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Abstract

It is easy to check that both algebraic equation Det(p̂ − m) = 0 and Det(p̂ + m) = 0 for

4-spinors u− and v− have solutions with p0 = ±Ep = ±
√

p2 + m2. The same is true for higher-
spin equations. Meanwhile, every book considers the p0 = Ep only for both u− and v− spinors of
the (1/2, 0)⊕(0, 1/2)) representation, thus applying the Dirac-Feynman-Stueckelberg procedure
for elimination of negative-energy solutions. Recent works of Ziino (and, independently, of
several others) show that the Fock space can be doubled. We re-consider this possibility on the
quantum field level for both s = 1/2 and higher spins particles.
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The Dirac equation is:
[iγµ∂µ −m]Ψ(x) = 0 . (1)

At least, 3 methods of its derivation exist [1, 2, 3]:

• the Dirac one (the Hamiltonian should be linear in ∂/∂xi, and be compatible
with E2

p − p2c2 = m2c4);

• the Sakurai one (based on the equation (Ep − σ · p)(Ep + σ · p)φ = m2φ);

• the Ryder one (the relation between 2-spinors at rest is φR(0) = ±φL(0)).

The γµ are the Clifford algebra matrices

γµγν + γνγµ = 2gµν . (2)

Usually, everybody uses the following definition of the field operator [4]:

Ψ(x) =
1

(2π)3

∑
h

∫ d3p

2Ep

[uh(p)ah(p)e−ip·x + vh(p)b†h(p)]e+ip·x] , (3)

as given ab initio. After introducing exp(∓ipµx
µ) the 4-spinors ( u− and v− ) satisfy

the momentum-space equations: (p̂−m)uh(p) = 0 and (p̂+m)vh(p) = 0, respectively;
the h is the polarization index. It is easy to prove from the characteristic equations
Det(p̂ ∓ m) = (p2

0 − p2 − m2)2 = 0 that the solutions should satisfy the energy-
momentum relation p0 = ±Ep = ±

√
p2 + m2.

The general scheme of construction of the field operator has been presented in [5].
In the case of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3

∑
h

∫
d4p δ(p2

0 − E2
p)e

−ip·xuh(p0,p)ah(p0,p) = (4)

=
1

(2π)3

∫ d4p

2Ep

[δ(p0 − Ep) + δ(p0 + Ep)][θ(p0) + θ(−p0)]e
−ip·x ∑

h

uh(p)ah(p)

=
1

(2π)3

∑
h

∫ d4p

2Ep

[δ(p0 − Ep) + δ(p0 + Ep)]
[
θ(p0)uh(p)ah(p)e−ip·x + θ(p0)uh(−p)ah(−p)e+ip·x

]
=

1

(2π)3

∑
h

∫ d3p

2Ep

θ(p0)
[
uh(p)ah(p)|p0=Epe

−i(Ept−p·x) + uh(−p)ah(−p)|p0=Epe
+i(Ept−p·x)

]
During the calculations above we had to represent 1 = θ(p0) + θ(−p0) in order to
get positive- and negative-frequency parts.1 Moreover, during these calculations we

1See [6] for some discussion.
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did not yet assumed, which equation this field operator (namely, the u(p) spinor)
satisfies, with negative- or positive- mass?

In general we should transform uh(−p) to the v(p). The procedure is the following
one [7]. In the Dirac case we should assume the following relation in the field operator:∑

h

vh(p)b†h(p) =
∑
h

uh(−p)ah(−p) . (5)

We know that [3]

ūµ(p)uλ(p) = +mδµλ , (6)

ūµ(p)uλ(−p) = 0 , (7)

v̄µ(p)vλ(p) = −mδµλ , (8)

v̄µ(p)uλ(p) = 0 , (9)

but we need Λµλ(p) = v̄µ(p)uλ(−p). By direct calculations, we find

−mb†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (10)

Hence, Λµλ = −im(σ · n)µλ and

b†µ(p) = i
∑
λ

(σ · n)µλaλ(−p) . (11)

Multiplying (5) by ūµ(−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb
†
λ(p) . (12)

The equations are self-consistent.2

However, other ways of thinking are possible. First of all to mention, we have, in
fact, uh(Ep,p) and uh(−Ep,p) originally, which satisfy the equations:3[

Ep(±γ0)− γ · p−m
]
uh(±Ep,p) = 0 . (14)

Due to the properties U †γ0U = −γ0, U †γiU = +γi with the unitary matrix U =

2In the (1, 0)⊕ (0, 1) representation the similar procedure leads to somewhat different situation:

aµ(p) = [1− 2(S · n)2]µλaλ(−p) . (13)

This signifies that in order to construct the Sankaranarayanan-Good field operator (which was used by Ahluwalia,

Johnson and Goldman [Phys. Lett. B (1993)], it satisfies [γµν∂µ∂ν − (i∂/∂t)
E

m2]Ψ(x) = 0, we need additional
postulates. For instance, one can try to construct the left- and the right-hand side of the field operator separately
each other [6].

