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Abstract

Particles on a plate form Chladni patterns when the plate is acoustically excited.
To better understand these patterns and their possible real-world applications, I
present a new analytical and numerical study of the transition between standard and
inverse Chladni patterns on an adhesive surface at any magnitude of acceleration. By
spatial autocorrelation analysis, I examine the effects of surface adhesion and friction
on the rate of pattern formation. Next, I explore displacement models of particles
translating on a frictional surface with both adhesive and internal particle-plate
frictions. In addition, I find that both adhesion and damping forces serve as exquisite
particle sorting mechanisms. Finally, I discuss the possible real-world applications
of these sorting mechanisms, such as separating nanoparticles, organelles, or cells.
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1 Introduction

In 1787, Ernst Chladni showed that sand particles on an acoustically excited metal plate
rearrange themselves into esthetic patterns [1]. Ever since, researchers have been using
Chladni patterns to study standing waves and other harmonic behaviors [2]. The res-
onance of a horizontal plate deflects the sand particles away from the antinodes of the
vibration, leading to the formation of patterns at the nodes. Recently, experiments on
inverse Chladni patterns [3, 4] (i.e., particles collecting at the antinodes of an oscillat-
ing plate) have revealed a new area of research. In addition, both nodal and antinodal
Chladni patterns have been observed in microparticles and nanoparticles [5]; these pat-
terns effectively position and sort such particles.

In this study, I examine the effects of adhesion, friction, and damping on the de-
velopment of Chladni patterns, and suggest real-world applications for these effects. It
has been showed that by manipulating the vibrational acceleration of the plate around
the critical value g, it is possible to switch between nodal and antinodal patterns [3].
In my simulations, I replicate this effect using adhesion. This study also explains the
mechanics of the particle sorting process, which can be controlled by adhesion and damp-
ing. In addition, I use spatial autocorrelation analysis to explore the effects of adhesion
and frictional forces on the rate of pattern formation. Primarily, I present analytical
explanations of these phenomena, and then verify them with numerical simulations.

1.1 Dynamics of an oscillating plate

For centuries, researchers have attempted to develop a model to predict Chladni patterns.
Several attempts were based on deriving a relationship between the number of diametric
(linear) nodes and the frequency of oscillation [6]. To create more accurate models,
researchers analyzed the mathematics of the vibrating plate instead of directly studying
the nodal regions [7, 8]. The vertical deflection function of an acoustically excited plate
oscillated to one of its natural resonant frequencies ωkl corresponds to the integral count
of the sinusoidal half wavelengths in the x-direction k and y-direction l:

z(x, y, t) = a sin(ωklt) sin
kπx

Lx
sin

lπy

Ly
, (1)

where a is the amplitude, Lx is the length of the plate and Ly is its width.

1.2 Inverse Chladni patterns

Despite the popularity of standard Chladni patterns, inverse Chladni patterns are rela-
tively obscure. Gerner et al. has analyzed and numerically simulated the conditions for
particles to collect at the antinodes, forming Inverse Chladni patterns [3]. Convention-
ally, inverse Chladni patterns were assumed to be induced by only small particles that
were carried through air currents [9, 10, 11, 12]. However, Gerner et al. showed that
when the vibrational acceleration of the plate is below g, the particles stop bouncing
and remain in contact with the surface [3]. As a consequence, the particles translate
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toward the antinodes irrespective of the influence of air currents. They also discussed
the experimental constraints of producing inverse Chladni patterns: the structure of the
plate must be perfectly horizontal, and a minimum frictional force is required to start the
particles in a rolling motion [3]. The acceleration of a particle (from its center of mass)
moving toward the antinode at a given time t is acm(x, y, t) = W‖(x, y, t)/m, where W‖
is the parallel weight of the particle relative to the surface.

