Mean value theorems for Local fractional integrals on fractal space

Guang-Sheng Chen*
Department of Computer Engineering, Guangxi Modern Vocational Technology College, Hechi,Guangxi, 547000, P.R. China

Abstract

In this paper, by some properties of Local fractional integral,we establish the generalized Mean value theorems for Local Fractional Integral.

Keywords: fractal space, Local fractional integral, local fractional Mean value theorems MSC2010: 28A80,

1 Introduction

local fractional calculus (also called Fractal calculus) has played an important role in not only mathematics but also in physics and engineers [1-15]. Local fractional integral of $f(x)$ [6-7,9] was written in the form

$$
{ }_{a} I_{b}^{(\alpha)} f(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(t)(d t)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \lim _{\Delta t \rightarrow 0} \sum_{j=0}^{N-1} f\left(t_{j}\right)\left(\Delta t_{j}\right)^{\alpha},
$$

with $\Delta t_{j}=t_{j+1}-t_{j}$ and $\Delta t=\max \left\{\Delta t_{1}, \Delta t_{2}, \ldots, \Delta t_{j}, \ldots\right\}$, where for $j=1,2, \ldots, N-1 t_{0}=a$ and $t_{N}=b,\left[t_{j}, t_{j+1}\right]$ is a partition of the interval $[a, b]$.

The purpose of this paper is to establish some Mean value theorems for Local fractional integrals on fractal space. We generalize the results of [1].

2 Preliminaries

In this section, we give some properties of Local fractional integral, that will be used later in this paper.

Theorem 2.1 [1]Constant function $f(x)=c$ is Local fractional integrable from a to b and

$$
{ }_{a} I_{b}^{(\alpha)} f(x)=\frac{c(b-a)^{\alpha}}{\Gamma(1+\alpha)} .
$$

Theorem 2.2 Local fractional monotone functions on $[a, b]$ are integrable.

[^0]Theorem 2.3 [1] Every local fractional continuous function on $[a, b]$ is integrable.
Theorem 2.4 If $f(x)$ is a local fractional bounded function that is integrable on $[a, b]$. Then $f(x)$ is integrable on every subinterval $[c, d]$ of $[a, b]$.

Theorem 2.5 [1] If $f(x)$ and $g(x)$ are local fractional integrable functions on $[a, b]$ and $c \in \mathrm{R}$. Then
(1) $c f(x)$ is local fractional integrable and ${ }_{a} I_{b}^{(\alpha)} c f(x)=c_{a} I_{b}^{(\alpha)} f(x)$;
(2) $f(x) \pm g(x)$ is local fractional integrable and ${ }_{a} I_{b}^{(\alpha)}[f(x) \pm g(x)]={ }_{a} I_{b}^{(\alpha)} f(x) \pm{ }_{a} I_{b}^{(\alpha)} g(x)$.

Theorem 2.6 If $f(x)$ and $g(x)$ are local fractional integrable on $[a, b]$, then so is their product $f(x) g(x)$.

Theorem 2.7 [1] Let $f(x)$ be a function defined on $[a, b]$ and $a<c<b$.If $f(x)$ is local fractional integrable from a to c and from c to b, then $f(x)$ is local fractional integrable from a to b and

$$
{ }_{a} I_{b}^{(\alpha)} f(x)={ }_{a} I_{c}^{(\alpha)} f(x)+{ }_{c} I_{b}^{(\alpha)} f(x) .
$$

Theorem 2.8 [1] If $f(x)$ and $g(x)$ are local fractional integrable on $[a, b]$ and $f(x) \geq g(x)$ for all $x \in[a, b]$, then

$$
{ }_{a} I_{b}^{(\alpha)} f(x) \geq{ }_{a} I_{b}^{(\alpha)} g(x) .
$$

Theorem 2.9 [1] Let $f(x)$ be local fractional integrable on $[a, b]$, then so is $|f(x)|$ and

$$
\left.\right|_{a} I_{b}^{(\alpha)} f(x)\left|\leq{ }_{a} I_{b}^{(\alpha)}\right| f(x) \mid .
$$

3 Mean value theorems for Local fractional integrals

Theorem 3.1 (First Mean Value Theorem). If $f(x)$ and $g(x)$ are local fractional bounded and integrable functions on $[a, b]$, and let $g(x)$ be nonnegative (or nonpositive) on $[a, b]$. Set $m=\inf \{f(x): x \in[a, b]\}$ and $M=\sup \{f(x): x \in[a, b]\}$. Then there exists a point ξ in (a, b) such that

$$
\begin{equation*}
{ }_{a} I_{b}^{(\alpha)} f(x) g(x)=f(\xi)_{a} I_{b}^{(\alpha)} g(x) . \tag{3.1}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
m \leq f(x) \leq M, \text { for all } x \in[a, b] . \tag{3.2}
\end{equation*}
$$

