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PREFACE 
 
 

 

 

 

In this book the authors study the properties of natural class of 

intervals built using (–∞, ∞) and (∞, –∞). These natural class of 

intervals behave like the reals R, as far as the operations of addition, 

multiplication, subtraction and division are concerned. Using these 

natural class of intervals we build interval row matrices, interval column 

matrices and m × n interval matrices. Several properties about them are 

defined and studied. Also all arithmetic operations are performed on 

them in the usual way.  

The authors by defining so have made it easier for operations like 

multiplication, addition, finding determinant and inverse on matrices 

built using natural class of intervals.  

We also define polynomials with coefficients from natural class of 

intervals or polynomial intervals, both these concepts are one and the 

same, for one can be obtained from the other and vice versa. 

The operations of integration and differentiation are defined on 

these interval polynomials in a similar way as that of usual polynomials. 
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Interval trigonometric functions are introduced and operations on them 

are defined.  

Finally fuzzy interval polynomials are introduced using the intervals 

[0, 1] and [1, 0]. We define operations on them. The concept of matrices 

with polynomial entries are defined and described. 

This book has eight chapters. The first chapter is introductory in 

nature. Chapter two introduces the notion of interval matrices with 

entries from natural class of intervals. Polynomial intervals are given in 

chapter three and in chapter four interval trigonometric functions are 

introduced. Natural class of fuzzy intervals are introduced in chapter 

five. Calculus on interval polynomials and interval matrices are carried 

out in chapter six. Applications are suggested in chapter seven. Final 

chapter gives around 100 problems some of them are at research level. 

The book “Algebraic structure using natural class of intervals” won the 

2011 New Mexico award for Science and Maths.  

We would like to thank the support of Bhabha Atomic Research 

Centre, Government of India for financial support under which a part of 

this research has been carried out.  

We also thank Dr. K.Kandasamy for proof reading and being 

extremely supportive. 

  

W.B.VASANTHA KANDASAMY 

FLORENTIN SMARANDACHE 

D. DATTA 

H. S. KUSHWAHA 

P. A. JADHAV 
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Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 

 In this chapter the notion of natural class of intervals and 

arithmetic operations on them are introduced.  The natural class 
of intervals are studied and the algebraic structures enjoyed by 

the arithmetic operations are described.  We see the natural class 

of intervals contains R (Q and Z).  Further the natural class of 
intervals is a group only under addition.  Under subtraction it is 

a groupoid and under multiplication it is a monoid.  

 

Here we introduce the notion of natural class of intervals 
and the main arithmetic operations on them.  The intervals are 

taken from (–∞, ∞) and (∞,–∞). 
 

Throughout this book R denotes the real field, Q the rational 
field, Z the ring of integers.  Zn denotes the ring of modulo 

integers n.  R
+
 ∪ {0} denotes the set of positive reals with zero, 

Q
+
 ∪ {0} the set of positive rationals with zero and Z

+
 ∪ {0} 

the set of positive integers with zero.  These form semifields. 

 

C denotes the complex field.  We have Z ⊂ Q ⊂ R ⊂ C. 
 

Let [x, y] be an interval from Q or R or Z if x < y (that is x 
is strictly less than y) then we define [x, y] to be a closed 
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increasing interval or increasing closed interval.  We see x and y 

are included in this interval. 
 

[7, 19], [0, 11], [–8, –2], [–18, 0], [ 2, 19]  are some 

examples of closed increasing intervals.  

 

Suppose if [x, y] is replaced by (x, y), both x and y are not 
included in this interval, we say (x, y) is an increasing open 

interval or open increasing interval.  

 

We just give some examples of it; (–7, 10), (– 2 , 12)  

(0, 7), (–8, 0) are few examples of open increasing intervals. 

 
Suppose in (x, y) the open bracket is replaced by (x, y] then 

we define (x, y] as half open-half closed increasing interval or 

increasing half open half closed interval.  Clearly x does not 

belong to the interval only y belongs to the interval.  
 

We give a few examples of it. 

 

(0, 12], (–9, 0], (– 21 , 60], (0, 41 /3] 

are some examples of them. 

 
If we replace (x, y] by [x, y) then we define [x, y) as the half 

closed - half open increasing interval or increasing half closed - 

half open interval.  

 
Some examples are given below. [27, 48), [0, 17), [–9, 0). 

[ 43 , 101) and so on.  

 

Now we see all these intervals are the usual or classical 
intervals and we have a special type of arithmetic operations on 

the collection of increasing intervals closed or open or half-open 

half closed or half closed - half open; ‘or’ used in the mutually 
exclusive sense only. 

 

That is we can have the collection of closed increasing 

intervals or open increasing intervals or half open half closed 
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increasing intervals or half closed-half open increasing intervals 

and we can perform operation on them.  
 

From the very context one can easily understand on which 

class we perform (or define) the arithmetic operations. 

 
The classical operations are as follows:  

 

Let [a, b] and [c, d] be elements of the collection of closed 
increasing intervals. 

 

[a, b] + [c, d] = [a + c, b + d] 
[a, b] – [c, d] = [a – d, b – c] 

[a, b] × [c, d] = [min {ac, ad, bc, bd};   
      max {ac, ad, bc, bd}] 

[a, b] / [c, d] = [min {a/c, a/d, b/c, b/d},  

     max {a/c, a/d, b/c, b/d}] 

   with [c, d] ≠ [0, 0] 

 
 Division by an interval containing zero is not defined under 

the basic interval arithmetic. 

 
      The addition and multiplication operations are 

communicative, associative and sub-distributive, the set x (y+z) 

is a subset of xy + xz. 
 

 However the same operations can be defined for open 

increasing intervals, half open-half closed increasing intervals 

and half closed - half open increasing intervals.  Increasing 
intervals are classical intervals which is used by us.   

 

Now we proceed onto define decreasing intervals.  
 

 Let [x, y] be an interval x and y belongs to Z or Q or R with 

x > y (x is strictly greater than y) where [x, y] = {a | x ≥ a ≥ y} 
then we define [x, y] to be a decreasing closed interval or closed 

decreasing interval.  The decreasing interval [x, y] is taken from 

(∞, –∞). 
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 We see the temperature may decrease from x°F to y°F or 

the speed of a car may decrease from x to y and so on.  So such 
intervals also has been existing in nature only we have not so far 

given them proper representations and systematically develop 

arithmetic operations on them.   

 
Before we proceed on to move further we give some 

examples of them. 

 
 [9, 0], [5, –8], [0, –18], [19, 2] [–7, –21] and so on are from 

(∞,–∞).  
 

 These are examples of closed decreasing intervals.  We see 

in case of decreasing closed intervals both x and y belongs to 
the interval. 

 

 If in the case of decreasing closed intervals [x, y] (x > y) if 
we replace the closed bracket by open bracket then we get (x, y) 

(x > y) to be the open decreasing interval or decreasing open 

interval.   

 
We give a few examples of it. 

 

 (0, –11), (20, 0), (–7, –4), (19, 8), (40, –3) and so on. 
 

 Now if we replace closed bracket in the interval [x, y] by  

(x, y] then we define (x, y] to be the half open-half closed 
decreasing interval or decreasing half open- half closed interval.  

We see only y belongs to the interval and x does not belong to 

the interval and these intervals are from (∞, –∞). 
 

 (x, y] = {a | x  > a ≥ y}.  We give examples of it. 
 

 (8, 3], (0, –11], (–11, –29], (40, 0] and so on. 
 

 Likewise if the closed bracket of the decreasing interval  

[x, y] is replaced by the bracket [x, y) then we define [x, y) to be 
the half closed half open decreasing interval or decreasing half 

closed - half open interval. 
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 We will give examples of it.   

 
Consider [0, –8), [19, 0), [–2, –15), [24, 3), [7, –7); these 

intervals are decreasing half closed - half open intervals. 

 

 So Nc (R) (Nc (Z) or Nc (Q)) 

= {[a, b] | a < b  or a = b or a > b  a, b ∈ R} 
 

denotes the collection of all decreasing, increasing and 

degenerate closed intervals.  If in the interval [a, b]; a = b then 
we call such intervals as degenerate intervals.   

 

Likewise No (R) (No (Z) or No (Q)) = {(a, b) | a, b ∈ R, a < 
b or a > b or a = b} denotes the collection of increasing or 

decreasing or degenerate open intervals.   
 

Noc (R) (Noc (Q) or Noc (Z)) = {(a, b] | a, b ∈ R; a > b or  
a < b or a = b} denotes the collection of all increasing or 

decreasing or degenerate open-closed intervals. 

 

 Nco (R) = {[a, b) | a, b ∈ R; a > b or a < b or a = b} denotes 

the collection of all increasing or decreasing or degenerate 
closed-open or half closed - half open intervals. 

 

 Clearly from the context one can easily know to which class 
an interval belongs to. 

 

 We just mention a few observations, No(R) contains R, Q 
and Z. and No(Q) contains only Q and Z and not R.  Further  

No(Z) contains Z and not Q or Z. 

 

 This is true if open interval is replaced by Noc(R) or Nco(R) 
or Nc(R). 

 

 Now we proceed on define basic operations on intervals. So 

if we want to study decreasing intervals instead of (–∞ to ∞), 

i.e., (–∞, ∞) we consider (∞,–∞) every [a, b] with a > b are 

subsets of (∞,–∞). 
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 For any [a, b] and [c, d] in Nc (R) we define  

 
[a, b] + [c, d]  = [a + c, b + d]. 

 

 If a < b and c < d then a + c < b + d that is sum of increasing 

intervals is an increasing interval.  Likewise if a > b and c > d 
then a + c > b + d that is sum of decreasing intervals is a 

decreasing interval.  However sum of an increasing interval and 

a decreasing interval may be an increasing interval or a 
decreasing interval.  

 

This is illustrated by the following examples. 
 

 [0, –8] is a decreasing interval and [–7, 8] is an increasing 

interval, their sum [0, –8] + [–7, 8] = [0 + (–7), –8 + 8] = [–7, 0] 

is an increasing interval. 
 

 Now [0, 8] is an increasing interval and [2, –20] is a 

decreasing interval their sum, 
 

 [0, 8] + [2, –20] = [2, –12] is a decreasing interval.  

 
 But sum of two degenerate intervals is a degenerate interval.  

Sum of a degenerate interval and an increasing interval can be 

an increasing interval.  

 
 For if a = a and b < c then [a, a] + [b, c] = [a+b, a+c] and  

a + b < a + c is an increasing interval.  Likewise sum of a 

degenerate interval and a decreasing interval a = a and b > c is 
 

 [a, a] + [b, c] = [a+b a+c] and a + b > c + a, hence  

a decreasing interval. 

 
 However we see (Nc(R), +) is an abelian group under 

addition and [0, 0] = 0 acts as the additive identity. 

 

 For every [a, b] (a, b ∈ R); [–a, –b] is the additive inverse of 
[a, b]. 
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 Thus we have the following theorem. 

 
THEOREM 1.1:  The natural class of intervals Nc(R) (or Nc(Z) 

or Nc(Q)) is an abelian group with respect to addition.  

 

 Now we proceed onto define the operation of subtraction. 
 

 For [a, b] and [c, d] ∈ Nc(R) (or Nc(Q) or Nc(Z)) we have  
[a, b] – [c, d] = [a–c, b–d]. 

 

 Clearly [a, b] – [c, d] ≠ [c, d] – [a, b] 

 
 We see the substraction of degenerate intervals is a 

degenerate interval.  For [a, a] – [c, c] = [a – c, a – c] is a 

degenerate interval.  We see the subtraction of an increasing 
interval can be an increasing interval or can be a decreasing 

interval.  

 

 For consider [8, 11] and [6, 25]; [8, 11] – [6, 25] = [2, –14] 
is a decreasing interval. 

 

 Now [6, 25] – [8, 11] = [–2, 14] is an increasing interval. 
 

 We see Nc(R) with subtraction as a operation is only a 

groupoid and this groupoid has no identity.  Similarly Noc(R) (or 
Nco(R) or No(R)) under subtraction is a groupoid which has no 

identity. 

 

 Now we see as in case of R or Q or Z we see they are 
groupoids without identity under the operation of subtraction. 

 

 We define a product on Nc(R) (or Nc(Q) or Noc(Z) and so 
on).  

 

 Suppose [x, y] and [a, b] ∈ Nc (R) then [x, y] [a, b] = [xa, 

yb] ∈ Nc(R). 
 

 We see the product of degenerate intervals are again 

degenerate intervals.  
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 Consider [0, –7], [2, –2] in Nc(R).  [0, –7] × [2, –2] = [0, 14] 

we see [0, –7] and [2, –2] are decreasing intervals however the 
product of [0, –7] and [2, –2] is an increasing interval. 

 

 Consider the product of [3, –2] and [0, 7] two intervals, first 

one decreasing and the other increasing, their product [3, –2] × 

[0, 7] = [0, –14] is a decreasing interval. 
 

 Consider [0, –2] and [7, –9] two decreasing intervals, their 

product [0, –2] [7, –9] = [0, 18] is an increasing interval. 
 

 Consider [–7, 1] and [–4, 2] two increasing intervals their 

product [–7, 1] [–4, 2] = [28, 2] is a decreasing interval. 
 

 Let [3, 0] be a decreasing interval and [–7, 8] be an 

increasing interval.  The product of [3, 0] and [–7, 8] is given by 

[3, 0] [–7, 8] = [–21, 0] is an increasing interval.  
  

We see Nc(R) is a semigroup under product, further [1, 1] is 

the multiplicative identity.  Some elements in Nc(R) has inverse 
and all elements of the form [0, a] and [a, 0] have no inverses, 

infact [a, 0] [0, a] = [0, 0]. 

 

 We see (Nc(R), +, ×) is a commutative ring with  unit.  

{(No(Q), +, ×), (Nc(Q), +, ×), (Noc(Q), +, ×), (Nco(Q), +, ×), 

(No(R), +, ×), (Nco(R), +, ×), (Noc(R), +, ×)} are all commutative 
rings with unit.  Infact if Q or R is replaced by Z still they are 

rings with unit.   
 

We can define division of two intervals in Nc(R) as follows: 

 

 Let [a, b] and [c, d] ∈ Nc(R). 
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[a,b]

[c,d]
 is defined if and only if c ≠ 0 and d ≠ 0. 

 

 
[a,b]

[c,d]
 = [a/c, b/d] and 

[a,b]

[c,d]
 ∈ Nc(R). 

 

 However while dividing two increasing intervals it may 

become a decreasing interval and vice versa.  We will illustrate 

these situations by some examples. 
 

 Let [3, 7] and [2, 19] be any two increasing intervals in 

Nc(R). 
 Now  

[3, 7] / [2, 19] = [3/2, [7/19] ∈ Nc(R). 
 

Clearly [3/2, 7/19] is only a decreasing interval. 

 
 Take [5, 7] and [–2, 12] two increasing intervals in Nc(R). 

 

 We see [5,7] / [–2, 12]  = [–5/2, 7/12] is an increasing 
interval.  

 

 Consider [–7, 0] and [–2, 4] a decreasing and an increasing 

interval.  [7, 0] / [–2, 4] = [–7/2, 0] is an increasing interval. 
 

 Consider [–2, –17] and [–8, –20] two decreasing intervals.  

 
[–2, –17] / [–8, –20]  = [1/4, 17/20]  = [0.25, 0.85] 

 

is an increasing interval in Nc(R).  
  

Thus all results hold good even if Nc(R) is replaced by 

Nc(Q), Nc(Z), Noc(R), Noc(Z), Noc(Q), Nco(Z), Nco(R), Nco(Q), 

No(Q), No(Z) or No(R). 
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 We see the operation of division is non associative.  Further 

we see the operations are distributive. 
  

The main advantage of using these operations is that we see 

these operations on the natural class of intervals is akin (same 

as) to the operations on R or Q or Z. 
 

 We now proceed onto build matrices using natural class of 

intervals. 
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Chapter Two 
 
 

 
 
MATRICES USING NATURAL CLASS OF  
INTERVALS  
 
 
 
 In this chapter we proceed onto define matrices using the 

natural classes of intervals. We show the existing programmes 

(codes) can be used with simple modifications on interval 
matrices using natural class of intervals. 

 

DEFINITION 2.1:  Let  

 

X = (a1, …, an) where ai ∈ Nc(R); 1 ≤ i ≤ n, 

 

X is defined as the row (1 × n) matrix of natural class of 

intervals.  

  

We give examples of this situation. 
 

Example 2.1:  Let  

 

Y = (a1, a2, …, a8) where ai ∈ Nc (R), 1 ≤ i ≤ 8 

 
be the row matrix of natural class of intervals. 
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Example 2.2: Let  

 

A = (a1, a2, a3, a4) where ai ∈ Noc(Q), 1 ≤ i ≤ 4 

 
be the row matrix of natural class of intervals. 

 

Example 2.3: Let  
 

A = (a1, a2, …, a7) where ai ∈ No(Z), 1 ≤ i ≤ 7 
 

be the row matrix of natural class of intervals. 

 
 Now we can define operations on them. 

 

DEFINITION 2.2:  Let  

 

M = {(a1, a2, …, an) | ai ∈ Noc(Q), 1 ≤ i ≤ n} 

 

be the collection of all 1 × n row matrices.  M is a group under 

addition called the group of natural class of row matrices. 

 

 We give examples of them. 
 

Example 2.4:  Let  

 

M = {(a1, a2, …, a12) | ai ∈ Nc(Q), 1 ≤ i ≤ 12} 

 

be the collection of all 1 × 12 matrices, M is a group under 
addition. 

 

Example 2.5: Let  
 

T = {(a1, a2, a3, a4) | ai ∈ Noc(Z), 1 ≤ i ≤ 4} 
 

be the collection of all 1 × 4 row matrices.  T is a group under 
addition.  Just we illustrate how addition is performed on T. 

 

 Let x = ((3, –2], (-7, 0], (0, –9], (3, 10]) and y = ((–2, 1],  
(2, –5], (8, 2], (–7, 2]) be in T. 
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 x+y  = ((3, –2], (–7, 0], (0, –9], (3, 10]) + ((–2, 1],  

   (2, –5], (8, 2], (–7, 2]) 
 

   = ((3–2, –2+1], (–7+2, 0+(–5)], (0+8, –9+2],  

   (3–7, 10+2]) 

 

   = ((1, –1], (–7, –5], (8, –7], (13, –5]) ∈ T. 
 

 Further ((0, 0], (0, 0], (0, 0], (0, 0]) ∈ T acts as the additive 
identity. 

 

 Also for every (a1, a2, a3, a4) ∈ T we see (–a1, –a2, –a3, –a4) 
in T acts as the additive inverse. 
 

 Now we see one can perform the operation of addition in 

the following way.   

 
  We can recognize the interval  

 

( )
1 1 2 2 n n

1 2 1 2 1 2a ,a , a ,a ,..., a ,a            as ( ) ( )
1 2 n 1 2 n

1 1 1 2 2 2a ,a ,...,a , a ,a ,...,a 
  .   

 
Thus addition can be performed in two ways. 

 

If x = ( )
1 1 2 2 n n

1 2 1 2 1 2a ,a , a ,a ,..., a ,a            

 

and y = ( )
1 1 2 2 n n

1 2 1 2 1 2b ,b , b ,b ,..., b ,b            in M 

 

where i i

t ta ,b  ∈ R (or Q or Z) 1 ≤ t ≤ 2, 1 ≤ i ≤ n; 

 
then x+y     

 

 = ( )
1 1 1 1 2 2 2 2 n n n n

1 2 1 2 1 2 1 2 1 2 1 2a ,a b ,b , a ,a b ,b , ..., a ,a b ,b           + + +             

 

= ( ) ( )
1 2 n 1 2 n

1 1 1 1 1 1a ,a , ...,a b ,b , ...,b + , ( ) ( )
1 2 n 1 2 n

2 2 2 2 2 2a ,a , ...,a b ,b , ..., b +   

 



 20

= ( )
1 1 n n 1 1 n n

1 1 1 1 2 2 2 2a b , ...,a b ,a b , ...,a b + + + +   

  

= ( )
1 1 1 1 2 2 2 2 n n n n

1 1 2 2 1 1 2 2 1 1 2 2a b ,a b , a b ,a b , ..., a b ,a b     + + + + + +      . 

  

 By this method row matrix of the natural class of intervals 

acts as usual n-tuples pair. 
 

 We see this method of representation will help us to induct 

the usual program for addition of interval row matrices, in a 

very simple way which take the same time as that of usual row 
matrices.  

 

 Now we can define product of these row interval matrices, 
entries taken from the natural class of intervals.  Nc(R) or  

No(R) or Noc(R) or Nco(R) or R replaced by Q or Z. 

 

 It is pertinent to mention here that the operation of division 
is not defined on No(Z) or Nc(Z) or Noc(Z) or Nco(Z) when in  

[a, b] one of a or b is zero; ‘or’ not used in the mutually 

exclusive sense.  
 

 Let  

 

X = {(a1, …, an) | ai ∈ Nc (R) (or No (Q) or Noc (Z) or so on); 

1 ≤ i ≤ n}  we can define product on X; component wise for 
each row.  
 

 For if x = (a1, …, an) and y = (b1, …, bn) then  

 

x.y  = ((a1, a2, …, an) . (b1, b2, …, bn))  

= (a1b1, a2b2, …, anbn) ∈ X. 
 

 Thus (X, .) is a commutative monoid with ([1, 1], [1, 1], …, 

[1, 1]) as it multiplicative identity.  

 
We give examples of this situation. 
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Example 2.6:  Let  

 

M = {(a1, a2, a3) | ai ∈ No(Z); 1 ≤ i ≤ 3} 

 
be the monoid of natural class of row interval matrices.  

