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The Simulation Hypothesis proposes that all of reality is an artificial simulation, analogous to a computer
simulation. Even assuming massive computing resources are available, programming gravity between macro
objects in a Planck level simulation (where all events occur at unit Planck time) can present challenges. Here
is described a method whereby gravitational force between objects is replaced with units of orbital momentum
that can be used to directly link the object particles together (as gravitational orbitals or gravitons). The or-
bital angular momentum of a planetary orbit becomes the sum of the planet-sun particle-particle orbital angular
momentum and the rotational angular momentum of a planet the sum of its particle-particle rotational angular
momentum. As orbits have different momentum densities, movement between orbits occurs via a change in
momentum, an orbital (momentum) buoyancy. Extending this approach to the atom, instead of the electron or-
biting a nucleus according to an electric force, the electron is confined within the orbital region by the geometry
of the orbital momentum. Instead of an electron transition between orbitals, the existing orbital is exchanged
for the new orbital by the momentum of the incoming photon, the electron then confined within a new orbital
region. The Rydberg formula is suited for this.

1 Introduction

The Simulation Hypothesis proposes that all of reality, in-
cluding the earth and the universe, is in fact an artificial sim-
ulation, analogous to a computer simulation.

Planck units are suitable for use in deep universe simula-
tions as they are by definition discrete units, however simula-
tions at the Planck level, even with the availability of massive
computer resources, are difficult to implement as all events
occur at unit Planck time.

A method for programming the Planck units for mass,
length, time and charge from a virtual (dimensionless) elec-
tron has been proposed [2]. This approach uses frequencies
(the frequency of occurrence of an event at unit Planck time)
instead of probabilities (the probability of occurrence) and
where macro events occur at the intersection of underlying
sub-events. In this article we discuss a method by which grav-
ity can be simulated by replacing a (continuous) gravitational
force between objects with (digital) units of orbital momen-
tum (gravitational orbitals or gravitons) that link all particles
in the objects respectively at unit Planck time. The observed
gravitational orbit is the sum of the underlying gravitational
orbitals. This is predicated upon digital time where time is
an incrementing variable measured in units of Planck time
and not a continuous (analog) time. We can then simplify
wave-particle duality at the Planck level to an oscillation be-
tween an electric wave-state to a (discrete) unit of Planck-
mass (for 1 unit of Planck-time) point-state, and by assigning
graviton links between all particles that are simultaneously in
the point-state (for any chosen unit of Planck time), we can
sum their respective orbital angular momentum.

The gravitational force can thereby be replaced by these
Planck-mass to Planck-mass at Planck time graviton links.
The moon for example will not orbit the earth, rather the

moon will be pulled along an orbit path by the sum orbital
angular momentum of the underlying gravitons; they are both
the track and the locomotive. Gravitational potential and ki-
netic energy then become measures of the alignment of these
gravitons.

In quantum mechanics an atomic orbital is a mathemat-
ical function that can be used to calculate the probability of
finding any electron of an atom in any specific region around
the atom’s nucleus. In the atom we can also replace proba-
bility with frequency, using an analogous unit of momentum
whereby the atomic orbital becomes the source of the elec-
tron orbital momentum and also confers the wave-function
(region) within which the electron may be found (there is
no ’empty space’ in the atom). As particles are ‘physically’
linked by these orbitals an electric force is also not required.
Gravitational orbitals become an extension of atomic orbitals.

Movement between orbitals becomes a function of orbital
‘buoyancy’, while the momentum of the orbital keeps elec-
trons and satellites following their orbits, it is this momentum
’buoyancy’ which keeps the satellite from ‘floating’ off into
space or ‘falling’ to the earth and which keeps the electron
within a particular energy level.

To change orbits, atomic or gravitational, will require a
change of orbital(s), i.e: a change in total orbit momentum.

