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Analytic Gauge Functions, Invariances, and Modular Curves Thomas Evans  
 
For submission to: Israel Journal of Mathematics 
 
Abstract: The author introduces as an extension to the field of topology a sub-field 
Analytic Gauge Theory. The concepts of analytic numbers, the analytic field and analytic 
gauge functions are introduced and defined. The sub-field analytic gauge theory has an 
enormous application to the fields of topology, number theory, QFTs,  amongst others, 
some of which are introduced. A rigorous examination and presentation will be contained 
in later works.  
 
*Note*: This and all subsequent related papers are highly technical. Any reader should 
have a relatively advanced understanding of current mathematics, specifically the study 
of elliptic curves, topology, and the strictly mathematical applications of gauge theories.  
 
Definition of terms: Gauge: By the term gauge the author means to represent either a) the 
normal definition or b) the representation of the quantity: zα β= +l , where l  is a 
number in an analytic field, α and β are the sets of automorphisms of connective 
geometries, and z is the metric quaternion structure.  
 Analytic field: The field of analytic numbers.  
 Analytic number: A number zα β= +l , where l  is a number in an analytic field, 
α and β are the sets of automorphisms of connective geometries, and z is the metric 
quaternion structure.  
 Gauge function: ( )sl , a function whose range is in the analytic numbers is a 
gauge function.  
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Introduction:  
 It is the underlying purpose of the author throughout this and subsequent related 
papers to consider the examination of conjectures such as the Birch-Swinnerton-Dyer 
conjecture, the Riemann Hypotheses, as well as a number of other misunderstood or 
unacknowledged phenomena. It is the author's hope that through such considerations, 
both autonomous and presented herein, that it may become evident that the introduction 
of fundamental, new practices is a necessity to any advancement in the directions of the 
aforementioned. This represents the first in a series of eight (8) papers regarding these 
materials. Throughout the remaining 7 the author presents, to a much greater degree of 
rigor, the basic theory of analytic gauge functions, associated phenomenology, and there 
from a solution to the (two) above conjectures. This paper facilitates an introduction to 
the theory of analytic gauges. In the first section the author presents a re-examination of 
the concepts of geometries of connections. Very briefly introduced are the basic concepts 
of analytic numbers, analytic fields, analytic gauge functions, etc.  
 
 1) Geometries of Connections 
  1.1) Quaternion line bundles. Three useful ways of thinking of a 
quaternion line bundle E over a space M.  
   -1 E is a 1-dimensional quaternion vector bundle. 
   -2 E is a 2-dimensional complex vector bundle with a C-antilinear 
bundle map :J E E→  such that 2 1J = − ,  
   -3 E is a 4-dimensional real vector bundle with three real bundle 
maps I,J,K, where 2 2 2 1I J K= = = − , and IJ JI K= − = .  
 Given the quaternions H the usual basis {1,i,j,k}, then in 3, the bundle maps I,J,K 
correspond to scalar multiplication by i,j,k, respectively. In 2, i acts by complex scalar 
multiplication and j acts by J. A quaternion line bundle can be presented in terms of 
transition functions for an open cover ( )a a A

o ∈ of M. For each , Aα β ∈ there is a map  

(1.1)      : x
ag O O Hβα β∩ → , 

satisfying the computability or "cocycle" condition  
(1.2)       1g g g inO O Oαγ γβ βα α β γ≡ ∩ ∩ . 

The bundle is then constructed by gluing O xHα to O xHβ along ( )O O xHα β∩ by the map 
1( , ) ( , : ( ) )x v x v g xβα
−a . The multiplicative group of unit quaternions is the Lie group 

1
[ : 1]pS v H vv= ∈ = . The standard inner product , Re( )v w vw= on H is 

1p
S − invariant.  