3Remember that, as before, we can always make the substitution p → −p in any of the integrands of (4).
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(
0 −1
1 0

)
= γ0γ5 in the Weyl basis,4 we have[

Epγ
0 − γ · p−m

]
U †uh(−Ep,p) = 0 . (15)

Thus, unless the unitary transformations do not change the physical content, we have
that the negative-energy spinors γ5γ0u− (see (15)) satisfy the accustomed “positive-
energy” Dirac equation. Their explicite forms γ5γ0u− are different from the textbook
“positive-energy” Dirac spinors. They are the following ones:5

ũ(p) =
N√

2m(−Ep + m)


−p+ + m
−pr

p− −m
−pr

 , (16)

˜̃u(p) =
N√

2m(−Ep + m)


−pl

−p− + m
−pl

p+ −m

 . (17)

Ep =
√

p2 + m2 > 0, p0 = ±Ep, p± = E ± pz, pr,l = px ± ipy. Their normalization is
to −2N2.

What about the ṽ(p) = γ0u− transformed with the γ0 matrix? Are they equal to
vh(p) = γ5uh(p)? The answer is NO. Obviously, they also do not have well-known
forms of the usual v− spinors in the Weyl basis differing by phase factor and in the
sign at the mass term (!)

Next, one can prove that the matrix

P = eiθγ0 = eiθ
(

0 1
1 0

)
(18)

can be used in the parity operator as well as in the original Weyl basis. The parity-
transformed function Ψ′(t,−x) = PΨ(t,x) must satisfy

[iγµ∂ ′
µ −m]Ψ′(t,−x) = 0 , (19)

with ∂ ′
µ = (∂/∂t,−∇i). This is possible when P−1γ0P = γ0 and P−1γiP = −γi.

The matrix (18) satisfies these requirements, as in the textbook case. However, if we
would take the phase factor to be zero we obtain that while uh(p) have the eigenvalue
+1, but

PRũ(p) = PRγ5γ0u(−Ep,p) = −ũ(p) , PR˜̃u(p) = PRγ5γ0u(−Ep,p) = −˜̃u(p) .
(20)

4The properties of the U− matrix are opposite to those of P †γ0P = +γ0, P †γiP = −γi with the usual P =

γ0, thus giving
[
−Epγ0 + γ · p−m

]
Puh(−Ep,p) = − [p̂ + m] ṽ?(Ep,p) = 0. While, the relations of the spinors

vh(Ep,p) = γ5uh(Ep,p) are well-known, it seems that the relations of the v− spinors of the positive energy to u−
spinors of the negative energy are frequently forgotten, ṽ?(Ep,p) = γ0uh(−Ep,p).

5We use tildes because we do not yet know their polarization properties.
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Perhaps, one should choose the phase factor θ = π. Thus, we again confirmed that
the relative (particle-antiparticle) intrinsic parity has physical significance only.

Similar formulations have been presented by [8], and [9]. The group-theoretical ba-
sis for such doubling has been given in the papers by Gelfand, Tsetlin and Sokolik [10],
who first presented the theory in the 2-dimensional representation of the inversion
group in 1956 (later called as “the Bargmann-Wightman-Wigner-type quantum field
theory” in 1993).

