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Abstract: We propose a universal approach in the framework of the lattice Boltzmann 

method  (LBM)  to  modeling  constant  velocity  constraints  and  constant  temperature 

constraints  on  curved walls,  which  doesn’t  depend on dimensionality,  LBM scheme, 

boundary  geometry;  which  is  numerically  stable,  accurate  and  local  and  has  a  good 

physical background. This technique, called a maximum entropy method, utilizes the idea 

of recovering unknown populations on boundary nodes through minimizing node state 

deviation  from equilibrium  while  assuring  velocity  or  temperature  restrictions.  Also, 

theoretical  justifications  of  a  popular  Zou-He  boundaries  technique  and  isothermal 

boundaries algorithm are provided on the basis  of the method derived. Finally,  while 

conducting numerical benchmarks,  typical straight boundaries algorithm (Zou-He) was 

compared to a typical curved boundaries algorithm (Guo-Zheng).
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1. Introduction

Lattice Boltzmann method (LBM) is a powerful tool for fluid dynamics simulations. It 

performs better than traditional computational fluid dynamics methods, which are merely 

based on the finite element method application to the Navier-Stokes equation. LBM is 

advantageous in porous media flows simulation, multiphase flows simulation; it can be 

parallelized easier [1-3].

Due to the microscopic nature of the lattice Boltzmann method there is a non-trivial 

task of implementing boundary conditions to make them correspond to the macroscopic 

constraints. The most wide-spread boundaries are solid no-slip ones, constant velocity or 

constant density boundaries [4]. Note that it is always sufficient to specify either velocity 

or density (not both of them) due to the Navier-Stokes equation properties. A ubiquitous 

approach for no-slip boundaries implementation is the usage of bounce-back nodes  [1]. 

Also, several specific methods exist for constant density and constant velocity boundaries 

modeling  on straight  walls  [4].  An accurate  method  for  constant  velocity  boundaries 

simulation on curved walls is essential for numerous applications, for example, packed-

bed reactors modeling. Unfortunately, all of the existing methods for curved boundaries 

simulations  use interpolation  schemes  and are not  local  (which  is  the most  attractive 

feature of the LBM) or expose poor properties [5-9]

We propose  another  method  for  modeling  constant  velocity  constraints  on  curved 

walls, which doesn’t depend on dimensionality, LBM scheme (D2Q9 or D3Q19, BGK or 

multiple relaxation times, etc.), boundary geometry; it is numerically stable, accurate and 

local; it has a good physical background. Also, we provide theoretical justifications of a 

popular Zou-He boundaries technique and an isothermal boundaries algorithm[10]. These 
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justifications  are  based  on  the  maximum  entropy  method  derived.  Finally,  while 

conducting numerical benchmarks,  typical straight boundaries algorithm (Zou-He) was 

compared  to  a  typical  curved  boundaries  algorithm  (Guo-Zheng)  [5],[10].  Such  a 

comparison is unknown to the authors.
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2. Lattice Boltzmann Method Overview

Continuous  Boltzmann  equation  describes  diluted  gases  on  microscopic  level,  it 

determines  the  dynamics  of  particle  velocities  distribution  in  space  and  time.  This 

equation is  known to correspond macroscopically  to  the Navier-Stokes equation after 

averaging and obtaining macroscopic quantities, such as density and velocity.

The following approach is  applied to bring the Boltzmann equation to fruition for 

dense liquids: despite the fact that dense liquids are not described with the Boltzmann 

equation, if they are modeled according to the latter one, the Navier-Stokes equation is 

still  recovered.  Therefore,  the  lower  abstractions  level  (i.e.  microscopic  equation  for 

dense liquids) is substituted with physically irrelevant implementation (i.e. microscopic 

equation  for  dilute  gases),  so  that  the  upper  abstractions  layer  (the  Navier-Stokes 

equation) still holds.

The Boltzmann equation should be discretized in time, space and velocity directions. 

Time is discretized uniformly,  space is discretized in a uniform way,  too, to obtain a 

rectangular grid; velocity directions from a given node should point to neighboring lattice 

nodes.

Finally, the master equation for the LBM scheme with the BGK approximation for the 

collision term looks like

f ixc i t , t t = f i x , t− 1

[ f i x ,t − f i

eq x , t ] . (1)

In  this  equation  f ix , t  is  a  particle  population  in  direction  i ,  i.e.  the 

probability to find a particle moving in a direction i  from a node x  at time t . 

These probabilities are normalized by mass of the fluid.  is the mass relaxation time, 
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which is related to the kinematic viscosity as =cs
2−1/2 , where cs=1/3  is 

the sound speed [11].