1.3 Spatial autocorrelation analysis

Spatial autocorrelation is a geographical tool used to analyze a variable’s degree of
dependence on its proximal locations. A typical method of quantifying a pattern’s
spatial autocorrelation is to calculate its Moran’s I value. A Moran’s I value close to
+1.0 indicates clustering and that close to –1.0 indicates dispersion [13]; a Moran’s I
value equal to 0 indicates pure randomness, i.e., no spatial autocorrelation. In this
study, for analyzing the effect of adhesive and frictional forces on Chladni patterns,
spatial autocorrelation values are used to quantify the amount of particle clustering
caused by accelerations and other forces acting on the particles. Next, the effect of these
forces on the rate at which patterns form is analyzed using Moran’s I values.

1.3.1 Limitations of Moran’s I values

All numerical simulations that were analyzed for spatial autocorrelation involved parti-
cles initially positioned in a grid-like structure before the plate was allowed to oscillate.
Hence, hypothetically, as patterns start to form, the Moran’s I value should gradually
increase. However, Moran’s I values do not indicate whether the patterns are in standard
or inverse form. These values also do not represent the degree of similarity between the
subject pattern and the nodal lines of the vibrating plate. In other words, Moran’s I
values do not measure how similar a pattern is to the ideal Chladni pattern that could
be formed under such conditions.

2 Numerical Simulations

The numerical simulations consisted of a dynamic mesh, whose form was based on Eq.
1 at a given natural frequency and time. Spherical particles of 5 cm diameter and 1 kg
mass were used instead of dust particles; large size and mass of particles were chosen
to disprove the previous assumption that inverse patterns form only with small dust
particles. To accommodate these large particles, the dimensions of the plate were set
as Lx = Ly = 10m. The number of particles varied from 225 to 10,000. The particles
were positioned in a grid-like structure (e.g. 100 × 100) on the resting position of the
plate at t = 0. Numerical computing software packages MATLAB and Mathematica
were used to simulate the dynamics of the oscillating mesh [14], and an external physics
engine was used to calculate the body dynamics. The physics engine was optimized for
particle–particle and particle–plate collisions.
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2.1 Limitations and impractical elements of the numerical simulations

The simulated plate is completely horizontal; therefore, it does not contain any pre-made
deformations, unlike a real plate. In addition, despite the massive 1 kg particles and
the extensive area of the plate in these simulations, neither the plate’s position nor its
acceleration is affected in any manner by particle–plate collisions or by its own weight.
Furthermore, these simulations contained the following: oscillating plates with dimen-
sions of 10m × 10m, perfectly uniform surface adhesion, internal friction, and damping
coefficients. The particles used in the simulations were also perfectly spherical and iden-
tical in size. Virtual experiments were performed in a vacuum to eliminate the effect of
air currents on the particles. Because of the technical and financial constraints of con-
trolling the conditions mentioned above, numerical simulations were performed instead
of experiments.

The effects of two types of friction, sliding and rolling frictions, on the formation of
inverse Chladni patterns are studied here. However, for conciseness and simplicity, only
sliding friction is used in the numerical simulations. In later sections, I analytically
explore the effects of both of these forces.

3 Rate of Pattern Formation

Chladni patterns have mostly been studied after the particles have formed a clear, def-
inite shape. The rate of Chladni pattern formation reflects the influences of the forces
acting on the particles. Thus, to determine the rate of pattern formation, I use spatial
autocorrelation analysis as a quantifiable measure of the amount of particle clustering;
this then allows me to attain an overview of the effects of adhesive and frictional forces.

3.1 Effects of adhesion

Figure 1 shows the effect of adhesion on the clustering of particles that were initially
in a dispersed position (100 × 100 grid). The break-off force (F N,Z) is the minimum
amount of force required to eject a particle from the surface of the plate as a result
of its acceleration. Uniform increments in F N,Z, resulted in a steady increase in the
initial rate of clustering; however, note that spatial autocorrelation analysis does not
account for the number of particles involved in the clustering or for the number of slow-
moving and stationary particles. The patterns were also found to quickly settle within
a certain range of Moran’s I values. At lower values of F N,Z, particle movements are
more chaotic, because the adhesive force has only a limited effect on them; therefore,
the Moran’s I values are closer to 0. At higher values of F N,Z, particle movements are
highly constricted, because the adhesive force has a strong effect on them; therefore, the
Moran’s I values are farther from 0 (in the positive direction).
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Figure 1: Effect of adhesion on the rate of pattern formation: Moran’s I values of patterns
formed from 1 to 10 s for various values of the break-off force (simulation parameters:
µi = 0.1, f = 9 Hz, and 10,000 particles).