 Definition 1.1.: A quaternion line bundle is called metric if it carries a bundle 
inner product which is 

1p
S − invariant, i.e., for which scalar multiplication by i,j, and k is 

orthogonal in each fiber. Every quaternion line bundle over a manifold admits 

1p
S − invariant metrics. The transition functions for a metric bundle E can be chosen in 
the form  
(1.3)       

1
: .pg O O Sαβ α β∩ →  



The principal 
1p

S − bundle, (obtained by gluing 
1a pO xS to 

1p
O xSβ as above) is just the unit 

sphere bundle in E. The (left) action of 
1p

S is just scalar multiplication. This is analogous 

to metric complex line bundles, where the principal 1U − bundle is just the unit circle 
bundle. The basic example of a metric quaternion line bundle is the tautological line 
bundle E over quaternion projective space ( )nP H . Recall that ( )nP H is the set of 1-

dimensional subspaces of 1nH + . Then E= 1{(1, ) ( ) : 1}n nv P H xH r+∈ ∈ with projection 

: ( )nP E P H→ given by P(1,r)=1. The fibers inherit an invariant inner product from the 

standard one on 1nH + . The unit sphere bundle of ( )nE P H→ is just the Hopf maps 

4 3 ( )nn P H+ → . The bundle ( )nE P H→ is 4n-classifying. Of interest here is the case 

n=1, since 1( ) nP H S≅ . The unit sphere bundle, or principal 
1p

S − bundle, is just the Hopf 

map 4TS S→ . It can also be viewed as follows. Write 

1 1 2 1 1
/ /n

s n s p P p p pS Spin Spin Spin S xS S S xS= = = . Then 
2 1

7 /p pS S S= and the map 
7 nS S→ can be reexpressed as 

1
/ /s p s nSpin S Spin Spin→ . From here one easily sees that 

E is just the (positive) spinor bundle of nS . In terms of transition functions the bundle 
nE S→ is quite simple. Write n n nS D D+− +−= ∪ where nD+− are neighborhoods of the 

"upper and lower hemispheres". Then 3 ( 1,1)n nD D S x+− +−∪ ≅ − and the map  

(1.4)    
1

3 3: ( 1,1) pg S X S S+− − → =  

is just the projection ( , ) .g x x X+− = The set of equivalence classes ( )HL M  of quaternion 
line bundles over a 4-manifold is simple to describe.  

 Theorem 1.1: Let ( ) ( , ) ( ; )
m m

n n n n n
HL M M S H M→ → =� �  

(where [ , ]n nM S denotes the set of homotopy classes of maps from nM to nS ). Given 

: n nf M S→ , the corresponding element in ( )nHL M is the induced bundle *f E . The 

corresponding element in ( ; )n nH M =� � is the degree of f . The composition of these 
maps is the Euler class of the bundle.  
 Proof.: The bundle nE S→ is a n-classifying and has Euler class -1. For a 

quaternion line bundle E over nM , we have 2 1

1
( ) ( ) ( )

2
E c E P Eχ = = − , where χ =Euler 

class, 2c =the 2nd Chern class, and 1p the first Pontrjagin class. To see this recall that 

= 2
1 22c c− and 2c χ= . Using the antiautomorphism J of E as a complex bundle, we see 

that E=E
−

 and so 1 0c = . 
 Definition 1.2.: The instanton number of a quaternion line bundle E over a 
compact oriented n-manifold is - ( )Eχ . The bundles of instanton number 1 on M can be 
obtained by pulling back E via a particularly simple map. 
 1.2) Connections. Let E be any smooth real vector bundle over a differentiable 
manifold M, and denote by ( )EΓ the space of smooth cross sections of E. We denote the 

space of smooth p-forms with values in E by ( ) ( * ).PP E M EΩ ≡ Γ Λ Γ ⊗  At any point 



x M∈ , an element ( )P Eφ∈Ω is just an alternating p-linear map 
0: . ( ) ( ).x xx T M E E Eφ → Ω = Γ  

 Definition 2.2.1) A connection on E is a linear map 0: ( ) ( )IE E∇ Ω →Ω such that  

( )f df fφ φ φ∇ = ⊗ + ∇ for any ( )f C M∞∈ and any 0( )Eφ∈Ω . A connection is just a 
rule which allows us to take derivatives of smooth cross sections of E. Given a section 

0( )Eφ∈Ω , we have given, for any tangent vector v at any point of M, the covariant 
derivative v xEφ∇ ∈ of φ  in the direction of V at x. If V is a globally defined smooth 

vector field, then vφ∇ is again a smooth section of E, i.e., v∇ gives a linear map 
0: ( )v E∇ Ω . Property (2.3) can be rephrased by saying that ( ) ( )v vf vf f φφ φ∇ = + ∇ for all 

smooth vector fields v and all , fφ as before. If E is trivialized, then mE MxR≅ , the cross 
sections become mR - valued functions, and we can define a connection by taking 
derivatives in the usual way. In our notation this connection 0: ( )mR∇ Ω is just (m copies 
of) the de Rham exterior derivative d. (Thus, for a coordinate vector field / ix∂ ∂ and an 

mR - valued  function φ , we have / ( / ) ( / .)i i ix d x xφ φ φ∇∂ ∂ = ∂ ∂ = ∂ ∂ This connection 

depends on the choice of trivialization. Given two connections 1∇ and 2∇ on a bundle E, 
and given a smooth real-valued function f , the "convex combination" 