Equilibrium particle population in direction i  is 

f i
eq=wi[13⋅c i

9
2
⋅c i

2−3
2
2] , (2)

where macroscopic density in the given node is   , macroscopic velocity is   . 

Lattice vectors for the current scheme are c i , while w i are lattice vectors weights.

Density and velocity are obtained by the following formulas: 

=∑
i

f i , =∑
i

f i c i  (3)

Note  that  lattice  vectors  and  their  weights  are  constructed  to  satisfy  symmetry 

conditions  [1] and to recover density and velocity for continuous Boltzmann dynamics 

[12].

Typical lattice stencil for a two-dimensional space is the D2Q9 one, which contains of 

9 lattice vectors with the following coordinates [2]

 0
0
∣1

0
∣ 0
1

∣−1
0
∣ 0
−1

∣1
1

∣−1
1

∣−1
−1

∣1
−1  (4)

Lattice  weights  for  this  scheme  are  the  following:  w i=4/9  for  a  vector  with 

∣c i∣
2=0 , w i=1/9  for vectors ∣c i∣

2=1 , w i=1/36  for vectors ∣c i∣
2=2 .

Three-dimensional  domain  is  usually  handled  with  the  help  of  the  D3Q19 lattice, 

which possesses the following 19 vectors

 0
0
0
∣
1

0
0
∣

0
1

0
∣

0
0

1
∣
−1

0
0
∣

0
−1

0
∣

0
0

−1
∣
1
1

0
∣
−1
1

0
∣
−1
−1

0
∣
1
−1

0
∣
1

0
1

∣
0

1
1

∣
−1

0
1

∣
0

−1
1

∣
1

0
−1

∣
0

1
−1

∣
−1

0
−1

∣
0

−1
−1 . (5)

These vectors are supplied with the following weights:  w i=1/3  for a vector with 

∣c i∣
2=0 , w i=1/18  for vectors ∣c i∣

2=1 , w i=1/36  for vectors ∣c i∣
2=2 .

7



An  important  point  in  the  LBM  framework  is  specific  units  conversion:  all  the 

physical values, mentioned above, are measured in lattice units [13].

LBM  method  analysis  and  linking  it  to  the  Navier-Stokes  equation  are  usually 

performed  through  one  of  the  following  techniques:  1.  Taylor  expansion  [14] 2. 

asymptotic analysis [15] 3. Chapman-Enskog expansion [1].
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3. Maximum Entropy Boundaries

In this section maximum entropy boundaries method will be explained.

3.1. Method Idea

Fig 1 Boundary node example

Assume that the node O is a boundary one. After collision and streaming step dashed 

particle populations are unknown, as they originate from empty space, not from the fluid. 

It is necessary to fill them before the next collision and streaming steps to provide particle 

populations for the nodes E, B, F. The main idea of the method is to fill the missing 

populations  as  close  as  possible  to  the  equilibrium  values,  but  to  preserve  known 

populations  and to  satisfy  the  predefined velocity  constraint.  Note  that  collision  step 

should  be  executed  as  usual  for  such nodes.  Also  note  that  equilibrium distributions 

depend on local density, which is unknown before unknown populations are recovered, 

but this difficulty will be easily handled. Choosing the unknown particle populations to 

be  closest  to  the  equilibrium distribution  is  physically  relevant,  as  we are  aiming  at 
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modeling  boundary nodes  in  the  most  equilibrium state;  also,  this  implies  maximum 

entropy. For this reason we’ll call such boundary nodes as maximum entropy nodes.

3.2. Main Algorithm

In this section the basic version of the algorithm will be presented.

3.2.1. Mathematical Formulation

Let’s  introduce  several  additional  notations.  A  set  of  indexes  for  known  particle 

populations  is  K  (in  Fig  1 K={0,1,3,4,7,8} ).  A set  of  indexes  for  unknown 

particle populations is  U  (in  Fig 1 U={2, 5,6 } ). Number of dimensions is  d . 

Number  of  lattice  vectors  (from  the  DnQm  notation)  is  q .  Number  of  known 

populations is k . Number of unknown populations is n=q−k . Known density is 

 =∑
i∈K

f i  (6)

Known momentum is 

M=∑
i∈K

f i c i  (7)

As far as we will deal primarily with unknown distributions since this point, it is a 

good idea to rearrange indexes and lattice vectors, so that unknown lattice vectors had 

indexes from 1 to n=q−k .