3.2 Effects of friction

Figure 2 shows the effect of friction on the clustering of particles that were initially in
a dispersed position (100× 100 grid). The effect of friction is only applicable to sliding
or rolling particles (in this case, sliding particles); therefore, the results in Fig. 2 were
produced under complete inverse Chladni pattern conditions, where no particles were
ejected from the surface because of the acceleration of the plate. F N,Z was kept constant
at 6.82N, and the coefficient of internal particle–plate friction (i.e., the Coulomb friction
coefficient) was uniformly increased from 0.1 to 0.8. The results obtained from the
simulation differed slightly from those obtained from the adhesion control test. The
Moran’s I values at t = 1s were almost identical for all values of µi, and the settling
values were delayed until particles formed compact structures at the antinodes. The
acceleration of the particles decreased as the frictional force increased; consequently, the
rate of clustering was inversely proportional to µi.

4 Internal and Adhesive Friction

In this section, I examine the combined effects of adhesion and internal friction on the
surface-parallel displacement of the particles. The internal frictional force, Ff is the
resisting force acting against a sliding particle on a surface. Two types of friction are
studied here: sliding and rolling frictions (the latter is studied only analytically).
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Figure 2: Effect of friction on the rate of pattern formation: Moran’s I values of patterns
formed from 1 to 10 s for various values of the Coulomb friction coefficient (simulation
parameters: F N,Z = 6.82N, f = 9 Hz and 10,000 particles).

4.1 Theory

First, we need to look at the forces that cause particles to translate on an oscillating
surface. For all particles in contact with the vibrating surface, the vertical position at
any given point can be derived from Eq. 1. Using the second derivative of Eq. 1, we
can find the vertical acceleration of particles at any given time:

z̈(x, y, t) = aω2
kl sin(ωklt) sin

kπx

Lx
sin

lπy

Ly
. (2)

By adding the particles’ acceleration due to gravity g to Eq. 2, it is possible to obtain
the vertical weight W for a given mass m:

W (x, y, t) = −m
[
g − z̈(x, y, t)

]
= −m

[
g − aω2

kl sin(ωklt) sin
kπx

Lx
sin

lπy

Ly

]
. (3)

Because of the dynamic nature of the plate, particles are subjected to plate-parallel W‖
and plate-perpendicular W⊥ forces (Fig. 3), which are partial components of the W
vector.

Next, we must determine plate-parallel and frictional forces. To calculate W‖ we
need to know the slope of the plate for z(x, y, t). This can be obtained by multiplying
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Figure 3: Weight W of a particle and its components (W‖ and W⊥) when it is in contact
with a surface.

W with the gradient of Eq. 1:

W‖(x, y, t) = W (x, y, t)
dz(x, y, t)

dx

dz(x, y, t)

dy

dz(x, y, t)

dt
. (4)

The frictional force Ff acting against W‖ is the combined effect of the adhesive force
and the internal particle-plate friction. This combined effect was studied by Tomas [15],
and the frictional force acting against a sliding particle was found to be:

Ff = µi[FN + FH(FN)], (5)

where µi is the Coulomb friction coefficient, FN is the normal force acting perpendic-
ularly to the plate, and FH is the adhesive force at (x, y, t). Although it is possible
to calculate FN directly by using the gradient function in Eq. 4, for simplicity I use
FN = −W⊥ = −[W (x, y, t) − W‖(x, y, t)], because it involves simple vector addition.
During the oscillations, the adhesive force counteracts with force exerted by the plate;
this force due to acceleration Facc is dynamic and is given as ≈ −FH = −W ; however,
this is only true for W < FN,Z, where FN,Z is the break-off force; thus particles are
ejected if this limit is exceeded [16]. In addition, the rolling friction can be calculated in
a similar manner [15]:

Ff = µr[FN + FH(FN)], (6)

where we substitute the rolling friction coefficient µr for µi.