2 Gravitational orbitals

2.1. The gravitational coupling constant αG characterizes the
gravitational attraction between a given pair of elementary
particles in terms of the electron mass to Planck mass ratio;

αG =
Gm2

e

~c
=

m2
e

m2
P

= 1.75...x10−45 (1)

If we replace wave-particle duality with an electric wave-state
to Planck-mass (for 1 unit of Planck-time) point-state oscilla-
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tion then at any unit of Planck time t a certain number of par-
ticles will simultaneously be in the Planck mass point-state.
For example a 1kg satellite orbits the earth, for any t, satellite
(A) will have 1kg/mP = 45.9 x106 particles in the point-state.
The earth (B) will have 5.97 x1024kg/mP = 0.274 x1033 par-
ticles in the point-state. If we assign a graviton to link each
respective point-state then for any given unit of Planck time
the number of gravitons;

Ngravitons =
mAmB

m2
P

= 0.126 x1041 (2)

The observed satellite orbit around the earth derives from the
sum of these 0.126 x1041 gravitons. If A and B are respec-
tively Planck mass particles then Ngravitons = 1. If A and B are
respectively electrons then

Ngravitons = αG =
m2

e

m2
P

= 1.75...x10−45 (3)

The frequency of an electron oscillation cycle = (mP/me)tp

and so the probability that any 2 electrons are simultaneously
in the mass point-state for any chosen t = (mP/me)2 = 1/αG.
Ngravitons is simply the sum of all the respective particle αG’s
between both objects at any t, as a consequence for objects
whose mass is less than Planck mass there will be units of
time t when there are no graviton links and wave-state interac-
tions will predominate. Gravity becomes the sum of discrete
interactions between units of Planck mass.

2.2. Although the atom has a complex geometry, gravitational
orbits are an average of all the underlying gravitational or-
bitals (gravitons) and so more closely approximate a classical
geometry, it is therefore not necessary to know the individual
graviton (orbital) structure. Consequently we can adapt the
Bohr model to gravitational orbits albeit n, being an average
of all the individual graviton n’s, is not an integer.

We have 2 homogeneous objects A and B, with B orbiting
A (mA >> mB). The point-states, if scattered evenly through-
out A (even mass distribution) may be treated as a point mass
concentrated in the center and so the Schwarzschild radius
λA = (mA/mP)2lp can be used where mA/mP = average num-
ber of Planck mass point-states in A per unit of Planck time,
the fine structure constant α = 137.03599....

rg = αn2λg (4)

vg =
c
√

2αn
(5)

ag =
c2λg

2r2
g

=
c2

2α2n4λg
(6)

Tg =
rg
vg

=
√

2α(
2παn3λg

c
) (7)

2.2.1. Example - Earth radius = 6371km

µearth = 3.986004418(9)x1014 (std grav. parameter)
λearth = 2µearth/c2 = .00887m

rg = 6371.0 km (n = 2289.408...)
ag = 9.820 m/s2

Tg = 5060.837 s
vg = 7909.792 m/s

Geosynchronous orbit radius = 42164km
rg = 42164.0 km (n = 5889.66...)
ag = 0.2242 m/s2

Tg = 86163.6 s
vg = 3074.666 m/s

2.2.2. The energy that was required to lift that 1kg satellite
into geosynchronous orbit is the difference between the en-
ergy of each of the 2 orbits (geosynchronous and earth).

R(gravity orbital) =
1

2πrg
(

1
n2

1

−
1
n2

2

) (8)

f = R(gravity orbital)c (9)

Earth surface n = 2290 (6371km)
Geosynchronous orbit n = 5890 (42169km)

fgraviton = n2290 orbit−n5890 orbit = 7.485−1.132 = 6.354Hz

Egraviton = 0.412x10−32J

Ngravitons = Mm/m2
P = 0.126x1041

Etotal = Egraviton . Ngravitons = 53MJ/kg

2.2.3 Angular momentum
2.2.3.1 Orbital angular momentum Loam

Loam = 2π
Mr2

T
= Ngravitons n

h
2π

√
2α,

kgm2

s
(10)

Ngravitons = (
Mplanet Msun

m2
P

) (11)

Angular momentum of a point-point orbital (Ngravitons = 1);

Loam = (
m2

P

m2
P

) n
h

2π

√
2α = n

h
2π

√
2α (12)

Orbital angular momentum Loam of the planets;
mercury = .9153 x1039 (n = 378.2733)
venus = .1844 x1041 (n = 517.0853)
earth = .2662 x1041 (n = 607.9927)
mars = .3530 x1040 (n = 750.4850)
jupiter = .1929 x1044 (n = 1387.0157)
pluto = .365 x1039 (n = 3820.2628)

2.2.3.2 Rotational angular momentum Lram

The planetary orbital period derives from the sum orbital
angular momentum of the gravitons and so can be calculated
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from Ngravitons and n, furthermore a change in orbital momen-
tum (such as a collision with an asteroid) should theoretically
result in an orbital period adjustment, planet rotation how-
ever is less flexible as external momentum is absorbed. The
following gives the rotational angular momentum for an even
mass distribution with no extraneous factors.