Also, let’s introduce a special notation for equilibrium distribution functions for unit 

density nodes:

i=w i[13⋅c i
9
2
⋅c i

2−3
2
2]  (8)

These  values  are  known for  each  boundary  node,  as  they  include  just  predefined 

velocity.
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Finally,  we are able  to formulate  the optimization  problem to reach the maximum 

entropy  with  velocity  constraint.  We  will  use  a  usual  quadratic  (least-squares) 

minimization  approach;  i.e.  minimize  L2  vector  norm  of  a  difference  between 

unknown particle populations and equilibrium particle populations (subject to a constraint 

of predefined velocity). The objective function will look like 

F=∑
j∈U

 f j− j
2=∑

j=1

n

 f j− j
2  (9)

Note that 

=∑
j

f j=∑
j∈U

f j∑
j∈K

f j=∑
j=1

n

f j   (10)

Velocity restrictions look like

=∑
j

f j c j=∑
j∈U

f j c j∑
j∈K

f j c j=∑
j=1

n

f j c jM  or (11)

∑
j=1

n

f j c jiM i−∑
j=1

n

f j i=0  (12)

Finally,  the Lagrangian of the optimization problem, subject to velocity constraint, 

will look like 

L=∑
j=1

n

 f j−∑
j=1

n

f j j
2


∑
j=1

d

 j ∑
p=1

n

f pc p jM j−∑
j∈1

n

f j j
 (13)

where  jλ  are Lagrange multipliers. To solve the optimization problem one needs to 

find partial derivatives of  (13) by all the  f i  and  i  and equal them to zero. This 

leads to the linear system of equations of dimensionality nd (see Appendix): 

 x=b (14)

Where 
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b=  
 −M  (15)

i=2 i−∑
j=1

n

 j
2 ,i=1,n (16)

x= f 1 ,... , f n ,1 , ... ,d 
T (17)

=11 12

21 22 (18)

 ij
11=2ij−2 j−i , i , j=1,n ,

ij
12=c i j− j , i=1,n , j=1,d ,

ij
21=c ji− i , i=1, d , j=1,n ,

 ij
22=0, i , j=1,d

(19)

3.2.2. The Final Algorithm

On each time step for each boundary node the program has to do the following:

1. find known and unknown population indexes K  and U

2. find known density and velocity by (6) and (7)

3. Fill the system of linear equations (14) by (15)-(19) and solve it

4. Distribute found values by unknown populations

5. Perform collision  (even for maximum entropy boundary nodes)  and streaming 

steps as usual

3.2.3. Solvability Conditions

Equation  (14) is  solvable  if  and  only  if  det ≠0⇔det 2112≠0 ,  which  is 

equivalent  to linear independence of  12  columns. Also note that the least-squares 

Lagrangian can always be minimized if velocity restrictions (12) are solvable for particle 

populations. It leads to exactly the same condition:  12  columns should be linearly 
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independent.  System  (14) is  almost  always  solvable  in  the  incompressible  limit  for 

sufficiently smooth boundaries, except for rare nodes with too few unknown populations. 

Nodes on straight or convex boundaries are always solvable.

3.3. Averaged Density Maximum Entropy Algorithm

A slightly modified version of the maximum entropy algorithm is presented here. It 

uses  the  idea  of  density  averaging,  i.e.  during  the  recovering  of  boundary  node 

parameters density is obtained through extrapolation of densities on the previous step 

from  neighboring  nodes,  then  unknown  particle  populations  are  discovered  through 

entropy maximization.

3.3.1. Mathematical Formulation

Lagrangian for the entropy maximization procedure will look as following, similar to 

(13) (note that density is known after extrapolation, velocity is predefined, so equilibrium 

populations are known): 

L=∑
j=1

n

 f j− f j
eq2∑

j=1

d

 j∑
p=1

n

f p c p jM j− j  (20)

After computing derivatives and equaling them to zero one will obtain the system of 

linear equations, similar to (14), but with a different matrix and a different right side:

b=2 f 1
eq ,... ,2 f n

eq ,1, ... ,d 
T  (21)

=11 12

21 22 (22)

 ij
11=2 ij , i , j=1,n ,

 ij
12=c i j , i=1,n , j=1, d ,

 ij
21=c ji , i=1, d , j=1,n ,

ij
22=0, i , j=1,d

(23)
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3.3.2. Solvability Conditions

Solvability  conditions  can  be  derived  in  the  same  way  as  for  general  maximum 

entropy algorithm: 12  columns should be linearly independent; which holds for plane 

and convex boundaries.

3.4. Maximum Entropy Method for Isothermal Boundaries

Entropy maximization idea is applied for isothermal boundaries below.

In this section we will use f i  to denote heat populations and assume that they have 

already been rearranged as in the previous section, so that unknown populations come 

first. Temperature from the known populations will be denoted as  T .