1 2(1 )f f∇ = ∇ + − ∇ is again a connection on E. The connections d∇ = on local 
trivializations of E can be spliced together by a partition of unity to give a connection on 
all of E.  
 Given a connection ∇ on a bundle E, there are connections naturally induced on 
E*, , , , .,s pE E etc⊗ Λ in a canonical way. We shall only need the case ( , )Hom E E (i.e., 

:L E E→ is a smooth bundle map), then ( ) [ , ]L L∇ ≡ ∇ ; that is, 

( )( ) ( ) ( )L L Lφ φ φ∇ = ∇ − ∇ for any 0( )Eφ∈Ω . Given connections ∇ and '∇ on bundles E 
and E' over M, there are naturally defined connections '∇⊕∇ on 'E E⊕  and 

'∇⊗∇ on 'E E⊗ . The first is obvious; the second is given by the rule 
( ')( ') ( ) ' ( ' ')φ φ φ φ φ φ∇⊗∇ ⊗ = ∇ ⊗ + ⊗ ∇ . Of fundamental importance for any 
connection is 
 Definition 2.2.2.: The curvature of a connection  ∇ is the 2-form 

2( ( , ))R Hom E E∇∈Ω , with values in Hom(E,E) defined for smooth vector fields V, W 
by the rule  
(2.7)       , [ , ]v w v w w v v wR = ∇ ∇ −∇ ∇ −∇ . 
Note that (2.7) actually defines a second-order differential operator on E. However, we 
can easily compute that, for ( )f C M∞∈ , 0( )Eφ∈Ω , , ,( ) ( )v w v wR f fRφ φ= , so ,v wR is in 
fact zero-order. , i.e., a section of Hom(E,E). A similar easy exercise shows 

, , ,fv w v w v fwR fR R= = , so R is tensorial in v and w as claimed. The curvature clearly 
measures the lack of "commutativity" of second covariant derivatives.  



 Given a connection on E, the map 0: ( ) ( )IE E∇ Ω →Ω can be extended to a 

general de Rham sequence 0 2( ) ( ) ( ) ...,
d d d

IE E E
∇ ∇−∇ ∇

Ω → Ω →Ω → whered ∇ is defined on 

( )p Eφ∈Ω by setting  

   
0 0

0

0

( ,..., ) ( 1) ( ( ,..., ,..., ))

( 1) ([ , ]), ,..., ,..., ,..., )

J

p
J

p V J p
u

itj
i j i J p

i j

d V V V V V

v v v v V V

φ φ

φ

∇

=

<

= − ∇

+ −

∑

∑
. 

It is not generally true 0.d od∇ ∇ = In fact, d od R∇ ∇ ∇= on 0( )EΩ . However, considering 
2( ( , , ))R Hom E E∇ ∈Ω , we always have  

     d R a∇ ∇ = . 
This is called the Bianchi identity for R∇ . (Note that here we are using the induced 
connection (2.4) on ( , )Hom E E .) The proof of (2.10) is straightforward and reduces 
essentially to the Jacobi identity.  
1.3) We now consider metrics on both E and M.  
 Definition 1.3.1) Suppose E carries a metric, i.e., an inner product .,. smoothly 

defined in the fibers. A connection ∇ on E is said to be riemannian if, for all sections 
0

1 2 ( )Eφφ ∈Ω , 

      1 2 1 2 1 2, ,d φ φ φφ φ φ= ∇ + ∇ . 
This simply means that the covariant derivative of the inner product, as a section 

* *E E⊗ , is identically zero. Convex combinations of riemannian connections are 
riemannian connections, s a straightforward partition of unity arguments show that 
Riemannian connections always exist.  
 Given a Riemannian metric on M, there is a unique connection ∇ on mT such that 

