Motion in a Non-Inertial Frame of Reference
vs. Motion in the Gravitomagnetical Field
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We mathematically proved that the inertial foroehjch appears in a non-
inertial frame of reference, such as acceleratimjratating reference frame,
are equivalent to the real forces which appeargmnvhe body moves in the
gravitomagnetical field. We will remind the rotajirbucket with water
problem with the new proposal of the solution.
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INTRODUCTION

Let's replace the scalar potential of a gravitaid¢®) field,$(r, t), by the \gz(r, t), where \éz(r, t)=-
¢(r, t). Let's name the y(r, t) asthe scalar field of the square of the velocitgt's replace the
vectorial potential of the gravitomagnetism (GMgldi Ay(r, t) by theVgn(r, t), whereVyy(r, t) =
Ag(r, t). Let's name th¥ .(r, t) asthe vectorial field of the velocifi].

Let's replace of the G and GM four-potentidl A (¢/c, Ag) by thefour-vector field of the velocity
(Vg)*, which we will define in the form

where: g — speed of propagation of field (equal to, by Gah€&heory of Relativity, the speed of light
c). The ()" has dimension [m/s], from here the nantiee-four-vector field of the velocify].

The nonrelativistic Lagrangian for the body withgsanmoving in the external scalar field of the
square of velocity (\° in an inertial frame fs

2
Lo =0 4 my?2 1)
and the corresponding equation of motion
dv _ 2
ma = mD(Vg ) (2)

! In this section the suffix 0 denotes quantitiedairing to an inertial frame.



Let us now consider what the equations of motiol lsé in a non-inertial frame of reference. The
basis of the solution of this problem is again ghimciple of least action, whose validity does not
depend on the frame of reference chosen. Lagraegeations

dtov o 3

are likewise valid, but the Lagrangian is no longethe form (1) and to derive it we must carry out
the necessary transformation of the This transformation we will realize in two std@g

STEP 1. ACCELERATED TRANSLATIONAL MOTION OF THE FRA ME OF REFERENCE
Let us first consider a frame of reference K' whicbves with a translational velocit{(t) relative to
the inertial frame K The velocitiesv, andVv' of a body in the frames Kand K' respectively are
related by

V, = V'HV(1) (4)

Substitution of this in (1) gives the Lagrangiarthe frame K"

12 2
L'= m\2/ +mv'V(t)+%(t)+ng2 (5)

Now VA4(t) is a given function of time, and can be writes the total derivative with respect to t of
some other function, the third term in Lagrangianction L' can therefore be omitt'ed. Next,=
dr' /dt, wherer' is the radius vector of the body in the frame2{' Hence

dgd' d dv
vy =mv e =L (mvr)-mr &
mV (t)v'=m " dt(m r)-mr " (©)

Substituting in the Lagrangian and again omittimg tiotal time derivative, and we have finally

12

L'= m\2/ —ma(t)r' +mv; 7)

where a(t) = dv/dt is the translational acceleratiof the frame K'. The Lagrange's equation of
motion derived from (7) is

av' )
ma =m0(Vy) - ma(t) (8)

Thus an accelerated translational motion of a frafmeference is equivalent, as regards its effect
the equations of motion of a body, to the applaaf a uniform field of force equal to the mass of
the body multiplied by the acceleratiars dv/dt, in the direction opposite to this acceleraf@jn

STEP 1A. MOTION IN THE ACCELERATED (V ¢" FIELD

Let us consider the Lagrangian for the body wittssnan moving in the scalar field of the square of
velocity (Vg)2 and in the vectorial field of velocity of thég(t)



mv?

L= 5 +mvV (1) + ng2 (9)

Calculations give equation of motion

m% =mO(V;) - may, (t) (10)

whereagy, =V y4n(t)/0t is the vectorial field of the acceleratio@omparing two equations (8) and (10)
we can see, that they are equal, if and only igmthea = agn.

STEP 2. ROTATION OF THE FRAME OF REFERENCE

Let us now bring in a further frame of referencevose origin coincides with that of K', but which
rotates relative to K' with angular veloct). Thus K executes both a translational and atical
motion relative to the inertial frameylR2].

The velocityv' of the body relative to K' is composed of its ity v relative to K and the velocity
wxr of its rotation with K:v' = v + wxr (since the radius vectorsandr' in the frames K and K'
coincide). Substituting this in the Lagrangian (¥, obtain

mv?

L= +mv(mxr)+%(mxr)2—maﬁi +mV;? (11)

This is the general form of the Lagrangian of aybivdan arbitrary, not necessarily inertial, fraofe
reference. The equation of motion has fof2j.

