Nucleus in Strong nuclear gravity

U. V. S. Seshavatharam^{1*} and Prof. S. Lakshminarayana^{2†} ¹Faculty member, I-SERVE, Alakapuri, Hyderabad-35, India and

²Dept. of Nuclear Physics, Andhra University, Visakhapatnam-03, India.

Gravitational constant in β decay

Fitting the gravitational constant with atomic and nuclear physicsl constants is an interesting task. It is well established that, in β decay, neutron emits an electron and transforms to proton. Thus the nuclear charge changes and the nucleus gets stability. From the semi empirical mass formula, it is established that,

$$Z \cong \frac{A}{2 + (E_c/2E_a) A^{2/3}}.$$
 (1)

where Z = number of protons of the stable nucleus and A = number of nucleons in the stable nucleus. E_a and E_c are the asymmetry and coulombic energy constants. Semi empirically it is noticed that,

$$A_S \cong 2Z + \frac{Z^2}{S_f} \cong 2Z + \frac{Z^2}{157.069} \qquad (2)$$

Here S_f is a new number and can be called as the nuclear stability factor and A_S is stable mass number. With reference to the ratio of neutron and electron rest masses, S_f can be expressed

$$S_f \cong \sqrt{\alpha} \cdot \frac{m_n}{m_e} \cong 157.0687113$$
 (3)

Here α is the fine structure ratio. If Z= 21, A_S = 44.8; Z= 29, A_S = 63.35; Z=47, A_S = 108.06; Z=79, A_S = 197.73 and Z=92, A_S = 237.88. By considering A as the fundamental input its corresponding stable Z = Z_S takes the following form.

$$Z_S \simeq \left[\sqrt{\frac{A}{157.069} + 1} - 1\right] 157.069$$
 (4)

Thus Green's stability formula in terms of Z takes the following form.

$$\frac{0.4A^2}{A+200} \cong A_S - 2Z \cong \frac{Z^2}{S_f}.$$
 (5)

Surprisingly it is noticed that this number S_f plays a crucial role in fitting the nucleons rest mass. Another interesting observation is that

$$\frac{(m_n - m_p)c^2}{m_e c^2} \cong \ln\left(\sqrt{S_f}\right) \tag{6}$$

Here m_n , m_p and m_e are the rest masses of neutron, proton and electron respectively. Semi empirically it is noticed that

$$\frac{E_c}{2E_a} \cdot \frac{e^{S_f}}{N} \cong \frac{e^2}{4\pi\varepsilon_0 Gm_e^2} \tag{7}$$

Electron rest mass can be expressed as

$$m_e \cong \sqrt{\frac{2E_a}{E_c} \cdot \frac{N}{e^{S_f}}} \cdot \sqrt{\frac{e^2}{4\pi\varepsilon_0 G}}$$
 (8)

Here N is the Avogadro number. $\frac{e^2}{4\pi\varepsilon_0 Gm_e^2}$ is the electromagnetic and gravitational force ratio of electron. In this proposal the important questions are: What is the role of Avogadro number in β decay? and How to interpret the expression $\sqrt{\frac{e^2}{4\pi\varepsilon_0 G}}$? This is a multipurpose expression. Either the value of Avogadro number or the value of gravitational constant can be fitted.

$$G \cong \frac{2E_a}{E_c} \cdot \frac{N}{e^{S_f}} \cdot \frac{e^2}{4\pi\varepsilon_0 m_e^2} \tag{9}$$

From the semi empirical mass formula if $E_a = 23.21$ MeV and $E_c = 0.71$ MeV, $G \cong 6.6866323 \times 10^{-11}$ m³Kg⁻¹sec⁻². Since all other atomic constants are well measured, accuracy of G only depends upon E_a and E_c of the semi empirical mass formula.

^{*}Electronic address: seshavatharam.uvs@gmail.com †Electronic address: lnsrirama@yahoo.com

Nucleus in 'strong nuclear gravity'