[ , ]vw wv v w∇ −∇ ≡ for all vector fields ,v w . This is called the canonical Riemannian 
connection. We shall always use this connection on M. Given metrics on M and E, there 
are naturally induced metrics on all the associated bundles, such as *PT M EΛ ⊗ . 
Riemannian connections on E and M give riemannian connections in these bundles. In 
particular, the pointwise inner product gives an 2L -norm in ( )P EΩ by setting 

( , ) ,
m

Ψ Ψ = Φ Ψ∫ . The mapsd ∇given in (2.8) then have formal adjoints  

     0 1 2( ) ( ) ( )
d d d

E E E
∇ ∇ ∇

Ω ←Ω ←Ω ←  
with the property that  
     ( , ) ( , )d δ∇ ∇Φ Ψ = Ψ Ψ  

for all ( )P EΦ∈Ω , 1( )P E+Ψ∈Ω with compact support. Using the riemannian connection 

∇ on *PT M EΛ ⊗ , we can write these operations as  



   

�
0 0

0

2 2
1

( )( ,..., ) ( 1) ( , )( ,..., ,..., ),

( )( ,..., ) ( )( , ,..., )
j

p
j

p v j A
j

n

p e j p g
j

d v v v v v

v v e v vδ

∇

=

∇

=

Φ = − ∇ Φ

Φ = ∇ Φ

∑

∑
  

where 1{ ,..., }ne e is any orthonormal basis of xT M at the point x in question. It follows 
from property (3.2) that the curvature of a riemannian connection ∇ satisfies  
    , 1 2 1 , 2, , 0.v w v wR Rφ φ φ φ∇ ∇+ =  

for 1 2, Eφ φ ∈ . Hence, R∇ has its value in the subbundle ( )( ( , ))D E Hom E E℘  of skew-
symmetric endomorphisms of E.  
 1.4) 

1p
S − connections.: Suppose now that E is a metric quaternion bundle over a 

manifold M.  
 Definition 1.4.1) An 

1p
S − connection on E is a riemannian connection ∇ that is h-

linear, i.e., it commutes with scalar multiplication by quaternions. In terms of the real 
picture of E, this means that ( ) [ , ] 0, ( ) [ , ] 0,I I J J∇ = ∇ = ∇ = ∇ = and ( ) [ , ] 0k k∇ = ∇ = . 

Since ∇  is H-linear, so is R∇ . Therefore, R∇ has values in ( , )HHom E E . As we 

previously pointed out, ,v wR ∇ is also skew-symmetric. This leads us to consider the two 
very important bundles:  

    
1

{ ( , ) : ' } ,

{ ( , ) : ' } .
E H

E H

L H om E E L L

G L H om E E L L−
℘ ≡ ∈ = −

≡ ∈ =
 

Under the bracket 1, 2 1 2 2 1[ ]L L L L L L= −o o , E℘  becomes a bundle of Lie algebras, each 

isomorphic to 
1p

℘ . Under composition, EG becomes a bundle of Lie groups, each 

isomorphic to 
1p

S . There is a pointwise exponential map  

      exp : E EG℘ →  

given by the usual infinite series in each fiber. EG is just the bundle of automorphisms of 

E, i.e., the bundle of H-linear bundle isometries. Thus E℘ is the infinitesimal 

automorphism bundle. The bundle E℘ is preserved by the covariant differentiation on 

( , )Hom E E induced by any 
1p

S -connection on E. Thus, if M is riemannian, any 
1p

S -

connection ∇ induces maps  

    0 1 2( ) ( ) ( ) ...
d d d

E E E
δ δ δ

∇ ∇ ∇

∇ ∇ ∇
Ω ℘ Ω ℘ Ω ℘� � � . 

We have 2 ( )ER∇ ∈Ω ℘ and the Bianchi identity says that 0d R∇ ∇ = .The geometry of the 

space of 
1p

S -connections is based on the fundamental sequence 94.5). 
 1.5) Change of connections. Fix a metric quaternion line bundle E over a 
manifold M, and let ℘denote the space of all 