Consider  

 
   x = (a1, a2, a3)  

    = ((3, 0), (8, –7), (2, 9)) 

 
and y  =  (b1, b2, b3) 

    = ((7, 0), (5, 2), (–3, 1)) in M. 

 

   x.y = (a1, a2, a3) . (b1, b2, b3) 
    = ((3, 0), (8, –7), (2, 9)) . ((7, 0), (5, 2), (–3, 1)) 

    = ((3, 0). (7, 0), (8, –7) . (5, 2), (2, 9) (–3,1)) 

    = ((0, 0) (40, –14), (–6, 9)) ∈ M. 
 

 Thus (M, .) is a commutative monoid.  Clearly these 
monoids have zero divisors, units provided they are built using 

Nc(R) or No(Q). 

 
 We give yet another example. 

 

Example 2.7:  Let  
 

V = {(a1, a2, a3, a4, a5, …, a10) | ai ∈ Noc(Q); 1 ≤ i ≤ 10} 
 

be the monoid of row matrices of natural class of intervals. This 

monoid has units, zero divisors and has no idemponents, except 
of the form ((1, 0), (0, 1), …, (0, 1)) = x only every entry in x is 

of the form (0, 1) or (1, 0). 

 

 These have idemponents even if these monoids are built 
using Z or Q or R. 

 

 We define for these type of monoids the notion of 

orthogonal elements.  Two elements x, y ∈ M are orthogonal 

provided x.y = (0).  We also define x to be the complement of y.  
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We say (0, x1) is also the complement of (y1, 0), x1, y1 ∈ R or Q 
or Z.  

 

 In view of this we have the following results. 
 

THEOREM 2.1:  Let  

 

X = {(a1, a2, …, an) | ai ∈ Noc(Q) or Nco(R) or No(R) 

 or Nc(R) or so on; 1 ≤ i ≤ n} 

 

be the monoid.  X has orthogonal elements.  

 

(1) If x = (a1, …, an) and y = (b1, …, bn) are such that, if  

ai = (0, xi] then bi = (yi, 0] (or if ai = (xi, 0] then bi = (0, yi]) 

where xi, yi ∈ Q, 1 ≤ i ≤ n, then x is orthogonal to y or x is 

complement of y. 

 

(2)  If  x = (a1, …, an) and  y = (b1, …, bn) then if ai =  

(xi, yi] then bi = (0, 0] if xi ≠ 0 or yi ≠ 0; xi, yi ∈ Q and if aj =  

(0, 0] then bj = (cj, dj] for 1 ≤ i, j ≤ n.  Then x is orthogonal to   

y or x is the complement of y. 

 

 The proof of this theorem is direct and hence left as an 

exercise to the reader. 

 
 Now we proceed onto define the notion of column matrices 

of the natural class of intervals. 

 
 Let  

X = 

1

2

m

x

x

x

 
 
 
   

�
 xi ∈ Noc(R); 1 ≤ i ≤ m} 

 

be the column matrix of natural class of open closed intervals of 
reals.  Noc(R) can be replaced by Nco(R) or Nc(R) or No(R) or R 
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can be replaced by Q or Z.  Now it is easily verified, X under 

addition is an abelian group. 
 

Example 2.8:  Let  

 

W = 

1

2

3

4

x

x

x

x

 
 
 
   

 xi ∈ No(Q); 1 ≤ i ≤ 4} 

 
be the abelian group of column matrices of natural class of 

intervals. 

 
Example 2.9:  Let  

 

M = 

1

2

25

x

x

x

 
 
    

�
 xi ∈ Nco(R); 1 ≤ i ≤ 25} 

 
be the abelian group of column matrices of natural class of 

intervals under addition. 

 

 Clearly these column matrices of natural class of intervals 
can never have product defined on them. 

 

 Now we can write the column matrices of natural class of 
intervals as columns of matrix intervals. 

 

 We will just illustrate this situation by some simple 
examples. 
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Example 2.10:  Let  

 

X = 

[0,3]

[7,2]

[ 1,0]

[4,5]

 
 
 
 −

 
 

 

 
be an interval column matrix with entries from Nc(R). 

 

 Now we write X as X = 

0 3

7 2
,

1 0

4 5

    
    
    
    −

    
     

  

 

this interval is called as the column matrix interval.  Thus every 

column matrix interval is an interval of column matrices and 
vice versa. 

 

 If A = 

1 1

10 10

a b

,

a b

    
    
    
        

� �  be the column matrix interval then  

 

A = 

1 1

2 2

10 10

[a ,b ]

[a ,b ]

[a ,b ]

 
 
 
 
 
 

�
 

 

is the interval column matrix and vice versa. 

 
 Thus we can define for the interval row matrix of natural 

classes also the notion of row matrix interval. 

 

 The open or closed or half open-half closed or half closed - 
half open will be exhibited as follows: 
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 Open interval of row matrices as 
 

   X  = ((a1, …, an), (b1, …, bn)) 

    = ((a1, b1), …, (an, bn)) 

    = ((a1 ,…, an), (b1, …, bn)). 
 

Closed interval of row matrices. 

 
   Y  = ([a1, …, an], [b1, …, bn]) 

    = ([a1, b1], …, [an, bn]) 

    = [(a1 , …, an), (b1, …, bn)]. 
 

 Half open-half closed interval of row matrices. 

 

   Z  = ([a1, …, an], [b1, …, bn]] 
     = ((a1, …, an), (b1, …, bn)] 

    = ((a1, b1], (a2, b2], …, (an, bn]). 

 
 Half closed - half open interval of row matrices. 

 

   M  = [(a1, …, an), (b1, …, bn)) 
     =  ([a1, …, an], (b1, …, bn)) 

    = ([a1, b1), [a2, b2), …, [an, bn)). 

 

 Similar techniques in case of interval column matrices or 
column matrices of natural class of intervals.  We can say half 

open - half closed interval column matrix  if 

 

    X  = 

1 1

n n

a b

,

a b

    
    
    
       

� �  

 

     = 

1 1

n n

a b

,

a b

    
    
    
        

� �  
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     = 

1 1

n n

(a ,b ]

(a ,b ]

 
 
 
 
 

� . 

 

Y  = 

1 1

2 2

M m

a b

a b
,

a b

    
    
    
    
       

� �
 

 

    = 

1 1

2 2

m m

a b

a b
,

a b

    
   
   
   
   
     

� �
 

 

    = 

1 1

2 2

m m

[a ,b )

[a ,b )

[a ,b )

 
 
 
 
 
 

�
   

 

is the half closed - half open column matrix interval or interval 

column matrix. 

 
 Likewise we can define open interval column matrix and 

closed interval column matrix. 

 
 

   Let A = 

1 1

m m

a b

,

a b

    
    
    
        

� �  
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     = 

1 1

m m

a b

,

a b

    
    
    
        

� �  

 

     = 

1 1

m m

(a ,b )

(a ,b )

 
 
 
  

�    

 

is the open interval column matrix or column matrix of natural 
class of open intervals. 

 

   Let B  =  

1 1

2 2

n n

a b

a b
,

a b

    
    
    
    
    
     

� �
 

 

     =  

1 1

2 2

n n

[a ,b ]

[a ,b ]

[a ,b ]

 
 
 
 
 
 

�
  

 

is the closed interval column matrix or column matrix of natural 

class of closed intervals.  As we have worked with the 
collection of column matrix of natural class of intervals and 

collection of row matrix of natural class of intervals we can 

work with the collection of open interval column matrices or 

closed interval column matrices or half open - half closed 
interval of column matrices or half closed - half open interval of 

column matrices.   

 
We will denote the collection; 
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 c

cN (R)  = 

1 1

2 2

n n

a b

a b
set of all ,

a b

     
     
                     

� �
 ai, bi ∈ R, 1 ≤ i ≤ n}  

 

denotes the collection of all closed interval column matrices. 

 

 Similarly c

oN (R)  will denote the collection of all open 

interval column matrices. 

 

 c

ocN (R)  will denote the collection of all half open- half 

closed interval column matrices. c

ocN (R)  will denote the 

collection of all half closed - half open interval column 

matrices. 

 
 We can define the operation addition on these collections.  

We will only illustrate this situation by some examples. 

 

Example 2.11:  Let  
 

M =   

1 1

8 8

a b

, X

a b

    
    

=    
        

� �  X ∈ c

cN (R) ; ai ∈ R; 1 ≤ i ≤ 8} 

 

be the collection of closed interval column matrices.  M is an 

abelian group under addition.  

 

 For if X = 

1 1

2 2

8 8

a b

a b
,

a b

    
    
    
    
     
    

� �
 and Y = 

1 1

2 2

8 8

c d

c d
,

c d

    
    
    
    
     
    

� �
 are in M, 
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 then X + Y  = 

1 1

2 2

8 8

a b

a b
,

a b

    
    
    
    
     
    

� �
 + 

1 1

2 2

8 8

c d

c d
,

c d

    
    
    
    
     
    

� �
 

 

    = 

1 1 1 1

2 2 2 2

8 8 8 8

a c b d

a c b d
,

a c b d

        
        
        

+ +
        
         
        

� � � �
 

 

     =

1 1 1 1

2 2 2 2

8 8 8 8

a c b d

a c b d
,

a c b d

 + +   
    

+ +    
    
     + +    

� �
 ∈ M. 

 

 Clearly (0)  = 

0 0

0 0
,

0 0

    
    
    
    
     
    

� �
 acts as the additive identity, for 

every X ∈ M, (0) + X = X + (0) = X. 
 
 

 Now for every X = 

1 1

2 2

8 8

a b

a b
,

a b

    
    
    
    
     
    

� �
 in M. 
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    –X  = 

1 1

2 2

8 8

a b

a b
,

a b

 − −   
    

− −    
    
     − −    

� �
  

 
in M acts as the inverse of X, we see X + (–X) = (0). 

  

 Thus M is a group under addition.  
 

Example 2.12:  Let  

 

N = 

1 1

2 2

5 5

a b

a b
Y ,

a b

     
    
    

=              

� �
 Y ∈ c

coN (R) ; ai ∈ R; 1 ≤ i ≤ 5} 

 

be the collection of half closed - half open interval column 
matrices. 

 

 N is a group under addition. 
 

 Suppose  

 

M = 

1 1

2 2

5 5

[a ,b )

[a ,b )

[a ,b )

 
 
    

�
 ai bi ∈ R,  1 ≤ i ≤ 5 or [ai, bi) ∈ Nco(R)} 

 
be the collection of all column matrices of natural class of half 

closed-half open intervals.  M is a group under addition. 

 

 Now we see we can define a map η : N → M as follows. 
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η 

1 1

2 2

5 5

a b

a b
,

a b

     
    
    
    
           

� �
 = 

1 1

2 2

5 5

[a ,b )

[a ,b )

[a ,b )

 
 
 
 
 
 

�
. 

 

 It is easily verified η : N → M is a group homomorphism.  

Infact η is one to one and onto so η is a isomorphism.   
 

Further ker η = 

0 0

0 0

,0 0

0 0

0 0

     
    
         
    
    

         

. 

 

 Thus we can say every interval column matrix group is 

isomorphic to the group of column matrices using natural class 
of intervals.   

 

That is  

 

V = 

1 1

2 2

n n

a b

a b
, X

a b

    
    
    

=             

� �
 X ∈ c

oN (R) , ai, bi ∈ R; 1 ≤ i ≤ n} 

 
the interval column matrix group is isomorphic with  

 

W = 

1 1

2 2

n n

(a ,b )

(a ,b )

(a ,b )

 
 
 
   

�
 (ai, bi) ∈ No(R); 1 ≤ i ≤ n} 
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the column matrix with entries from natural class of open 

intervals from No(R).   
 

We have V ≅ W with η : V → W where  
 

η (X) = η 

1 1

2 2

n n

a b

a b
,

a b

     
     
     
     
            

� �
 = 

1 1

2 2

n n

(a ,b )

(a ,b )

(a ,b )

 
 
 
 
 
 

�
 for every  X ∈ V. 

 

Since V ≅ W, we can replace one group in the place of other and 
vice versa.  We will say both the groups are equivalent or 

identical except for the representation.   
 

Next we can say the similar result in case of row matrix of 

natural class of intervals or interval row matrices. 
 

 We see if M = {(a1, …, an) | [
i i

1 2a ,a ] = ai ∈ Nc(R); 1 ≤ i ≤ n} 

be the group of row interval matrices with entries from the 

natural class of closed intervals from Nc(R) and  
 

N = ( ){
1 1 2 2 1 1 2 2 t

1 n 1 n 1 n 1 n i(a , ...,a ),(a , ...,a ) [a , ...,a ],[a , ...,a ] a  =  ∈ 

R, t = 1, 2; 1 ≤ i ≤ n} be the row interval matrix group, then M 
is isomorphic to N.   

 

We define η : M → N by  
 

η (X) = η ( )( )
1 1 n n

1 2 1 2[a ,a ], ...,[a ,a ]   

 

=   
1 n 1 n

1 1 2 2(a , ...,a ),(a , ...,a )    

 

= ( )
1 n 1 n

1 1 2 2(a , ...,a ),(a , ...,a ) . 
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 Thus we can without loss of generality work with any one 

of the groups M or N. 
 

Example 2.13:   Let  

 

V = {(a1, a2, a3, a4) | ai = 1 2

i i(a ,a ] ; 1 ≤ i ≤ 4 with ai ∈ Noc(R)} 

 

be the group of interval row matrices with entries from Noc(R).   

 
Consider  

M = {
1 1 1 1 2 2 2 2

1 2 3 4 1 2 3 4[(a ,a ,a ,a ),[a ,a ,a ,a ]]  

where 
i

ja  ∈ R, i=1, 2; 1 ≤ j ≤ 4} 

 

be the group of interval row matrices.  M ≅ V.    
 

Now we define interval group of n × m matrices (n ≠ m). 

 

 Consider the n × m matrix m = (mij) where mij ∈ Nc(R); 1 ≤ 

i ≤ n and 1 ≤ j ≤ m, n ≠ m. 

  

We define M as the n × m natural class of interval matrix or 

n × m interval matrix with entries from the natural class of 

intervals. 
 

 We give examples of them. 

 
Example 2.14:  Let  

 

M = 

(0,9] (9,2]

(8, 2] (0, 4]

(11,13] (2, 5]

( 3, 13] ( 3,7]

 
 

− − 
 −

 
− − − 

 

 

be the 4 × 2 half open - half closed natural class of interval 

matrix 4 × 2 matrix with entries from Noc(Z). 
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Example 2.15:  Let  

 

M = 

[3,0] [7,3] [5, 3]

[ 8, 10] [0, 7] [9,10]

[7, 2] [3,6] [ 3,8]

[ 7,0] [0, 8] [11,15]

[10, 9] [12, 9] [0,0]

− 
 

− − − 
 − −

 
− − 

 
− − 

 

 

be the 5 × 3 closed interval matrix or 5 × 3 matrix with entries 

from Nc(R) or natural class of closed interval 5×3 matrix. 

 

Example 2.16:  Let  

 

V= 

[0,7) [5, 3) [7, 9) [14,3) [10,0) [12,12) [11, 1)

[5, 2) [11,15) [9,9) [1, 1) [7,6) [ 1, 1) [5, 5)

[8,8) [15, 11) [ 1,1) [0, 7) [3,0) [4,3) [6,6)

− − − 
 

− − − − − 
 

− − − 

 

 

be a 3 × 7 half closed half open interval matrix or a 3 × 7 
interval matrix with entries from Nco(Z). We say two interval 

matrices M and N are of same order if both M and N are t × s 
matrices and both M and N have entries which belong to Nc(R) 
or No(R) or Noc(R) or Nco(R) (or used in the mutually exclusive 

sense). 

 

 We can add two interval matrices M and N only when 
 

(i) They are of same order.  

(ii) The entries for both M and N are taken from the 
same class of natural class of intervals i.e., from 

Nc(R) (or Nco(R) or No(R) or Noc(R)).  (R can be 

replaced by Z or Q also). 
 

Now if we have matrices from Nc(R) and No(R) even of 

same order we cannot add them.  So when all the conditions are 

satisfied we can add the m × n interval matrices or the natural 
class of interval matrices. 
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We will first illustrate this situation by some examples. 

 
Example 2.17:  Let  

 

M = 

[3,2] [5, 2] [4,3]

[0,7] [7, 7] [ 8,0]

[8,0] [1,1] [9, 2]

− 
 

− − 
 

− 

 

 

and  

 

N = 

[0, 7] [1, 2] [5,1]

[2,0] [3, 4] [4,4]

[3,5] [11, 2] [0,0]

− − 
 

− 
 

− 

 

 

be two natural class of interval matrices with entries from 
Nc(R).   

 

Now M + N  = 

[3,2] [5, 2] [4,3]

[0,7] [7, 7] [ 8,0]

[8,0] [1,1] [9, 2]

− 
 

− − 
 

− 

 + 

 

[0, 7] [1, 2] [5,1]

[2,0] [3, 4] [4,4]

[3,5] [11, 2] [0,0]

− − 
 

− 
 

− 

 

 

= 

[3,2] [0, 7] [5, 2] [1, 2] [4,3] [5,1]

[0,7] [2,0] [7, 7] [3, 4] [ 8,0] [4,4]

[8,0] [3,5] [1,1] [11, 2] [9, 2] [0,0]

+ − − + − + 
 

+ − + − − + 
 

+ + − − + 

 

 

= 

[3, 5] [6, 4] [9,4]

[2,7] [10, 11] [ 4,4]

[11,5] [12, 1] [9, 2]

− − 
 

− − 
 

− − 

. 
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Thus if V = {M = (aij); 1 ≤ i ≤ m; 1 ≤ j ≤ n} be the collection 

of all m × n interval matrices with entries from Noc(R).  V under 
addition is a group we can replace Noc(R) by No(R) or Nc(R) or 

Nco(R) (and R by Q or Z) still the V will be a group under 

interval matrix addition. 
 

However we cannot define on V the operation of matrix 

multiplication.  

 

Now if we consider the collection of all interval n × n 
matrices V; with entries from No(R) (or Noc(R) or Nco(R) or 

Nc(R)) then V is a group under matrix addition, but only a non 

commutative semigroup under multiplication.  
 

We give examples of this situations. 

 

Example 2.18:  Let  
 

V = 
1 2

3 4

a a

a a

 
 
 

 ai ∈ Nco (R) ; 1 ≤ i ≤ 4} 

 
be a semigroup under multiplication. 

 

 If x = 
[0,7) [0, 7)

[ 8,0) [8,3)

− 
 

− 
 and y = 

[2,0) [5,5)

[3,2) [0,0)

 
 
 

  

 

be in V then  

 

   xy  = 
[0,7) [0, 7)

[ 8,0) [8,3)

− 
 

− 

[2,0) [5,5)

[3,2) [0,0)

 
 
 

 

 

= 
[0,7)[2,0) [0, 7)[3,2) [0,7)[5,5) [0, 7)[0,0)

[ 8,0)[2,0) [8,3)[3,2) [ 8,0)[5,5) [8,3)[0,0)

+ − + − 
 

− + − + 
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= 
[0,0) [0, 14) [0,35) [0,0)

[ 16,0) [24,6) [ 40,0) [0,0)

+ − + 
 

− + − + 
 

 

= 
[0, 14) [0,35)

[8,6) [ 40,0)

− 
 

− 
 is in V.  

 

To show xy ≠ yx.   
 

Consider yx = 
[2,0) [5,5)

[3,2) [0,0)

 
 
 

 
[0,7) [0, 7)

[ 8,0) [8,3)

− 
 

− 
 

 

= 
[2,0)[0,7) [5,5)[ 8,0) [2,0)[0, 7) [5,5)[8,3)

[3,2)[0,7) [0,0)[ 8,0) [3,2)[0, 7) [0,0)[8,3)

+ − − + 
 

+ − − + 
 

 

= 
[0,0) [ 40,0) [0,0) [40,15)

[0,14) [0,0) [0, 14) [0,0)

+ − + 
 

+ − + 
 

 

= 
[ 40,0) [40,15)

[0,14) [0, 14)

− 
 

− 
 ≠ xy. 

 

V is a semigroup under matrix multiplication.   

 

Infact 
[1,1) [0,0)

[0,0) [1,1)

 
 
 

 acts as the multiplicative identity.   

 

Further V is also a group under addition of matrices.   

 

[0,0) [0,0)

[0,0) [0,0)

 
 
 

 in V acts as the additive identity. 

 

Now we can define the notion of m × n matrix intervals or 

natural class of m × n matrix intervals (m ≠ n). 
 

We give examples of this situation. 
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Example 2.19:   Let  
 

X = 

9 0 2 1 7 8 3 6

4 3 6 7 , 9 0 6 3

5 1 0 5 7 1 2 4

 − −   
    

− − − − −    
    − − −    

 

 

is the 3 × 4 matrix interval of natural class of closed intervals.   
 

 Now we can rewrite  
 

X as 

[9,7] [0, 8] [2,3] [ 1,6]

[ 4, 9] [ 3,0] [6, 6] [7, 3]

[5, 7] [1, 1] [0,2] [ 5,4]

− − 
 

− − − − − 
 

− − − 

, 

 

is the 3 × 4 interval matrices with entries from Nc(R). 

 

Example 2.20:  Let  

 

M = 

3 1 5 7

2 5 5 2

,0 7 3 4

7 0 2 0

2 2 2 7

 − −   
    

− −    
    
    

−    
    

− −    

 

 

be the 5 × 2 matrix interval which are open intervals.  
 

