′ = rθ andr′ sin θ′ϕ′ = r sin θϕ.

The outward manifestations on flat four-dimensional
spacetime of the intrinsic gravitational local Lorentz transfor-
mation of system (27) and its inverse (28) are likewise given

respectively as follows

dt′ = γg(r
′)(dt−

V ′

g(r′)

c2
dr);

(w.r.t. 1 − observers in ct)

dr′ = γg(r
′)(dr − V ′

g(r′)dt);

r′dθ′ = rdθ; r′ sin θ′dϕ′ = r sin θdϕ;

(w.r.t. 3 − observers in Σ)



































(39)

and

dt = γg(r
′)(dt′ +

V ′

g(r′)

c2
dr′);

(w.r.t. 3 − observers in Σ)

dr = γg(r
′)(dr′ + V ′

g(r′)dt′);

rdθ = r′dθ′; r sin θdϕ = r′ sin θ′dϕ′;

(w.r.t. 1 − observers in ct)



































(40)

where

γg(r
′) = secψg(r

′) = (1 − V ′

g(r′)2/c2)−1/2 (41)

Systems (39) - (41) correspond to systems (22)-(24) of [2].
And the outward manifestations on flat four-dimensional

spacetime of systems (30) and (31) are the following respec-
tively

dt′ = γg(r
′)(dt−

√

2GM0

r′c4
dr);

(w.r.t. 1 − observers in ct)

dr′ = γg(r
′)(dr −

√

2GM0

r′
dt);

r′dθ′ = rdθ; r′ sin θ′dϕ′ = r sin θdϕ;

(w.r.t. 3 − observers in Σ)











































(42)

and

dt = γg(r
′)(dt′ +

√

2GM0

r′c4
dr′);

(w.r.t. 3 − observers in Σ)

dr = γg(r
′)(dr′ +

√

2GM0

r′
dt′);

rdθ = r′dθ′; r sin θdϕ = r′ sin θ′dϕ′;

(w.r.t. 1 − observers in ct)











































(43)

where

γg(r
′) = (1 − V ′

g(r′)2/c2)−1/2 = (1 − 2GM0/r
′c2)−1/2

(44)
Systems (37) and (38), systems (39) and (40) and sys-

tems (42) and (43) are alternative forms of gravitational local
Lorentz transformation (GLLT) and its inverse on flat four-
dimensional spacetime in a gravitational field of arbitrary
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strength. They are called gravitational local Lorentz transfor-
mation because they involve proper gravitational speed
V ′

g(r′) and are restricted within a local Lorentz frames lo-
cated at an arbitrary radial distancesr from the centre of the
relativistic massM of the gravitational field source in the rel-
ativistic Euclidean 3-spaceΣ. They pertain to the theory of
relativity associated with the presence of relative gravitational
field in metric spacetime. There are also local Lorentz trans-
formation (LLT) and its inverse, involving transformations of
affine spacetime coordinates and dynamical speedv of rel-
ative motion in the context of the special theory of relativ-
ity (SR) within a local Lorentz frame on the flat relativistic
spacetime(Σ, ct) in a gravitational field, to be derived else-
where with further development.

Either the GLLT (27), (30) or (42) or its inverse (28), (31)
or (43) leads to gravitational local Lorentz invariance (GLLI),

c2dt2 − dr2 − r2(dθ2 + sin2 dϕ2)

= c2dt′2 − dr′2 − r′2(dθ′2 + sin2 dϕ′2)
(45)

This is the outward manifestation on flat four-dimensional
metric spacetime of the intrinsic gravitational local Lorentz
invariance (φGLLI) (32) on flat two-dimensional intrinsic
metric spacetime. Eq. (45) is referred to as gravitational local
Lorentz invariance (GLLI) because it has arisen from gravi-
tational Local Lorentz transformation (GLLT) or its inverse.
There is also local Lorentz invariance (LLI) in the context of
SR within local Lorentz frames on flat spacetime in a gravi-
tational field to be established elsewhere.