Lagrangian for the optimization problem looks like 

L=∑
j=1

n

 f j− f j
eq2 ∑

j=1

n

f j T−T   (24)

Once again, one has to compute derivatives and equate them to zero. It leads to the 

usual linear system of equations, but system matrix will look like 

=2 0 0 ... 1
0 2 0 ... 1
0 0 2 ... 1

...
1 1 1 ... 0

 (25)

Right-side vector has the following form: 

b=2 f 1
eq ,... ,2 f n

eq ,T− T T  (26)

Surprisingly, this system has always an exact analytical solution (see Appendix): 

f i= f i
eq−1

n
∑

i∈K
f i−∑

i∈K
f i

eq , i=1, n (27)
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It  has a very simple meaning:  we assign equilibrium distributions  to the unknown 

lattice  vectors,  then  compute  temperature  excess  for  the  known populations  and then 

uniformly distribute this excess by unknown populations.

3.5. Zou-He Boundaries Justification

Zou and He intuitive procedure for 3D case is justified in this section. 

Zou and He proposed a  certain  method for modeling  straight  density and velocity 

boundaries  [10],[4].  It  works  as  following:  at  first  one  has  to  determine  either  an 

unknown density or an unknown velocity for the given boundary node. Then unknown 

distributions are populated with equilibrium values. Afterward the bounce-back of non-

equilibrium distribution parts  is  performed to obtain unknown lattice vectors.  Normal 

velocity component is recovered on this stage . To recover tangent velocity component 

the authors propose to compute momentum excess for populations after bounce-back and 

then to distribute it in a uniform way over unknown populations.

We are going to show that the uniform excess distribution procedure corresponds to 

the minimization of the difference between final particle distributions and bounced-back 

distributions with the constraint of compensating the momentum excess.

Let's denote bounced-back distributions as f i
bb :

f i
bb= f i , i∈K ; f i

bb= f i
eq f i '− f i '

eq , i∈U  (28)

Here i '  means a vector, opposite to the vector i . This vector is always known for 

nodes on plane boundaries.

Momentum excess for bounced-back populations over equilibrium distributions is

E=M bb−M eq=∑
j=1

q

f j
bb c j−∑

j=1

q

f j
eq c j  (29)
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In [4] this variable is called  . It can be shown (see Appendix) that this vector is 

parallel to the wall (so let's say it vanishes in the last dimension, Ed=0 ).

Finally, Lagrangian of the problem looks like (note the constraints term)

L=∑
j=1

n

 f j− f j
bb2∑

j=1

d

 j∑
p=1

n

f pc p j−∑
p=1

n

f p
bbc p jE j (30)

Zou and He proposed to use the following expression for the final particle populations:

f i= f i
bb−c i⋅e , (31)

where 

e i=E i /ni , i=1, d , (32)

where n i is the number of lattice vectors with non-zero coordinates along the axis 

i : 

n i=∑
p=1

n

∣c pi∣=∑
p=1

n

c pi
2 . (33)

After inserting equations (31) into derivatives of (30) it is possible to show that they 

are equal to zero, while the Lagrangian multipliers can be determined unambiguously 

(see Appendix). So (31) really minimizes (30).

Taking  into  consideration  results  from the  section  3.2.3Solvability  Conditions,  the 

solution (31) for the optimization problem on plane boundaries is unique.
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4. Numerical Results

Numerical results for different systems and for different node types are presented in 

this section. All physical parameters below are provided in lattice units. All systems were 

tested with Guo-Zheng nodes, maximum entropy nodes, Zou-He nodes (which support 

just plane boundary conditions), Chen-Martinez boundary nodes (which support curved 

boundary conditions,  but need specific  treatment  for curved boundaries,  so they were 

used just for plane walls) [5],[8],[10].

4.1. Poiseuille Flow

We  consider  an  academic  two-dimensional  Poiseuille  flow  within  the  following 

setting. Flow is force-driven to prevent pressure and density changes and to make the 

simulation more accurate. Solid walls are implemented through bounce-back nodes; but 

inlet and outlet nodes are implemented through constant velocity nodes with stationary 

parabolic  profile.  As far  as  flow is  force-driven,  it  is  not  necessary  to  set  the  outlet 

boundary to the constant density (and pressure) type to ensure proper pressure gradient.

System dimensionality  was  set  to  2;  D2Q9 lattice  Boltzman  scheme was  utilized; 

system size by flow direction (X axis) is twice as big as system size by Y direction;  

kinematic viscosity in lattice units is 0.1; Reynolds number is 5.

Converged flow solutions for different velocity boundaries and for different system 

widths (Y axis) were obtained in the first set of experiments and errors between these 

solutions and expected solutions were measured. Solutions error was computed according 

to the Maier  L2  norm[16] in the space of possible system states by the following 

formula:
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=
∑nodes

∣utheor−uexp∣2

∑nodes
∣u theor∣2

 (34)

Numerical simulations were stopped when the difference by the given norm between 

two solutions separated with 20 iterations was less than 10−5 .