1p
S -connections on E. It is elementary to 

see that 0≠l .  
 Given two connections †',∇ ∇ ∈l , we consider the difference 'A = ∇ −∇ . It 

follows from (2.3) that ( ) ( )A f fAφ φ= for any ( )f C M∞∈ ;hence, A is a zero-order 



operator; i.e., it is tensorial. Given a tangent vector xV T M∈ , the map : x xAv E E→ is H-

linear and skew-symmetric (by(4.2)). Hence, ( )EAv∈ ℘ , the operator ' A∇ ≡ ∇+ again 

satisfies the axioms for an 
1p

S -connection. Hence, we have 

 Proposition 1.5.1) The space l of 
1p

S -connections E is an affine space having 
1( )EΩ ℘ as the vector group of translations. This, at any connection ∇∈l we have natural 

identifications  
      1( )E T∇Ω ℘ ≡ ≡l l . 
If we fix ∇ , then any other connection '∇ is uniquely expressed as ' A∇ = ∇+ . The 
curvature of ' [ , ]R R d A A A∇ ∇ ∇= + + , where [A,A] is the E℘ -valued 2-form defined by 

setting ,[ , ] [ , ]v w v wA A A A= . To prove this we choose , xv w T M∈ and extend them to local 

fields so that [ , ] 0v w = . Then 
            

   

'
,

,

, ,

, , ,

( )( ) ( )( )

[ , ] [ , ] [ , ]

( ) ( ) [ , ]

( ) [ , ]

v w v v w w w w v v

v w v w w v v w

v w v w w v v w

v w v w v w

R A A A A

R A A A A

R A A A A

R dA A A

∇

∇

∇

∇

= ∇ + ∇ + − ∇ + ∇ +

= + ∇ − ∇ +

= +∇ −∇ +

= + +

, 

as claimed.  

 Example 5.4. Let nM S= . Fix a pair of antipodal points nP S
+

− ∈ , and let 

{ }nu S P
+ +

− = − − . We can choose coordinate charts : nx U
+ +

− −→ �  with coordinate 

transformation : (0) {0}n nR Rψ − → − given by 
2

( ) 1 / /x x x xψ = = , 

where we identify n H≅� . The bundle nE S→ of instanton number 1 can be presented 
by two trivializations, / nE U R xH≅ and / ne u R xH≅ joined together by the map  

    : ( {0}) ( {0}n nR xH R xHψ − → −  
given by  
    ( , ) (1 / , / .)x v x v x xψ = ⋅ . 

The transition function ( )( ) /g x v v x x+− = ⋅ is H-linear under left scalar multiplication 

and orthogonal metric , ( )cu v R u≡ ⋅∇ . Under the trivialization the sections of E over 

U+ become simply smooth functions : nf R H→ . Each such function can be written as  

    1 2( ) ( ) ( ) ( ) ( )s nf x f x if x if x kf x= + + +  

where 1,..., nf f are real-valued. A connection ∇ on E can be expressed over 

LU as d A∇ = + , where : Im( )n
aA R H→ is a smooth function for each a. This we write  

    a
a a

f
f f A

x x
∂ ∂

∇ = + ⋅
∂ ∂

for1 a n≤ ≤  



It is convenient to decompose the patching transformation into two parts: the coordinate 
transformation 1 /y x= , and the bundle transformation given by right multiplication by 

the function / /u x x y y= = . Under the transformation a section f becomes f , where  

    f f u= ⋅ . 

Thus, ( ) ( )( / )f x f x x x= in x-coordinates and ( ) (1 / )( / )f y f y y y= in y-coordinates. 
Under the transformation a connection 1-form becomes  
    A udu uAu= − + . 
Again this can be expressed in either x-or y-coordinates. Note that, under the coordinate 
change 1 /y x= , A transforms like a 1-form. One must express the 'dt s in terms of the 

'dy sβ . 
 1.6.1)Automorphisms(the gauge group). By the gauge group of a metric 
quaternion line bundle E, we mean the group l of smooth bundle automorphisms 
preserving the metric and quaternion structure. This is exactly the space of smooth 
sections of EG , i.e.,  

    ( )BG≡ Γl . 
There is an associated gauge algebra defined by  
    ( )Eℑ ≡ Γ℘ , 
and, from (4.4), an exponential map  
    exp :℘→ℑ . 
Under pointwise bracket, ℑ  is a Lie algebra. The group ℑ plays a role in the study of 
connections similar to the role played by the diffeomorphism group in the study of 
manifolds. There is a natural action of ℑ on the space of 

1p
S -connections. For 

g∈ℑ and∇∈ℑ , the transformed connection is 

     1s g g −∇ ≡ ∇o o . 