The gravitational local Lorentz invariance (GLLI) (45) is
valid at every point on four-dimensional spacetime in every
gravitational field, implying flatness everywhere in a gravita-
tional field of arbitrary strength of the four-dimensional rela-
tivistic metric spacetime(Σ, ct), as deduced graphically and
illustrated in Figs. 7 and 8 and their inverses Figs. 9 and 10
earlier.

Finally the intrinsic gravitational length contraction and
intrinsic gravitational time dilation formulae in the context
of the intrinsic theory of relativity associated with the pres-
ence of intrinsic gravitational field on flat two-dimensional
intrinsic metric spacetime, presented in the alternative forms
of systems (34), (35) and (36), are made manifest outwardly
on flat four-dimensional metric spacetime in the context of
the theory of relativity associated with the presence of gravi-
tational field in metric spacetime respectively as follows

dr = dr′ cosψg(r
′); rdθ = r′dθ′;

r sin θdϕ = r′ sin θ′dϕ′;

dt = dt′ secψg(r
′)











(46)

dr = (1 −
V ′

g(r′)2

c2
)1/2dr′; rdθ = r′dθ′;

r sin θdϕ = r′ sin θ′dϕ′;

dt = (1 −
V ′

g(r′)2

c2
)−1/2dt′























(47)

and

dr = (1 −
2GM0

r′c2
)1/2dr′; rdθ = r′dθ′;

r sin θdϕ = r′ sin θ′dϕ′;

dt = (1 −
2GM0

r′c2
)−1/2dt′























(48)

The gravitational length contraction and gravitational time di-
lation formulae (46) – (48) are valid with respect to 3-observ-
ers in the relativistic Euclidean 3-spaceΣ in Fig. 7.

The theory of relativity on flat four-dimensional relativis-
tic metric spacetime(Σ, ct) associated with the presence of a
gravitational field, within which the gravitational local Loren-
tz transformation (GLLT) and its inverse (37) and (38) or (39)
and (40) or (42) and (43) have been derived; within which
the gravitational local Lorentz invariance (45) on flat four-
dimensional metric spacetime in every gravitational field has
been established and within which the gravitational length
contraction and gravitational time dilation of system (46),
(47) or (48) has been derived, shall be referred to as the theory
of gravitational relativity and given the acronym (TGR).

The TGR is the gravitational counterpart, (involving rela-
tive gravitational velocity~V ′

g(r′) − which is a static velocity)
of the special theory of relativity (SR), (involving uniform
relative dynamical velocity~v). However while the relative
dynamical velocity is spatially uniform, thereby satisfying
the special principle of relativity of Einstein [10], and thus
warranting the name special theory of relativity, the relative
gravitational velocity (a static velocity)~V ′

g(r′) that appears
in TGR is not spatially uniform, thereby satisfying the gen-
eral principle of relativity of Einstein [11]. Thus the theory
of gravitational relativity (TGR) may also be referred to as
the general theory of relativity on flat spacetime, going by
Einsteinian nomenclature, but we shall prefer TGR.

If we could have our way, the special theory of relativity
associated with dynamical velocity would be referred to as
the theory of dynamical relativity (TDR), which can then take
care of the relativity of both uniform and non-uniform relative
dynamical velocities. The relativity of non-uniform relative
velocity motions shall be incorporated into the present theory
elsewhere with further development.

The intrinsic theory of relativity on flat two-dimensional
relativistic intrinsic spacetime(φρ, φcφt) associated with the
presence of relative intrinsic gravitational field in(φρ, φcφt),
within which the intrinsic gravitational local Lorentz trans-
formation (φGLLT) and its inverse of systems (21) and (24)
or systems (27) and (28) or systems (30) and (31) have been
derived; within which the intrinsic gravitational local Lorentz
invariance (φGLLI) (32) has been established and within
which the intrinsic gravitational length contraction and intrin-
sic gravitational time dilation formulae of system (34), (35)
or (36) have been derived, is the intrinsic theory of gravita-
tional relativity (φTGR). It is the gravitational counterpart of
the intrinsic special theory of relativity (φSR).
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The theory of gravitational relativity (TGR) on flat four-
dimensional relativistic metric spacetime(Σ, ct) in a gravi-
tational field of arbitrary strength in Figs. 7 and 8 and their
inverses Figs. 9 and 10, is mere outward manifestation of the
intrinsic theory of gravitational relativity (φTGR) on flat two-
dimensional relativistic intrinsic metric spacetime(φρ, φcφt)
underlying(Σ, ct) in those figures. Once a result ofφTGR
has been derived on flat intrinsic spacetime(φρ , φcφt), the
corresponding result of TGR on flat four-dimensional space-
time (Σ, ct) can be written straight away, essentially by drop-
ping the symbolφ from the result ofφTGR. This procedure,
which has been demonstrated above, has been demonstrated
betweenφSR and SR in [3].