Trot =
2πrg
vrot

= 2παn2λg
2αn

c
=

4πα2n3λg

c
(13)

Lram =
2
5

2πMr2

T
= (

2
5

)Norbitals n
h

2π
,

kgm2

s
(14)

Using nearth = 2290, if the earth were an idealized sphere
whose rotation depended solely on rotational angular mo-
mentum then 1 day would equal 83848s (86400s) and Mars
99208s (88643s);

Trot =
4πα2n3

earthλearth

c
= 83847.7s (15)

Lram = (
2
5

)(
Mearth

mP
)2nearth

h
2π

= .7275 1034 (16)

2.3. Time dilation.
2.3.1. Velocity: In the article ‘Programming Relativity in
a Planck unit Universe’, a model of a virtual hyper-sphere
universe expanding in Planck steps was proposed [3]. In
that model objects are pulled along by the expansion of the
hyper-sphere irrespective of any motion in 3-D space. As
such, while B (satellite) has a circular orbit in 3-D space co-
ordinates it has a cylindrical orbit around the A (planet) time-
line axis in the hyper-sphere co-ordinates with orbital period
Tgc (from B1 to B2) at radius rg and orbital velocity vg. If A is
moving with the universe expansion (albeit stationary in 3-D
space) then the orbital time tg alongside the A time-line axis
(fig. 1) becomes;

tg =

√
(Tgc)2 − (2πrg)2 = (Tgc)

√
1 −

v2
g

c2 (17)

Fig. 1: orbit relative to A timeline axis

2.3.2. Gravitational:

vs = vescape =
√

2.vg (18)

√
1 −

2GM
rgc2 =

√
1 −

v2
s

c2 (19)

2.4. Binding energy in the nucleus can be simplified using the
same approach.

mnuc = mp + mn (20)

λs =
lpmP

mnuc
(21)

r0 =
√
αλs (22)

Rs = αλs (23)

v2
s =

c2

α
(24)

The gravitational binding energy (µ) is the energy required
to pull apart an object consisting of loose material and held
together only by gravity.

µG =
3Gm2

nuc

5Rs
=

3mnucc2

5α
=

3mnucv
2
s

5
(25)

Nuclear binding energy is the energy required to split a nu-
cleus of an atom into its component parts. The electrostatic
coulomb constant;

ac =
3e2

20πεr0
(26)

E =
√

(α)ac =
3mnucc2

5α
=

3mnucv
2
s

5
= µG (27)

Average binding energy in nucleus = µG = 8.22MeV/nucleon.

2.5. Anomalous precession
semi-minor axis: b = αl2λsun

semi-major axis: a = αn2λsun

radius of curvature L

L =
b2

a
=

al4λsun

n2 (28)

3λsun

2L
=

3n2

2αl4
(29)

precession =
3n2

2αl4
.1296000.(100Tearth/Tplanet) (30)

Table 1 GR [6] Observed
Mercury = 42.9814 42.9195 43.1 ± 0.5

Venus = 8.6248 8.6186 8.4 ± 4.8
Earth = 3.8388 3.8345 5.0 ± 1.2
Mars = 1.3510 1.3502

Jupiter = 0.0623 0.0623

2.6. Fp = Planck force, λ = Schwarzschild radius;

Fp =
mPc2

lp
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Ma =
mPλa

2lp
, mb =

mPλb

2lp
(31)

Fg =
MambG

R2 =
λaλbFp

4R2
g

=
λaλbFp

4α2n4(λa + λb)2 (32)

a) If Ma = mb, the object mass is not required

Fg =
Fp

(4αn2)2 (33)

b) If Ma >> mb, (λa + λb = λa), then relative mass is used
and Fg = mbag

Fg =
λbFp

(2αn2)2λa
(34)

Fg =
mbc2

2α2n4λa
= mbag (35)

2.7 The hole in the Earth (a thought experiment [1]). An ap-
ple on a tree-top is in the 6371.005km orbit. To dissociate
that apple we have to add sufficient momentum to cancel the
(gravitational) momentum of the 6371.005 orbit. This can be
achieved when the apple reaches escape velocity vs.