Suppose $g(x) \geq 0$. Multiplying (3.2) by $g(x)$ we obtain

$$
m g(x) \leq f(x) g(x) \leq M g(x) \quad \text { for all } \quad x \in[a, b] .
$$

Besides, each of the functions $m g(x), M g(x)$, and $f(x) g(x)$ is local fractional integrable from a to b by Theorem 2.5 and Theorem 2.6. Hence, we get from these inequalities, by using Theorem 2.8,

$$
\begin{equation*}
m_{a} I_{b}^{(\alpha)} g(x) \leq{ }_{a} I_{b}^{(\alpha)} f(x) g(x) \leq M_{a} I_{b}^{(\alpha)} g(x) \tag{3.3}
\end{equation*}
$$

If ${ }_{a} I_{b}^{(\alpha)} g(x)=0$, it follows from (3.3) that ${ }_{a} I_{b}^{(\alpha)} f(x) g(x)=0$, and therefore equality (3.1) is obvious; if ${ }_{a} I_{b}^{(\alpha)} g(x)>0$, then (3.3) implies

$$
m \leq \frac{{ }_{a} I_{b}^{(\alpha)} f(x) g(x)}{{ }_{a} I_{b}^{(\alpha)} g(x)} \leq M
$$

there exists a point ξ in (a, b) such that

$$
m \leq f(\xi) \leq M
$$

which obtains the desired result (3.1).
In particular, for $g(x)=1$, we have from Theorem 3.1 the following result.
Corollary 3.1 Let $f(x)$ be an local fractional integrable function on $[a, b]$ and let m and M be the infimum and supremum, respectively, of $f(x)$ on $[a, b]$. Then there exists a point ξ in (a, b) such that

$$
{ }_{a} I_{b}^{(\alpha)} f(x)=f(\xi) \frac{(b-a)^{\alpha}}{\Gamma(1+\alpha)}
$$

Remark.Conditions of Corollary 3.1. is weaker than those of Theorem 2.23 in [1].
In what follows we will make use of the following fact, known as Abel's lemma.
Lemma 3.2 Let the numbers p_{i} for $1 \leq i \leq n$ satisfy the inequalities $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$ and the numbers $S_{k}=\sum_{i=1}^{k} q_{i}$ for $1 \leq k \leq n$ satisfy the inequalities $m \leq S_{k} \leq M$ for all values of k, where q_{i}, m, and M are some numbers. Then $m p_{1} \leq \sum_{i=1}^{n} p_{i} q_{i} \leq M p_{1}$.

Theorem 3.3 (Second Mean Value Theorem I). If $f(x)$ is a local fractional bounded function that is integrable on $[a, b]$. Let further m_{F} and M_{F} be the infimum and supremum, respectively, of the function $F(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{x} f(t)(d t)^{\alpha}$ on $[a, b]$. Then:
(i) If $g(x)$ is nonincreasing with $g(x) \geq 0$ on $[a, b]$, then there is some point ξ in (a, b) such that $m_{F} \leq f(\xi) \leq M_{F}$ and

$$
\begin{equation*}
{ }_{a} I_{b}^{(\alpha)} f(x) g(x)=g(a) F(\xi) \tag{3.4}
\end{equation*}
$$

(ii) If a function $g(x)$ is any local fractional monotone function on $[a, b]$, then there is some point ξ in (a, b) such that $m_{F} \leq F(\xi) \leq M_{F}$ and

$$
\begin{equation*}
{ }_{a} I_{b}^{(\alpha)} f(x) g(x)=[g(a)-g(b)] F(\xi)+g(b)_{a} I_{b}^{(\alpha)} f(x) \tag{3.5}
\end{equation*}
$$

Proof. To prove part (i) of the theorem, suppose that $g(x)$ is nonincreasing and that $g(x) \geq 0$ for all $x \in[a, b]$. Consider an arbitrary $\varepsilon>0$. Since $f(x)$ and $f(x) g(x)$ are integrable on $[a, b]$, we can choose, by definition of Local fractional integrals, a partition $a=x_{0}<x_{1}<\ldots x_{n-1}<$ $x_{n}=b$ such that

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)^{\alpha}<\varepsilon^{\alpha} \tag{3.6}
\end{equation*}
$$