The “relativity” aspect of the commonly used terminol-
ogy “relativity and gravitation”, when applied in the present
context, refers to a theory of relativity on flat spacetime as-
sociated with the presence of gravitational field, which is the
theory of gravitational relativity (TGR), while the “gravita-
tion” aspect of the “relativity and gravitation” terminology,
refers to the theory (or law) of gravity on flat four-dimen-
sional relativistic metric spacetime(Σ, ct) in Fig. 7, obtained
from the transformations with the aid of GLLT and its inverse
(42) and (43) of the classical (or Newtonian) theory (or law)
of gravity. This is analogous to the special theory of relativ-
ity and relativistic mechanics, where relativistic mechanics is
classical mechanics transformed with the aid of LLT and its
inverse in the context of SR.

2.2.1 Clarifications of the concepts of relative gravita-
tional field, relative gravitational speed and rela-
tivity associated with relative gravitational speed
(or field)

Let us for completeness and for the emphasis it deserves,
adapt the clarifications of relative metric force fields, relative
static speed and relativity associated with relative static speed
in a long-range metric force field, done in sub-section 2.3 of
[2], to relative gravitational field, relative gravitational speed
and relativity associated with relative gravitational speed, re-
ferred to as theory of gravitational relativity (TGR) above
hereunder.

Now the proper gravitational speedV ′

g(r′) that appears
in the theory of gravitational relativity (TGR) found in this
sub-section is a property of space, established in the proper
Euclidean 3-spaceΣ′ at radial distancer′ along every radial
direction from the centre of the rest massM0 of a gravita-
tional field source inΣ′ in the geometry of Fig. 5, at the
first stage of evolution of spaceime/intrinsic spacetime in a
gravitational field. It transforms invariantly into propergrav-
itational speedV ′

g(r′) at the corresponding radial distancer
along every radial direction in the relativistic Euclidean3-
spaceΣ from the centre of the relativistic massM of the
gravitational field source inΣ, in the geometry of Fig. 7, ac-
cording to the yet to be proved relation (2b), at the second

stage of evolution of spacetime/intrinsic spacetime in a grav-
itational field.

It must be remembered that the relativistic massM in Σ
is not the source of the proper gravitational speedV ′

g(r′) in
Σ. Rather the proper intrinsic gravitational speedφV ′

g(r′)
along the curved proper intrinsic metric spaceφρ′, which is
projected invariantly as proper intrinsic gravitational speed
φV ′

g(φr′) into the relativistic intrinsic metric spaceφρ along
the horizontal, is made manifest in proper gravitational speed
V ′

g(r′) in Σ in Fig. 7. Moreover the relativistic massM
(which shall be identified as the inertial mass and passive
gravitational mass ultimately), is not a gravitational field
source. Hence it does not establish relativistic gravitational
speedVg(r) in Σ.