 Now M can be written as the natural class of open intervals 

5 × 2 matrices with entries from No(R) (or No(Z) or No(Q)) as 
follows. 
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 M1 = 

(3,5) ( 1, 7)

( 2, 5) (5,2)

(0,3) (7,4)

( 7,2) (0,0)

(2,2) ( 7, 2)

− − 
 

− − 
 
 

− 
 − − 

 is the 5 × 2 interval matrices.  

 

 We see we can go easily from M to M1 or M1 to M.   Thus 
we can define a mapping from  

 

M = (mij) = 
1 2

ij ij([m ,m ]) , 1 ≤ i ≤ m and 1 ≤ j ≤ n to  

 

M1 = 
1 2

ij ij[(m ),(m )]  = 
1 2

ij ij([m ],[m ])  as follows. 

 

M �  M1 by the rule 
1 2

ij ij([m ,m ])  

 

= 
1 2

ij ij([m ],[m ])  or M1 �  M 

 

by 
1 2

ij ij([m ],[m ])  = 
1 2

ij ij[m ,m ] . 

 

 It is easy to verify the following theorem. 

 

THEOREM 2.2:  Let  

 

G ={
1 2

ij ij([ m ],[ m ])  where 
t

ij
m  ∈ R, t =1, 2; 1 ≤ i ≤ m and 1 ≤ j 

≤ n}  be the collection of all m × n matrix intervals.  G is a 

group under addition. 

 

THEOREM 2.3:  Let  

 

N = ( ){       
1 2

ij ij
m , m  = (mij) | mij ∈ Nc(R) (or Noc(R) or Nco(R) or 

No(R)); 1 ≤ i ≤ m and 1 ≤ j ≤ n}  be the collection of interval  

m × n matrices with intervals from Nc(R) (or Nco(R) or Nco(R) or 

No(R)).  N is a group under addition. 
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THEOREM 2.4:  The groups G and N mentioned in theorems 2.2 

and 2.3 are isomorphic. 

 

Proof:  Define a map η : G → N. 
 

 η 
1 2

ij ij(([m ],[m ]))  = 
1 2

ij ij([m ,m ]) ; for every 
1 2

ij ij([m ],[m ])  in G.   

 

η is a group homomorphism, infact an isomorphism.  Thus G is 
isomorphic to N. 
 

 Hence we can as per convenience work with G or work with 

N as both are isomorphic. Now we see if m = n that is we have 

square (n × n) matrix intervals.  Infact the collection of all such 

square (n × n) matrix intervals forms a group. 
 

 Also if we consider the collection P of all interval square 
matrices with intervals from No(R) (or Nc(R) or Noc(R) or  

Nco(R) or R replaced by Q or Z).  We see P is a group under 

addition.  We will first illustrate them and then derive related 
results. 

 

Example 2.21:  Let  
 

M = 

8 3 5 2 0 4

1 2 7 , 5 1 2

0 4 2 3 4 2

    
    

−    
    −    

 

 

be a 3 × 3 matrix closed interval.  We can rewrite M as the 
interval matrix with entries from Nc (R) as follows. 

 

M = 

[8,2] [3,0] [5,4]

[ 1,5] [2,1] [7,2]

[0,3] [ 4,4] [2,2]

 
 

− 
 

− 

. 
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 Suppose P = 

3 2 8 9 8 6

8 0 4 , 0 2 1

7 5 1 4 8 5

 − − −   
    
    
    − − −    

  

 

be a 3 × 3 matrix interval.  Then M + P is defined as follows. 
 

M + P = 

8 3 5 2 0 4

1 2 7 , 5 1 2

0 4 2 3 4 2

    
    

−    
    −    

 + 

 

3 2 8 9 8 6

8 0 4 , 0 2 1

7 5 1 4 8 5

 − − −   
    
    
    − − −    

 

 

= 

8 3 5 3 2 8 2 0 4 9 8 6

1 2 7 8 0 4 , 5 1 2 0 2 1

0 4 2 7 5 1 3 4 2 4 8 5

 − − −       
        

− + +        
        − − − −        

 

 

= 

11 1 13 7 8 2

7 2 11 , 5 3 3

7 1 1 7 12 3

 − −   
    
    
    − −    

 

 

= 

[11, 7] [1,8] [13, 2]

[7,5] [2,3] [11,3]

[ 7,7] [1,12] [ 3,1]

 − − 
  
  
  − −  

. 

 

Suppose X  = 

[0,2] [2,1] [ 3, 9]

[3,3] [4,0] [ 7,0]

[0, 3] [7,7] [11,2]

 − − 
  

−  
  −  

 and 
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[ 2,0] [7,0] [ 5, 12]

[1,2] [0,7] [3,0]

[3,3] [11,2] [ 8,0]

 − − − 
  
  
  −  

 = Y 

 

be any two natural class of closed interval matrices or interval 
square matrices with intervals from Nc(R).  We can add X and 

Y.   

 
X+Y=  

 

[0,2] [2,1] [ 3, 9]

[3,3] [4,0] [ 7,0]

[0, 3] [7,7] [11,2]

 − − 
  

−  
  −  

+

[ 2,0] [7,0] [ 5, 12]

[1,2] [0,7] [3,0]

[3,3] [11,2] [ 8,0]

 − − − 
  
  
  −  

 

 

= 

[0,2] [ 2,0] [2,1] [7,0] [ 3, 9] [ 5, 12]

[3,3] [1,2] [4,0] [0,7] [ 7,0] [3,0]

[0, 3] [3,3] [7,7] [11,2] [11,2] [ 8,0]

 + − + − − + − − 
  

+ + − +  
  − + + + −  

 

 

= 

[ 2,2] [9,1] [ 8, 21]

[4,5] [4,7] [ 4,0]

[3,0] [18,9] [3,2]

− − − 
 

− 
 
 

. 

 

Now X = 

[0,2] [2,1] [ 3, 9]

[3,3] [4,0] [ 7,0]

[0, 3] [7,7] [11,2]

 − − 
  

−  
  −  

 

 

= 

0 2 3 2 1 9

3 4 7 , 3 0 0

0 7 11 3 7 2

 − −   
    

−    
    −    

 and 
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Y = 

[ 2,0] [7,0] [ 5, 12]

[1,2] [0,7] [3,0]

[3,3] [11,2] [ 8,0]

 − − − 
  
  
  −  

 

 

= 

2 7 5 0 0 12

1 0 3 , 2 7 0

3 11 8 3 2 0

 − − −   
    
    
        

. 

 

Thus we can say the group of n × n matrix intervals is 

isomorphic with the intervals of n × n matrices provided the 
intervals are taken as closed (or open or etc) on both collection. 

 

Now using this isomorphism we can always derive all 
algorithms (programs) for addition, subtraction and 

multiplication with simple modifications in case of matrix 

intervals; the time taken for these is the same as that of usual 

matrices.  
 

We will just illustrate this.   

 

If M = (mij) = 
1 2

ij ij([m ,m ])  be the interval matrix of order m 

× n and N = (nij) = 
1 2

ij ij([n ,n ])  be another interval matrix of order 

m × n both M and N take their entries from Nc(R). 
 

 
Now to find M + N 

 

= (mij) + (nij) 
 

= 
1 2

ij ij([m ,m ])  + 
1 2

ij ij([n ,n ])  

 

= 
1 2

ij ij[(m ),(m )] + 
1 2

ij ij[(n ), (n )]  

 

= 
1 1 2 2

ij ij ij ij[(m ) (n ),(m ) (n )]+ +  
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(using usual program for m × n matrices we get 
1 1

ij ij(m ) (n )+  and 

2 2

ij ij(m ) (n )+ ) 

 

= 
1 2

ij ij[(s ), (s )]  

 

= 
1 2

ij ij([s ,s ])  = (sij). 

 
Thus except for separating them by a ‘,’ the program or 

algorithm for addition is identical with that of the usual 

matrices.  Now on similar lines M – N, the subtraction is 

performed.   
 

We now proceed onto define product of two interval 

matrices.  
 

First the multiplication of interval matrices are defined only 

when the matrices are square matrices and both of them are of 

the same type (that is both should take entries from Nc(R) (or 
No(R) or Noc(R) or Nco(R) or used in the mutually exclusive 

sense, then only product can be defined. 

 

Suppose M = (mij) = 
1 2

ij ij([m ,m ])  

 

(1 ≤ i, j ≤ n and 
t

ijm  ∈ R; t =1,2) be a n × n interval matrix 

and N = (nij) = 
1 2

ij ij([n ,n ])  be a n × n interval matrix both mij and 

nij ∈ Nc(R). 
 
To find the matrix product  

 

M × N  = (mij) (nij) 
 

   = ( )
1 2

ij ijm ,m    × ( )
1 2

ij ijn ,n    
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  = ( ) ( )
1 2

ij ijm , m 
  × ( ) ( )

1 2

ij ijn , n 
   

 

(this is possible as these two matrices are one and the same, 
as they are identical except for the representation and one can  

get one from the other and vice versa) 

 

= ( )( ) ( )( )
1 1 2 2

ij ij ij ijm n , m n 
   

 

= ( ) ( )
1 2

ij ijs , s 
   

 

= ( )
1 2

ij ijs ,s     

 

= (sij). 

 

(where 
t

ijs  is the product of the n × n matrices t

ijm  with t

ijn ;  

t = 1, 2). 
 

Thus except for rewriting them the program for the usual 

matrices can be used for these interval matrices also. 
 

We will illustrate this situation by some examples. 

 
Example 2.22:  Let  

 

V = 

[0,7) [7,1) [5,8)

[9,0) [1,2) [3,7)

[11,3) [10, 1) [1,1)

 
 
 
 − 

 and 

 

W = 

[9,0) [2,4) [0, 2)

[3,2) [4,2) [3,3)

[4,4) [6,6) [1,1)

− 
 
 
  

 

 
be interval matrices with entries form Nco(R).   
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To find  

 

V.W =

[0,7) [7,1) [5,8)

[9,0) [1,2) [3,7)

[11,3) [10, 1) [1,1)

 
 
 
 − 

.

[9,0) [2,4) [0, 2)

[3,2) [4,2) [3,3)

[4,4) [6,6) [1,1)

− 
 
 
  

 

 

= 

0 7 5 7 1 8

9 1 3 , 0 2 7

11 10 1 3 1 1

    
    
    
    −    

9 2 0 0 4 2

3 4 3 , 2 2 3

4 6 1 4 6 1

 −   
    
    
        

 

 

= 

0 7 5 9 2 0 7 1 8 0 4 2

9 1 3 3 4 3 , 0 2 7 2 2 3

11 10 1 4 6 1 3 1 1 4 6 1

 −       
        
        
        −        

 

 

= 

0.9 7.3 5.4 0.2 7.4 5.6 0.0 7.3 5.1

9.9 1.3 3.4 9.2 1.4 3.3 9.0 1.3 3.1

11.9 10.3 1.4 11.2 10.4 1.6 11.0 10.3 1.1

 + + + + + + 
 

+ + + + + + 
  + + + + + + 

 

 

=

7.0 1.2 8.4 7.4 1.2 8.6 7 2 1.3 8.1

0.0 2.2 1.4 0.4 2.2 7.6 0. 2 2.3 7.1

3.0 1.2 1.4 3.4 1.2 1.6 3. 2 1.3 1.1

+ + + + − + + 
 

+ + + + − + +  
 + − + + − + − + − + 

 

 

= 

41 58 26 34 78 3

96 31 6 , 8 46 13

133 68 31 6 16 8

 −   
    
    
    −    

 

 

= 

[41,34) [58,78) [26, 3)

[96,8) [31,46) [6,13)

[133,6) [68,16) [31, 8)

− 
 
 
 

− 

. 
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From the working of the example one can easily understand 

how for any n × n interval matrix, we can program for the 

product.  The time taken is the same as that of the usual matrix 
multiplication.  

 

Now we give a method of finding the determinant of 
interval matrices provided they are square interval matrices.  

 

We first illustrate this situation by some examples. 
 

Example 2.23:  Let  

 

X = 
(0,3) (7,8)

(4, 1) (9,3)

 
 

− 
 

 

be an interval matrix with entries from No(R).  To find  

 

|X|  = (0, 3) (9, 3) – (7, 8) × (4, -1)  

   = (0, 9) – (28, –8) 
   = (–28, 11).   

 

So the value of the determinant is also a open interval. 
 

 Consider X = 
(0,3) (7,8)

(4, 1) (9,3)

 
 

− 
 be the interval matrices. 

 

   Now |X| = 
(0,3) (7,8)

(4, 1) (9,3)

 
 

− 
 

 

     = 
0 7 3 8

,
4 9 1 3

 
  

− 
 

 

     = (–28, 17). 
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The second method of finding the determinant can be easily 

programmed by using matrix interval instead of interval matrix. 
 

 We just indicate how to find the determinant of interval 

matrix. 

 

 Let M = (mij) = ( )
1 2

ij ijm ,m    where mij ∈ Nc(R); 1 ≤ i, j ≤ n 

be a interval matrix.  To find the determinant of M. 

 

|M| = |(mij)|  = ( )
1 2

ij ijm ,m    

 

      = 1 2

ij ijm , m 
    

 

where 
1

ijm  = 

1 1

11 1n

1 1

n1 nn

m ... m

m ... m

 
 
 
 
 

� �  and   

 

    
2

ijm  = 

2 2

11 1n

2 2

n1 nn

m ... m

m ... m

 
 
 
 
 

� � . 

 

Since every interval matrix is a matrix interval we can find 
the determinant by just separating the intervals to get matrix 

intervals. 

 

We see as in case of usual matrices we can in case of 
interval matrices also define or write the transpose.   

 

We just illustrate them with examples. 
 

Suppose X  = (a1, …, a9) 

 

= 1 2 1 2 1 2

1 1 2 2 9 9([a ,a ],[a ,a ], ...,[a ,a ])  
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be a interval 1 × 9 row matrix with ai ∈ Nc(R); 1 ≤ i ≤ 9. 
 

     X
t
 = (a1, …, a9)

t
 

 

= 1 2 1 2 1 2 t
1 1 2 2 9 9([a ,a ],[a ,a ], ...,[a ,a ])  

 

= 

1 2

1 1

1 2

2 2

1 2

9 9

[a ,a ]

[a ,a ]

[a ,a ]

 
 
 
 
 
  

�
. 

 
Thus X

t
 is the transpose of the interval matrix which is a 

interval column matrix. 

 
Also if X  = (a1, a2, …, a9) 

 

= 1 2 1 2 1 2 t
1 1 2 2 9 9([a ,a ],[a ,a ], ...,[a ,a ])  

 

= 1 1 1 2 2 2 t
1 2 9 1 2 9[(a ,a , ...,a ),(a ,a , ...,a )]  

 

= 1 1 1 t 2 2 2 t
1 2 9 1 2 9[(a ,a , ...,a ) ,(a ,a , ...,a ) ]  

 

= 

1 2

1 1

1 2

2 2

1 2

9 9

a a

a a
,

a a

    
    
    
    
            

� �
 

 

= 

1 2

1 1

1 2

2 2

1 2

9 9

[a ,a ]

[a ,a ]

[a ,a ]

 
 
 
 
  
 

�
. 
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Thus the transpose of a row matrix interval is an interval 

row matrix and we see if X = (a1, …, an) is a interval row matrix 
then (X

t
)

t
 = X. 

 

Now we see if  Y  = 

1

2

m

b

b

b

 
 
 
 
 
 

�
 

 

= 

1 2

1 1

1 2

2 2

1 2

m m

[b ,b )

[b ,b )

[b ,b )

 
 
 
 
 
  

�
 

 

= 

1 2

1 1

1 2

2 2

1 2

m m

b b

b b
,

b b

    
   
   
   
           

� �
 

 

Now Y
t
 = 

t
1

2

m

b

b

b

 
 
 
 
 
 

�
= 

t
1 2
1 1

1 2
2 2

1 2
m m

[b ,b ]

[b ,b ]

[b ,b ]

 
 
 
 
 
 
 

�
 

 

 

= 1 2 1 2 1 2

1 1 2 2 m m([b ,b ],[b ,b ], ...,[b ,b ])  
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= 

t
1 2
1 1

1 2
2 2

1 2
m m

b b

b b
,

b b

    
    
    
    
    
    
    

� �
 

 

= 1 1 1 1 2 2

1 2 m 2 2 m[(b , b , ...,b ),(b ,b , ...,b ))  

 

= 1 1 1 1 2 2

1 2 m 2 2 m([b , b , ...,b ],(b ,b , ...,b )) . 

 
Thus if Y is a interval column matrix we see Y

t
 is an 

interval  row matrix and (Y
t
)

t
 = Y. 

 
Let  

 

X  = (aij)m×n , (m ≠ n); aij = 
1 2

ij ij[a ,a ] , 1 ≤ i ≤ m, 1 ≤ j ≤ n;  

 

aij ∈ No(R).  (aij can be in Nc(R) or Noc(R) or Nco(R) or R 
replaced by Z or Q). 

 

Thus X = 

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

= 

1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

21 21 22 22 2n 2n

1 2 1 2 1 2

m1 m1 m2 m2 mn mn

(a ,a ) (a ,a ) ... (a ,a )

(a ,a ) (a ,a ) ... (a ,a )

(a ,a ) (a ,a ) ... (a ,a )

 
 
 
 
  
 

� � �
 

 

be a m × n interval matrix. 
 



 52

Now X
t
 = 

t

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

= 

t
1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

21 21 22 22 2n 2n

1 2 1 2 1 2

m1 m1 m2 m2 mn mn

(a ,a ) (a ,a ) ... (a ,a )

(a ,a ) (a ,a ) ... (a ,a )

(a ,a ) (a ,a ) ... (a ,a )

 
 
 
 
  
 

� � �
 

 

 

= 

1 2 1 2 1 2

11 11 21 21 m1 m1

1 2 1 2 1 2

12 12 22 22 m2 m2

1 2 1 2 1 2

1n 1n 2n 2n mn mn

(a ,a ) (a ,a ) ... (a ,a )

(a ,a ) (a ,a ) ... (a ,a )

(a ,a ) (a ,a ) ... (a ,a )

 
 
 
 
  
 

� � �
 

 

= 

11 21 m1

12 22 m2

1n 2n mn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

be a n × m interval matrix.  We see if X is a m × n interval 
matrix then (X

t
)

t
 = X. 

 

 Finally we find the transpose of an interval square matrix 

and it is easily seen that only the collection of interval square 

matrices M with entries from No(R) (Nc(R) or Noc(R) or Nco(R)) 
is such that the transpose of an interval square matrix is again in 

M; that is if X ∈ M then X
t
 ∈ M. 
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Take X = 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

be an interval n × n matrix with aij ∈ Noc(R); 1 ≤ i, j ≤ n. 
 

That is X = 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

= 

1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

21 21 22 22 2n 2n

1 2 1 2 1 2

n1 n1 n2 n 2 nn nn

(a ,a ] (a ,a ] ... (a ,a ]

(a ,a ] (a ,a ] ... (a ,a ]

(a ,a ] (a ,a ] ... (a ,a ]

 
 
 
 
  
 

� � �
 

 

= 

1 1 1 2 2 2

11 12 1n 11 12 1n

1 1 1 2 2 2

21 22 2n 21 22 2n

1 1 1 2 2 2

n1 n2 nn n1 n 2 nn

a a ... a a a ... a

a a ... a a a ... a
,

a a ... a a a ... a

    
    
    
    
           

� � � � � �
 

 

Now X
t
 = 

t
11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
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= 

11 21 n1

12 22 n 2

1n 2n nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

= 

1 2 1 2 1 2

11 11 21 21 n1 n1

1 2 1 2 1 2

12 12 22 22 n 2 n2

1 2 1 2 1 2

1n 1n 2n 2n nn nn

(a ,a ] (a ,a ] ... (a ,a ]

(a ,a ] (a ,a ] ... (a ,a ]

(a ,a ] (a ,a ] ... (a ,a ]

 
 
 
 
  
 

� � �
. 

 

Thus X
t
 is also an interval n × n matrix and (X

t
)

t
 = X. 

  

Now we can find eigen values and eigen vectors using these 

matrices.  Clearly to get eigen values in case of interval matrices 
we need to find interval polynomials or polynomial in the 

variable x with interval coefficients from Nc(R) or No(R) or 

Noc(R) or Nco(R) (or R replaced by Z or Q ‘or’ used only in the 
mutually exclusive sense).  In the following chapter we 

introduce interval polynomials. 
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Chapter Three 
 
 
 
 

POLYNOMIAL INTERVALS (INTERVAL 
POLYNOMIALS) 
 
 
 
 

 

 

Interval polynomials are nothing but p(x) = ∑ ai x
i
 where ai 

∈ Nc(R) (or open of half-open closed or half closed open).  Here 
we concentrate only on closed intervals from the natural class of 
intervals as all properties hold good in case of all type of 

intervals except in other cases when in applications the solutions 

takes the value as end points.  

 
 Since in this book we are not talking about mathematical 

models we do not bother about this problem also. 

 
 Now  

p(x) = [0, 3]x
7
 + [5, 2]x

3
 – [7, –3]x

2
 + [0, –6]x

5
 + [3, 3]x + 

[2, 9] is an interval polynomial we will define the notion of 
polynomial intervals and show how interval polynomial can be 

made into polynomial interval and vice versa, so we work both 

as polynomial interval or interval polynomials. 

 

DEFINITION 3.1:   Let q(x), p(x) ∈ R[x] (or Z[x] or Q[x] or 

C[x] or Zn[x]) be any two polynomials.  We define [p(x), q(x)] 
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as the polynomial interval.  No restriction on the degree of p(x) 

or q(x) or on the coefficients of p(x) or q(x) is needed. 

 

 We will first illustrate this by some examples. 