2

m— = m%+m(r x%—?} 2m(v x o)+ m(e x(r x®)) (12)

We see that thmertia forcesdue to the rotation of the frame consist of therms:

1. the forcem(r x(ii—(f[)j is due to the non-uniformity of the rotation,

2. the force2m(v ><co) is calledthe Coriolis force
3. the forcem(m X (r X m)) is calledthe centrifugal forcg2].

STEP 2A. MOTION OF THE BODY IN THE ROTATING (V )" FIELD

Let us consider the Lagrangian function for theybadth mass m moving in the scalar field of the
square of velocity (y)z(r) and in the vectorial field of théyy(r, t)

2 mv?2
L=V b mwv, e g 2 (13)
2 o "o g

Calculations give the equation of motion [3]

2 We omitted the term relating to the accelerationafd, concentrating on the rotation only.



mﬂ = malgz + m[r Xd(z%j + 2m(v X mgm)+ m((!)gm X (I’ X (ng)) (14)

where: wy, is the intensity of GM field or the vectorial fietdf the rotation[1]. Comparing two
equations (12) and (14) we can see, that theycural @f and only if, when the = wynm.

We mathematically proved that the inertial foroghjch appears in a non-inertial frame of reference,
such as accelerating and rotating reference frame equivalentto the real forces which appear,
when the body moves in the GM field (the vectdiigd of velocity).

Does this signify that applying the GM field (thectorial field of velocity) we can eliminate a itial
forces? It is the very important question.

Now we will remind below the rotating bucket withater problem with the new proposal of the
solution.

THE ROTATING BUCKET WITH WATER PROBLEM

Berkeley and Mach criticized the Newtonian intetgtien of the experiment of the rotating bucket
with water [3]. When the bucket rotates with resgecthefixed star spheréFSS) (all bodies in the
Universe), then the surface of water has a paratalshape.

Instead of rotating the bucket, assume we could, toy the same means, the FSS so that the relative
rotation is the same.

Newton thought that if we rotated the FSS, therabse the motion of the water is described with
respect to the absolute space, its surface woulffabeA contrary point of view, that is, that only
rotation with respect to the FSS gives curvaturénefwater surface in the bucket, was proposed by
Berkeley and Mach. According to them, the absddpiEce is unobservable.

Mach pointed out that it does not matter if thetkas rotating and the FSS is at rest, or statypnar
Earth is surrounded by the rotating FSS. His iddaaised on an empirical fact: two measurements of
the Earth’s angular velocitygstronomical (with respect to the FSS) amtynamic (by means of
Foucault's pendulum experiment), gittee same resultgin the limits of the experimental errors).

THE ROTATING LIQUID MIRROR WITH MERCURY
INSTEAD THE BUCKET WITH WATER

The rotating liquid mirror (LM) [4] with mercurynitead the bucket with waterpuld confirms (or

not) the Berkeley and Mach point of view that the tiota (only) with respect to the FSS gives
curvature of the surface of the mercury. If we wergake the LM of the mercury, with the utmost
care, to the Earth’s pole, we would find that th&ace of the mercury assumes a paraboloidal shape,
even when the LM is at the rest relative to thetlEéhe Earth with LM is rotating relative to the
FSS). According to the equation (12) the heighimefcury h(r), in the coordinate system uniformly
rotating with respect to the stationary FSS withngular velocity, has the form [5]

1y
h(r) = h(0) +E(wr) (15a)

E

where: g = 9,81 m/$is the G acceleration, h(0) is the height of trexaury at r = 0, ris a radius of
mirror. The surface of the mercury is parabolitsrdependence upon the radius of mirror.



According to the equation (14) the height of meydufr), in constant homogenous vectorial field of
rotationwym, has the form

h(r) = h(0) +%(wgmr)2 (15b)

E

If we apply the motion to the mercury with the saamgular velocity and in the same direction that
the FSS rotates, then the surface of mercury waurtdhin flat, becaus® - wyy, = 0 and h(r) = h(0).

CONCLUSIONS

In this paper we mathematically proved that thetiakforces, which appears in a non-inertial frame
of reference, such as accelerating and rotatireyaate frameare equivalentto the real forces which
appears, when the body moves in the GM field (#etarial field of velocity). Does this signify that
applying the GM field we can eliminate a inertiatdes? It is the very important question.

The new experiment with thikquid mirror with mercury instead the bucket witkater could

confirms (or not) the Berkeley and Mach point of view that the tiota (only) with respect to the FSS
gives curvature of the surface of the mercury.
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