Now the proper gravitational speedV ′

g(r′) is a property
of space, established in space by the source of a gravitational
field, irrespective of whether a test particle is present in space
or not. A particle or object of any mass located at a point P
in space where the proper gravitational speed isV ′

g(r′), ac-
quiresV ′

g(r′) but does not move relative to any observer at
this speed. If it also possesses a dynamical velocity~v rela-
tive to an observer while moving through point P, then it will
be observed to move at the velocity~v only relative to the ob-
server, despite the gravitational speedV ′

g(r′) it has acquired.
The gravitational speed established at a point in space

cannot be observed or measured. It does not give rise to flow
of space and consequently it does not give rise to translation
in space of a material particle or object that acquired it, as
mentioned above. Further more, the gravitational speed at
a point in space is the same with respect to all observers or
frames of reference. It is hence an absolute parameter from
the point of view of the special (or dynamical) theory of rel-
ativity. How come then the concepts of relative gravitational
speed and relativity associated with gravitational speed (or
how come the theory of gravitational relativity)?

In order to answer the question ending the foregoing para-
graph, let us revisit the length contraction and time dilation
formulae (47) and (48). Although the proper gravitational
speedV ′

g(r′) at a point in space cannot be observed or mea-
sured and although its squareV ′

g(r′)2 cannot be observed or
measured, the quantities(1 − V ′

g(r′)2/c2)1/2dr′ and (1 −

V ′

g(r′)2/c2)−1/2dt′ can be observed and measured. This fol-
lows from the fact thatV ′

g(r′)2 is related to the classical grav-
itational potentialΦ(r′) as in Eq. (17). The quantityV ′

g(r′)2,
like the gravitational potentialΦ(r′), at a point in space, can-
not be observed or measured.

As shall also be shown formally elsewhere with further
development, the speedc in the factors,(1 − V ′

g(r′)2/c2)1/2

and(1−V ′

g(r′)2/c2)−1/2, is a gravitational speed likeV ′

g(r′)
it divides (and not the dynamical speed of light). In other
words, these factors shall appear as(1 − V ′

g(r′)2/c2g)
1/2 and

(1 − V ′

g(r′)2/c2g)
−1/2 with further development, wherecg is

the maximum over all gravitational speeds that can be es-
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tablished in space or that can be acquired by particles and
objects, including massless gravitons, with a magnitude of
3 × 103m/s; (the speed of light being the maximum over all
dynamical speeds of particles and objects, including massless
photons, with equal magnitude of3 × 103m/s).

Now the quantities(1 −
V ′

g
(r′)2

c2
g

)
1

2 = cg(c
2
g −V

′

g(r′)2)
1

2

and (1 −
V ′

g
(r′)2

c2
g

)−
1

2 = 1
cg

(c2g − V ′

g(r′)2)−
1

2 can be mea-

sured, since the differencec2g − V ′

g(r′)2, being equivalent to
difference of gravitational potentials, can be measured. It then
follows that the length contraction and time dilation formu-
lae (47) and (48) can be observed and measured. Thus by
allowing an event that involves proper time intervaldt′ and
proper space intervalsdr′ , r′dθ′ andr′ sin θ′dϕ′ to occur at
different positions in space within a gravitational field, the
observed (or relativistic) time intervaldt and the observed (or
relativistic) dimension of 3-spacedr of the same event will
vary with position in space, while the observed dimensions
rdθ andr sin θdϕ of the event will be the same at all positions
in space within the gravitational field, according to systems
(47) and (48). The variation with the magnitude of the proper
gravitational speedV ′

g(r′) and consequently with position in
space within a gravitational field of the observed (or relativis-
tic) time intervaldt and the observed (or relativistic) interval
of spacedr of an event, is the concept of relativity associated
with the presence of gravitational field in spacetime.

In brief, the relativity associated with proper gravitational
speed in an external gravitational field (that is, the theory
of gravitational relativity (TGR)) is relativity with position
in space within the field (and not relativity with observer or
frame of reference). Identical clocks located at different po-
sitions of different radial distancesr from the centre of a
gravitational field source in the relativistic Euclidean space
Σ, which are made synchronous at an initial time, will not
remain synchronous with the passage of time, by virtue of
the relativity of time associated with the proper gravitational
speed (or by virtue of the presence of the theory of gravita-
tional relativity (TGR)).