And

$$
\begin{equation*}
\left|\frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n} f\left(x_{i-1}\right) g\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)^{\alpha}-\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x) g(x)(d x)^{\alpha}\right|<\varepsilon^{\alpha} \tag{3.7}
\end{equation*}
$$

where m_{i} and M_{i} are the infimum and supremum, respectively, of $f(x)$ on $\left[x_{i-1}, x_{i}\right)$. Since $g\left(x_{i-1}\right) \geq 0$, we get from $m \leq f\left(x_{i-1}\right) \leq M$ that

$$
\begin{align*}
& \frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n} m_{i} g\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)^{\alpha} \\
& \leq \frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n} f\left(x_{i-1}\right) g\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)^{\alpha} \leq \frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n} M_{i} g\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)^{\alpha} \tag{3.8}
\end{align*}
$$

holds. Next, by Corollary 3.1, there exist numbers ξ_{i} for $1 \leq i \leq n$ such that $m_{i} \leq f\left(\xi_{i-1}\right) \leq M_{i}$ and

$$
\frac{1}{\Gamma(1+\alpha)} \int_{x_{i-1}}^{x_{i}} f(x)(d x)^{\alpha}=f\left(\xi_{i}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)}
$$

Consider the numbers

$$
S_{k}=\sum_{i=1}^{k} f\left(\xi_{i}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)}=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{x_{k}} f(x)(d x)^{\alpha} .
$$

for $1 \leq k \leq n$. Obviously, $m_{F} \leq S_{k} \leq M_{F}$, where m_{F} and M_{F} are the infimum and supremum, respectively, of $F(x)$ on $[a, b]$. Put

$$
p_{i}=g\left(x_{i-1}\right) \quad \text { and } \quad q_{i}=f\left(\xi_{i}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)}
$$

for $1 \leq i \leq n$. Since $g(x)$ is nonincreasing and $g(x) \geq 0$, we have

$$
p_{1} \geq p_{2} \geq \ldots \geq p_{n}
$$

The numbers p_{i}, S_{i}, and q_{i} satisfy the conditions of Lemma 3.2. Therefore

$$
\begin{equation*}
m_{F} g(a) \leq \sum_{i=1}^{n} g\left(x_{i-1}\right) f\left(\xi_{i}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)} \leq M_{F} g(a) \tag{3.9}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} g\left(x_{i-1}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)} \leq \sum_{i=1}^{n} g\left(x_{i-1}\right) f\left(\xi_{i}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)} \leq \sum_{i=1}^{n} M_{i} g\left(x_{i-1}\right) \frac{\left(x_{i}-x_{i-1}\right)^{\alpha}}{\Gamma(1+\alpha)} \tag{3.10}
\end{equation*}
$$

From (3.8) and (3.10) we have, taking into account the monotonicity of $g(x)$ and (3.6),

$$
\begin{align*}
& \left|\frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n} g\left(x_{i-1}\right)\left[f\left(x_{i-1}\right)-f\left(\xi_{i}\right)\right]\left(x_{i}-x_{i-1}\right)^{\alpha}\right| \\
& \leq \frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n}\left(M_{i}-m_{i}\right) g\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)^{\alpha} \tag{3.11}\\
& \leq \frac{g(a)}{\Gamma(1+\alpha)} \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)^{\alpha} \leq g(a) \varepsilon
\end{align*}
$$

From this and (3.7) it follows that

$$
\left|\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x) g(x)(d x)^{\alpha}-\frac{1}{\Gamma(1+\alpha)} \sum_{i=1}^{n} g\left(x_{i-1}\right) f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)^{\alpha}\right|<\varepsilon^{\alpha}+g(a) \varepsilon^{\alpha} .
$$

Hence, using (3.9), we obtain

$$
-\varepsilon^{\alpha}-g(a) \varepsilon^{\alpha}+m_{F} g(a)<\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x) g(x)(d x)^{\alpha}<\varepsilon^{\alpha}+g(a) \varepsilon^{\alpha}+M_{F} g(a) .
$$

Since $\varepsilon>0$ is arbitrary, we get

$$
\begin{equation*}
m_{F} g(a) \leq \frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x) g(x)(d x)^{\alpha} \leq M_{F} g(a) . \tag{3.12}
\end{equation*}
$$