 

Example 3.1:  Let  
P(x) = [8x

3
 – 4x

2
 + 2x – 7, 9x

9
 – 3x

6
 + 4x

5
 – 6x

3
 + 2x

2
  

– 7x + 18] 

be the polynomial interval. 
 

Example 3.2:  Let  

P(x) = [3x
7
 – 4x + 2, 4x

3
 – 5x

2
 + 3x – 1] = [a(x), b(x)] 

be the polynomial interval. 

 

Example 3.3:  Let  

p(x) = [8, 7x
2
 – 4x + 3] 

be the polynomial interval. 

 

Example 3.4:  Let  
q (x) = [8x

8
 – 7x + 3, –9] 

be the polynomial interval.   

 
We have seen polynomial intervals.  Now we want to work 

about structures on these collection of all polynomial intervals; 

to this end we define the following. 

 
DEFINITION 3.2:  Let  

VR = {[p(x), q(x)] = P(x) / p(x), q(x) ∈ R[x]} 

be the collection of all polynomial intervals with coefficients 

from R or polynomials from R[x].  VR is a ring of real 

polynomial intervals. 

 

 We see for any two polynomial intervals P(x), S(x) in VR, 

we can define addition as follows.  Suppose P(x) = [p(x), q(x)] 
and S(x) = [a(x), b(x)] then define P(x) + S(x) = [p(x), q(x)] + 

[a(x), b(x)] = [p(x) + a(x), q(x) + b(x)]; since p(x) + a(x) and 

q(x) + b(x) are in R[x], we see P(x) + S(x) is in VR.  Thus VR is 
closed under polynomial interval addition. 
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Consider 0 = [0, 0] ∈ VR.  We call this the zero polynomial 

interval and 0 = 0x + 0x + … + 0x
m
, m ∈ Z

+
 ∪ {0}.   

 

We see P(x) + [0, 0]  = [ p(x), q(x)] + [0,0]  

= [p(x) + 0, q(x) + 0]  
= [p(x), q(x)] =  P(x). 

 

Thus [0, 0] acts as the additive identity for polynomial 

interval addition.  Further we see for S(x), P(x) ∈ VR; P(x) + 
S(x) = S(x) + P(x).  Thus the operation of addition on 
polynomial intervals is commutative.  

 

Also it can be easily verified for P(x), S(x), T(x) ∈ VR.  We 
have (P(x) + S(x)) + T(x) = P(x) + (S(x) + T(x)).  That is the 

operation of polynomial interval addition on VR is both 
commutative and associative with 0 = [0, 0] as its additive 

identity. 

 
Thus we can easily prove the following theorem. 

 

THEOREM 3.1:  VR is an additive abelian group of infinite 

order.   
 

For every P(x) = [p(x), q(x)] we have P(x) = [–p(x),  

–q(x)] is such that P(x) + (–P(x)) = [p(x), q(x)] + [–p(x), –q(x)] 
= [p(x) + (–p(x)), q(x) + (–q(x))]  = [0, 0].  Thus for every P(x) 

in VR. – P(x) is the additive inverse of P(x). 

 
 Now we proceed onto just give simple illustration before we 

proceed onto define multiplication on VR.  Consider  

 

P(x) = [p(x), q(x)] = [8x
7
 – 3x

2
 + 2x – 7, –5x

8
 + 15x

7
 – 10x

3
 

+ 11x – 1] in VR.  –P(x) = [–p(x), –q(x)] = [–8x
7
 + 3x

2
 – 2x + 7, 

5x
8
 – 15x

7
 + 10x

3
 – 11x + 1] ∈ VR.  

 

 We see P(x) + (–P(x)) = [0,0].  Thus –P(x) is the inverse of 

P(x) in VR with respect to polynomial interval addition. 
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 Now consider P(x), S(x) in VR; where P(x) = [p(x), q(x)] 

and S(x) = [s(x), r(x)].  P(x) × S(x) = P(x) . S(x) = [p(x),  
q(x)] . [s(x), r(x)] 

 

 = [p(x) . s(x), q(x) . r(x)] is in VR as p(x) . s(x) ∈ R[x] and 

q(x) . r(x) ∈ R [x]. Thus on VR we have defined a product × or 

‘.’.  Further the product of polynomial intervals is commutative 
as product of polynomials in R[x] is commutative.   

 

We just illustrate by a very simple example.   
 

Consider P(x) = [p(x), q(x)] = [–2x
3
 + x

2
 + 1, 5x

3
 – 1] and 

S[x] = [a(x), b(x)] = [x
7
 + 1, 2x

2
 – 3x +1] to be two polynomial 

intervals in VR.  Now P(x) × S(x) = [p(x), q(x)] × [a(x), b(x)] = 

[p(x) a(x), q(x) b(x)]. 
 

 = [(–2x
3
 + x

2
 + 1) (x

7
 + 1), 5x

3
 – 1 × (2x

2
 – 3x + 1)] 

 

 = [–2x
10

 + x
9
 + x

7
 – 2x

3
 + x

2
 + 1, 10x

5
 – 2x

2
 – 15x

4
 + 3x + 

5x
3
 – 1] 

 

 = [–2x
10

 + x
9
 + x

7
 – 2x

3
 + x

2
 + 1, 10x

5
 – 15x

4
 + 5x

3
 – 2x

2
 + 

3x – 1]  is again a polynomial interval in VR.  Further we see as 
p(x) a(x) = a(x) p(x) and q(x) b(x) = b(x) q(x),  

 

P(x). S(x) = S(x). P(x). 

 
 Thus ‘.’ on VR is a closed commutative operation.  It is left 

for the reader to prove or verify, ‘.’ on VR is an associative 

operation.  We see VR is only a commutative semigroup for if  
[q(x), 0] = S(x) and P(x) = [0, a(x)] are in VR then P(x). S(x) = 

S(x). P(x) = [0, a(x)] [q(x), 0] = [0, 0] = [q(x), 0] [0, a(x)].   

 
Since VR has zero divisors VR is only a commutative 

semigroup under polynomial interval multiplication.  However 

the constant polynomial interval [1, 1] acts as the multiplicative 

identity.  For if we take  
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P(x) = [a (x), b(x)] and 1 = [1, 1] ∈ VR then P(x) . 1 = [a(x), 
b(x)] [1, 1] = [a(x).1, b(x). 1] = [1, 1] [a(x), b(x)] = [1 . a(x), 1. 

b(x)] = [a(x), b(x)].  Thus is true for every P(X) in VR.  We call 

polynomial intervals of the form [a, b] where both a and b are 
reals as constant polynomial intervals.  Thus we see VR contains 

the natural class of real intervals [a, b] that is Nc (R) ⊆ VR. 
 

 Also the reader can easily verify that the operation ‘+’ and 

‘.’ on VR is distributive; for if P(x) = [a(x), b(x)], A(x) =  
[s(x), r(x)] and B(x) = [c(x), d(x)] in VR (a(x), b(x), s(x),  

r(x), c(x), d(x)) ∈ R[x]) then we have; 
 

P(x) × (A(x) + B(x)) = P(x) × A(x) + P(x) × B(x). 
 

That is [a(x), b(x)] ([s(x), r(x)] + [c(x), d(x)]) 
 

= [a(x), b(x)] ([s(x) + c(x), r(x) + d(x)]) 

 
= [a(x) (s(x) + c(x)), b(x) (r(x) + d(x))] 

 

 (Since the operation are distributive in R[x] we have) 

 
 = [a(x) s(x) + a(x) c(x), b(x) r(x) + b(x) d(x)] … I 

 

 Consider P(x) A(x) + P(x) × B(x)  
 

 = [a(x), b(x)] [s(x), r(x)] + [a(x), b(x)] × [c(x), d(x)] 
 
 = [a(x) s(x) + a(x) c(x), b(x) r(x) + b(x) d(x)] … II 

 

 I and II are identical hence in VR the operation × distributes 
over addition.  Thus VR is a commutative ring with unit and has 

zero divisors.  Only constant polynomial intervals of the form 

[a, b] (a ≠ 0, b ≠ 0 in R) are invertible or have inverse with 

respect to multiplication of polynomial intervals.   
 

We will now study the properties enjoyed by the real 

polynomial interval ring VR. 
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THEOREM 3.2:  VR has ideal. 

 

Proof:  Consider X = {[ p(x), 0] | p(x) ∈ R[x]} ⊆ VR.  X is an 

ideal.   
 

 Further one can easily verify all polynomial intervals,  P(x) 

= [p(x), q(x)] can generate ideals in VR.   
 

Consider I = 〈 [x2
 + 1, x

3
 + 1]〉 = {[p(x), q(x)] | deg p(x) ≥ 2 

and deg q(x) ≥ 3} ⊆ VR.  I is an ideal.  We can as in case of 
usual rings find the quotient ring in case of ring of interval 

polynomial. 

 

 Find R R

2 3

V V

I [x 1,x 1]
=

〈 + + 〉
 = {[ax + b, cx

2
 + dx + e] + I | a, 

b, c, d, e ∈ R}, the quotient ring.  Clearly RV

I
 is the quotient  

ring of interval polynomials.  

 

 This quotient ring of polynomial intervals has zero divisors. 

 
 Thus we have infinite number of ideals in VR.  Now we 

define VQ = {[p(x), q(x)] = P(x) | p(x), q(x) ∈ Q[x]} to be the 
rational ring of polynomial intervals.  VQ is a ring, VQ has also 

infinite number of ideals in it.  

 

 Vc = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ C[x]} is a complex 
ring of polynomial intervals. 

 

 Vc also has infinite number of ideals.  Infact we can say Vc 

is the algebraically closed ring.  This notion will be explained in 
the later part of this chapter.   

 

 
nZV  = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ Zn[x]}  

 

is the modulo integer ring of polynomial of intervals and  
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Vz = {P(x), q(x)] | p(x), q(x) ∈ Z[x]}  
 

is the integer ring of polynomial intervals. 

 

 We see VZ ⊆ VQ ⊆ VR ⊆ VC this containment is a proper 
containment and infact  VZ is a subring of polynomial intervals, 

VQ and VZ are subrings of polynomial intervals of VR and 

finally VZ, VR, VQ are subrings of polynomial intervals of VC.  

We see clearly these subrings are not ideals so we can say 
polynomial interval rings have subrings of polynomial intervals 

which are not ideals.  All the polynomial interval rings VR, VQ, 

VZ and VC are of infinite order commutative with unit and has 
zero divisors no idempotents or nilpotents in it.   

 

However if 
nZV  = {[p(x), q(x)] = P(x) | p(x), q(x) ∈ Zn[x]} 

then 
nZV  has zero divisors, units idempotents and nilpotents if n 

is a composite number.  
nZV  also has ideals and subrings.  

nZV  

is the ring of modulo integer polynomial intervals and is of 

infinite order. 
 

 We will give one or two examples.  

  

Consider 
12ZV  = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ Z12 [x]} 

is the modulo integer polynomial interval ring of infinite order.  

Clearly S = Nc(Z12) = {[a, b] | a, b ∈ Z12} ⊆
12ZV .  S = Nc(Z12) is 

only a subring of modulo integer polynomial intervals and is not 

an ideal.  Consider P = {p(x) = [p(x), q(x)] | p(x), q(x) ∈ S[x] 

where S = {0, 2, 4, 6, 8, 10} ⊆ Z12}; that is all polynomial 
intervals with coefficients of the polynomials in the polynomial 

interval is from S = {0, 2, 4, …, 10} ⊆ Z12.  Clearly P is an 

ideal.  Thus 
12ZV  has subrings as well as ideals. 

  
Take T(x) = [6x + 6x

2
 + 4, 6x

3
 + 2x + 4]  and  

 

S(x) = [6x
3
, 6x

2
 + 6] in 

12ZV .  We see T(x) . S(x) = 0.  Also 

[6, 6] ∈ 
12ZV   is a nilpotent element of 

12ZV . 
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 Consider Z11[x], the set of all polynomials in the variable x 
with coefficients from Z11 with the special condition x

5
 = 1, x

6
 = 

x, x
7
 = x

2
 and so on. 

 

 Now  
 

11ZV  = {[p(x), q(x)] = P(x) | p(x), q(x) in Z11[x] where 

degp(x) ≤ 5 and deg q(x) ≤ 5}. 
11ZV is a modulo integer 

polynomial interval ring with unit, commutative and of finite 

order. 
11ZV also have zero divisors and units but has no 

idempotents or nilpotents.  All polynomial interval rings are 

commutative rings with unit and zero divisors. 
 

THEOREM 3.3:  Every polynomial interval ring VZ or VQ or VR 

or VC or 
nZ

V  contains Nc(Z) or Nc(Q) or Nc(R) or Nc(C) or 

Nc(Zn)  respectively as a proper subset which is a subring.   

 

We call this subring as the inherited subring of interval or 

subring of natural class of intervals. 

 

 We say the polynomial interval P(x) = [g(x), h(x)] ≠ [0, 0]; 
divides the polynomial interval R(x) = [p(x), q(x)] if g(x) | p(x) 

and h(x) | q(x) that is P(x) | R(x).  For instance take [x
2
 – 1, 3x

3
 

– 1] = P(x) and  
 

R(x) = [x
5
 + x

3
 + x

2
 – 2x – 1, 3x

7
 – 6x

6
 + 2x

4
 + 11x

3
 – x – 

3].  Clearly P(x) | R(x) and  

 
 

R(x)

P(x)
 = 

5 3 2 7 6 4 3

2 3

[x x x 2x 1,3x 6x 2x 11x x 3]

[x 1,3x 1]

+ + − − − + + − −

− −

 

 

 

= 
5 3 2 7 6 4 3

2 3

x x x 2x 1 3x 6x 2x 11x x 3
,

x 1 3x 1

 + + − − − + + − −

 
− − 
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= [x
3
 + 2x + 1, x

4
 – 2x

3
 + x + 3]. 

 

 We see if P(x) = [p(x), q(x)] ≠ [0, 0] and S(x) = [a(x), b(x)] 

∈ VR, we say P(x) / S(x) if p(x) \ a(x) or q(x) \ b(x) or not 

used in the mutually exclusive sense.  

 
 Consider P(x) = [x

7
 + 1, x

3
 + 2x + 7] and S(x) = [x

8
 + 1, x

24
 

– 1] in VR.  We see P(x) \  S(x) as x
7
 + 1  \  x

8
 +1 and x

3
 + 2x 

+ 7 \  x
24

 – 1. 

 

 We see all polynomial intervals P(x) = [p(x), q(x)], (p(x) = 

0 or q(x) = 0) then P(x) does not divide any S(x) ∈ VR. 
 

 Clearly VR or VQ or VZ or VC are not Euclidean rings as 
they are not integral domains and they contain zero divisors. 

However it is pertinent to mention here that VR or VQ or VC or 

VZ contains subrings of polynomial intervals which are 
Euclidean rings. 

 

 For instance  

 

I = {[q(x), 0] = P(x) / q(x) ∈ R(x) or Z(x) or Q[x]} ⊆ VR  
 

(or VZ or VQ) is a Euclidean subring of polynomial intervals. 

 

 T = {[q(x), 0] = P(x) / q(x) ∈ R[x] or Q[x]} is a Euclidean 
ring as well as principal ideal domain.  We say a polynomial 
interval P(x) = [p(x), q(x)] is primitive if for both p(x) = p0 + 

p1x  + … + pn x
n
 and q (x) = q0 + q1 x + … + qm x

m
 in Z [x], we 

have the greatest common divisor of p0, p1 … pn is 1 and that of 
the greatest common divisor of q0, q1, …, qm is 1; then we say 

the polynomial interval is primitive. 

 

 If P(x) = [p(x), q(x)] and S(x) = [a(x), b(x)] are two 
primitive polynomial intervals then  
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P(x) S(x) = [p(x) a(x), q(x) b(x)] is again a primitive 

polynomial interval. 
 

 The content of the polynomial interval  

P(x) = [f(x), g(x)] = [a0 + a1x + … + anx
n
, b0 + b1x + … + bmx

m
] 

where ai’s and bj’s are integers 1 ≤ i ≤ n, 1 ≤ j ≤ m; then the 
greatest common divisor of the integers [{a0, a1, …, an} {b0, b1, 
…, bm}] is an interval in Nc(Z). 

 

 We say a polynomial interval P(x) = [p(x), q(x)] is monic if 
both p(x) and q(x) are monic that is if all coefficients of p(x) 

and q(x) are integers and the highest coefficient of each of p(x) 

and q(x) is 1. 

 
 Consider P(x) = [p (x), q (x)] = [x

9
 – 20x

8
 + 11x

3
 – 12x

2
 + x 

– 45, x
25

 + 14x
20

 – x
19

 + 17x
10

 – x
3
 + x

2
 – 1]; P(x) is a monic 

polynomial interval.  
 

 It is easily verified that if P(x) and S(x) are monic 

polynomial intervals then so is P(x) S(x) their product, further if 

p(x) is a monic polynomial interval then so are the factors.  
 

 We say a polynomial interval P(x) = [p(x), q(x)] is reducible 

if P(x) = S(x) T(x) where S(x) = [a(x), b(x)] and T(x) = [d(x),  
c(x)] = [a(x) d(x), b(x) c(x)] where deg (a(x)) and deg (d(x)) are 

strictly less than deg p(x) and deg (a(x)) and deg d(x) are strictly 

greater than 1 that is a(x) and d(x) are not constant polynomials.  
 

 Similar condition for q(x) = b(x) c(x) holds good.  If P(x) is 

not reducible we say P(x) is irreducible. 

 
 The irreducibility depends on the ring over which the 

polynomials are defined. 

 

 Consider P(x) = [p(x), q(x)] = [x
2
 + 1, 5x

2
 + 7] ∈ VR.  

Clearly P(x) is irreducible over Nc(R) but reducible over Nc(C). 
 

 Now we extend the notion of Eisenstein Criterion. 
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 Theorem (Eisenstein Criterion for polynomial intervals)  

Let P(x) = [f(x), g(x)] = [a0 + a1x + … + anx
n
, b0 + b1x + … + 

bmx
m
] be a polynomial interval with integer coefficients.  

 

 Suppose for some prime numbers p1, p2 we have  p1 \ an, 

p1/a1, p1/a2, …, p1/a0 and 2

1p \  a0 and p2 \ bn, p2/b1, p2/b2, …, 

p2/b0 and 2

2p \ b0.  Then P (x) is irreducible over the rationals.  

The proof is direct as in case of usual polynomials [2, 3].  Here 

the concept of unique factorization domain or integral domain 

cannot be extended as the polynomial intervals have zero 
divisors.  

 

 We can as in case of polynomials solve the equations in 
interval polynomials.  

 

 For if P(x) = [p(x), q(x)], 
 

 we say [α, β] is a root of P(x) if P([α, β]) = [p(α), q(β)] = 
[0, 0]. 

 

 Thus if P(x) = [p(x), q(x)] = [x
2
 – 5x + 6, x

3
 – 7x – 6] then 

this polynomial interval has the following interval roots. 

 

 [3, –1], [3, 3] [3, –2], [2, –1], [2, 3] and [2, –2] are the 

interval roots of the polynomial interval.   
 

We see P([3, –1]) = (0, 0) and so on.  

 

 We can define 
Q( 2 )

V , 
Q( 7 , 3)

V , 
Q( 11, 2 , 5)

V  and so on 

where these will be called as extended polynomial intervals or 
extended polynomial interval rings. 

 

 So we can say for any P(x) ∈ VQ or VQ[x], (a, b) lying in 
Nc(Q(a, b)) is an interval root if P ([a, b]) = [0, 0]. 

 

 Clearly Q ⊆ Q( 2 )  ⊆ Q( 11, 2, 5)  and Q ⊆ 

Q( 7, 3) . 
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 We know if P(x) ∈ VF or VF(x) (F a field) then for any 
interval [a, b] in VK (K an extension field of F)  

 
P(x) = [(x–a) p1(x) + p(a), (x–a) q1(x) + q(b)] where [p1(x), 

q1(x)] ∈ VK and P(x) = [p(x), q(x)] ∈ VF and here degree of 
p1(x) = deg p(x) – 1 and deg q1(x) = deg q(x) – 1. 

 

 The proof is direct using the Remainder theorem. 
 

 Further we have if K is an extension field of F then VF ⊆ 
VK. 

 

 For if [a, b] ∈ K an interval root of P (x) = [p(x), q(x)] ∈ VF 

then in VK we have  
 

 {[(x–a), (x–b)] | P(x) = [p(x), q(x)] that is [(x–a)/p(x), (x–

b)/q(x)]}.  
 

We as in case of usual polynomial speak of an interval of 

multiplicity [m ,n] is the multiplicity of an interval root [a, b] of 

P(x) = [p(x), q(x)] in VF for [a, b] ∈ Nc(K) ⊆ VK, K an 
extension field of F,  
 

if [(x–a)
m
, (x–b)

n
] / P(x) 

 

that is 
m n(x a) (x b)

,
p(x) q(x)

 − −

  
 

 

where as  [(x–a)
m+1

, (x–b)
n+1

] \  P(x) 

 

that is [(x–a)
m+1

\ p (x),  (x–b)
n+1

 \  q(x)]. 

 

 A polynomial interval P(x) = [p(x), q(x)] ∈ VF of interval 
degree [n, m] over Nc(F) has atmost mn interval roots if any 

extension interval ring Nc(K) where K is the extension field of 

F. 
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 This proof is also direct and hence is left as an exercise to 

the reader. 
 

 Further if P(x) = [p(x), q(x)] is a polynomial interval in VF 

of interval degree [m, n] ≥ [1, 1] and P(x) is irreducible over 
Nc(F) then there is an extension ring Nc(K) of Nc(F) (K an 

extension field of F) such that P(x) has a root in the extended 
interval.  Interested reader can derive all the results for 

polynomial intervals with appropriate modifications. 