Relativity of proper gravitational speed likewise refers to
variation of magnitude of proper gravitational speed with po-
sition in space within a gravitational field. In other words,it
refers to the fact that the proper gravitational speedsV ′

g(r′1)
andV ′

g(r′2) at two positions of different radial distancesr′1
andr′2 respectively from the centre of the gravitational field
source have different magnitudes. It does not refer to vari-
ation of the magnitude of a gravitational speed with the ob-
server or frame of reference. As mentioned earlier, the proper
gravitational speed at a point in space is the same with respect
to all observers or frames of references.

In the light of the foregoing, a relative gravitational fieldis
the one that establishes non-zero proper gravitational speeds
in space. That is, one that establishes proper gravitational
speeds of different magnitudes (no matter how small in mag-

nitudes in a strict sense) at different positions in the proper
Euclidean 3-spaceΣ′, which transforms invariantly as proper
gravitational speeds in the relativistic Euclidean 3-space Σ
within the gravitational field. Fig. 5 is devoid of relative
gravitational speed but contains absolute gravitational speed.
Hence it is a diagram in the absence of relative gravity (or ab-
sence of TGR). The possibility of the relativity of other physi-
cal parameters, such as mass, electric and magnetic fields, en-
ergy, fluxes, temperature, entropy, potentials, etc, in thesense
of the variations of their observed (or relativistic) magnitudes
with proper gravitational speed and consequently with posi-
tion in space within a relative gravitational field, on the flat
four-dimensional relativistic metric spacetime(IE3, ct)
(in Fig. 7) (or in the context of TGR), shall be investigated
elsewhere.

Expectedly, it will be possible to derive the transforma-
tions of physical parameters and physical constants, classical
and special-relativistic non-gravitational and classical grav-
itational laws on flat spacetime within a gravitational field
with the aid of the gravitational local Lorentz transformation
(GLLT) and its inverse of systems (39) and (40), in the con-
text of the theory of relativity associated with the presence of
gravitational field in spacetime (or in the context of the the-
ory of gravitational relativity (TGR)). This will be analogous
to the Lorentz transformations of parameters and natural laws
on flat spacetime in the context of the special theory of rela-
tivity.

3 The ‘two-dimensional’ metric theory of absolute in-
trinsic gravity on curved ‘two-dimensional’ absolute
intrinsic spacetime

As has been shown in section 3 of the preceding paper [2],
the ‘two-dimensional’ absolute intrinsic Riemann geometry
on curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂) with respect to 3-observers in the underly-
ing physical proper Euclidean 3-spaceIE′3 solely in Fig. 4
or Fig. 11 of [1], at the first stage of evolution of space-
time/intrinsic spacetime in a long-range metric force field,
remains unchanged on the curved(φρ̂, φĉφt̂) with respect to
3-observers in the relativistic physical Euclidean 3-space IE3

in Fig. 1 of [2] at the second stage.
The foregoing implies that the absolute intrinsic line el-

ements, (61) and (62), the implied absolute intrinsic met-
ric tensorφĝij (63) and (64) and the absolute intrinsic Ricci
tensorφR̂ij of Eqs. (67) and (68) of [1] on curved ‘two-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂)
within a long-range metric force field, which are valid with
respect to 3-observers in the proper physical Euclidean 3-
spaceIE′3 solely in Fig. 4 or Fig. 11 of that paper, are equally
valid on curved(φρ̂, φĉφt̂) with respect to 3-observers in the
relativistic Euclidean 3-spaceΣ in a gravitational field in
Fig. 7 of this paper. Recall that the proper and relativistic
physical Euclidean 3-spaces, denoted byIE′3 andIE3 respec-
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tively in [7,1,2], have been re-denoted byΣ′ andΣ respec-
tively for convenience in Figs. 5 - 10 of this paper. The proper
physical Euclidean 3-space was also denoted byΣ′ in [3-6].