Now that we have formulated plate-parallel and frictional forces, we can combine
them to determine the surface-parallel acceleration of a particle. For a given particle
of mass m, its acceleration (from its center of mass) acm is given by W‖(x, y, t)/m.
Therefore, its acceleration after implementing the sliding frictional force is:

acm =
W‖(x, y, t)− µi[FN + FH(FN)]

m
. (7)

Similarly, the rolling friction can be calculated by replacing µi with µr.
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4.2 Particle displacement: Numerical simulation

To confirm Eq. 7, a numerical simulation was performed (see Fig. 4). A 1 × 1 mode

was setup at ωkl =
√
2
2 (one of the natural frequencies). The average surface-parallel

acceleration of the particles over a complete cycle was calculated by integrating Eq. 7
from 0 to 2π/ωkl. Then, the average acceleration was used to predict the position of the
particles after 8 s.
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Figure 4: Particle displacement for µi = 0.1. The red dots at the points of intersection
in the 17× 17 grid show the positions of particles predicted using Eq. 7 after 8 s. The
blue dots show the positions of particles obtained from the numerical simulation.

The correlation between the predicted and simulated positions is very good. However,
a few particles slightly deviated from their predicted positions. This is possibly due to
the limitations of the simulator. The simulator’s physics engine treats the plate as a
dynamic mesh and breaks the area into a 14 × 14 grid to optimize the computational
speed. Therefore, as the number of particles increases above 14 × 14, the precision of
their positions decreases.

5 Adhesive Forces

So far, I have explored the frictional effects of adhesion. Now, I directly examine the
contact forces acting between the plate and the particles. Oscillatory methods of mea-
suring the break-off force (due to adhesion) have been previously reported [16]. The
concept is similar to the dynamics of stress-based removal of particles from a surface
(pulling a particle away from the plate), except that in oscillations, the pulling stress is
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provided by the acceleration of the plate.

5.1 Particle ejection area

From the previous section, we have seen that Facc is given as ≈ −FH = −W (x, y, t),
where FH (for W < FN,Z) acts in the same direction as W . This effect is also responsible
for keeping the particles in contact with the plate. For all regions on the plate with
Facc > FN,Z, the resultant force ejects the particles away from the plate; for all regions
with Facc ≤ FN,Z, the particles stay in contact with the surface. Therefore, an inequality
can be derived to express the area (AE) where the particles are ejected:

AE = −W (x, y, t)− FN,Z > 0. (8)

5.2 Area-based sorting: Numerical simulation

A numerical simulation (see Fig. 5) was performed to confirm Eq. 8. The 1 × 1
mode setup from Section 4.2 was replicated, and a total of 2,500 particles were used.
The friction coefficient of the surface was set to its maximum. Because of the ejection
mechanism and the high friction coefficient, only particles in the ejection area (red in
Fig. 5) will bounce off the plate; particles in the contact area (light blue in Fig. 5)
will have no displacement, because they are restricted to neither bounce nor slide as a
result of the strong adhesive and frictional forces acting on them. The boundary formed
between the ejection area and the contact area in the numerical simulation accurately
delineates the particle ejection area.

Experimentally replicating this simulation is challenging, because it is difficult to
simultaneously achieve a low adhesive break-off force and a high frictional force. How-
ever, at substantial accelerations and frictional coefficients, it is possible to sustain a slow
translation of particles in the contact area that allows enough time to completely eject all
particles in the ejection area, which leads to an effective area-based sorting mechanism.
This concept corresponds to the results of the spatial autocorrelation analysis where the
particles’ movements become less chaotic as FN,Z increased. Note that an increase in
FN,Z causes the ejection area to decrease (Eq. 8); thus, more particles are constricted
to surface-parallel translation and subjected to a stronger resistive frictional force. As
a result of the increased resistive force, the particle movements are less chaotic, which
leads to higher Moran’s I values.
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Figure 5: Particle ejection area (red). The blue dots surrounding the red area show the
particle positions obtained from the numerical simulation. Stationary particles in the
light blue region were ignored in the figure.