This means that 1( ( ))g v gξφ φ−∇ = ∇ .It follows immediately that  

     
1

1g
R g R −
∇ ∇=

o
o . 

Metrics on E and M induce metrics on *PT M EΛ ⊗ , which can be written as  
   

1 1 11
1

... ...
...

, ( ' )
pp

p

e e e
I I

traceR ∈
< <

Φ Ψ = Φ Ψ∑ o , 

where 1{ ,..., }ne e is an orthonormal basis of xT M at the point in question. Since g is 
pointwise orthogonal, it is clear that 
     tR R∇ ∇= for all g∈ℑ . 

Given g∈ℑ , the difference of the connections n∇ −∇ can clearly be written as  

   1 1( 0 ( ) ,s g g g g− −∇ −∇ = ∇ = − ∇  

where the last equality follows by differentiating the identity 1 1gg − ≡ . More generally, if 

we express another connection ∇ as A∇ = ∇ + , then 

   1 1 1( ) ( )s g A g g g gAg− − −∇ = ∇ + = ∇+ ∇ + , 



hence, writing s As∇ = ∇ + , we have 
   1 1( )As g g gAg− −= − ∇ + . 
The corresponding curvature formula follows directly from (6.5) and (5.3). Now recall 
that at any connection there is a canonical identification 1( )ET∇ ≅ Ω ℘l . In this picture we 
now examine the tangent space to the orbit ( )∇l of∇ under the gauge group. The tangent 

space zT l is just the gauge algebra 0( )E= Ω ℘A . Given y∈A , we consider the curve  

/Eg e y= and its corresponding curve of connections 1( )tg
t tg g −∇±∇ = ∇ − ∇ (cf.(6.7)). 

Taking derivatives (fiber by fiber) gives  

   0 ( )
d

t d
dt

γη γ ∇∇ = = −∇ = − , 

so we have 
 Proposition 1.6.1) Under the canonical identifications 

0
1 ( )ET = Ω ℘l and 1( )ET∇ = Ω ℘ , the differential at 1 of the action of l on∇ is just the map 

   

0 0

1

( ) ( )

                     

            

E Ed

T T

∇

∇

Ω ℘ − Ω ℘

≅ ≅

ℑ→ ℑ

uuuur

. 

In particular, the subspace 1Im( )( ( ))Ed ∇ Ω ℘ represents the tangent space to the 
orbit ( )ℑ ∇ of the gauge group on ∇ . 

 
 
1.7)Sobolev completions. Let E be any riemannian bundle with connection over a 
compact riemannian manifold M. To each positive integer 0k ≥ we can define a Sobolev 
k-form .

A
on 0( )EΩ by setting 

   
2

22 2
{ ... ... }

k

A
M

φ φ φ φ= + ∇ + + ∇∇ ∇∫ . 



Making a different choice of metrics and connections gives an equivalent norm. The 
completion of 0( )EΩ in this norm is a Hilbert space that we denote 0 ( )k EΩ . The space 

( )P EΩ is just sections of the bundle *PT M EΛ ⊗ , and its completion in the Sobolev k-

norm is denoted ( )p
k EΩ . Each map in the sequence 

   0 1 2
1 2( ) ( ) ( ) ...k k kE d E d E d∇ ∇ ∇
− −Ω Ω Ωuur uur uur . 

 
 2)Analytic Gauge Functions.  
  2.1)Analytic numbers: An analytic number is defined 
   zα β= +l , 
where α and β  

   

, , ,
Im , , ,..., log( )

, , ,

, , ,

Im , , ,..., log( )
, , ,

a b c i

a b c i

a b c i

a b c i

a b c i

a b c i

g g g g
g g g g G

g g g g

g g g g

g g g g G
g g g g

α

β

 
 = ⊗ 
 
 

 
 = ⊗ 
 
 

 

and z is the metric quaternion structure.  
   2.1.1)Analytic field: We define the analytic field as the field of 
analytic numbers. 
 2.2)Analytic gauge functions. We define a gauge function ( )sl , a function whose 
range is in the analytic numbers,  
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+
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Θ
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Θ
= − Θ