Let us adapt Eqs. (61) and (62), Eqs. (63) and (64) and
Eqs. (67) and (68) of [1], written with respect to 3-observers
in the proper Euclidean 3-spaceIE′3 in Fig. 4 or Fig. 11 of
[1], within a long-range metric force field in general in that
paper, to the gravitational field with respect to 3-observers in
the relativistic physical Euclidean 3-spaceΣ in Fig. 7 of this
paper. We must simply replace the absolute intrinsic angleφψ̂
and the absolute intrinsic curvature parameterφk̂ that appear
in those equations and in Fig. 4 of [1] by the corresponding
absolute intrinsic angleφψ̂g(φr̂) and absolute intrinsic cur-
vature parameterφk̂g(φr̂) in a gravitational field to have as
follows

(dφŝ)2 = cos2 φψ̂g(φr̂)φĉ
2(dφt̂)2 − sec2 φψ̂g(φr̂)(dφρ̂)

2

(49)
or

(dφŝ)2 = (1 − φk̂g(φr̂)
2)φĉ2(dφt̂)2 −

(dφρ̂)2

1 − φk̂g(φr̂)2
(50)

φĝij =

(

cos2 φψ̂g(φr̂) 0

0 − sec2 φψ̂g(φr̂)

)

(51)

or

φĝij =





1 − φk̂g(φr̂)
2 0

0 −
1

1 − φk̂g(φr̂)2



 (52)

and

φR̂ij =

(

− sin2 φψ̂g(φr̂) 0

0 − tan2 φψ̂g(φr̂)

)

(53)

or

φR̂ij =







−φk̂g(φr̂)
2 0

0 −
φk̂g(φr̂)

2

1 − φk̂g(φr̂)2






(54)

Then upon isolating the absolute intrinsic static speed as
an absolute intrinsic geometrical parameter in section 2 of
[1], the absolute intrinsic metric tensor, the absolute intrinsic
Ricci tensor and the absolute intrinsic line element were re-
written alternatively in terms of absolute intrinsic static speed
in that section, as Eqs. (81), (82) and (83) respectively of [1].
Those equations are the following respectively in terms of
absolute intrinsic gravitational speed in a gravitationalfield

(dφŝ)2 = (1 −
φV̂g(φr̂)

2

φĉ2
)φĉ2(dφt̂)2−

(dφρ̂)2

1 −
φV̂g(φr̂)

φĉ2

(55)

φĝij =













1 −
φV̂g(φr̂)

2

φĉ2
0

0 −
1

1 −
φV̂g(φr̂)

2

φĉ2













(56)

and

φR̂ij =













−
φV̂g(φr̂)

2

φĉ2
0

0 −
φV̂g(φr̂)

2/φĉ2

1 −
φV̂g(φr̂)

2

φĉ2













(57)

Let us then apply the expressions (5a) or (5b), derived
for φV̂g(φr̂) earlier in this paper in Eqs. (55) - (57) to obtain
(dφŝ)2, φĝij andφR̂ij explicitly in terms of absolute intrinsic
gravitational parameters as follows

(dφŝ)2 = (1 −
2GφM̂0

φr̂φĉ2
)φĉ2(dφt̂)2 −

(dφρ̂)2

1 −
2GφM̂0

φĉ2

(58)

φĝij =













1 −
2GφM̂0

φr̂φĉ2
0

0 −
1

1 −
φM̂0

φr̂φĉ2













(59)

and

φR̂ij =













−
2GφM̂0

φr̂φĉ2
0

0 −
2GφM̂0/φr̂φĉ

2

1 −
2GφM̂0

φr̂φĉ2













(60)

Although Eqs. (49)-(57) are important in their own right,
the forms (58)-(60), given explicitly in terms of the absolute
intrinsic parameters2GφM̂0/φr̂, are the final forms and the
forms that shall be found most useful in the metric theory of
absolute intrinsic gravity, with the acronymφMAG, on the
curved ‘two-dimensional’ absolute intrinsic metric spacetime
(φρ̂, φĉφt̂ ), which is valid with respect to all 3-observers in
the underlying relativistic Euclidean 3-spaceΣ in Fig. 7, at
the second stage of evolution of spacetime/intrinsic spacetime
in a gravitational field.