5.3 Using adhesion as a substitute for gravity

Gerner et al. switched between standard and inverse Chladni patterns by manipulating
the acceleration of the plate [3]. Switching between these two types of patterns can
also be achieved by applying uniform adhesion across the surface. In the acceleration-
based control method, the critical value for shifting between the two types of patterns
was determined by g, which is the acceleration due to gravity. In actual experiments,
controlling the break-off force FN,Z due to adhesion might be more preferable than con-
trolling g, because it provides more technical flexibility. However, uniform adhesion
across the surface must be maintained; otherwise, some particles might not follow Eq.
8. The numerical simulations shown in Figs. 6a and 6b were performed under identical
conditions, except that the surfaces had different FN,Z values. The critical FN,Z value
that enables alternating between standard and inverse Chladni patterns can be deter-
mined by FN,Z critical = Γm, where Γ is the peak acceleration of the plate (Γ = aω2) and
m is the particle mass. Figure 6 clearly shows the effects of setting the break-off force
value below and above its critical value.
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Figure 6: Using adhesion to alternate between standard and inverse Chladni patterns.
The position of particles is shown at t = 100 s. (a) FN,Z = 1N standard pattern of
collection at the nodes. (b) FN,Z = 50N inverse pattern of collection at the antinodes.

Simulation parameters: 1× 1 mode, 10,000 particles, ωkl =
√
2
2 and Γm = FN,Z critical =

19.74N.

5.4 Inverse Chladni patterns due to surface contact

To understand the reason for the particles to move toward the antinodes when Facc <
FN,Z, we must understand the relation between gravity and adhesion. Let us consider a
scenario where g is the critical value. If the vibrational acceleration of the plate is lower
than g, at some points in the cycle, particles will accelerate upward, thus |W | > mg;
at other points in the cycle, particles will accelerate downwards, thus |W | < mg. If
this variation in |W | is averaged over the cycle, the direction of the resultant force is
toward the antinodes. In the case of adhesion, the adhesive force can be thought of as
a substitute for the gravitational force: it pulls the particles down and keeps them in
contact with the plate. Therefore, whenever a particle is in contact with the oscillating
surface, a consistent force is applied toward the antinodes. Furthermore, this effect
occurs regardless of the force responsible for maintaining surface contact. For further
proof of this effect, I calculate the plate-parallel force W‖ on the particles as the plate’s
acceleration a (given by Eq. 7) approaches infinity as follows:

lim
a→∞

W‖(x, y, t) = mω2 sin(ωt) kπx sin

[
lπy

Ly

]
. (9)

Gravity has been ignored for simplicity. Note that Eq. 9 always gives a positive value of
W‖, which indicates that the particles move toward the antinodes. Figure 7 is a vector
plot indicating the direction of the particles’ acceleration for Eq. 9. As indicated by
the arrows, the particles move toward the antinodes even under extreme circumstances.
Note that this effect occurs only when particles are in contact with the surface. However,
in reality, at extreme accelerations the particles will be forcibly ejected from the surface
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instead of sliding on it.
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Figure 7: Direction of the particles’ acceleration when in contact with the oscillating
surface as the plate’s acceleration approaches infinity. Simulation parameters: 1 × 1
mode produced on a 10(m)× 10(m) plate.

6 Viscous Damping

Damping is a form of friction that reduces the amplitude of an oscillation. However,
in the case of Chladni patterns, damping does not affect sliding or rolling particles. In
this study, damping refers to viscous damping caused by the surface chemistries of the
plate and particles; it does not refer to frictional damping affecting the oscillation of the
plate. The damping force exerted during a particle–plate collision can be modeled with
Fd = −cv, where c is the viscous damping coefficient and v is the velocity of the particle
before the collision. For bouncing particles, it is very difficult to predict v; therefore, I
study only the direct effects of the coefficient c, and do not calculate the damping force
involved in collisions.
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6.1 Particles in contact with the surface