�
�

�
�

l

, 

where 1( , ) nB α β +∈∂= . 
  Proposition 2.2.1) 1) There is a system of gauge functions, denoted a 
gauge system, 
  2)Any gauge system is always constrained by an Evans formulation, 
  3)This is called a gauge invariance, 
  4)For any gauge invariance℘for a gauge systemG we can obtain from 
solutions ofG lesser invariances, 
  5)We can obtain results for solutions to a function ( )sl defined inG , 
  6)For any gauge invariance ℘for a gauge system G defining a 
function ( )sl with solutions containing some rational point on a real algebraic curve C 
defined on a riemannian surface M we can establish an abelian gauge invariance defining 
the principal bundle connections over C, 
  7)We can define an L-series from finite abelian groups for any rational 
point of a non-singular projective model for which there exists a solution in the form of a 



singularity ( ,1,..., )L C s ,for which all nontrivial finitely generated solutions are defined 
sequentially, 
  8)For an holomorphic continuation of L(C,s) into the complex plane there 
is an input for which all solutions lie sequentially at a representation of a discrete 
quantity. 
 Proof:  
  1)There is a system of gauge functions, denoted a gauge system, 
  2)Any gauge system is always constrained by an Evans formulation. 

 2.)Theorem 2.2.1)We can define a surface mφ
22 ( 1)([ ( )]( ) )r

m w r r sdsφ −= − , 

 Theorem 2.2.2)We can define a smooth phase space function G on 0mφ = , 

 Theorem 2.2.3) If the smooth phase space function vanishes on mφ , m
mG g φ= for 

some functions mg . 

 Theorem 2.2.4) If 0n
n

n nq
pλ µ∂ + ∂ = for arbitrary variations n nq

p∂ ∂ tangent to the 

constraint surface, then  
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m m
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q

m m m

n

u

u
p

φλ

φµ

∂
=

∂

∂
=

∂

, 

for some mu . The equalities here are the equalities on the surface.  
 The proofs of theorems 2.2.1)-2.2.3) are based on the fact that one can locally 
choose the independent constraint functions 'mφ as first coordinates of a regular 

coordinate system ( ', )my xα , with ' 'm my φ≡ . In these coordinates one has, 
since (0, ) 0G x = , 

    

1

0

1

'
0

( , ) ( , )

' , ( , )m m

d
G y x G ty x dt

dt

y G ty x dt

=

=

∫

∫
 , 

 
 
  
so that 
    m

mG g φ= , 

with
1

'
'

0

, ( , )m
mg G ty x dt= ∫ and 0mg = .The proof of the second theorem is based on the fact 

that the constraint surface is of dimension 2 'N M− , and therefore the tangent 
variations n nq

p∂ ∂ at a point form a 2(N-M')-dimensional vector space. Hence, there exist 

exact by M' independent solutions of 0n
n

n nq
pλ µ∂ + ∂ = . By the regularity assumptions, 



the M' gradients ' '( / , / )nm m nq
pφ φ∂ ∂ ∂ ∂ of the independent constraints are linearly 

independent.  
 We define relations, the first of which enables us to recover the action in from the 
knowledge of the related action np and of extra parameters mu . No two different sets of u's 
can yield the same actions. The u's are expressed as functions of the coordinates and 
point actions, in principle, as functions of the coordinates and the actions by solving the 
equations 
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We define the transformation from
.

( , )q q − space to the 
surface ( , ) 0m q pφ = of ( , , )q p v − space by 
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This transformation between spaces of the same directionality 2N is invertible, since one 
has 
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These relations construct the Evans formulation 
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from 
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.

( ) 0
t

n m
n m

t

q p H u φ∂ − − =∫ , 

for arbitrary variations , ,n n mq
p u∂ ∂ ∂ subject to the conditions  

    , 0m mdφ φ= ∂ = . 
 4) For any gauge invariance℘for a gauge systemG we can obtain from solutions 
ofG lesser invariances, 
 5)We can obtain results for solutions to a function ( )sl defined inG , 



  5)
22 1( ( ))( ) : (1( 1)) n d sdss r

B
+Θ

= − Θ
�

�l  , 

where r, n, s, and d are all analytic numbers 
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B is the analytic field  

     1( , ) nB α β +∈∂= , 

andΘ� is the action field. We define 
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. 