The relationships amongφψ̂g(φr̂), φk̂g(φr̂), φV̂g(φr̂)

and2GφM̂0/φr̂ that follow from Eqs. (49)-(60) shall be ex-
pressed linearly as follows

sin2 φψ̂g(φr̂) = φk̂2
g(φr̂) =

φV̂g(φr̂)
2

φĉ2g
=

2GφM̂0

φr̂φĉ2
(61)

The approach applied in the derivation of Eqs. (49)-(60)
in [1], based on the results of the graphical analysis of ab-
solute intrinsic Riemannian metric spaceIM̂3 in [7], must be
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described as graphical approach, as is obvious. However a
pair of absolute intrinsic tensor equations was derived from
the graphical analysis of the absolute intrinsic Riemannian
metric spaceIM̂3, which were adapted to the curved ‘two-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂ )
in Fig. 4 of [1] and re-written as Eqs. (34) and (38) of [1].
They are given in terms of starred absolute intrinsic metric
tensorφĝ∗ij and starred absolute intrinsic Ricci tensorφR̂∗

ij

as follows

φĝ∗ij − φR̂∗

ij = δij (φLEI) (62)

φR̂∗

ij − φk̂g(φr̂)
2φĝ∗ij = 0 (63)

where the absolute intrinsic curvature parameterφk̂g(φr̂) in
a gravitational field has been used in Eq. (63).

Eq. (62) is a tensorial statement of intrinsic local Euclid-
ean invariance (φLEI) on the curved ‘two-dimensional intrin-
sic metric spacetime(φρ̂, φĉφt̂ ) partially with respect to 3-
observers in the proper Euclidean 3-spaceΣ′ and partially
with respect to 1-observers in the proper time dimensionct′ in
Fig. 4 of [1], at the first stage of evolution of spacetime/intrin-
sic spacetime in a long range metric force field. Eqs. (62) and
(63) are equally valid on the curved(φρ̂, φĉφt̂ ) partially with
respect to 3-observers in the relativistic Euclidean 3-space
Σ and partially with respect to 1-observers in the relativis-
tic time dimensionct in Fig. 7 of this paper, at the second
stage of evolution of spacetime/intrinsic spacetime in a grav-
itational field.

Equations (62) and (63) are amenable to simultaneous al-
gebraic solution, giving the following

φĝ∗ij = (1 − φk̂g(φr̂)
2)δij

=

(

1 − φk̂g(φr̂)
2 0

0 1 − φk̂g(φr̂)
2

)

(64)

φR̂∗

ij = −
φk̂g(φr̂)

2δij

1 − φk̂g(φr̂)2

=











−
φk̂g(φr̂)

2

1 − φk̂g(φr̂)2
0

0 −
φk̂g(φr̂)

2

1 − φk̂g(φr̂)2











(65)

The validity of the starred absolute intrinsic tensorsφĝ∗ij and

φR̂∗

ij on curved(φρ̂, φĉφt̂ ) partially with respect to 3-observ-
ers in Σ and partially with respect to 1-observers inct in
Fig. 7, implies that the componentsφĝ∗00 andφR̂∗

00 are valid
with respect to 1-observers inct, while the componentsφĝ∗11
andφR̂∗

11 are valid with respect to 3-observers inΣ.
Having obtained Eqs. (64) and (65), then the derived re-

lationships among the components of the starred absolute in-
trinsic metric tensorφĝ∗ij and the absolute intrinsic metric ten-
sor without star labelφĝij , presented as Eqs. (65a) and (65b)

of [1], must be used to convertφĝ∗ij to φĝij . Those relation-
ships shall be re-written here as follows

φĝ00 = 1/φĝ∗00; φĝ11 = −φĝ∗11; φĝij = φĝij = 0 ; i 6= j
(64a)

φĝ11 = −1/φĝ00 (64b)

The starred absolute intrinsic metric tensorφĝ∗ij of
Eq. (62) transforms to the following absolute intrinsic met-
ric tensor without star labelφĝij by virtue of system (64a)

φĝij =





1 − φk̂g(φr̂)
2 0

0 −
1

1 − φk̂g(φr̂)2



 (67)

The absolute intrinsic metric tensor without star label is valid
with respect to 3-observers in the relativistic physical Euclid-
ean 3-spaceΣ solely in Fig. 7.