If our apple drops from the tree-top orbit and lands on
the ground it will transfer momentum to the earth and subse-
quently change to the lower earth-surface = 6371km orbit.

However if there is a hole through the center of the earth
then the apple will fall through it to the other side of the earth,
then fall back into the hole returning to the tree-top 84mins
later. Having no means to transfer momentum it will remain
throughout its journey in the 6371.005 tree-top orbit, oscillat-
ing back and forth through that hole ad infinitum. The orbital
(gravitational) angular momentum is conserved. The apple
can only change orbits by changing its total orbit momentum.

3 Atomic orbits

3.1. Atomic electron transition is defined as a change of an
electron from one energy level to another but the method and
so time-line of the transition is not clear, yet we need to define
the state of the electron during this transition period. One
method to resolve this is by applying the above momentum
orbital approach to the atom as the Rydberg formula is suited
for this. In the following we have a transition between an
initial i and a final f orbit in a Hydrogen atom, the incoming
photon λR causes the electron to ‘jump’ from the n = i to
n = f orbit.

1
λR

= R.(
1
n2

i

−
1
n2

f

) =
R
n2

i

−
R
n2

f

(36)

The above could be interpreted as referring to 2 photons;

λR = (+λi) − (+λ f )

Let us suppose a region between a free proton p+ and a free
electron e− which we may define as zero. This region then

divides into 2 waves of momentum of inverse phase (i.e,: we
are using virtual photons) which we may designate as photon
(+λ) and anti-photon (−λ) whereby;

(+λ) + (−λ) = zero

The photon (+λ) leaves (at the speed of light), the anti-photon
(−λ) however is trapped between the electron and proton and
forms a standing wave orbital. Due to the loss of the photon,
the energy of (p+ + e− + −λ) < (p+ + e− + 0) and so is stable.

Let us define an (n = i) orbital as (−λi). The incoming
Rydberg photon λR = (+λi)−(+λ f ) arrives in a 2-step process.
First the (+λi) adds to the existing (−λi) orbital.

(−λi) + (+λi) = zero

The (−λi) orbital is canceled and we revert to the free elec-
tron and free proton; p+ + e− + 0 (ionization). However we
still have the remaining −(+λ f ) from the Rydberg formula.

0 − (+λ f ) = (−λ f )

From this wave addition followed by subtraction we have
replaced the n = i orbital with an n = f orbital. The electron
was not involved in this process (it has not moved, there was
no transition from an ni to an n f orbital), however the electron
region (boundary) is now determined by the new n = f orbital
(−λ f ).

3.2. As gravitational orbits are a statistical sum of the under-
lying orbitals, it is not necessary to know precisely the ge-
ometry of the individual orbitals and so a gravitational Bohr
model can be used. In the atom however we must deal with in-
dividual orbitals in the wave-state and these geometries are at
present unknown, furthermore we must again translate from
probabilities to frequencies. The following approach can be
applied to simple atoms, it presumes that the geometry of the
particles can be used to influence the atomic spectra; the fre-
quency (wavelength) of the orbital as a function of the under-
lying particles themselves, and subsequent rotation as a result
of an incompressibility of momentum. Thereby spectra could
naturally emerge from geometrical imperatives. The actual
rotation itself, as with gravitational orbits, derives from the
expansion of the universe in Planck steps [3].

For example, we take A and B, where A is a sphere of
points with radius r, B is a single point and L = rω = distance
from the center of sphere A to point B. We then measure the
average distance S between B and each point in A and find
this relationship;

S = L(1 + V), V =
3

10ω2 (37)

If S is a measure of the momentum between A and B, and if
S > L, and if momentum cannot be compressed then B may
be forced to rotate (orbit) around A to compensate.
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L is the orbital, S a function of proton and electron wave-
length and the V term suggesting a spatial geometry (and so
used instead of the 1-D reduced mass formula).

L = S (
√

1 − 2V) (38)

Ratomic orbital =
1

(2α2)2πL
(

1
n2

1

−
1
n2

2

) (39)

The following are best-fit geometries;
Positronium: fP(1s − 2s) = 1233607 216.4 MHz [4]

S P = 2(λe +
λp

8
) (40)

LP = S P.