The results are presented in the following figure.

Fig 2 Poiseuille flow errors

Both axes are  in  logarithmic  scales.  The slope of these lines  is  close to 2,  which 

corresponds to the fact that Guo-Zheng and Zou-He nodes are of the second order of 

convergence[4],[8] and  suggests  that  maximum  entropy  nodes  expose  the  same 

convergence behavior.

Also, maximum Reynolds numbers are measured by varying flow viscosity for several 

boundary node types and for several system widths. Flow is force-driven, system is two-

dimensional;  D2Q9 scheme is used. Solid walls are implemented through the bounce-

back scheme;  inlet  and outlet  are  implemented  through constant  velocity  nodes  with 
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stationary profile. System size by flow axis is twice as big as system width, system width 

varies, and maximum flow velocity is 0.01. These results are presented in the following 

figure.

Fig 3 Maximum Reynolds numbers for force-driven Poiseuille flows

4.2. Cylindrical Couette Flow

The next test was conducted for cylindrical Couette flow, which is a flow between two 

coaxial rotating cylinders. There is a well-known stationary solution for this flow[17]:

=arb
r  (35)

where 

a=
2 R2

R2
2−R1

2 , b=
−2 R1

2 R2

R2
2−R1

2 (36)

Here  2  is  the velocity  of  the  outer  cylinder  (if  the  inner  one is  not  rotating),  

R1, R2 are inner and outer cylinders radii respectively.
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A three-dimensional case was considered and a D3Q19 scheme was utilized. System is 

periodic by z, its length along z is 2, and inner radius is two times less than the outer one, 

outer radius is varied. Boundary nodes have equal node type. Viscosity is 0.1; Reynolds 

number is 5.

The first  set  of  experiments  measured  errors  between the converged solutions  and 

theoretical  solutions  for  different  boundary  node  types  and  system  sizes.  Error  was 

measured  by  (34),  convergence  was  accepted  if  the  error  between  two  solutions, 

separated with 20 iterations, was less than 10−5 . Chen Martinez nodes were not used 

for tests, as it is unclear how to make them support curved boundaries.

The results are depicted in the following figure.

Fig 4 Cylindrical Couette flow errors

Note that in this setting the matrix of the optimization equation was singular for some 

nodes, so we used Guo-Zheng method for them. There were 176 boundary nodes, and 48 

singular nodes among them for outer diameter 16. These proportions preserve for higher 

resolutions.
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Also,  maximum  supported  Reynolds  numbers  were  measured  by  varying  flow 

viscosity in a manner similar to the previous section. Measurement parameters are the 

following: D3Q19 scheme is used; system is periodic by z, inner radius is two times less 

than the outer one, outer radius is varied; boundaries have equal node type; outer velocity 

is 0.01. The results are depicted below.

Fig 5 Maximum Reynolds numbers for Couette flows

4.3. Duct Flow

We also tested a three-dimensional square duct flow[10],[4]. System setting is similar 

to the Poiseuille flow setting, except dimensionality,  i.e. D3Q19 scheme is brought to 

fruition, duct has a square profile, duct length is equal to the duct square side, duct square 

side is varied, solid walls are implemented through bounce-back algorithm, and inlet and 

outlet  boundaries  are of constant  velocity type  with a  stationary velocity distribution. 

Viscosity is 0.1, Reynolds number is 5; flow is force-driven. Convergence threshold is 

preserved. Converged solutions are checked against analytical ones.
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The following results were obtained:

Fig 6 Duct flow errors

On the next step maximum available Reynolds numbers for the rectangular duct flow 

were found. Flow parameters  were left  the same,  but viscosity was varied,  maximum 

velocity was 0.01.

Fig 7 Maximum Reynolds numbers for square duct flows
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4.4. Cylindrical Semi Permeable Membranes Flow

This test is conducted for a stationary flow in a cylindrical tube with semi permeable 

membranes. There are numerous approximate, as well as exact analytical solutions for 

Navier-Stokes equations for the case of constant suction or injection rate and for the case 

when walls are operating according to the Darcy's  law[18-22]. Fluid velocity through 

membranes is assumed to be constant and predefined for simplicity. Despite there is an 

exact analytical solution for such a case[21], it turns out that an approximate solution is 

simpler and easier for analysis and implementation. 

The following variables are introduced: axial velocity is  , radial velocity is u , 

pressure is  p , membrane velocity, directed outside, is  V , cylinder radius is a , 

non-dimensional radial coordinate =r2/a2 .