When a bouncing particle hits a vibrating plate, the particle’s resulting velocity depends
on the velocity of the plate (upon impact), the particle’s velocity before collision, and the
viscous damping coefficient. Increasing the viscous damping coefficient proportionally
reduces the resulting particle velocity by absorbing more of the force applied by the
oscillating plate. If there is sufficient damping force, i.e., the break-off force is greater
than the applied force, then the particle will not bounce at all, and instead it will
temporarily stick to the surface (if the surface is uniformly adhesive) until the force
exerted by the plate (later, at a certain point during the oscillation) is greater than the
break-off force including the effect of viscous damping.
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Figure 8: Effect of damping on the number of particles adhered to the surface. Both
temporarily attached and permanently attached particles (due to adhesion and damping)
were included in the count. The simulation was initiated with 10,000 particles. Other
particles from the y-axis count either bounced (they were temporarily ejected) or were
completely ejected from plate. Simulation parameters: F N,Z = 6.82N, and µi = 0.1.

Figure 8 presents the results of a simulation performed at ωkl = 3 Hz. The number of
particles adhered to the surface at t = 5s drastically increased with c up to 0.2; however,
in the range 0.2 < c ≤ 1.0, the count either increased by a minute amount or remainded
unchanged. At high damping coefficients, most of the particles remain in contact with
the surface and cluster at the antinodes. In addition, high damping forces also reduce the
number of particles that are completely ejected from the plate. To summarize, damping
does not directly affect the type of Chladni pattern formed; however, it is a contributing
factor in keeping the particles in contact with the surface, which (as seen in Section 5.4)
is crucial for inducing inverse Chladni patterns.
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6.2 Particle damping as a sorting mechanism

In Section 5.2, I explored how adhesion can be used as an area-based sorting mechanism.
Similarly, particle damping can be used as a sorting mechanism. Thus far, I have studied
the effect of the plate-damping force on bouncing particles. Now, I study the effect
of the particle-damping force: the particle itself absorbs the collision energy through
mechanical properties such as elasticity. If a particle system contains groups of particles
with unique particle-damping coefficients, then this concept can be exploited to sort
the particles into sets of similar kind. To verify this concept, a numerical simulation
was performed with three different particle groups each having a different value of the
particle-damping coefficient (Fig. 9a).

(a)	
 (b)	


Figure 9: Numerical simulation of a sorting mechanism based on the particle-damping
coefficient c. The particles had the following values of c: 0.1 (blue), 0.5 (green), and 0.9
(red). (a) Initial random positions of the particles. (b) Positions of the particles after
150 s

As seen in Fig. 9b, the particles were effectively sorted based on the value of their
particle-damping coefficients. At lower values of the particle-damping coefficient, the
particles tend to cluster closer to the nodes, whereas at higher values, the particles tend
to cluster closer to the antinodes. Note that this trend is quantitatively nonlinear: an
increase in the value of c from 0.1 (blue) to 0.5 (green) resulted in a small change in the
cluster’s position, whereas a proportionate increase in the value of c from 0.5 (green) to
0.9 (red) resulted in a large change in the cluster’s position.

To understand how this sorting mechanism works, we need to look at the two forces
that might act on a particle: the force on a bouncing particle due to the acceleration
of the plate and the resultant force on a particle in contact with the surface due to
the plate’s average acceleration. These two forces can act simultaneously only if the
surface contains a definite ejection area (Section 5.1). Furthermore, these two forces are
also responsible for determining the position of the cluster. By changing the particle-
damping coefficient, the boundary between the ejection area and the contact area can be
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manipulated. This effect is illustrated in Fig. 10; the increase in the ejection area (light
blue) from Fig. 10a to Fig. 10b is a direct result of the decrease in the particles’ damping
coefficients. At high particle-damping coefficients, the particles absorb more of the force
exerted by the plate (Facc). Here the damping force Fd opposing Facc is sufficient to
prevent the particles from bouncing (i.e., ejection), even if the particles reside in the
ejection area (some regions only). Therefore, Eq. 8 becomes

AE = −W (x, y, t) + Fd − FN,Z > 0. (10)

The increase of Fd in Eq. 8 results in a smaller ejection area, and . In contrast, the
contact area (red regions in Fig. 10) of particles increases; hence, the particles move
closer to the antinodes.
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Figure 10: The effect of particle damping on the force (blue vectors) exerted on a
bouncing particle within the ejection area (light blue). a) Forces experienced by particles
with high damping coefficients. (b) Forces experienced by particles with low damping
coefficients. These vector plots are just illustrations, and the difference between the
ejection areas has been exaggerated; this figure is used only for qualitative analysis.