√
(1 −

48
25α3 ) (41)

c
2α22πLP

.(
1
12 −

1
22 ) = 1233607 214.9 MHz (42)

Hydrogen:
fH(1s − 2s) = 2466061 413 187.035 kHz [5]

S H = (λe + λp) (43)

LH = S H .

√
(1 −

48
α3 ) (44)

c
2α22πLH

.(1 −
1
4

) = 2466061 422 987 kHz (45)

LP

LH
.
2 fP(1s − 2s)
fH(1s − 2s)

= 1.000 000 005 (46)

fH(1s − 3s) = 97492.221701 [7]

2V =
54.75
α3 = 97492.222 354

fH(1s − 4s) = 102823.8530211

2V =
56
α3 = 102823.853 2377

fH(1s −∞) = 109678.77174307

2V =
55.75
α3 = 109678.771 45923

Ionization energy positronium:

P = 13.59844 (
LH

2LP
) = 6.8024eV (47)

Note: in calculating the above, the wavelengths of the elec-
tron and proton are known precisely to only about 9 digits. In
the following we use the mass of the nucleus λnuc.

L = (λe + λnuc).

√
(1 −

56
α3 ) (48)

Deutrium (mnuc = 3.343583719e-27 kg):
fD = 13.6021343eV, LH/LD = 1.00027365
Tritium (mnuc = 5.00818575e-27 kg):
fT = 13.6033658eV, LH/LT = 1.000364
Helium 1st IE = 24.587375eV (24.587387eV)

LHe = (
5λe

9
− (2λp + 2λn)).

√
(1 −

6
5α2 ) (49)

4 Sqrt of momentum

The above describes a simple nucleus and an orbiting elec-
tron, the premise being that the spectrum is strongly influ-
enced by the respective geometries of the electron, proton and
neutron. The gravitational orbital (graviton) is a mass-mass
link, the atomic orbital an electric-electric link, consequently
atomic (electric) and gravitational (mass) angular momen-
tums must be distinguishable. In an article ’Programming
Planck units from a virtual electron’ [2], the sqrt of Planck
momentum (denoted Q) was used as an independent constant
(where Planck momentum = 2πQ2, units = kgm/s = q2)
linking the mass domain with the charge domain. This Q ap-
pears in mass constants as Q2 and in charge constants as Q3

and Q5 and in the electron as Q15. As a sqrt, Q can have a
plus or a minus solution ±Q, however as the mass constants
use only Q2, they are always plus (with integer units q2 =

kg.m/s). If the particle units are non-integer then their ge-
ometries and so the orbitals will reflect this.

Q = 1.019 113 411..., unit = q (50)

mP =
2πQ2

c
, unit = kg (51)

e =
8c3

αQ3 .
2lp

c
=

16lpc2

αQ3 , units = A.s =
q3s
kg3 (52)

5 Summary

I have argued that it could be feasible to simulate gravitational
effects between macro objects in a Planck level simulation
using ‘physical’ units of momentum in lieu of analog forces,
predicate upon a digital time and a particle electric-to-mass
oscillation, both of which are well suited to programmed ap-
plications.

References

1. hyperphysics.phy-astr.gsu.edu/hbase/Mechanics
/earthole.html

2. Macleod, Malcolm J., Programming Planck units from a
virtual electron; a Simulation Hypothesis
Eur. Phys. J. Plus (2018) 133: 278

3. Macleod, Malcolm J. ”Programming Relativity in a
Planck unit Universe, a Simulation Hypothesis” (June 21,
2018).
http://dx.doi.org/10.13140/RG.2.2.18574.00326

5 4 Sqrt of momentum



Programming gravitational orbitals (gravitons)

4. M. S. Fee et al., Measurement of the positronium 1 3 S 1-2
3 S 1 interval; Phys. Rev. Lett. 70, 1397 (1993)

5. Parthey CG et al, Improved measurement of the hydro-
gen 1S-2S transition frequency, Phys Rev Lett. 2011 Nov
11;107(20):203001. Epub 2011 Nov 11.

6. https://www.mathpages.com/rr/s6-02/6-02.htm
7. NIST Atomic Spectra Database; October 2018

DOI: https://dx.doi.org/10.18434/T4W30Fe

6 5 Summary