A general solution for such a problem has the form[20]

=V f  /
u=u0 f ' 1−2V z /a 

p= p0 A z2Bz V 22 f ' /R− f 2 / 
(37)

where  u0  is  a  characteristic  velocity,  R=V a / is  suction  Reynolds  number 

(don't mix it with the main Reynolds number, Rmain=u0 a / ), f   is the solution 

for the following equation with boundary conditions

 f ' ' ' f ' 'R/2  f ' 2− f f ' =K ,
f ' 1=0, f 0=0, lim

 0
 f ' '  =0, f 1=1 . (38)

A=−4V 2 K / R a2 ,B=4V K u0 /R a (39)

Constant  K should  be  determined  during  the  solution  of  the  boundary-value 

problem (38) due to sufficient boundary conditions.
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The approximate solution to this problem, obtained with the perturbation theory, can 

be found in[22],[23]

f  =2−2 R
36

4−9263−4 ,

K=−23
2

R
(40)

This solution is applicable, when wall Reynolds number R is in the range [−2 ;2] .

A D3Q19 scheme  was  utilized  in  the  simulation.  Cylinder  length  is  equal  to  the 

cylinder diameter, which is varied, cylindrical wall nodes type is varied, inlet and outlet 

boundaries  are  built  with  constant  velocity  Guo-Zheng nodes.  Viscosity  is  0.1,  main 

Reynolds  number  is  5,  suction  Reynolds  number  is  1,  external  force  is  absent. 

Convergence  threshold  from  the  previous  section  is  used.  Converged  solutions  are 

checked against analytical ones. Unfortunately, basic maximum entropy algorithm turned 

out to be divergent for this benchmark, so just averaged maximum entropy method was 

left.

The results are depicted in the following figure.

Fig 8 Cylindrical flow errors
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As usual, maximum supported main Reynolds numbers were measured. System setting 

is  exactly the same,  except  for preserving maximum flow velocity  on the level  0.01. 

Consequently,  for any given main Reynolds number flow viscosity is computed,  then 

suction rate is defined to preserve suction Reynolds number.  The results are depicted 

below.

Fig 9 Maximum Reynolds numbers for cylindrical flows

4.5. Unsteady Plane Couette Flow

The last test is aimed at determining boundaries quality while dealing with unsteady 

flow. All the previous examples lack this feature.

Plane  Couette  flow is  equivalent  to  the  cylindrical  one,  if  cylinders  radii  tend  to 

infinity; i.e. the bottom plate has zero velocity, the top plate has some specified velocity. 

If the initial fluid flow is zero, the time-dependent solution is given in [8].

Other system parameters are as follows: system is two-dimensional, and is modeled 

with D2Q19 scheme, system is periodic by X, number of nodes by flow direction (i.e. by 
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X axis direction) are 10, number of nodes by Y axis is 50, viscosity is 0.1, and Reynolds 

number is 5.

Errors are reported in the figure below.

Fig 10 Unsteady plane Couette flow errors

Note that maximum entropy, averaged maximum entropy and Zou-He graphs are very 

close to each other.
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5. Conclusion

Obviously, for straight boundaries Zou-He, maximum entropy and averaged maximum 

entropy algorithms produce very similar errors; Guo-Zheng algorithm is slightly worse. 

Nevertheless,  Guo-Zheng  algorithm  is  superior  in  stability,  followed  by  averaged 

maximum entropy method.

Guo-Zheng produces slightly bigger errors for cylindrical Couette flow than maximum 

entropy algorithm; but simulation errors are hardly distinguishable for flow in a porous 

tube.  Also,  Guo-Zheng algorithm is  more  stable  than other  algorithms for cylindrical 

Couette flow; but it is outperformed by averaged maximum entropy method for porous 

tube flow.

The  reason  for  a  good  accuracy  of  the  maximum  entropy  method,  especially  for 

straight boundaries, is its underlying physical nature and the absence of extrapolations.

The reason for Guo-Zheng and averaged maximum entropy stability advantage is their 

non-local nature; as several neighboring fluid nodes prevent the instability growth. Also, 

maximum entropy algorithms  (main  version  and with averaging)  are  inapplicable  for 

some nodes in curved boundaries, and they are replaced with Guo-Zheng nodes. This 

replacement leads to numerical instabilities.

It is known, that local numerical schemes reveal better accuracy than non-local ones 

for flows with high spatial  harmonics[4];  so maximum entropy method may be more 

suitable in such tasks than extrapolation scheme, like Guo-Zheng, Filippova-Hanel, etc.

One more advantage of the maximum entropy algorithms is their independence over 

collision scheme, while, for example, Guo-Zheng method in its current state is tightly 

bound to the BGK scheme.
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Also, during our benchmarks we compared straight boundaries algorithm to curved 

boundaries algorithms; and it turned out that the latter ones are comparable in accuracy 

but  are  superior  in  stability.  So  if  you  seek  generality  better  use  curved  boundaries 

algorithms at once.