M. Markov wrote long ago two Dirac equations with the opposite signs at the mass
term [8].

[iγµ∂µ −m] Ψ1(x) = 0 , (21)

[iγµ∂µ + m] Ψ2(x) = 0 . (22)

In fact, he studied all properties of this relativistic quantum model (while he did not
know yet the quantum field theory in 1937). Next, he added and subtracted these
equations. What did he obtain?

iγµ∂µϕ(x)−mχ(x) = 0 , (23)

iγµ∂µχ(x)−mϕ(x) = 0 , (24)

thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-spinors
u− and v−. These equations, of course, can be identified with the equations for the
Majorana-like λ− and ρ− we presented in ref. [11].6

iγµ∂µλ
S(x)−mρA(x) = 0 , (25)

iγµ∂µρ
A(x)−mλS(x) = 0 , (26)

iγµ∂µλ
A(x) + mρS(x) = 0 , (27)

iγµ∂µρ
S(x) + mλA(x) = 0 . (28)

Neither of them can be regarded as the Dirac equation. However, they can be written
in the 8-component form as follows:

[iΓµ∂µ −m] Ψ
(+)

(x) = 0 , (29)

[iΓµ∂µ + m] Ψ
(−)

(x) = 0 , (30)

with

Ψ(+)(x) =
(

ρA(x)
λS(x)

)
, Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, and Γµ =

(
0 γµ

γµ 0

)
(31)

6Of course, the signs at the mass terms depend on, how do we associate the positive- or negative- frequency
solutions with λ and ρ.
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You may say that all this is just related to the basis rotation (unitary transforma-
tions). However, in the previous papers I explained: The connection with the Dirac
spinors has been found [11, 13].7 For instance,

λS
↑ (p)

λS
↓ (p)

λA
↑ (p)

λA
↓ (p)

 =
1

2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1




u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 . (32)

Thus, we can see that the two 4-spinor systems are connected by the unitary trans-
formations, and this represents itself the rotation of the spin-parity basis. However,
the λ− and ρ− spinors describe the neutral particles, meanwhile u− and v− spinors
describe the charged particles. Kirchbach [13] found the amplitudes for neutrinoless
double beta decay 00νβ in this scheme. It is obvious from (32) that there are some
additional terms comparing with the standard formulation.

One can also re-write the above equations into the two-component form. Thus,
one obtains the Feynman-Gell-Mann [12] equations. As Markov wrote himself, he
was expecting “new physics” from these equations.

Barut and Ziino [9] proposed yet another model. They considered γ5 operator as
the operator of the charge conjugation. Thus, the charge-conjugated Dirac equation
has the different sign comparing with the ordinary formulation:

[iγµ∂µ + m]Ψc
BZ = 0 , (33)

and the so-defined charge conjugation applies to the whole system, fermion+electro-
magnetic field, e → −e in the covariant derivative. The superpositions of the ΨBZ

and Ψc
BZ also give us the “doubled Dirac equation”, as the equations for λ− and ρ−

spinors. The concept of the doubling of the Fock space has been developed in Ziino
works (cf. [10, 14]) in the framework of the quantum field theory. In their case the
charge conjugate states are simultaneously the eigenstates of the chirality. Next, it is
interesting to note that for the Majorana-like field operators we have[

ν
ML

(xµ) + Cν
ML †

(xµ)
]
/2 =

∫ d3p

(2π)3

1

2Ep

∑
η

[(
iΘφ∗ η

L
(pµ)

0

)
aη(p

µ)e−ip·x+

+
(

0
φη

L(pµ)

)
a†η(p

µ)eip·x
]

, (34)

[
ν

ML

(xµ)− Cν
ML †

(xµ)
]
/2 =

∫ d3p

(2π)3

1

2Ep

∑
η

[(
0

φη
L
(pµ)

)
aη(p

µ)e−ip·x+

+
(−iΘφ∗ η

L
(pµ)

0

)
a†η(p

µ)eip·x
]

, (35)

which, thus, naturally lead to the Ziino-Barut scheme of massive chiral fields, ref. [9].
7I also acknowledge personal communications from D. V. Ahluwalia on these matters.
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Finally, I would like to mention that, in general, in the Weyl basis the γ− matrices
are not Hermitian, γµ† = γ0γµγ0. The energy-momentum operator i∂µ is obviously
Hermitian. So, the question, if the eigenvalues of the Dirac operator (the mass, in fact)
would be always real, and the question of the complete system of the eigenvectors
of the non-Hermitian operator deserve careful consideration [15]. Bogoliubov and
Shirkov [5, p.55-56] used the scheme to construct the complete set of solutions of the
relativistic equations, fixing the sign of p0 = +Ep.

The conclusion is: the doubling of the Fock space and the corresponding solutions
of the Dirac equation got additional mathematical bases in this talk presentation.
Similar conclusion can be deduced for the higher-spin equations. I appreciate the
discussions with participants of several recent Conferences.
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