While intrinsic local Euclidean invariance (φLEI) ex-
pressed by Eq. (60) obtains on the curved ‘two-dimensional’
absolute intrinsic metric spacetime(φρ̂, φĉφt̂ ) with respect
to 3-observers in the relativistic Euclidean 3-spaceΣ and 1-
observers in the relativistic time dimensionct in Fig. 7, it is
intrinsic local Lorentz invariance that obtains on the curved
(φρ̂, φĉφt̂ ) with respect to 3-observers in the Euclidean 3-
spaceΣ solely in that figure, as robustly demonstrated in [1]
with respect to 3-observers in proper Euclidean 3-spaceΣ′

solely in Fig. 4 of that paper. Thus in order to obtain an ab-
solute intrinsic Ricci tensor without star labelφR̂ij , which is
valid with respect to 3-observers inΣ solely, likeφĝij , we
must apply intrinsic local Lorentz invariance on(φρ̂, φĉφt̂ ),
which is given as follows by simply replacing the Euclid-
ean metric tensorδij by the Lorentzian metric tensorηij in
Eq. (60)

φĝij − φR̂ij = ηij (φLLI) (68)

The absolute intrinsic Ricci tensor without star labelφR̂ij

that follows from Eqs. (65) and (66) is the following

φR̂ij =







−φk̂g(φr̂)
2 0

0 −
φk̂g(φr̂)

2

1 − φk̂g(φr̂)2






(69)

Equations (65) and (67) obtained by solving the pair of
absolute intrinsic tensor equations (60) and (61) by follow-
ing the steps from those equations to Eq. (67) are the same
as Eqs. (57) and (59) of [1], derived graphically (by actually
drawing the spacetime/intrinsic spacetime diagrams and ob-
taining intrinsic coordinate projections) in [1]. By applying
the chain of relations (59) to Eqs. (65) and (67), one obtains
Eqs. (49)-(60) again in the absolute intrinsic covariant tensor
approach to the ‘two-dimensional’ metric theory of absolute
intrinsic gravity (φMAG), involving the solution of the pair
of absolute intrinsic tensor equations(62) and (63).
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The approach to the derivation of the absolute intrinsic
line element (50), the absolute intrinsic metric tensor (59)
and absolute intrinsic Ricci tensor (60), of the metric the-
ory of absolute intrinsic gravity (φMAG), on curved ‘two-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂ ),
with respect to 3-observers in the relativistic physical Euclid-
ean 3-spaceΣ in Fig. 7, by solving the pair of absolute in-
trinsic covariant tensor equations (62) and (63) and follow-
ing the steps from those equations to Eq. (69), along with
the chain of relations (61), must be described as absolute in-
trinsic covariant tensor approach toφMAG, as mentioned at
the end of the foregoing paragraph. Although the absolute
intrinsic tensor approach has been isolated from the graphi-
cal/analytical approach (within which Eqs. (62) and (63) were
derived in [7,1]), the absolute intrinsic tensorial approach is
a valid approach, but which cannot completely stand on its
own, since the chain of relations (61) and the fact of intrinsic
local Lorentz invariance (φLLI) expressed by Eq. (68), which
are used in the tensorial approach have been derived within
the graphical approach.

The absolute intrinsic metric tensorφĝij of Eq. (59) shall
find useful application in formulating absolute intrinsic law
of gravity and absolute intrinsic non-gravitational laws on
the curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂ ) with respect to 3-observers in the relativistic
Euclidean 3-spaceΣ in Fig. 7 among other useful purposes,
elsewhere with further development.

Finally the extension of the results derived within a singu-
lar gravitational field in this section to the situations of pres-
ence of two, three and larger number of gravitational field
sources, whose relativistic (or inertial) masses are arbitrarily
scattered in the relativistic Euclidean 3-spaceΣ, is straight
forward, by virtue of the theory of superposition of two, three
and larger number of curved absolute intrinsic metric space-
times (or absolute intrinsic Riemannian metric spacetimes)
developed in [7,1]. However we shall not go into those in this
paper.
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