We define z: Let (M, h) be a compact, connected Riemannian 4-manifold with 
covariantly constant almost complex structures 1 2 3{ , , }I I I satisfying 1 2 2 1 3I I I I I= = . This 
is a covariantly constant quaternion structure. Each almost complex structure I, given on 
the base space M defines a 2-form 1θ on M which is covariantly constant 

( , ) ( , , ), 1,2,3j x y h I x y iξθ = = . The manifold M carries the canonical orientation 
compatible with the quaternion structure. The base metric h together with this orientation 
gives the Hodge operator*; 2 2( ) ( )M MΛ → Λ , which is involutive. So the 

bundle 2 2 ( )MΛ = Λ split into 2 + −Λ = Λ + Λ ( 1and+ −Λ Λ are subbundles of self-dual 2-
forms and of anti-self-dual 2-forms, respectively). Then over the manifold M +Λ becomes 
trivial. We have the decomposition 
     1 2 3R R Rθ θ θ+Λ = ⊕ ⊕ .  
Let P be a smooth principal bundle over the manifold M with a compact simple Lie group 
G. Fix a positive number l>4 in order that analysis on gauge fields works well and denote 
by pA = A the set of all 2

T
L connections on P. The set A is an affine space with nodal 

vector space 1( )p tgΩ , the space of 2
T
L 1-forms over M taking values in the adjoint 

bundle pg PxA gα= (g is the Lie algebra of G). Then 1( )p tA g= +ΩA for some fixed 

smooth connection A. The subset 1TA inA consisting of irreducible connections is dense 

and open relative to the 2
T
L -topology. A connection is said to be irreducible if the 

centralizer of its holonomy group in G reduces to the center aZ of G. The 

group pG G= of
1

2
T
L

+
gauge transformations of P acts onA smoothly 



as 1 1
0( )g A g dg g A g− −= + ⋅ ⋅ . 1/ G
G acts freely on 1TA so that by the slice argument 1TA has 

a fibration over the orbit space 1 2 1/ /
GT TB cG= A , with fiber 1/ GG . The Pontrjagin 

number 1 1( )[ ]pp p g C M= ⊗ is calculated for each simple Lie group as 

follows; 1 1 2 6

8

4 , ( );16 , ;36 , ;48 , ;

72 , ;120 ,T

p nk G SU n k G G k G F k G E

k G E k G E

= = = = =

= =
,  

where k is an integer called the index of the bundle. On the moduli spaceM of ASD 
connections a Riemannian metric is defined by a gauge invariant 2L inner product. We 
define the metric quaternion structure as the above covariantly constant quaternion 
structure and the associated results and the Riemannian metric on the moduli 
spaceM .We define a natural Riemannian metric on the moduli space as follows. Since A 
is affine, the tangent space 1A TT A is isomorphic to 1( )p tgΩ . On this tangent space an inner 
product is well-defined by  
            

  
1

, ( )( , ) ( )( * )

, ( ),                  for ( )
m m

p

tr n dv tr

g G SU n

β γ β γ β γ

β γ

= − ⊗ = − Λ

∈Ω =

∫ ∫
. 

For general G we replace -tr by some adjoint invariant inner product. This inner product 
is gauge invariant. Hence the inner product descends to 1 1 1/ ( / )T T GB G= A , the orbit 
space of irreducible connections on P and its restriction on the generic part 
of genM ofM lying smoothly in 1TB provides a Riemannian metric there. 
 6,7 and 8 will be addressed in future works. 
 3) Conclusions: We can establish an analytic gauge theory and define basic 
concepts analytic fields, analytic numbers, and analytic gauge functions. Analytic gauge 
functions have solutions that allow us to obtain lesser invariances. From this paper in 
future works the author will address: 
   1)Analytic Scale and Tate-Shafarevich Invariances, 
   2)Generalized form of the Evans Holomorphicity Conjecture for 
all Modular Curves, 
   3) Analytic Gauge Functions, Scale, Tate-Shafarevich Invariances 
and the Integrality of the Tate-Shafarevich group for a complete L-series 

    
2

2

* X / ( )torsc p
p

C R W w C∞ ∞
− ∇

= ∏ � , 

   4)Special form of the Evans Holomorphicity Conjecture for 
Specific Number-Theoretic Applications 
   5)Analytic Gauge Functions and Evans Generators 
   6)Conclusions regarding Analytic Gauge Theory and a Solution to 
the Birch-Swinnerton-Dyer Conjecture, 
   7)Conclusions regarding Analytic Gauge Theory and its' Number-
Theoretic Applications. 
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