 
 Now as in case of usual polynomials we can in case of 

polynomial intervals also define the notion of derivative and all 

formal rules of differentiation are true as well. 

 
 Let  

 

P(x) = [f(x), g(x)]  = [a0 x
n
 + a1 x

n-1
 + … + an, b0 x

m
 + b1 x

m-1
 

+ … + bm] be a polynomial interval in VR the derivative of the 

polynomial interval  

 

P′(x) = [n a0 x
n-1

 + (n–1) a1 x
n-2

 + … + an-1, mb0 x
m-1

 + (m–1) 
b1 x

m-2
 + … + bm-1] in VR. 

 

 For example if P(x) = [p(x), q(x)] 

 

 = [3x
7
 – 2x

5
 + 2x – 1, 7x

6
 + 4x

5
 + 3x

2
 – 7] ∈ VR;  

 

P′(x) = [p′(x), q′(x)] = [21x
6
 – 10x4 + 2, 42x5 + 20x4 + 6x] ∈ 

VR. 

 

 Now suppose we have P(x) = [p(x), q(x)] and S(x) = [r(x), 

s(x)] polynomial intervals in VR then  
 

(P(x) + S(x))′ = P′(x) + S′(x). 
 

 We will only illustrate this situation.  Let P(x) = [p(x), q(x)] 

and S(x) = [r(x), s(x)] ∈ VR  
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 (P(x) + S(x))  = [p(x), q(x)] + [r(x), s(x)] 
     = [p(x) + r(x), q(x) + s(x)].  

 

 Consider (P(x) + S(x))′  = [p(x) + r(x), q(x) + s(x)]′ 

       = [(p(x) + r(x))′, (q(x) + s(x))′] 

       = [p′(x) + r′(x), q′(x) + s′(x)] 
 

applying the derivative for usual polynomials.  

 

 We see if α ∈ R and P(x) = [p(x), q(x)] ∈ VR then we have  

 

α P(x) = α  [p(x), q(x)] 

       = [α  p(x), β  q(x)]. 

 

If [α, β] ∈ Nc (R) then  [α, β] P(x) 

       = [α, β] [p(x), q(x)] 

       = [α p(x), α  q(x)]. 
 

 Now ([α, β] [P(x)])′  = [α, β] P′(x) 

       = [α, β] [p(x), q(x)]′ 

       = [α p′(x), β q′(x)]. 
 

 Further P(x) = [p(x), q(x)] and S(x) = [r(x), s(x)] are in VR 

then (P(x) S(x))′ =  (([p(x), q(x)] ([r(x), s(x)))′ 
 

=  [p(x) r(x), q(x) s(x)]′ 
 

= [p′(x) r(x) + p(x) r′(x), q′(x) s(x) + q(x) s′(x)]. 
 

 Thus we can say the polynomial interval P(x) = [p(x), q(x)] 

∈ VR has multiple interval roots if and only if P(x) and P′(x) 
have a non trivial common factor which is a polynomial 
interval. 

  

 Also the interested reader can prove.  If F is a field of 

characteristic p ≠ 0 then the polynomial interval [
np

x –x, 
mp

x –x] 

for n ≥ 1 and m ≥ 1 has distinct interval roots. 
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 Now having seen some of the properties enjoyed by the 

polynomial intervals we proceed onto show how every interval 
polynomial is a polynomial interval and vice versa. 

 

 Consider an interval polynomial  

 
f(x) = [6, 9]x

8
 + [3, –2]x

6
 + [–3, 1]x

5
 + [0, 4]x

4
 + 7x

2
 + [2, –

5]x + [9, 3].  We see the coefficients of f(x) are from Nc(Z).  We 

can write f(x) as [6x
8
 + 3x

6
 – 3x

5
 + 7x

2
 + 2x + 9, 9x

8
 – 2x

6
 + x

5
 

+ 4x
4
 + 7x

2
 – 5x + 3] = [p(x), q(x)]; thus f(x) is now the 

polynomial interval. 

 
 On similar lines suppose P(x) = [p(x), q(x)] = [8x

7
 – 5x

5
 + 

2x
4
 – 3x

2
 + x + 1, 6x

5
 – 7x

4
 + 3x

3
 + 4x

2
 – 8x – 9] be a 

polynomial interval; we can write  

 
P(x) = [8, 8]x

8
 + [–5, 6]x

5
 + [2, –7]x

4
 + [0, 3]x

3
 + [–3, 4]x

2
 

= [1, –8]x + [1, 9] which is the interval polynomial.  

 
 Thus our claim, that every polynomial interval can be made 

into an interval polynomial and vice versa is valid.   

 
Now we will study the algebraic structures enjoyed by these 

polynomial intervals.  We know  

 

VR = {[p(x), q(x)] | p(x), q(x) ∈ R[x]} is an additive abelian 
group.   
 

 n

RV  = {[p(x), q(x)] | p(x), q(x) ∈ R
n
 [x]}; all polynomials of 

degree less than or equal to n.  Similarly 
n

m t p s

Q Z Z CV ,V ,V and V  can 

be defined appropriately. 

 

DEFINITION 3.3:  Let  

 

VR = {p(x) = [p(x), q(x)] | p(x), q(x) ∈ R[x]} 

 

be an abelian group of polynomial intervals with respect to 

addition.  VR is a vector space of polynomial intervals over the 
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field R (or Q) or polynomial interval vector space over R (or 

Q).  

  

 We can have subspace of polynomial intervals over R. 

 

Example 3.5:  Let  
 

VR = {P(x) = [p(x), q(x)] / p(x), q(x) ∈ R[x]} 
 

be the vector space of polynomial intervals over R. 
 

 Consider  

 

P = {P(x) = [p(x), q(x)] | p(x) and q(x) are all polynomials 

of degree less than or equal to five with coefficients from R} ⊆ 
VR.  P is an abelian group under addition.  Further P is a vector 

space of polynomial intervals over R.  Thus P is a subspace of 

polynomial intervals of VR over R.  

 
Example 3.6:  Let  

 

VR = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ R[x]} 
 

be a vector space of polynomial intervals over the field Q.   
 

Consider M = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ Q[x]} be a 
subvector space of polynomial intervals of VR over Q. 

 
 Infact VR has infinite number of vector subspaces of 

polynomial intervals. 

 

 
Example 3.7:  Let  

 

7ZV  = {P(x) = {[p(x), q(x)] | p(x), q(x) ∈ Z7} 

 

be a vector space of polynomial intervals over the field Z7. 
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 Consider P = {S(x) = [p(x), q(x)] | p(x), q(x) ∈ Z7 [x]; p(x) 

and q(x) are of degree less than or equal to 10} ⊆ 
7ZV ; P is a 

vector subspace of polynomial intervals of finite order. 

 

 Infact 
7ZV  has several vector subspace of polynomial 

intervals. 

 
Example 3.8:  Let  

 

2ZV  = {P(x) = {[p(x), q(x)] | p(x), q(x) ∈ Z2 [x]} 

 

be the vector space of polynomial intervals over the field Z2.  
Consider  

 

M = {P(x) = [p(x), q(x)] | p(x), q(x) are polynomials of 

Z2[x] of degree less than or equal to 7} ⊆ 
2ZV ; M is a subvector 

space of polynomials intervals of 
2ZV  over the field Z2. 

 
 We can define for interval polynomials vector space as in 

case of usual vector space define the notion of linear 

transformation or linear operator only when those spaces are 
defined over the same field F.  The definition is a matter of 

routine and we will illustrate this situation only by examples.  

 

Example 3.9:  Let  
 

5ZV  = {P(x) = [p(x), q(x)]; p(x), q(x) ∈ Z5[x]  

of degree less than or equal to 5} 

 

be a vector space of polynomial intervals over Z5.   
 

5ZW  = {P(x) = [p(x), q(x)]; p(x), q(x) ∈ Z5[x] 

of degree less than or equal to 10} 

 

be a vector space of polynomial interval over Z5. 
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 Define T : 
5ZV  → 

5ZW  as follows: 

 

   T ([a, b])  = [a, b] if a and b are in Z5. 

 
   T (P(x))   = T ([p(x), q(x)]) 

      = [p(x), q(x)]. 

 

It is easily verified T is a linear transformation of 
5ZV  into 

5ZW .  We say if the range space is the same as that of the 

domain space we define T to be a linear operator on VR or VF, F 

any field.  

 

 We will just illustrate this by an example. 
 

Example 3.10:  Let  

 

VR = {P(x) = [p(x), q(x)]; p(x), q(x) ∈ R[x]} 

 
be a vector space of polynomial intervals. 

   

   Define T : VR → VR 

   by T(P(x))  = ([p(x), q(x)]) 

      = [x p(x), x
2
 q(x)]. 

 

 T is a linear operator on VR.  We can now give the basis of a 

polynomial interval vector space.  Let  
 

VR = {P(x) | p(x) = [p(x), q(x)] where p(x), q(x) ∈ R[x]} 
be a polynomial interval vector space over R. 

 

 Take B = {[1, 0], [x,0], …, [x
n
, 0], …, [0, 1], [0, x], …, [0, 

x
n
], …] ⊆ VR, B is a basis of polynomial intervals. 

  

Clearly VR is an infinite dimensional vector space over R. 

 

Example 3.11:  Let  
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5

RV  = {P(x) = [p(x), q(x)] where p(x), q(x) ∈ R[x]; 

 

all polynomials with coefficients from R of degree less than or 
equal to 5. 

 

 Consider  
 

S = {[1, 0], [x, 0], [x
2
, 0], [x

3
, 0], [x

4
, 0], [x

5
, 0], [0, 1], [0, 

x], [0, x
2
], [0, x

3
], [0, x

4
], [0, x

5
]} ∈ 5

RV ;  

 

S is a basis of 5

RV  over R and dimension of 5

RV  over is 

finite given by 12. 

 

 However if R is replaced by Q clearly, 5

RV  is a vector space 

of interval polynomials of infinite dimension. 

 

Example 3.12:  Let  
 

13

7

ZV  = {[p(x), q(x)] = P(x) | p(x), q(x) ∈ Z13[x]} 

 

be the collection of all polynomials of degree less than or equal 

to 7.  
 

 Consider  

 

B = {[1, 0], [x, 0], [x
2
, 0], [x

3
, 0], [x

4
, 0], [x

5
, 0], [x

6
, 0], [x

7
, 0], 

[0, 1], [0, x], [0, x
2
], [0, x

3
], [0, x

4
], [0, x

5
], [0, x

6
], [0, x

7
]} ⊆ 

13

7

ZV  is an interval basis of 
13

7

ZV .  Clearly dimension of 
13

7

ZV  is 

16. 
 

 Thus we can have infinite or finite dimensional polynomial 

interval vector spaces. 
 

Example 3.13:  Consider  

 

7ZV  = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ Z7(x)}, 
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a vector space of polynomial intervals over the field Z7.   
 

B = {[1, 0], [x, 0], [x
2
, 0], …, [x

n
, 0], …, [x

∞

, 0], [0, 1], [0, 

x], …, [0, x
n
], …, [0, x

∞

]} ⊆
7ZV  is a basis of 

7ZV .  Clearly 
7ZV  

is an infinite dimensional polynomial interval vector space over 
Z7. 

 

 We have seen both infinite and finite dimensional 
polynomial interval vector spaces over a field F. 

 

 We can define polynomial interval linear algebras over the 
field F. 

 

 Let VR = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ R[x]} be a 
polynomial interval vector space over the field R.  We see VR is 

a linear algebra over R as for any P(x) = [p(x), q(x)] and S(x) = 
[a(x), b(x)] we can define  

 

P(x) S(x) = [p(x), q(x)], [a(x), b(x)] = [p(x), a(x), q(x), s(x)] 

to be in VR. 
 

 Thus VR is a polynomial interval linear algebra over R. 

 
 Consider  

 
8

RV  = {P(x) = [p(x), q(x)] | p(x) and q(x) are all polynomial 

of degree less than or equal to 8 with coefficients from R}. 
 

 8

RV  is only a vector space of polynomial intervals and is not 

a linear algebra as P(x) S(x) is not in 8

RV  for every P(x) and 

S(x) in 8

RV . 

 

 Thus we see all polynomial interval vector spaces in general 

are not polynomial interval linear algebra, however every 

polynomial interval linear algebra is a polynomial interval 
vector space. 
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 The later part is clear from examples.  
 

 When we have linear polynomial interval algebras or linear 

algebra of polynomial intervals; the dimension etc can be 

analysed. 
 

 Consider VR = {[p(x), q(x)] | p(x), q(x) ∈ R[x]} be the 
polynomial interval vector space over the field R.  We see VR is 

a linear algebra of polynomial interval vector space. 
 

 Take B = {[1, 0], [0, 1], [x, 0], [0, x]} ⊆ VR.  B is a basis of 
VR as a linear algebra of polynomial intervals.  

 

 Thus VR has dimension 4 as a linear algebra of polynomial 
intervals but of infinite dimension as a polynomial interval 

vector space over R. 

 

 Consider VQ = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ Q[x]} be 
the linear algebra of polynomial intervals over the field Q. 
 

 Clearly the set B = {[1, 0], [0, 1], [x, 0], [0, x]} ⊆ VQ 
generates VQ as a subset of VQ and B is a linearly independent 

subset of VQ.  

 
 Thus B is a basis of VQ and dimension of VQ over Q is four.  

Having seen basis of a linear algebra of polynomial intervals we 

can proceed onto define linear operators and linear 
transformation; these are simple and easy and hence left as an 

exercise for the reader. 

 

 We are more interested in studying the polynomial intervals 
than the algebraic structures on them. 

 

 We now proceed onto study the polynomial intervals when 

the coefficients of the polynomial are from R
+
 ∪ {0}, Q

+
 ∪ {0} 

or Z
+
 ∪ {0}. 
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 We shall denote these polynomial intervals by 
R {0}

V
+

∪

 , 

Q {0}
V

+
∪

 and 
Z {0}

V
+

∪

 . 

 

 Thus  

R {0}
V

+
∪

 = {[p(x), q(x)] = P(x) | p(x), q(x), ∈ (R
+
 ∪ {0}) (x)}. 

 

 For instance p(x) = 3 x
7
 + 7x

6
 + 19  x

3
 + 241  and  

 

q(x) = x
29

 + 43  x
20

 + 17 x
4
 + 101 are in (R

+
 ∪ {0}) (x) 

and P(x) = [p(x), q(x)] ∈ 
R {0}

V
+

∪

. 

 

 We see 
R {0}

V
+

∪

 is only a semigroup with respect to addition.  

Infact ‘0’, the zero polynomial serves as the additive identity.  

Also 
Q {0}

V
+

∪

and
Z {0}

V
+

∪

are also only semigroups of polynomial 

intervals.  

 

 We see  

R {0}
V

+
∪

 = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ (R
+
 ∪ {0}) (x)} 

is a semiring of interval polynomials.   

 

 Infact 
R {0}

V
+

∪

 is not a semifield as it has zero divisors.  

However R
+
 ∪ {0} is a semifield contained in 

R {0}
V

+
∪

, so 

R {0}
V

+
∪

 is a Smarandache semiring.  On similar lines we can say 

Q {0}
V

+
∪

 and 
Z {0}

V
+

∪

 are semirings of polynomials intervals 

which are Smarandache semiring of polynomial intervals. 

 

 We can define semivector space of polynomial intervals.  
 

 Consider  

 

R {0}
V

+
∪

 = {P(x) = [p(x), q(x)] | p(x), q(x) ∈ (R
+
 ∪ {0}) (x)};  
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R {0}
V

+
∪

is a semivector space of polynomial intervals over the 

semifield R
+
 ∪ {0} or Q

+
 ∪ {0} or Z

+
 ∪ {0}.   

 

Likewise 
Q {0}

V
+

∪

 and 
Z {0}

V
+

∪

 are also semivector spaces of 

polynomial intervals over R
+
 ∪ {0} or Z

+
 ∪ {0} and Z

+
 ∪ {0} 

respectively.  Infact these are also semilinear algebras.  

 

 Now we can define substructures and related properties as 
in case of semivector spaces.  This task is left as an exercise to 

the reader. 

 

 All these structures can be easily converted into interval 
polynomials.  So we can say one can get a one to one mapping 

from polynomial intervals to interval polynomials. 

 

 For instance as in case of VR we see if [p(x), q(x)] = P(x) ∈ 

R {0}
V

+
∪

 so p(x) = 8x
3
 + 7x

2
 + 3x  + 19  and q(x) = 18x

5
 + 

10x
4
 + 35x + 2x+1 then  

[p(x), q(x)] = 8x
3
 + 7x2 + 3x + 19 , 18x

5
 + 10x

4
 + 35x + 2x 

+ 1].  
 

 = [0, 18]x
5
 + [0, 10]x

4
 + [8, 5 ]x

3
 + [7, 0]x

2
 + [ 3 , 2]x + 

[ 19 , 1] which is the interval polynomial. 

 

 Likewise if [6, 2]x
8
 + [ 7 , 0]x

5
 + [0, 5 ]x

4 
+ [3, 2]x

3
 +  

[5, 1]x + [10, 11 ] = P(x) be the interval polynomial we can 

write it as a polynomial interval as 6x
8
 + 57x + 3x

3
 + 5x + 10 

= p(x) and q(x) = 2x
8
 + 45x + 2x

3
 + x + 11  and P(x) = [p(x), 

q(x)] which is a polynomial interval. 
 

Example 3.14:  Let  

 
V = {(p1(x), q1(x)], [p2(x), q2(x), …, [p9(x), q9(x)) |  

[pi(x), qi(x)] ∈ 
R {0}

V
+

∪

; 1 ≤ i ≤ 9} 
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be a semigroup under addition.  V is a semivector space over the 

semifield S = Z
+
 ∪ {0}. 

 
Example 3.15:  Let  

M = 

1

2

10

P (x)

P (x)

P (x)

 
 
    

�
 Pi (x) ∈ 

Z {0}
V

+
∪

; 1 ≤ i ≤ 10} 

 

be a semigroup under addition.  M is a semivector space over 

the semifield S = Z
+
 ∪ {0}.   

 
Example 3.16:  Let  

 

V = 

1 2 3

4 5 6

7 8 9

P (x) P (x) P (x)

P (x) P (x) P (x)

P (x) P (x) P (x)

 
 
 
  

 Pi (x) ∈ 
Q {0}

V
+

∪

; 1 ≤ i ≤ 9} 

be a semigroup under addition.  V is a semivector space over the 

semifield S = Z
+
 ∪ {0}. 

 
Example 3.17:  Let  

 

V = 

1 2 3

4 5 6

28 29 30

P (x) P (x) P (x)

P (x) P (x) P (x)

P (x) P (x) P (x)

 
 
    

� � �
 Pi (x) ∈  

Z {0}
V

+
∪

; 1 ≤ i ≤ 30} 

 
be a semigroup under addition.  V is the semivector space over 

the semifield S = Z
+
 ∪ {0}. 

 

 We give substructures. 

 
Example 3.18:  Let  
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V = {(P1(x), P2(x), …, P8(x) | Pi(x) ∈  
Q {0}

V
+

∪

; 1 ≤ i ≤ 8} 

 

be a semivector space of interval polynomial over the semifield 

S = Z
+
 ∪ {0}. 

 
Let  

M = {(P1(x),0,  P3(x), 0, P4(x), P2(x), 0, 0) where Pi(x) ∈  

Q {0}
V

+
∪

; 1 ≤ i ≤ 4} ⊆ V is a semivector subspace of interval 

polynomial over the semifield S = Z
+
 ∪ {0}. 

 
Example 3.19:  Let  

 

V = {(P1(x), P2(x), …, P10(x) | Pi(x) ∈  
Q {0}

V
+

∪

; 1 ≤ i ≤ 10} 

 

be a semivector space of interval polynomial over the semifield 

S = Q
+
 ∪ {0}. 

 

Example 3.20:  Let  
 

V = 
1 2

3 4

P (x) P (x)

P (x) P (x)

 
 
 

 Pi(x) ∈ 
Q {0}

V
+

∪

; 1 ≤ i ≤ 4} 

 

be a semivector space of interval polynomial over the semifield 

S = Z
+
 ∪ {0}. 
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Example 3.21:  Let  
 

V = 

1

2

12

P (x)

P (x)

P (x)

 
 
    

�
 Pi(x) ∈ 

Q {0}
V

+
∪

; 1 ≤ i ≤ 12} 

 

be a semivector space of interval polynomial over the semifield 

S = Q
+
 ∪ {0}. 

 
 Consider  

 

W1 = 

1

2

P (x)

P (x)

0

0

 
 
  
 
 
  

�

 P1(x), P2(x) ∈  
Q {0}

V
+

∪

} ⊆ V, 

 

W2 = 

1

2

0

0

P (x)

P (x)

0

0

 
 
 
 
 
 
 
 
 
 
 

�

 P1(x), P2(x) ∈  
Q {0}

V
+

∪

} ⊆ V, 
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W3 = 1

2

0

0

0

0

P (x)

P (x)

0

0

 
 
 
 
 
 
 
 
 
 
 
 
  

�

 P1(x), P2(x) ∈  
Q {0}

V
+

∪

} ⊆ V, 

 
 

W4 = 
1

2

0

0

0

0

0

0

P (x)

P (x)

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

�

 P1(x), P2(x) ∈  
Q {0}

V
+

∪

} ⊆ V, 
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W5 = 

1

2

0

0

0

0

0

0

0

0

P (x)

P (x)

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 P1(x), P2(x) ∈ 
Q {0}

V
+

∪

} ⊆ V and 

 

W6 = 

1

2

0

0

0

0

P (x)

P (x)

 
 
 
 
 
 
 
 
 
 
 
  

�

�
 P1(x), P2(x) ∈  

Q {0}
V

+
∪

} ⊆ V 

 

where W1, W2, …, W6 are semivector subspaces of V.   