If $g(a)=0$, it follows from (3.11) that $\int_{a}^{b} f(x) g(x)(d x)^{\alpha}=0$, and therefore equality (3.4) becomes obvious; if $g(a)>0$, then (3.11) implies

$$
m_{F} \leq \frac{a I_{b}^{(\alpha)} f(x) g(x)}{g(a)} \leq M_{F}
$$

there exists a point ξ in (a, b) such that

$$
m_{F} \leq F(\xi)=\frac{{ }_{a} I_{b}^{(\alpha)} f(x) g(x)}{g(a)} \leq M_{F} .
$$

which yields the desired result (3.4).
Let now $g(x)$ be an arbitrary nonincreasing function on $[a, b]$. Then the function h defined by $h(t)=g(t)-g(b)$ is nonincreasing and $h(t) \geq 0$ on $[a, b]$. therefore, applying formula (3.4) to the function $h(t)$, we can write

$$
\begin{aligned}
& { }_{a} I_{b}^{(\alpha)} f(x)[g(x)-g(b)] \\
& =\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x)[g(x)-g(b)](d x)^{\alpha}=[g(a)-g(b)] F(\xi) .
\end{aligned}
$$

which obtains the formula (3.5) of part (ii) for nonincreasing functions $g(x)$. If $g(x)$ is nondecreasing, then the function $g_{1}(x)=-g(x)$ is nonincreasing, and applying the obtained result to $g_{1}(x)$, we have the same result for nondecreasing functions $g(x)$ as well. Thus, part (ii) is proved for all monotone functions $g(x)$.

The following theorem can be proved in a similar way as Theorem 3.3.

Theorem 3.4 (Second Mean Value Theorem II). If $f(x)$ be a local fractional bounded function that is integrable on $[a, b]$. Let further m_{G} and M_{G} be the infimum and supremum, respectively, of the function $G(x)=\frac{1}{\Gamma(1+\alpha)} \int_{x}^{b} f(t)(d t)^{\alpha}$ on $[a, b]$. Then:
(i) If a function $g(x)$ is nonincreasing with $g(x) \geq 0$ on $[a, b]$, then there is some point ξ in (a, b) such that $m_{G} \leq G(\xi) \leq M_{G}$ and

$$
{ }_{a} I_{b}^{(\alpha)} f(x) g(x)=g(b) G(\xi)
$$

(ii) If $g(x)$ is any local fractional monotone function on $[a, b]$, then there is some point ξ in (a, b) such that $m_{G} \leq G(\xi) \leq M_{G}$ and

$$
{ }_{a} I_{b}^{(\alpha)} f(x) g(x)=[g(b)-g(a)] G(\xi)+g(a)_{a} I_{b}^{(\alpha)} f(x)
$$

References

[1] X. Yang. Local Fractional Functional Analysis and Its Applications. Asian Academic Publisher Limited. 2011.
[2] K.M.Kolwankar, A.D.Gangal. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos, 6 (4), 1996, 505-512.
[3] A.Carpinteri, P.Cornetti. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals,13, 2002,85-94.
[4] F.B.Adda, J.Cresson. About non-differentiable functions. J. Math. Anal. Appl., 263 (2001),721-737.
[5] A.Babakhani, V.D.Gejji. On calculus of local fractional derivatives. J. Math. Anal. Appl.,270,2002, 66-79.
[6] F. Gao, X.Yang, Z. Kang. Local fractional Newton's method derived from modified local fractional calculus. In: Proc. of the second Scientific and Engineering Computing Symposium on Computational Sciences and Optimization (CSO 2009), 228-232, IEEE Computer Society,2009.
[7] X. Yang, F. Gao. The fundamentals of local fractional derivative of the one-variable nondifferentiable functions. World Sci-Tech R\&D, 31(5), 2009, 920-921.
[8] X. Yang, F. Gao. Fundamentals of Local fractional iteration of the continuously non-differentiable functions derived from local fractional calculus. In: Proc. of the 2011 International Conference on Computer Science and Information Engineering (CSIE2011), 398-404, Springer, 2011.
[9] X.Yang, L.Li, R.Yang. Problems of local fractional definite integral of the one-variable nondifferentiable function. World Sci-Tech R\&D, 31(4), 2009, 722-724.
[10] J.H He. A new fractional derivation. Thermal Science.15, 1, 2011, 145-147.
[11] W. Chen. Time-space fabric underlying anomalous disusion. Chaos, Solitons and Fractals, 28 , 2006, 923-929.
[12] X.Yang. Fractional trigonometric functions in complex-valued space: Applications of complex number to local fractional calculus of complex function. ArXiv:1106.2783v1 [math-ph].
[13] X.Yang. Generalized local fractional Taylor's formula for local fractional derivatives.ArXiv:1106.2459v1 [math-ph].
[14] X. Yang, Local Fractional Integral Transforms, Progress in Nonlinear Science, 4(2011): 1-225.

[^0]: *E-mail address: cgswavelets@126.com(Chen)