Finally,  entropy maximization idea provides a convenient  framework for analyzing 

lattice Boltzmann boundary schemes,  whose capabilities  were applied for the Zou-He 

boundaries method.
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6. Appendix 

6.1. Lagrangian Derivatives Computation

In this part we will compute derivatives for the Lagrangian (13) and come to the linear 

equations (14).

At first, let's compute derivatives by particle distributions ( i=1, n )

∂L
∂ f i

=∑
j=1

n

2  f j−[∑
p=1

n

f p] jij−∑
p=1

n

 pi j

∑
j=1

d

 j [∑
p=1

n

c p j pi−∑
p=1

n

 pi  j]=

=∑
j=1

n

2 f j−[∑
p=1

n

f p] jij− j∑
j=1

d

 j [∑
p=1

n

ci j− j]=

=∑
j=1

n

2 f j−[∑
p=1

n

f p] j− jij− j∑
j=1

d

 j[∑
p=1

n

c i j− j]=

=∑
j=1

n

2  ij− j f j−∑
p=1

n

f p∑
j=1

n

2 ij− j j−

−∑
j=1

n

2 ij− j j∑
j=1

d

 j [∑
p=1

n

ci j− j]=

=∑
j=1

n

2ij− j f j−∑
p=1

n

f pi−i∑
j=1

d

 j[∑
p=1

n

c i j− j] .

Finally, 

∂ L
∂ f i

=∑
j=1

n

2ij−2 j−i f j−i∑
j=1

d

 j[∑
p=1

n

c i j− j] , i=1, n (41)

Where i=∑
j=1

n

2ij− j j=2 i−∑
j=1

n

 j
2 , as in formula (16).

Now it's high time to compute derivatives by Lagrangian multipliers ( i=1, d ):

∂ L
∂i

=∑
j=1

d

ij ∑
p=1

n

c p j f p M j−[∑
p=1

n

f p] j=

=∑
p=1

n

c pi f p M i−[∑
p=1

n

f p]i .
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So, 

∂ L
∂i

=∑
j=1

n

[c ji−i] f j− i−M i , i=1, d . (42)

Finally, after equating (41), (42) to zeros one obtains (15) and (19).

6.2. Isothermal Boundaries Solution

In this part we will show that (27) is really a solution to the system of linear equations 

with matrix (25) and right-side (26). First of all, matrix  (25) is nicely invertible, and its 

inverse has the form: 

−1=n−1/2n −1/2n −1 /2n ... −1/2n 1/n
−1/2n n−1/2n −1 /2n ... −1/2n 1/n

...
−1/2n −1/2n −1 /2n ... n−1/2n 1/n

1/n 1/n 1/n ... 1/ n −2/ n
  (43)

Note that  n  here is not the system dimensionality,  but the number of unknown 

lattice vectors, while the dimensionality is n1 .

The validity of the inversion can be checked manually.

Consequently, unknown populations are obtained in the following manner:

f i=∑
j=1

n1

−1
ij b j=−1

ii b i∑
j=1
j≠i

n

−1
ij b j−1

i n bn=

=n−1
2 n

2 f i
eq− 1

2 n∑j=1
j≠i

n

2 f j
eq1

n
T− T =

= f i
eq−

1
n

f i
eq−

1
n∑j=1

j≠i

n

f j
eq

1
n
∑

j
f j

eq−∑
j∈K

f j=

= f i
eq−1

n ∑j∈U
f j

eq1
n
∑

j
f j

eq−∑
j∈K

f j .

At last, 
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f i= f i
eq−1

n
∑

j∈K
f j−∑

j∈K
f j

eq  (44)

As  a  reminder,  K denotes  known  populations  indexes,  U denotes  unknown 

population indexes; also, it is assumed (everywhere in this paper) that lattice vectors are 

rearranged so that U=1,n  before unknown populations recovering.

6.3. Detailed Zou-He Boundaries Justification

First of all, let's show that momentum excess vector is induced just by the wall particle 

populations and therefore is parallel to the wall after the bounce-back procedure.

Let's introduce the following particle indexes sets: W  for wall particle populations, 

I for  particle  populations  inside  the  fluid,  O for  particle  populations  outside  the 

fluid. It's obvious that I=U , K=O∪W . Also, as usual, stroke denotes an opposite 

vector index. Each unknown population, directed inside the fluid, has a known population 

outside the fluid. Now we are going to compute node momentum after the bounce-back 

procedure (28):

M bb=∑
i∈W
c i f i

bb∑
i∈ I
c i f i

bb∑
i∈O
c i f i

bb=∑
i∈W
c i f i∑

i∈ I
c i f i

bbc i ' f i '  .