 

Clearly V = 
6

i

i 1

W ;
=

∪  Wi ∩ Wj = (0) if i ≠ j; 1 ≤ i, j ≤ 6. 

 
Thus V is the direct sum of semivector subspaces of the 

semivector space over the semifield S = Q
+
 ∪ {0}. 
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Example 3.22:  Let  

 

V = 

1 2

3 4

5 6

7 8

P (x) P (x)

P (x) P (x)

P (x) P (x)

P (x) P (x)

 
 
    

 Pi(x) ∈ 
Q {0}

V
+

∪

; 1 ≤ i ≤ 8} 

 

be a semivector space of interval polynomials over the semifield 

S = Z
+
 ∪ {0}. 

 

W1 = 

1 2

3

P (x) P (x)

P (x) 0

0 0

0 0

 
 
    

Pi(x) ∈
Q {0}

V
+

∪

; 1 ≤ i ≤ 3} ⊆ V, 

 

W2 = 

1

2

3

P (x) 0

0 P (x)

0 0

0 P (x)

 
 
    

Pi(x) ∈
Q {0}

V
+

∪

; 1 ≤ i ≤ 3} ⊆ V, 

 

W3 = 

1

2 3

P (x) 0

0 0

P (x) P (x)

0 0

 
 
    

 Pi(x) ∈ 
Q {0}

V
+

∪

; 1 ≤ i ≤ 3} ⊆ V, 

 

W4 = 

1

3 2

P (x) 0

0 0

0 0

P (x) P (x)

 
 
    

 Pi(x) ∈ 
Q {0}

V
+

∪

; 1 ≤ i ≤ 3} ⊆ V, 

 

and 
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W5 = 

1

2

3

4

P (x) 0

0 P (x)

P (x) 0

0 P (x)

 
 
    

 Pi(x) ∈ 
Q {0}

V
+

∪

; 1 ≤ i ≤ 4} ⊆ V 

be semivector subspaces of the semivector space V over the 

semifield S = Z
+
 ∪ {0}. 

 

We see V = 
5

i

i 1

W
=

∪  but Wi ∩ Wj ≠ (0) if i ≠ j; 1 ≤ i, j ≤ 5. 

 
Thus V is only a pseudo direct sum of semivector subspaces 

of V over S. 

 
We can as in case of usual semivector spaces also define the 

notion of semivector space of interval polynomial in 
R {0}

V
+

∪

 or 

Q {0}
V

+
∪

 or 
Z {0}

V
+

∪

 . 

 
Example 3.23:  Let  

 

T = 

1

2

12

P (x)

P (x)

P (x)

 
 
    

�
 Pi(x) ∈  

Q {0}
V

+
∪

; 1 ≤ i ≤ 12} 

be a semivector space of interval polynomial over the semifield 

S = Q
+
 ∪ {0}. 

 

 Suppose T is defined over the S-semiring 
Q {0}

V
+

∪

. For if 

Q {0}
V

+
∪

 = {P(x) = (p(x), q(x)) | p(x), q(x) ∈ (Q
+
 ∪ {0})[x]} is a 

semiring for (p(x), 0) = P(x) and Q(x) = (0, q(x)) then P(x) . 
Q(x) = (0, 0). 

 

 So we call such semivector spaces as Smarandache special 

semivector spaces.  
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Chapter Four 
 
 

 
 
INTERVALS OF TRIGONOMETRIC 
FUNCTIONS OR TRIGONOMETRIC  
INTERVAL FUNCTIONS 
 
 
 
 Here we for the first time introduce the notion of 

trigonometric intervals or intervals of trigonometric functions.  

These collection of trigonometric intervals form a ring under 

usual addition of trigonometric functions and multiplication of 
functions. 

 

 Before we define this new concept we give a few examples 
of them, for this will make the reader understand the definition 

in  a easy way. 

 
Example 4.1:  Let J = [f(x), g(x)] be an interval where  

f(x) = 5 sin
3
 x – 8 cos

2
 x + 4 and 

 

g(x) = 
7

3

tan 8x 8cot 5x

4cosec 5x

−
; we say J = [f(x), g(x)] 

 
is a trigonometric interval.  
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Example 4.2:  Let K = [p(x), q(x)] where  
 

p(x) = 18 sin (9x
2
 + 4) + 

37cosec x
5

10cot 3x
−  

 

and  

q(x) = 
tan x.sec4x

cot 3x cos x+

. 

 

K is a trigonometric interval function. 

 
 Thus with some default we call g(x), f(x), q(x) and p(x) as 

trigonometric polynomials, that is the variable x is itself a 

trigonometric function in f(x), p(x), q(x) or g(x).  Hence 

throughout  this book by this default we assume a trigonometric 
polynomials p(x) is a polynomial in sin

t
x, cos

s
x, tan

r
cx, cos

n
dx, 

cosec
m
 ex with t, s, r, n, m ≥ 0 and a, b, c, d, e, ∈ R[x] (that is 

cos
n
dx  can also be like cos

5
 (20x

2
 – 5x + 1) here n = 5 and dx = 

(20x
2
 – 5x + 1) and so on.   

 
 We are forced to define in this manner mainly for we say an 

interval J = [p(x), q(x)] is a trigonometric function if all values 

inbetween p(x) and q(x) is in J; further we cannot compare p(x) 
with q(x) as it may not be possible in all cases.  

 

 We give some more illustrate examples. 
 

Example 4.3:  Let  J = [sin3x, cos5x]; J be a trigonometric 

function interval or interval of trigonometric function.  

 
Example 4.4: Let T = [0, 3sin5x] be a trigonometric function of 

interval. 

 
Example 4.5: Let  K = [6 cot

3
8x, 0] be a trigonometric function 

of interval. 
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Example 4.6: Let  
 

W = 
3 2cos x 5sin x

, 7
7 8cot x

 +
− 

− 
 

 

be again a  trigonometric function of interval. 
 

Example 4.7: Let  

 

M = 
2cosec x 7sin x

,
1 cot5x 1 cot3x

 
 

− + 
 

 

be a trigonometric function of interval. 

 

Example 4.8: Let J = 
2

8
9,

1 cos x

 
 

− 
where even if 1 = cos

2
x can 

occur as a trigonometric interval, in which case when 1 = cos
2
x, 

the interval degenerates into [9, ∞]. 
 

Example 4.9: Let  

 

R = 
2 2

1
0,

cos x sin x

 
 

− 
 

 
be a trigonometric interval. 

 

 Now having seen examples, we now give a very informal 
definition.  T denotes the collection of all trigonometric 

functions which is closed under the operations of addition and 

multiplication as mentioned earlier.  T = {f(x) | f(x) is a 

polynomial in sin
a
bx and (or) cot

c
dx and (or) cos

e
fx and (or) 

tan
r
sx and (or) sec

p
(qx) and (or) cosec

m
nx  with a, c, e, r, p, m ∈ 

Z
+
 ∪ {0} and b, d, f, s, q, n ∈ R[x]. 
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 We define TI = {[g(x), f(x)] | g(x), f(x) ∈ T} to be the 
interval of trigonometric functions or trigonometric function 

interval or just trigonometric interval.   

 

 Clearly TI contains [a, b] where a, b ∈ R (reals) we 
intentionally make this assumption for we see if  

 

J = 
1

, 7sin x
cos x

 
− 

 
 and K = 

10
9cos x,

19sin x

− 
− 
 

 are in T1 then  

 

J.K. = 
1

, 7sin x
cos x

 
− 

 
 × 

10
9cos x,

19sin x

− 
− 
 

 

 

= 
1 10

9cos x, 7sin x
cos x 19sin x

− 
× − − × 

 
 

 

= 
70

9,
19

 
− 
 

 ∈ TI. 

 

 We define product in TI as follows; if M = [p(x), q(x)] and 

N = [m(x), n(x)] are in TI then MN = [p(x), q(x)] [m(x), n(x)] 

 
= [p(x). m(x), q(x) n(x)]. 

 

 It is easily verified that MN = NM.  Also we see if M = 
[p(x), q(x)] and N = [r(x), s(x)] are in TI, then  

 

M + N = [p(x), q(x)] + [r(x), s(x)] = [p(x) + r(x), q(x) + s(x)]. 
 

 We see M + N = N + M and M + N is in TI.  Clearly [0, 0] = 

0 ∈ TI acts as the additive identity.  Further if J = [p(x), q(x)] ∈ 

TI then  [–p(x), –q(x)] = k ∈ TI acts  as the additive inverse of J.   
Thus  

 

K = –J = – [p(x), q(x)] = [–p(x), –q(x)]. 
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 1 = [1, 1] ∈ TI acts as the multiplicative identity for  
 

1.J =  [1, 1] [p(x), q(x)] 
= [p(x), q(x)] = [p(x), q(x)] [1, 1] = [ p(x), q(x)]. 

 

 Thus we can say TI is a commutative ring with unity of 
infinite order.  

 

 Now we show how the curves on interval trigonometric 

functions look like.  For take J(x) = [sin x, cos x] ∈ TI the graph 

associated J is as follows. 
 

 

 
 

 

 

 
 

 

 
 

 Thus the figure shows the curve related with J. 

 
 Any curve in TI can be traced by the interested reader.  We 

see the for value J ([0, 0]) = [0, 1], J ([1, 0]) = [0, 1] and so on.  

 

 Let J = [3, sin x] ∈ TI.  J = ([3, π/2]) = [3, 1].   
 
 Now we can define differentiation and integration on these 

trigonometric functions.  We will only illustrate these situations 

by some simple examples. 

 

Example 4.10: Let J (x) = [3 cos
2
x, sin 7x] ∈ TI.  To find the 

derivative of J (x).  We differentiate component wise  

 

 
d(J(x))

dx
 = [–6 cosx sinx, 7cos7x] 

1 

–1 

0 π/2 π 3π/2 2π -π/2 -π -3π/2 -2π 
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    = 
d

dx
([3 cos

2
x, sin 7x]) 

 

    = [
d

dx
 (3 cos

2
x), 

d

dx
 (sin 7x)] 

 

    = [– 6cos x sin x, 7cos 7x] ∈ T1.  
  

 

Example 4.11: Let  
 

P (x) = [tan9x + cos2x + 8 sin3x, 
cot x 1

cot x 1

−

+

] ∈ TI. 

 

 To find the derivative of P(x). 
 

 
d

dx
 (P(x)) = 

d

dx
 ([tan 9x + cos2x + 8 sin 3x, 

cot x 1

cot x 1

−

+

])  

 

  = [
d

dx
 (tan 9x + cos 2x + 8 sin 3x), 

d

dx
 

cot x 1

cot x 1

− 
 

+ 
] 

 
  = [9 sec

2
 9x – 2 sin 2x + 24 cos 3x,  

 

    
2 2

2

(cot x 1)( cosec x) (cot x 1)cosec x

(cot x 1)

+ − + −

+

] 

 

  = [9 sec
2
 9x – 2sin2x + 24 cos3x, 

2

2

2cosec x

(cot x 1)

−

+

] ∈ TI. 

 

Example 4.12:  Let  

 

P(x) = [
2sec 3x

,3
1 cos x−

] ∈ TI, 

 
we find the derivative of P(x); 
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d

dx
 [P(x)] = 

d

dx
 [

2sec 3x
,3

1 cos x−

] 

 
 

    = 
2d sec 3x d(3)

,
dx 1 cos x dx

  
  

−   
 

 
2 2

2

(1 cos x)6sec 3x tan 3x sin x sec 3x
,0

(1 cos x)

 − +
=  

− 
. 

   

 
 From these examples we see that TI is such that for every 

f(x) ∈ TI we see 
d

dx
 (f(x)) is in TI. 

 
 On similar lines we see define functions that are integrable 

can be integrated and the resultant is in TI. 

 

 If we work with finite integrals then also the resultant will 
be in TI. 

 

 Thus TI is closed under integration.   
 

 We will illustrate this situation by some examples. 

 

Example 4.13:  Let  
 

P(x)  = 
cot5x

3sin x,
7

− 
 
 

 ∈ TI. 

 

 To find  
 

∫ P(x) dx = 
5x

3sin x, cot dx
7

 
− 

 
∫  
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   = 
5x

3sin xdx, cot dx
7

 
− 

 
∫ ∫ + C is in TI. 

 

 

Example 4:14:  Let  
 

M(x) = 
8cos7x 5tan 7x

,
3 8

− 
 
 

 

 

be in TI.  To find the integral of M(x).   
 

∫ M(x) dx = 
8cos7x 5tan 7x

, dx
3 8

− 
 
 
∫  

 

= 
8cos7x 5tan 7x

dx, dx
3 8

− 
 
 
∫ ∫ + C is in TI. 

 

  

Example 4:15:  Let  
 

S (x) = [7 sin (3x+2), 9]  

be in TI. 
 

∫ S (x) dx =  ∫ [7 sin (3x+2, 9] dx 
 

= 7sin(3x 2)dx, 9 dx +
 ∫ ∫ + C is again in TI. 

 
 Using the set TI we can have the following algebraic 

structure. We know (TI, +) is a group under addition which is 

clearly commutative and is of infinite order.  Now using TI we 

can also build different types of additive abelian groups. 

Consider X = (P1(x), …, Pn(x)) where Pi(x) ∈ TI; 1 ≤ i ≤ n.  X is 
defined as the row interval trigonometric function matrix or 

trigonometric interval function of row matrices.  If we consider 

the collection M of all 1 × n row trigonometric interval matrices 
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then M is a group under addition and M is only a monoid under 

product.   
 

 We will give examples of them. 

 

Example 4.16:  Let  
 

M = {(P1(x), P2(x), P3(x), P4(x), P5(x)) | Pi(x) ∈ TI; 1 ≤ i ≤ 5} 
 

be a group of row interval matrix trigonometric functions.  M is 
of infinite order.   

 

Example 4.17:  Let  

 

P = {(P1(x), P2(x), …, P25(x)) | Pi(x) ∈ TI; 1 ≤ i ≤ 25} 
 

be a group of row interval trigonometric functions.   

 

 We now give example of monoid of row matrix of 
trigonometric intervals.  

 

Example 4.18:  Let  
 

N = {(P1(x), P2(x), …, P8(x)) | Pi(x) ∈ TI; 1 ≤ i ≤ 8} 
 

be the monoid of row interval matrix of trigonometric functions.  

 
Example 4.19:  Let  

 

S = {(M1(x), M2(x), …, M10(x)) | Mi(x) ∈ TI; 1 ≤ i ≤ 10} 
 

be the monoid of row interval matrix of trigonometric functions.  
 

Example 4.20:  Let  

 

V = {(P1(x), P2(x)) | Pi(x) ∈ TI; 1 ≤ i ≤ 2} 

 
be the monoid of row interval matrix of trigonometric functions.  
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 These monoids have zero divisors, ideals, subsemigroups 

and submonoids.  
 

 We will give an example or two. 

 

Example 4.21:  Let  
 

M = {(P1(x), P2(x), P3(x)) | Pi(x) ∈ TI; 1 ≤ i ≤ 3} 
 

be a monoid of row interval matrix of trigonometric functions.  
 

 Take S = {(P(x), P(x), P(x)) | P(x) ∈ TI} ⊆ M; S is a 
submonoid of row matrix interval of trigonometric functions.  

 However S is not an ideal. 

 

 Consider W = {(0, P(x), 0) | P(x) ∈ TI} ⊆ M, W is a 

submonoid of row matrix interval of trigonometric functions.  
However W is also an ideal of M. 

 

 V = {(P(x), 0, P(x)) | P(x) ∈ TI} ⊆ M; V is a submonoid of 
row matrix interval of trigonometric functions. V is not an ideal. 

 
 For if  

 

 X = (q1(x), q2(x), q3(x)) ∈ M with qi(x) ∈ TI; 1 ≤ i ≤ 3}, and 

v = (p(x), 0, P(x)) P(x)  ∈ TI then v X = (q1(x), q2(x), q3(x)) 
(P(x), 0, P(x))  = (q1(x) P(x), 0, q3(x) (P(x))  

 
  = (r1(x), 0, r2(x)); 

 

with ri(x) ≠ r2(x) if qi(x) ≠ q2(x) in TI; so v X ∉ V.  Hence V is 
not an ideal of M.  

 

 Consider x = 
3sin x

0, ,0
1 cos3x

 
 

− 
 and  
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 y = 
2

2

7 tan5x 8sec x 1
,0,

1 tan x 9tan x 5

 −

 
+ + 

 in M. 

 

 It is easily verified xy = 0.  Thus M has zero divisors. 
 

 Take Y = 
3 7

2

sec 5x 1 8 sec 8x
, cot x,

7x tan x 9 1 tan x

 +

 
− + 

 in M. 

 

 Now P = 
2

3 7

7x tan x 9 1 tan x
, ,

sec 5x 1 8cot x sec 8x

 − +

 
+ 

 in M;  

 

is such that YP = PY = (1, 1, 1). 

 
 We see all elements x = (P1(x), P2(x), P3(x)) in M such that 

in which atleast one of Pi(x) is zero; 1 ≤ i ≤ 3 is such that we 
cannot find a y in M with xy = yx = (1, 1, 1). 

 

THEOREM 4.1:  Consider  

 

K = {(P1(x), P2(x), …, Pn(x)) | Pi(x) ∈  TI; 1 ≤ i ≤ n} 

 

be a monoid of trigonometric interval functions.  K has ideals, 

submonoids which are not ideals and zero divisors and units. 

 

 The proof is straight forward, hence left as an exercise to 

the reader. 
 

THEOREM 4.2:  Let  

 

M = {(P(x), P(x), …, P(x)) | P(x) ∈  TI} 

 

be a monoid of trigonometric interval functions.  M has no zero 

divisors, no ideals but has units. 

 

 This proof is also straight forward and hence left as an 
exercise to the reader. 
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 Now having seen examples of row matrix monoid of 

trigonometric intervals we now proceed onto define column 
matrix group of trigonometric intervals under matrix addition.  

However these column matrix of trigonometric intervals do not 

form a monoid under multiplication as product cannot be 

defined.  
 

 We now give examples of them. 

 
Example 4.22:  Let  

 

V = 

1

2

15

P (x)

P (x)

P (x)

 
 
    

�
 Pi(x) ∈  TI; 1 ≤ i ≤ 15} 

 
be a group of column matrix trigonometric intervals under 

addition. Clearly V is not compatible with respect to product. 

 

Example 4.23:  Let  
 

V = 

1

2

7

P (x)

P (x)

P (x)

 
 
    

�
 Pi(x) ∈ TI; 1 ≤ i ≤ 7} 

 

be a group of trigonometric intervals under addition.  
 

Example 4.24:  Let  

 

V = 

1

2

3

P (x)

P (x)

P (x)

 
 
 
  

 Pi(x) ∈ TI; 1 ≤ i ≤ 3} 
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be a group of column matrix of trigonometric intervals under 

addition. 
 

Take x = 

3

2

3

sin x cot5x

8sec x

1 tan x

sec 7x 1

 +

 
− 

 +

 
−  

 and 

 

y = 

3 2

2

sec 5x 5cosec x cot 5x

8sec x

1 tan x

1 cos5x

 − −

 
 
 +

 
+  

; 

 

 

x+y = 

3

2

3

sin x cot5x

8sec x

1 tan x

sec 7x 1

 +

 
− 

 +

 
−  

 + 

3 2

2

sec 5x 5cosec x cot 5x

8sec x

1 tan x

1 cos5x

 − −

 
 
 +

 
+  

 

 
 

= 

3 3 2

3

sin x sec 5x 5cosec x

0

cos5x sec 7x

 + −

 
 
 + 

 is in M. 

 

Clearly x × y is not defined.  We now proceed onto say that 

every element x ∈ M can generate a subgroup under addition.  
However these are not the only subgroups of M.   

 

Now if we consider the collection of all m × n trigonometric 
interval matrices P(say), P is a group under addition known as 

the group of m × n matrix trigonometric intervals. 

 
We will give examples of them. 
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Example 4.25:  Let P = {5 × 7 matrices with entries from TI} be 
the group of trigonometric interval matrices under addition. 

 
Example 4.26:  Let  

 

W = 
1 2 3

4 5 6

P (x) P (x) P (x)

P (x) P (x) P (x)

 
 
 

 Pi(x) ∈  TI; 1 ≤ i ≤ 6} 

be the 2 × 3 group of trigonometric intervals under addition. 
 

Example 4.27:  Let  

 

W = 

1 2

3 4

5 6

P (x) P (x)

P (x) P (x)

P (x) P (x)

 
 
 
  

 Pi(x) ∈  TI; 1 ≤ i ≤ 6} 

 

be the 3 × 2 matrix of trigonometric intervals group under 
addition. 

 

 Clearly we cannot define product on all these additive 

groups.  If m = n then we see these square matrix intervals of 
trigonometric functions can be groups under addition and only a 

semigroup under product. Infact they are monoids under 

product. 
 

 We will give examples of these situations. 

 
Example 4.28:  Let  

 

W = 
1 2

3 4

P (x) P (x)

P (x) P (x)

 
 
 

 Pi(x) ∈  TI; 1 ≤ i ≤ 4} 

 

be the group of 2 × 2 interval of trigonometric functions under 
addition.   
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Infact 
0 0

0 0

 
 
 

 acts as the additive identity. 