- 1. N being the Avogadro number, mole number of particles effective atomic gravitational constant G_A is equal to N times the classical gravitational constant G. In mole particles, nuclear weak force magnitude for one one particle is $F_W \cong \frac{c^4}{NG_A} \cong 3.337152088 \times 10^{-4}$ newton. Nuclear strong force and weak force magnitudes can be correlated as $\sqrt{\frac{F_S}{F_W}} \cong$ $2\pi \ln (N^2)$. Thus $F_S \cong 157.9944058$ newton. Characteristic nuclear size is $R_0 \cong \sqrt{\frac{e^2}{4\pi\varepsilon_0 F_S}} \cong 1.208398568$ fm.
- 2. Nuclear weak energy constant is $E_W \cong \sqrt{\frac{e^2 F_W}{4\pi\varepsilon_0}} \cong 1.731844 \times 10^{-3}$ MeV. Nuclear strong energy constant is $E_S \cong \sqrt{\frac{e^2 F_S}{4\pi\varepsilon_0}} \cong 1.191630355$ MeV.
- 3. Considering the rest mass of electron, its gravitational mass generator = $X_E \cong m_e c^2 \div \sqrt{\frac{e^2}{4\pi\varepsilon_0} \left(\frac{c^4}{N^2G}\right)} \cong 295.0606338$. Using this number, tau and muon masses can be fitted accurately as $(mc^2)_n \cong \left[X_E^3 + (n^2X_E)^n\sqrt{N}\right]^{\frac{1}{3}} E_W$ where n = 1 and 2. At n = 1, $(mc^2) \cong 105.95$ MeV, n = 2, $(mc^2) \cong 1777.4$ MeV.
- 4. Proton rest mass is $m_p c^2 \cong \left(\frac{F_S}{F_W} + X_E^2 \frac{1}{\alpha^2}\right) E_W \cong 938.1791391$ MeV. Neutron, proton mass difference is $m_n c^2 - m_p c^2 \cong \sqrt{\frac{F_S}{F_W} + X_E^2} \cdot E_W \cong$ 1.29657348 MeV.
- 5. The proton-nucleon nuclear stability factor is $S_f \cong X_E - \frac{1}{\alpha} - 1 \cong 157.0246441$. At n = 1 and n = 2, nucleon rest energy $\cong \frac{S_f}{\sqrt{\alpha}} m_e c^2 - x \left(2^x + \frac{E_c}{2E_a}\right) m_e c^2$ where $x = (-1)^n$.
- 6. Weak coupling angle is $\sin \theta_W \cong \frac{1}{\alpha X_E} \cong 0.464433353 \cong \frac{\text{Up quark mass}}{\text{Down quark mass}}$. $X_S \cong \ln \left(X_E^2 \sqrt{\alpha}\right) \cong 8.91424 \cong \frac{1}{\alpha_s}$ can be con-

sidered as 'inverse of the strong coupling constant'.

- 7. With reference to proton rest energy, semi empirical mass formula coulombic energy is $E_c \cong \frac{\alpha}{X_S} \cdot m_p c^2 \cong \alpha \cdot \alpha_s \cdot m_p c^2 \cong 0.7681 \ MeV.$ Pairing energy constant is $E_p \cong \frac{m_p c^2 + m_n c^2}{S_f} \cong 11.959 \ MeV$ and asymmetry energy constant is $E_a \cong 2E_p \cong 23.918 \ MeV.$ Volume and surface energy constants and asymmetric and pairing energy constants can be related as $E_a E_v \cong E_s E_p \cong (X_S + 1) E_c \cong 7.615 \ MeV. E_v + E_s \cong E_a + E_p \cong 3E_p.$ Thus $E_v \cong 16.303 \ MeV$ and $E_s \cong 19.574 \ MeV.$ It is also noticed that, $\frac{E_a}{E_v} \cong 1 + \sin \theta_W$ and $\frac{E_a}{E_s} \cong 1 + \sin^2 \theta_W.$ Thus $E_v \cong 16.332 \ MeV$ and $E_s \cong 19.674 \ MeV.$
- 8. Nuclear binding energy can be fitted with 2 terms or 5 factors with $E_c \cong 0.7681 \text{MeV}$ as the single energy constant. First term = $T_1 \cong (f) (A+1) \ln [(A+1) X_S] E_c$, second term = $T_2 \cong \left[\frac{A^2 + (f.Z^2)}{X_S^2}\right] E_c$ where $f \cong 1 + \frac{2Z}{A_S} \cong \frac{4S_f + Z}{2S_f + Z} < 2$ and $A_S \cong 2Z + \frac{Z^2}{S_f} \cong 2Z + \frac{Z^2}{157.025}$. Close to the stable mass number, binding energy = $T_1 T_2$.
- 9. Magnetic moment of electron is $\mu_B \cong \frac{ec}{2} \sqrt{\frac{e^2}{4\pi\varepsilon_0 F_W}} \sin \theta_W \text{ and}$ magnetic moment of nucleon is $\mu_n \cong \frac{ec}{2} \sqrt{\frac{e^2}{4\pi\varepsilon_0 F_S}} \sin \theta_W \cong \frac{ecR_0}{2} \sin \theta_W$ where R_0 is the unit nuclear size or nucleon size.

References

- Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, Vol.19, No.2, (2010), p.263.
- Strong nuclear gravity a brief report. To be published in the Hadronic Journal.