Let's investigate the behavior of each pair of known-unknown populations from the 

second sum:

c i f i
bbc i ' f i '=c i  f i

eq f i '− f i '
eqc i ' f i '=c i f i

eqc i f i '−c i f i '
eq−c i f i '=

=c i f i
eq−c i f i '

eq=c i f i
eqc i ' f i '

eq .

Therefore, M
bb=∑

i∈W
ci f i∑

i∈I
ci f i

eqci ' f i '
eq=∑

i∈W
c i f i∑

i∈ I
ci f i

eq∑
i∈O
c i f i

eq
.

According to (29), momentum excess is E=M bb−M eq=∑
i∈W
c i f i−∑

i∈W
c i f i

eq
, so it's 

indeed induced only by wall lattice vectors and, therefore, is parallel to the wall.
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In the next step we show that the solution (31) actually minimizes (30).

First of all, as usual, let's compute derivatives of (30): 

∂ L
∂ f i

=2  f i− f i
bb∑

j=1

d

 jc i j=2  f i− f i
bb⋅c i , i=1, n (45)

∂ L
∂i

=∑
p=1

n

f pc pi−∑
p=1

n

f p
bbc piE i , i=1, d (46)

We are going to insert the solution (31) ( f i= f i
bb−c i⋅e ,  e i=E i /ni ,  n i  is the 

number of lattice vectors with unknown populations which are not zero in direction i ), 

into these equations and check, whether they become zero and whether the constraints are 

determined  unambiguously.  After  that,  taking  into  consideration  the  solvability 

conditions  from the  corresponding  section,  we  conclude  that  the  Zou-He  solution  is 

unique and always achievable on plane walls.

First  of  all,  let's  insert  the  solution  into  (46).  Actually,  the  following  proof  is 

redundant, as it just ensures that the proposed solution resolves the boundary velocity 

constraints, and this is mentioned in the original paper.

Nevertheless, one obtains

∂ L
∂i

=∑
p=1

n

c pi  f p
bb−c p⋅e −∑

p=1

n

f p
bbc piE i=E i−∑

p=1

n

c pic p⋅e=

=E i−∑
p=1

n

c pi∑
j=1

d

c p j e j=E i−∑
j=1

d

e j∑
p=1

n

c pic p j .

Consequently, 

∂ L
∂i

=E i−∑
j=1

d

T ij e j  or 
∂L
∂

=E−T e , (47)

Where T ij=∑
p=1

n

c pi c p j , i , j=1, d .

Now we are going to show, that
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T ij=∑
p=1

n

c pi c p j=niij , i , j=1,d . (48)

If i= j this is simply by definition (33). 

In case when  i≠ j and  i , j3 (i.e. do not include wall normal) let  c p
w  be a 

lattice vector c p , projected on the wall (see Fig 1 as an example of such a projection), 

let D  be a set of diagonal projected lattice vectors of unknown populations, ND  a 

set of non-diagonal projected lattice vectors of unknown populations. Then

T ij=∑
p=1

n

c pic p j=∑
p=1

n

c p
w ic p

w  j=

= ∑
p∈ND

c p
wic p

w j∑
p∈D

c p
wic p

w j=∑
p∈D

c p
wic p

w j=0.

Here it is taken into account that one of the coordinates of non-diagonal vectors will 

always be zero if i≠ j . Finally, due to the lattice symmetry, diagonal projected vectors 

will always come in pairs, and they would compensate each other.

In case when i≠ j and either i=3  or j=3  (for example, i=3 ) we need to 

notice, that all the unknown vectors on plane boundaries have equal non-zero coordinates 

in the direction of wall normal, z direction (either 1 or -1). Let's denote this coordinate as 

s . Then  T ij=∑
p=1

n

c p3c p j=s∑
p=1

n

c p j=s∑
p=1

n

c p
w  j . The sum vanishes due to the 

lattice symmetry (see Fig 1).

Finally,  we  have  proven  (48).  Let's  insert  it  into  (47).  Then 

∂ L
∂i

=e i ni−∑
j=1

d

ij ni e j=0 .

33



Now  we  have  to  prove  that  the  Zou-He  solution  is  capable  of  minimizing  the 

Lagrangian  by  particle  populations.  Indeed,  after  inserting  this  solution  into  (45)one 

obtains

∂ L
∂ f i

=2  f i− f i
bb⋅c i=−2e⋅c i⋅c i ,  i=1, n ;  so  =2e .  It  means  that 

d  Lagrangian multipliers can be unambiguously determined by n  equations.

At last, we have proven that the Zou-He solution is the one that ensures wall velocity 

constraints with minimum deviation from bounced-back particle populations.
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