 

If X = 
1 2

3 4

p (x) p (x)

p (x) p (x)

 
 
 

 and Y = 
1 2

3 4

q (x) q (x)

q (x) q (x)

 
 
 

 

 

are in R  then  

 

X.Y = 
1 2

3 4

p (x) p (x)

p (x) p (x)

 
 
 

 
1 2

3 4

q (x) q (x)

q (x) q (x)

 
 
 

 

 

= 
1 1 2 3 1 2 2 4

3 1 4 3 3 2 4 4

p (x)q (x) p (x)q (x) p (x)q (x) p (x)q (x)

p (x)q (x) p (x)q (x) p (x)q (x) p (x)q (x)

+ + 
 

+ + 
 

 
is in R.  Thus R is a semigroup under product.   

 

We see I2×2 =
1 0

0 1

 
 
 

 in R acts as the multiplicative identity.  

Now R has zero divisors ideals and subsemigroups. 

 

Example 4.29:  Let  

 

P = {all 10 × 10 intervals matrices with intervals from TI} 
 

be the group under addition and monoid under product. 

 

THEOREM 4.3:  Let  

 

P = {n × n interval matrices with intervals from TI}, 

 

P is a monoid and has ideals submonoids, subsemigroups, zero 

divisors and units. 
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THEOREM 4.4:  Let M = {n × n interval matrices with intervals 

from TI, every element in the matrix is the same} be the monoid.  

M has no ideals only subsemigroups and has no zero divisors 

but has units. 

 

 The proof of these theorems are simple and hence left as an 

exercise to the reader. 
 

 Infact we can say if R = {all n × n interval matrices with 

entries from TI}, then (R, +, ×) is a ring.  Infact a non 
commutative ring with unit of infinite order.  This ring has 

units, zero divisors, ideals and subrings.   

 
 Infact R has subrings which are not ideals. 

 

 

Example 4.30:  Let R = {3 × 3 interval matrices with intervals 
from TI} be a ring. 
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Chapter Five 
 
 

 
 
NATURAL CLASS OF FUZZY INTERVALS 
 
 

In this chapter we first introduce the natural class fuzzy 

intervals and define operations on them. 

 
DEFINITION 5.1: Let  

 

V = {[a, b] | a, b ∈ [0, 1]} (where a = 0 = b or a = b or a < b 

or a > b) be the set of intervals.  We define V to be the natural 

class of fuzzy intervals, which are closed. 

 

Example 5.1:  Let  

V = {[0.7, 0.21], [0, 0.24], [0.3, 0], [0, 1], [1, 0.81]} = B 
be a subset of natural class of intervals.  

 

 We observe as [0, 1] ⊆ R the set of reals, likewise V ⊆ 
Nc(R).  

 
 We denote Ic the collection of natural class of closed fuzzy 

intervals Io = {(a, b) | a, b ∈ [0, 1]} denotes the natural class of 
open fuzzy intervals. 

 

 Ioc = {[a, b) | a, b ∈ [0, 1]} denotes the natural class of open 
closed fuzzy intervals. 
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 Ico = {(a, b) | a, b ∈ [0, 1]} denotes the natural class of 
closed open fuzzy intervals. 

 

 Now we can define operations on them so that Io or Ic or Ico 
or Ioc becomes a semigroup. 

 

DEFINITION 5.2:  Let Ic = {(a, b) | a, b ∈ [0, 1]} be the natural 

class of closed fuzzy intervals.  Define for x = [a, b] and y = [c, 

d] in Ic the min operation as follows:   
 

 min {x, y} = min {[a, b], [c, d]} 

    = [min {a, c}, min {b, d}} ∈ Ic . 

 Thus {Ic, min} is a semigroup. 

 

 Suppose x = {[0, 93, 0.271]} and y = [0.201, 0.758] are in 

Ic, then min {x, y} = min {[0.93, 0.271], [0.201, 0.758]} = [min 

{0.93, 0.201}, min {0.201, 0.758}] = [0.201, 0.271] and [0.201, 

0.271] ∈ Ic. 
 

 It is easily verified min on Ic is a semigroup which is 

commutative.  Likewise we define commutative semigroup with 

min operation on Ioc, Ico and Io. 
 

 Now instead of min operation on Ic (or Io or Ico or Ioc) we 

can define on Ic the max operation and still Ic under max 
operation is a commutative semigroup of infinite order. 

 

Example 5.2:  Let Ioc = {(a, b] | a, b ∈ [0, 1]} be the collection 
of natural class of open closed intervals.  Clearly for any x = (a, 

b] and y = (c, d] we define max {x, y} = max {(a, b], (c, d]} = 

(max {a, b}, max {b, d}] ∈ Ioc.  Thus max defined on Ioc is a 
closed binary commutative and associative operation.  Thus {Ioc, 

max} is a commutative semigroup. 

 

 Likewise we can define max operation on Ico, Io and Ic.  
Those will be semigroups of infinite order. 

 

 Now we can define yet another operation on Ic (or Io or Ioc 
or Ico) which we call as natural product. 
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DEFINITION 5.3:  Let Ic = {(a, b) | a, b ∈ [0, 1]} be the natural 

class of closed open intervals.  Define on Ic the natural product 

‘×’ or ‘.’ as follows.   

 For x = [a, b] and y = [c, d]  

we define x × y = x.y  = [a, b] [c, d] 

= [a.c, b.d]  

= [a × c, b × d] ∈ Ic. 

 

Thus {Ic, ×} is a semigroup with zero divisors.  For x = [0, 

0.732] and y = [0.213, 0] in Ic is such that x.y = [0, 0] . [1,1] in 
Ic acts as the multiplicative unit; for if x = [a, b] then x.[1, 1] = 

[a, b] [1, 1] = [a.1, b.1] = [a, b] ∈ Ic. 
 

Thus we can use any of these three operations on Ic (or Io or 

Ioc or Ico) while constructing matrices or polynomials using Ic (or 
Io or Ioc or Ico).   

 

We now proceed onto define fuzzy interval matrices using 
Ic (or Io or Ioc or Ico). 

 

DEFINITION 5.4:  Let  

X = (a1, …, an) where ai ∈ Ic (or Io or Ioc or Ico); 1 ≤ i ≤ n; X 

is defined as the natural class of fuzzy row intervals matrix or 

row interval fuzzy matrices with entries from the natural class 

of fuzzy intervals Ic (or Io or Ioc or Ico) (or strictly used only in 

the mutually exclusive sense) (1 ≤ i ≤ n).   
 

Likewise we define fuzzy column interval matrix  
 

y = 

1

2

m

b

b

b

 
 
 
 
 
 

�
where bi ∈ Io (or Ic or Ioc or Ico); 1 ≤ i ≤ m 

or natural class of fuzzy column matrices.   

 

 Let A = (aij)m×n (m ≠ n) we define A to be a fuzzy m × n 

interval matrix if aij ∈ Io (or Ic or Ioc or Ico) 1 ≤ i ≤ m and  
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1 ≤ j ≤ n.  We define A to be a fuzzy square interval matrix if  
m = n. 

 

 We will illustrate these situations by some simple examples 
before we proceed onto define operations on these collections. 

 

Example 5.3:  Let  
 

X = ([0.21, 0.001), [0, 0.781), [1, 0.061), 

[0.22, 0.22), [0.23, 0.7931)) 
 

be a fuzzy row interval matrix with entries from  

Ico = {[a, b) | a, b ∈ [0, 1]}. 
 

Example 5.4:  Let  

P = 

(0.301,0.005]

(0.12,0]

(1,0.9921]

(0.0.701]

(0.17,0.912]

(0.4911,0.27105]

 
 
 
 
 
 
 
 
  

 

 

be a fuzzy column interval matrix with entries from  

Ioc = {(a, b] | a, b ∈ [0, 1]}. 
 
Example 5.5:  Let  

 

M = 

[0,0.3] [0,0] [0.32,0.32] [0,0.75] [0,0.37]

[0.12,0] [1,1] [0.33,0] [0.72,0.33] [0.71,0.3]

[0.3,0.7] [0,0.121] [0,0.9301] [0.31,0.14] [0.31,0]

 
 
 
  

 

 

be a fuzzy 3 × 5 interval matrix with entries from Ic. 
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Example 5.6:  Let  

 

P = 

[0,1) [0,0.3) [0.358,1) [0,0.7)

[0,0) [0.3,0.3) [1,1) [0.8,1)

[1,0.79) [0.71,0.71) [0.2,0.2) [1,0.7)

[0.31,0) [0.26,0) [0.5,0) [0.5,6)

 
 
 
 
 
 

 

be a fuzzy 4 × 4 square interval matrix with entries from  

Ico = {[a, b) | a, b ∈ [0, 1]}. 
 

 Now having seen the four types of fuzzy interval matrices 
we now proceed onto define operations on them. 

 

 Let  

X = {(a1, a2, …, an) | ai ∈ Ico = {[a, b) | a, b ∈ [0, 1]}; 1 ≤ i ≤ n} 

be the collection of all fuzzy interval row matrices with entries 
from Ico.  We can define three operations on X and under each 

of these operations X is a commutative semigroup. 

 
 Consider the min operation on X so that if x = (a1, …, an) 

and y = (b1, …, bn) are in X then min {x, y} = min {(a1, …, an), 

(b1, b2, …, bn)}  
 

= (min (a1, b1), min (a2, b2), …, min (an, bn)) 

 

= ([min ( 1 1

1 1a ,b ), min ( 2 2

1 1a ,b )), [min ( 1 1

2 2a ,b ), min ( 2 2

2 2a ,b )), …, 

[min ( 1 1

n na ,b ), min ( 2 2

n na ,b )) where  

 

x = ([ 1 2

1 1a ,a ), [ 1 2

2 2a ,a ), …, [ 1 2

n na ,a ))  and y = ([ 1 2

1 1b ,b ), 

[ 1 2

2 2b ,b ), …, [ 1 2

n nb ,b )).  Clearly X with min operation is a 

semigroup known as the fuzzy interval row matrix semigroup 
with entries from Ico. 

 

 Now on the same collection X we can define the max 
operation and under max operation also X is a semigroup which 

is commutative and is of infinite order. 
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 Take x = (a1, a2, …, an) and y = (b1, b2, …, bn) 

 

where x =  ([ 1 2

1 1a ,a ), [ 1 2

2 2a ,a ), [ 1 2

3 3a ,a ), …, [ 1 2

n na ,a )) and  

y = ([ 1 2

1 1b ,b ), [ 1 2

2 2b ,b ), [ 1 2

3 3b ,b ) …, [ 1 2

n nb ,b )) in X.  

 

 Now max {x, y} = {max (a1, b1), …, max (an, bn)} 
 

= {max {[ 1 2

1 1a ,a ), [ 1 2

1 1b ,b )}, …, max {[ 1 2

n na ,a ), [ 1 2

n nb ,b )}} 

= [max { 1 1

1 1a ,b }), max { 2 2

1 1a ,b }), [max { 1 1

2 2a ,b }, max { 2 2

2 2a ,b }), 

…, [max { 1 1

n na ,b }, max { 2 2

n na ,b })). 

 
 We will just illustrate this situation by examples. 

 

Example 5.7:  Let X = {(a1, …, a5) | ai ∈ Ioc; 1 ≤ i ≤ 5} be a 
fuzzy open closed row interval matrix. 

 
 Let x = ((0.5, 0.7], (0, 0.3], (1, 0.4], (1, 1], (0.8, 0.2101]) 

and y = ((0, 0.2], (0.3, 0.101], (0, 0], (1, 0], (0.71, 0.215]) be in 

X. 
 

 max {x, y} = max {((0.5, 0.7], (0, 0.3], (1, 0.4], (1, 1], (0.8, 

0.2101]), ((0, 0.2], (0.3, 0.101], (0, 0], (1, 0], (0.71, 0.215])} 

 
= (max {(0.5, 0.7], (0, 0.2]}, max {(0, 0.3], (0.3, 0.101]}, max 

{(1, 0.4], (0, 0]}, max {(1, 1], (1, 0]}, max {(0.8, 0.2101], (0.71, 

0.215]}) 
 

= ((max {0.5, 0}, max {0.7, 0.2}], (max {0, 0.3}, max {0.3, 

0.101}, (max {1, 0}, max {0.4, 0}], (max {1, 1}, max {1, 0}], 

(max {0.8, 0.71}, max {0.2101, 0.215}]) 
 

= ((0.5, 0.7], (0.3, 0.3], (1, 0.4], (1, 1], (0.8, 0.215]) ∈ X. 
 

 Thus if X be the collection of fuzzy interval row matrices 
with entries from Ic (or Io or Ioc or Ico), then X is a semigroup 

under max operation of infinite order.   
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Now we proceed onto define the notion of product on the 

collection of fuzzy interval row matrices with entries from Ic (or 
Io or Ioc or Ico).  

 

 Let  

X = {(a1, a2, …, an) | ai ∈ Ico = {[a, b) | a, b ∈ [0, 1]}, 1 ≤ i ≤ n} 
be the collection of fuzzy interval row matrices. 
  

For any x = (a1, a2, …, an) = ([ 1 1

1 2a ,a ), [ 2 2

1 2a ,a ), …, [ n n

1 2a ,a ))  

and y = (b1, b2, …, bn) = ([ 1 1

1 2b ,b ), [ 2 2

1 2b ,b ), …, [ n n

1 2b ,b )) in X 

define x.y =  (a1, a2, …, an) . (b1, b2, …, bn) = ([ 1 1

1 2a ,a ), [ 2 2

1 2a ,a ), 

…, [ n n

1 2a ,a )) . ([ 1 1

1 2b ,b ), [ 2 2

1 2b ,b ), …, [ n n

1 2b ,b )) 

 

= ([ 1 1

1 2a ,a ), [ 1 1

1 2b ,b ), [ 2 2

1 2a ,a ), [ 2 2

1 2b ,b ) , …, [ n n

1 2a ,a ) [ n n

1 2b ,b ))  

 

= ([ 1 1

1 1a ,b , 1 1

2 2a ,b ), [ 2 2

1 1a ,b , 2 2

2 2a ,b ), …, [ n n

1 1a ,b , n n

2 2a ,b )) is in Ico.   

 

Thus (X, product ‘.’)  is a semigroup under multiplication.   

 

We now can define max ‘or’ min operation (or used in the 
mutually exclusive sense) as follows: 

 

 Let x = 

1

2

n

a

a

a

 
 
 
 
 
 

�
 and y = 

1

2

n

b

b

b

 
 
 
 
 
 

�
 be any two column interval 

matrices with entries from Ic = {[a, b] | a, b ∈ [0, 1]}. 
 

 We define max {x, y} = max {

1

2

n

a

a

a

 
 
 
 
 
 

�
, 

1

2

n

b

b

b

 
 
 
 
 
 

�
} 

 

 (here ai = [ 1 2

i ia ,a ] and bi = [ 1 2

i ib ,b ], 1 ≤ i ≤ n). 
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= 

1 1

2 2

n n

max{a ,b }

max{a ,b }

max{a ,b }

 
 
 
 
 
 

�
 = 

1 2 1 2

1 1 1 1

1 2 1 2

2 2 2 2

1 2 1 2

n n n n

max{[a ,a ],[b ,b ]}

max{[a ,a ],[b ,b ]}

max{[a ,a ],[b ,b ]}

 
 
 
 
 
  

�
 

 

= 

1 1 2 2

1 1 1 1

1 1 2 2

2 2 2 2

1 1 2 2

n n n n

max{a ,b },max{a ,b }

max{a ,b },max{a ,b }

max{a ,b },max{a ,b }

 
 
 
 
 
  

�
. 

 

 Now we can define this situation by some example. 

 

Example 5.8:  Let  
 

X = 

1

2

6

a

a

a

 
 
 
 
 
 

�
 and Y=

1

2

6

b

b

b

 
 
 
 
 
 

�
 where ai, bi ∈ Io; 1 ≤ i ≤ 6. 

 

That is X = 

1

2

6

a

a

a

 
 
 
 
 
 

�
 = 

(0,0.7)

(1,0)

(0.2,1)

(0.31,0.12)

(0.25,0.14)

(0.1,1)

 
 
 
 
 
 
 
 
  

 and 
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Y = 

1

2

6

b

b

b

 
 
 
 
 
 

�
 = 

(0.3,1)

(0.56,0)

(0,0)

(0.31,0.31)

(0.76,0)

(0.71,1)

 
 
 
 
 
 
 
 
  

 

be two fuzzy interval column matrices  
 

max {X, Y} = max {

1

2

6

a

a

a

 
 
 
 
 
 

�
, 

1

2

6

b

b

b

 
 
 
 
 
 

�
} 

 

= max {

(0,0.7)

(1,0)

(0.2,1)

(0.31,0.12)

(0.25,0.14)

(0.1,1)

 
 
 
 
 
 
 
 
  

, 

(0.3,1)

(0.56,0)

(0,0)

(0.31,0.31)

(0.76,0)

(0.71,1)

 
 
 
 
 
 
 
 
  

} 

 
 

= 

(max{0,0.3},max{0.7,1})

(max{1,0.56},max{0,0})

(max{0.2,0},max{1,0})

(max{0.31,0.31},max{0.12,0.31})

(max{0.25,0.76},max{0.14,0})

(max{0.1,0.71},max{1,1})
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= 

(0.3,1)

(1,0)

(0.2,1)

(0.31,0.31)

(0.76,0.14)

(0.71,1)

 
 
 
 
 
 
 
 
  

. 

 
 Let  

V = 

1

2

i oc

n

a

a
a I ;1 i n

a

 
 
  ∈ ≤ ≤
 
  

�
 where ai = ( 1 2

i ia ,a ]} 

 

be the collection of all fuzzy interval column matrices. {V, 
max} is a  semigroup of infinite order which is commutative.  

We see one can define on the set of fuzzy interval column 

matrices the operation min.  Still the collection will be a 
semigroup under min operation.  

 

 We will first illustrate this situation by some examples. 

 
Example 5.9:  Let  

 

x = 

1

2

3

4

5

a

a

a

a

a

 
 
 
 
 
 
  

 and y = 

1

2

3

4

5

b

b

b

b

b

 
 
 
 
 
 
  

 where ai = ( 1 2

i ia ,a ] and bi = ( 1 2

i ib ,b ] 

 

be in Ioc.  1 ≤ i ≤ 5.   
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Suppose x = 

1

2

5

a

a

a

 
 
 
 
 
 

�
  = 

(0,1]

(1,0]

(0.8,0]

(1,0.2]

(0.71,0.9]

 
 
 
 
 
 
  

 

 

y = 

1

2

5

b

b

b

 
 
 
 
 
 

�
 = 

(0.31,1]

(0,0.58]

(1,0]

(0,1]

(0.37,0.215]

 
 
 
 
 
 
  

 

 
be two fuzzy interval column matrices.   

 

Now min (x, y) = min {

(0,1]

(1,0]

(0.8,0]

(1,0.2]

(0.71,0.9]

 
 
 
 
 
 
  

, 

(0.31,1]

(0,0.58]

(1,0]

(0,1]

(0.37,0.215]

 
 
 
 
 
 
  

} 

 

= 

min{(0,1],(0.31,1]}

min{(1,0], (0,0.58]}

min{(0.8,0], (1,0]}

min{(1,0.2],(0,1]}

min{(0.71,0.9],(0.37,0.215]}

 
 
 
 
 
 
  

 

 

= 

(min{0,0.31},min{1,1}]

(min{1,0},min{0,0.58}]

(min{0.8,1},min{0,0}]

(min{1,0},min{0.2,1}]

(min{0.71,0.37},min{0.9,0.215}]
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= 

(0,1]

(0,0]

(0.8,0]

(0,0.2]

(0.37,0.215]

 
 
 
 
 
 
  

. 

 
Now having seen min {x, y}, x and y fuzzy column interval 

matrices.  We proceed onto define semigroup of fuzzy column 

interval matrices under ‘min’ operation. 

 
Thus if  

 

W = 

1

2 1 2

i oc i i i

n

a

a
a I ;a (a ,a ];1 i n}

a

 
 
  ∈ = ≤ ≤
 
  

�
 

 

be the collection of fuzzy column interval matrices.  W under 

‘min’ operation is a semigroup. 

 

Let x = (a1, a2, …, an) = ([ 1 1

1 2a ,a ], [ 2 2

1 2a ,a ], …, [ n n

1 2a ,a ])   be 

a fuzzy row interval matrix.  We can as in case of usual matrices 

define the transpose of x as follows: 

 

x
t
 = ([ 1 1

1 2a ,a ], [ 2 2

1 2a ,a ], …, [ n n

1 2a ,a ])
t
 

 

= 

1 2

1 1

2 2

1 2

1 2

n n

[a ,a ]

[a ,a ]

[a ,a ]

 
 
 
 
 
  

�
 = 

1

2

n

a

a

a

 
 
 
 
 
 

�
. 

We see (x
t
)

t
 = x.   
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Now we see if x = 

1

2

n

a

a

a

 
 
 
 
 
 

�
= 

1 2

1 1

1 2

2 2

1 2

n n

(a ,a )

(a ,a )

(a ,a )

 
 
 
 
 
  

�
 

 

where ai = ( 1 2

i ia ,a ) ∈ Io; 1 ≤ i ≤ n then x
t
 =

t
1 2
1 1

1 2
2 2

1 2
n n

(a ,a )

(a ,a )

(a ,a )

 
 
 
 
 
 
 

�
 

 

= (( 1 2

1 1a ,a ), ( 2 2

1 2a ,a ), …, ( 1 2

n na ,a )) 

 
= (a1, a2, …, an). 

 

We see (x
t
)
t
 = x =

1

2

n

a

a

a

 
 
 
 
 
 

�
. 

 

It is important to mention that as in case of usual column 
vectors we cannot in case of fuzzy column matrices also define 

product only ‘min’ and ‘max’ operation can be defined.  