6.3 Limitations of the particle-damping based sorting system

This sorting mechanism lacks efficiency: as seen in Fig. 9b, not all particles have been
sorted into their groups. As the particles translate, they collide with their own kind (e.g.,
two blue particles collide) and others (e.g., a blue particle collides with a red one). Under
some circumstances, it is possible for particles to get fixated between clusters formed
by other particles. The particle-damping dynamics in the simulations were based solely
on mathematical models of damping properties; however, for real-world applications,
mechanical properties such as deformation and elasticity must be carefully studied. In
an experiment, the damping coefficient can be related to the elasticity of the particles,
where energy is dissipated through temporary compression. The temporary compression
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of a particle results in a spring action (rapid expansion) when the force compressing
it changes direction; however, some of the energy is lost during the compression and
expansion in the form of heat. More elastic materials will expand and contract in greater
amounts; hence, hysteresis will increase, thereby dissipating more heat (although the
difference might be exceptionally small), and thus, they are more likely to remain in
contact with the surface. Therefore, a sorting mechanism experiment will result in a
small difference between the cluster positions of particle groups when compared to the
elegant delineations seen in Fig. 9b. Finally, an experiment would need to take into
account the external forces affecting the displacement of the particles, such as air drag.

7 Possible Applications

In the past, the modal phenomenon of Chladni patterns mainly influenced areas of art
with its complex and dynamic features. Recently, however, the properties of Chladni
patterns have been exploited to create new sorting mechanisms (even on the scale of
nanoparticles) that might have scientific and industrial applications. Dorrestijn et al.
has experimentally proven that this spatial autocorrelation phenomenon can be used as
a size-based sorting mechanism: nanoparticles are moved toward either the nodes or the
antinodes, based on their size [5]. In my study, I have presented possible methods of
area-based and particle-damping-based sorting mechanisms. These mechanisms can be
collectively used to sort particles, organelles, or cells. Dorrestijn et al. also suggested
the use of such systems in patterning applications, where particles can be fixed using
laser curing or photo-polymerization [5]. Once the particles have attained the desired
position, the liquid can be removed, and then the patterns can be transferred to a chip
surface by nanotranfer printing [17, 18]. All numerical simulations in this study were
performed on a 10m × 10m oscillating plate; this presents new possibilities of using
Chladni patterns in large-scale applications such as industrial processes.

Perhaps one of the most promising applications of this research could be in sort-
ing cancer cells. Suresh studied the biomechanical characteristics that differentiate mu-
tated cells from benign cells. Recent findings show that lung, breast, and pancreatic
metastatic cells are 70% softer than benign cells [19]. Such distinctive elastic properties
can be utilized with the particle-damping sorting mechanism (see Section 6.2) to effec-
tively separate cancer cells from normal cells. Researchers have also found correlations
between various stages (intensities) of cancer and the biomechanical properties of the
affected cells [20]. Hence, sorting mechanisms cannot only be used in the identification
but also in the classification of various stages of cancer, which might be helpful in mon-
itoring the progress of treatments. Using Chladni patterns as a sorting system is highly
advantageous because it requires minimal data analysis and it uses simple, cost-effective
equipment. However, further detailed investigations are necessary to confirm sorting
mechanisms using Chladni patterns.
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8 Conclusion

In this study, I have presented both quantitative and qualitative effects of adhesive,
frictional, and damping forces on Chladni patterns. The friction-based surface dis-
placement model effectively predicted the position of a particle accelerating toward an
antinode. The ejection-area model successfully replicated the region in which particles
broke away from the surface, despite the adhesive force. Both the area-based and the
particle-damping-based sorting mechanisms effectively separated particles that have dis-
tinct characteristics. In addition, the results of the spatial autocorrelation analysis were
consistent with the models of Chladni patterns studied here. In future, these models
should be experimentally verified, and external factors such as air drag, temperature,
and deformations of the plate and particles should be investigated.
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