 

Suppose x = 

[0,1) [0.1,1) [0,0)

[0.1,0) [0,1) [0.1,0.1)

[1,0) [0.3,0.2) [0,0.5)

[0.2,0.1) [0.4,0) [0.4,0.4)

[0.5,0.4) [1,1) [0.2,0.1)
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and y = 

[0,0) [0.7,0) [0,0.4)

[1,1) [0.8,0.1) [0.7,0.2)

[0,1) [0.9,1) [0.4,0.3)

[1,0) [0,0.3) [0.7,0.7)

[0.5,0.4) [1,0.4) [1,0.3)

 
 
 
 
 
 
  

 

 

be two 5 × 3 fuzzy interval matrices.   
 

We can define min (or max) operation on x and y ‘or’ used 
in the mutually exclusive sense.  

 

min (x, y)  
 

[0,1) [0.1,1) [0,0) [0,0) [0.7,0) [0,0.4)

[0.1,0) [0,1) [0.1,0.1) [1,1) [0.8,0.1) [0.7,0.2)

min ,[1,0) [0.3,0.2) [0,0.5) [0,1) [0.9,1) [0.4,0.3)

[0.2,0.1) [0.4,0) [0.4,0.4) [1,0) [0,0

[0.5,0.4) [1,1) [0.2,0.1)

 
 
 
 =

 
 
  

.3) [0.7,0.7)

[0.5,0.4) [1,0.4) [1,0.3)

  
  
   

  
  
  
    

 

min([0,1),[0,0)) min([0.1,1),[0.7,0)) min([0,0),[0,0.4))

min([0.1,0),[1,1)) min([0,1),[0.8,0.1)) min([0.1,0.1),[0.7,0.2))

min([1,0),[0,1)) min([0.3,0.2),[0.9.1)) min([0,0.5),[0.4,0.3))

min([0.2,0.1),[1,0)) min

=

([0.4,0),[0,0.3)) min([0.4,0.4),[0.7,0.7))

min([0.5,0.4),[0.5,0.4)) min([1,1),[1,0.4)) min([0.2,0.1),[1,0.3))

 
 
 
 
 
 
 
 

 

= 

[0,0) [0.1,0) [0,0)

[0.1,0) [0,0.1) [0.1,0.1)

[0,0) [0.3,0.2) [0,0.3)

[0.2,0) [0,0) [0.4,0.4)

[0.5,0.4) [1,0.4) [0.2,0.1)

 
 
 
 
 
 
 
 

. 
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This we see if  

 

V={(aij)m×n | aij = [
1 2

ij ija ,a ]; 1 ≤ i ≤ m and  1 ≤ j ≤ n aij ∈ Ico} 

be the collection of all fuzzy interval m × n matrices, then V 
under the min operation is a semigroup which is commutative. 
 

Consider x = 
[0,1) [0,0) [0.5,0.2) [0.2,1)

[0.3,0) [0.7,0.7) [0.7,0.3) [0.4,0)

 
 
 

 

 

and y =  
[1,0.2) [0.3,0) [1,1) [0.3,0.71)

[0.3,0.1) [0.2,0.2) [0.5,0.2) [0.9,1)

 
 
 

 

 

be two fuzzy interval 2 × 4 matrices with entries from Ico.  
 

Now we can define max operation of x, y = max (x, y) =  
 

[0,1) [0,0) [0.5,0.2) [0.2,1)
max ,

[0.3,0) [0.7,0.7) [0.7,0.3) [0.4,0)

 
 
 

 

 

[1,0.2) [0.3,0) [1,1) [0.3,0.71)

[0.3,0.1) [0.2,0.2) [0.5,0.2) [0.9,1)

 
 
 

 

 

= 
max{[0,1),[1,0.2)} max{[0,0),[0.3,0))

max{[0.3,0),[0.3,0.1)} max{[0.7,0.7),[0.2,0.2)}





 

 

max{[0.5,0.2),[1,1)} max{[0.2,1),[0.3,0.71)}

max{[0.7,0.3),[0.5,0.2)} max{[0.4,0),[0.9,1)}





 

 

= 
[1,1) [0.3,0) [1,1) [0.3,1)

[0.3,0.1) [0.7,0.7) [0.7,0.3) [0.9,1)

 
 
 

. 
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We can define max operation on the set of all fuzzy interval 

m × n matrices with entries from Ic; V the max operator; where 

V ={(aij)m×n = aij = ( )
1 2

ij ij
m n

a ,a
×

   ,  

with 
t

ija   ∈ [0,1]; 1 ≤ t ≤ 2 and 1 ≤ i ≤ m and 1 ≤ j ≤ n}. 

 

Thus {V, max} is a semigroup.  Now we can transpose any 

m × n fuzzy interval matrix A and A
t
 will be a n × m fuzzy 

interval matrix. 

 

For if A = 

1 2 n

11 12 1n

21 22 2n

m m m

a a ... a

a a ... a

a a ... a

 
 
 
 
  
 

� � �
 

 

          = 

1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

21 21 22 22 2n 2n

1 2 1 2 1 2

m1 m1 m2 m2 mn mn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
  
 

� � �
 

 

with  aij = [
1 2

ij ija ,a ]  ∈ Ic;  1 ≤ i ≤ m and 1 ≤ j ≤ n be the fuzzy 

interval m × n matrix.   

 

Now A
t
 =  

t
1 2 1 2 1 2
11 11 12 12 1n 1n

1 2 1 2 1 2
21 21 22 22 2n 2n

1 2 1 2 1 2
m1 m1 m2 m2 mn mn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
 
 
 

� � �
 

 

= 

1 2 1 2 1 2

11 11 21 21 m1 m1

1 2 1 2 1 2

12 12 22 22 m2 m2

1 2 1 2 1 2

1n 1n 2n 2n mn mn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
  
 

� � �
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is a n × m fuzzy interval matrix and is the transpose of A.  

Clearly ( )
t

tA  = A.  

 

 Now if A be a fuzzy interval square matrix we can define 

three operations on A.  In the first place transpose of a fuzzy 
interval square matrix is a square matrix. 

 

Let A = 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 

 

= 

1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

21 21 22 22 2n 2n

1 2 1 2 1 2

n1 n1 n 2 n2 nn nn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
  
 

� � �
 

 

aij ∈ Ic; 1 ≤ i, j ≤ n. 
 

 Now transpose of A denoted by 

 

A
t
 = 

t
1 2 1 2 1 2
11 11 12 12 1n 1n

1 2 1 2 1 2
21 21 22 22 2n 2n

1 2 1 2 1 2
n1 n1 n2 n2 nn nn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
 
 
 

� � �
 

 

 

= 

1 2 1 2 1 2

11 11 21 21 n1 n1

1 2 1 2 1 2

12 12 22 22 n 2 n2

1 2 1 2 1 2

1n 1n 2n 2n nn nn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
  
 

� � �
. 
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We see A
t
 is also a n × n fuzzy interval matrix of ( )

t
tA = A. 

 
 Now we proceed onto define the max (or min) operation on 

the collection of all n × n fuzzy interval matrices. 
 

 We will illustrate this situation by some examples. 
 

Example 5.10:  Let  

 

A = 

[0,0.3) [0,0) [1,0.7) [0,0.3)

[0,1) [1,1) [0.3,0.1) [1,1)

[1,0) [0.2,0.2) [0.2,1) [0,1)

[0.4,0.4) [0.7,0.1) [0.7,1) [1,1)

 
 
 
 
 
 

 

 

and B = 

[0.7,0) [0,0.8) [0.1,0.1) [0.9,0.7)

[0.4,1) [0.3,0.1) [0,0) [0.2,0.4)

[0.2,0.3) [0.5,0.4) [1,1) [0.1,0.2)

[0.1,1) [0.7,0.9) [0.2,0) [0.7,0.5)

 
 
 
 
 
 

 

 

be any two 4 × 4 fuzzy interval matrices.  
 

 We define  

 

min {A, B} = min

[0,0.3) [0,0) [1,0.7) [0,0.3)

[0,1) [1,1) [0.3,0.1) [1,1)
,

[1,0) [0.2,0.2) [0.2,1) [0,1)

[0.4,0.4) [0.7,0.1) [0.7,1) [1,1)

 
 
 
 
  

 

 

[0.7,0) [0,0.8) [0.1,0.1) [0.9,0.7)

[0.4,1) [0.3,0.1) [0,0) [0.2,0.4)

[0.2,0.3) [0.5,0.4) [1,1) [0.1,0.2)

[0.1,1) [0.7,0.9) [0.2,0) [0.7,0.5)
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= 

min{[0,0.3),[0.7,0)} min{[0,0),[0,0.8)}

min{[0,1),[0.4,1)} min{[1,1),[0.3,0.1)}

min{[1,0),[0.2,0.3)} min{[0.2,0.2),[0.5,0.4)}

min{[0.4,0.4),[0.1,1)} min{[0.7,0.1),[0.7,0.9)}








 

 

min{[1,0.7),[0.1,0.1)} min{[0,0.3),[0.9,0.7)}

min{[0.3,0.1),[0,0)} min{[1,1),[0.2,0.4)}

min{[0.2,1),[1,1)} min{[0,1),[0.1,0.2)}

min{[0.7,1),[0.2,0)} min{[1,1),[0.7,0.5)}








 

 

(using the fact min {[a, b), [c, d) = [min {a, c}, min {b, d})) 
 

= 

[0,0) [0,0) [0.1,0.1) [0,0.3)

[0,1) [0.3,0.1) [0,0) [0.2,0.4)

[0.2,0) [0.2,0.2) [0.2,1) [0,0.2)

[0.1,0.4) [0.7,0.1) [0.2,0) [0.7,0.5)

 
 
 
 
 
 

. 

 

Thus for a collection of n × n fuzzy interval matrices V, 
with entries from Ic (or Io or Ioc or Ico); V with ‘min’ operator is 

a semigroup. 

 
 Likewise we can use max operator instead of min operator 

and V under max operator is also a semigroup.   

 
We give only examples of them in what follows. 

 

Let P = 

(0,0.3] (1,1] (0.2,0]

(0.7,0.2] (0,0.3] (1,0]

(0.9,0.4] (0.7,0.7] (0,1]

 
 
 
  

 

 

and S = 

(0.2,1] (0.2,0.4] (0,0]

(0.3,0] (0.7,1] (1,0]

(0,1] (0.4,0.3] (0,0.5]
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be two fuzzy interval 3 × 3 square matrices.   
 

To find max {P, S} = 

 

(0,0.3] (1,1] (0.2,0] (0.2,1] (0.2,0.4] (0,0]

max (0.7,0.2] (0,0.3] (1,0] , (0.3,0] (0.7,1] (1,0]

(0.9,0.4] (0.7,0.7] (0,1] (0,1] (0.4,0.3] (0,0.5]

    
    
    
        

 

= 

(0.2,1] (1,1] (0.2,0]

(0.7,0.2] (0.7,1] (1,0]

(0.9,1] (0.7,0.7] (0,1]

 
 
 
  

. 

 

 Now we can define yet another operation ‘max min’ 

operation.  First we will illustrate this by an example. 

 

Example 5.11:  Let  

 

x = 

[0,1] [1,1] [0,1] [1,0.3]

[0.3,0] [0,0] [1,0] [0.5,0]

[0.2,0.2] [0,0.3] [0,0.7] [0.7,1]

[0.1,0] [0.5,0] [1,0.3] [0.8,0]

 
 
 
 
 
 

= (xij)   

 

and y = 

[1,0] [0.3,1] [0,0] [0,0.7]

[0.3,0] [0.2,0] [1,1] [0.2,0.2]

[0.5,1] [0,0] [0.5,0.8] [0.5,0]

[0.7,0.2] [0.7,1] [1,0] [0,0]

 
 
 
 
 
 

= (yij) 

 

be 4 × 4 fuzzy interval matrices.  We show how max min 
operation is defined on x and y 

 

= max {min {x, y}}, max {min {first row of x, first column of 

y}} 
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= min {[1, 1], [0.3,0]}, min {[0,1], [0.5, 1]}, min {[0.1, 0], [0.7, 

0.2}} = a11 = [ 1 2

11 11a ,a ]  

 
= max {[0, 0], [0.3, 0], [0, 1], [0.1, 0]} 

 

= {max {0, 0.3, 0, 0.1}, max {0, 0,1, 0}} 
 

= [0.3, 1] = a11. 

 
max min {first row of x, second column of y} 

 

= max {min {[0, 1], [0.3, 1]}, min {[1, 1], [0.2, 0]} min {[0, 1], 

[0, 0]} min {[0.1, 0], [0.7, 1]}} 
 

= max {[0, 1], [0.2, 0], [0, 0], [0.1, 0]} 

 
= [max {0, 0.2, 0, 0}, max {1, 0, 0, 0}] 

 

= [0.2, 1] = a12 = [ 1 2

12 12a ,a ]. 

 
Now max {min {first row of x, third column of y}} 

 

= max {min {[0, 1], [0, 0]}, {min {[1, 1], [1, 1]}, {min {[0, 1], 
[0.5, 0.8]}, {min {[1, 0.3], [1, 0]}} 

 

= max {[0,0], [1,1], [0,0.8], [1,0]}  

 
= [max {0, 1, 0, 1}, max {0, 1, 0.8, 0}] 

 

= [1, 1]  = a13 = [ 1 2

13 13a ,a ]. 

 
max {min {first row of x, fourth column of y}} 

 

= max {min {[0, 1], [0, 0.7]}, {min {[1, 1], [0.2, 0.2]}, {min 
{[0, 1], [0.5, 0]}, {min {[1, 0.3], [0, 0]}} 

 

= max {[0,0.7], [0.2,0.2], [0,0], [0,0]}  
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= [max {0, 0.2, 0, 0}, max {0.7, 0.2, 0, 0}] 

 

= [0.2, 0.7]  = a14 = [ 1 2

14 14a ,a ]. 

 

max {min {second row of x, first column of y}} 

 
= max {min {[0.3, 0], [1, 0]}, {min {[0, 0], [0.3, 0]}, {min {[0, 

0.3], [0.5, 1]}, {min {[0.5, 0], [0.7, 0.2]}} 

 
= max {[0.3,0], [0,0], [0,0.3], [0.5,0]}  

 

= [max {0.3, 0, 0, 0.5}, max {0, 0, 0.3, 0}] 

 

= [0.5, 0.3]  = a21 = [ 1 2

21 21a ,a ]. 

 

Thus max min (x, y) = 

[0.3,1] [0.2,1] [1,1] [0.2,0.7]

[0.5,0.3] . . .

. . . .

 
 
 
 
 
 

� � � �
. 

 

 
 Thus we can have such operations and the collection of 

square fuzzy interval matrices under max min operation is a 

semigroup.  Now having seen fuzzy interval matrices and 

operations on them we can write every fuzzy interval matrix M 

= (mij) (mij ∈ Ic or Io or Ioc or Ico) as fuzzy matrix interval. 
 

 That is if M = (mij) = 
1 2

ij ij((m ),(m ))  then M =
1 2

ij ij([m ,m ]) .  It 

is pertinent to mention here that only such representation 

simplifies the calculations in interval matrices.   

 
First we will illustrate this situation by some examples. 
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Let  

 

A = 

[0,0.3) [0.4,1) [1,1) [0.7,0)

[1,0.8) [0.5,0.5) [0,1) [1,0)

[0.2,0.6) [0.7,0.6) [0.4,0.71) [0.5,0.2)

 
 
 
  

 

be a fuzzy interval 3 × 4 matrix with entries from Ico. 
 

 Now A can be written uniquely as a fuzzy 3 × 4 matrix 
interval as  

 
A = [A1, A2)  

 

=

0 0.4 1 0.7 0.3 1 1 0

1 0.5 0 1 , 0.8 0.5 1 0

0.2 0.7 0.4 0.5 0.6 0.6 0.71 0.2

    
   
   

       

. 

 

Now A1 = 

0 0.4 1 0.7

1 0.5 0 1

0.2 0.7 0.4 0.5

 
 
 
 
 

 and 

 

A2 = 

0.3 1 1 0

0.8 0.5 1 0

0.6 0.6 0.71 0.2

 
 
 
 
 

 

 

are fuzzy matrices.  Now this way of representing a fuzzy 
interval matrix as a matrix interval helps in simplifying all 

calculations.  Thus we can also define a fuzzy matrix interval.  

A = [A1, A2] where A1 and A2 are fuzzy matrices of same order 

and A takes its entries from Ic if A = (aij) = 
1 2

ij ij[(a ), (a )]  where A1 

= 
1

ij(a )  and A2 = 
2

ij(a ) . 

 

Suppose A = [A1, A2) where A1 and A2 are fuzzy matrices 
of same order be a fuzzy matrix interval then  
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A = (aij) =
1 2

ij ij[(a ), (a ))  = 
1 2

ij ij([a ,a ))  then entries aij ∈ Ico.    

 

In a similar way we can define A = (A1, A2] where A1 and 

A2 are fuzzy matrices of same order then A is a fuzzy matrix 

interval and A as a fuzzy interval matrix we see A = 
1 2

ij ij((a ,a ])  

where A1 = 
1

ij(a )  and A2 =
2

ij(a )  with 
1 2

ij ij(a ,a ] ∈ Ioc.  

 

Finally we have A = (A1, A2) = 
1 2

ij ij((a ), (a ))  = 
1 2

ij ij((a ,a ))  

where  A1 =
1

ij(a )   and A2 =
2

ij(a )  are fuzzy matrices and 

1 2

ij ij(a ,a ) ∈ Io and A is both a interval fuzzy matrix when A is 

represented as 
1 2

ij ij((a ,a ))  and A is a fuzzy matrix interval if A = 

(A1, A2) where A1 and A2 are fuzzy matrices of same order. 

 
With these techniques we can have fuzzy interval matrices 

and operations on them are similar to fuzzy matrix intervals. 

 

We now proceed onto define fuzzy interval polynomials or 
polynomials  with fuzzy interval coefficients. 

 

Let Ic (or Ioc or Ico or Io) be the collection of fuzzy intervals.  
A fuzzy interval polynomial p(x) = p0 + p1 x + … + pn x

n
 where 

pi = [ai, bi]  with ai, bi ∈ [0, 1]; 0 ≤ i ≤ n.   
 

Now we cannot add two fuzzy interval polynomials as the 

resultant may not be a fuzzy interval polynomial. 
 

For take p(x)  = p0 + p1 x + p2x
2
  

= [0.7, 0.9] + [1, 0.8]x + [0.7, 1]x
2
 

 

and q(x)  = [1, 0.3] + [0.2, 0.7]x + [0.9, 0.2]x
2
  

  + [0, 1]x
3
 

 
to be two interval fuzzy polynomials with coefficients from Ic.  

Now p(x) + q(x) = ([0.7, 0.9] + [1, 0.8]x + [0.7, 1]x
2
) + [1, 0.3] 

+ [0.2, 0.7]x + [0.9, 0.2]x
2
 + [0, 1]x

3
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= ([0.7, 0.9] + [1, 0.3]) + ([1,0.8] + [0.2,0.7])x + ([0.7,1] + [0.9, 

0.2])x
2
 + [0,1]x

3
  

 

= [1.7, 1.2] + [1.2, 1.5]x + [1.6, 1.2]x
2
 + [0,1]x

3
. 

 

We see p(x) + q(x) is not a interval fuzzy polynomial as the 
coefficients of p(x) + q(x) are not fuzzy intervals or does not 

belong to the natural class of closed fuzzy interval Ic. 

 
 Thus we are forced to define two types of binary operations 

on fuzzy interval polynomials. 

 
Suppose  

S[x] = i

i

i 0

a x
∞

=




∑  ai ∈ [ 1 2

i ia ,a ] ∈ Ic; 

x a variable or an indeterminate} we say S[x] is the collection of 

all fuzzy interval polynomial with coefficients from Ic. 

 
We can replace by Io or Ioc or Ico and the collection will be a 

fuzzy interval polynomial with coefficients from Io or Ioc or Ico 

respectively. 
 

We see on S[x] we cannot define usual addition or usual 

product for fuzzy interval polynomials.  We define the ‘max’ 
operator as an operation on fuzzy interval polynomials. 

 

Let  

 
p(x) = [0, 1) + [0.7, 0)x + [0.3, 0.7)x

2
 + [1, 0)x

3
 + 

[0.3, 1)x
5
 

 
and  

 

q(x) = [0, 0.3) + [0.8, 0.5)x
2
 + [0.4, 0.7)x

3
 + [0, 0.2)x

4
 + 

[0.7, 0)x
5
 be two fuzzy interval polynomials with coefficients 

from Ico. 
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max (p(x), q(x)) = max {[0, 1) + [0.7, 0)x + [0.3, 0.7)x
2
 + 

[1, 0)x
3
 +[0.3, 1)x

5
, [0, 0.3) + [0.8, 0.5)x

2
 + [0.4, 0.7)x

3
 +  

[0, 0.2)x
4
 + [0.7, 0)x

5
} 

 

= max {[0, 1), [0, 0.3)} + max {[0.7, 0), [0, 0)}x + max 

{[0.3, 0.7); [0.8, 0.5)}x
2
 + max {[1, 0), [0.4, 0.7)}x

3
 + max {[0, 

0), [0, 0.2)}x
4
 + max {[0.3, 1), [0.7,0)}x

5
 

 

= [0, 1) + [0.7, 0)x + [0.8, 0.7)x
2
 + [1, 0.7)x

3
 + [0, 0.2)x

4
 + 

[0. 7, 1)x
5
. 

 

Thus we see the collection of fuzzy interval polynomials 
under max operation is a semigroup.  However under ‘min’ 

operation we feel the structure of quality of two polynomials is 

not properly represented. 

 
For if q(x) = [0, 1] + [0, 0.3]x

3
  + [0.2, 1]x

4
 

and p(x) = [1, 0]x + [0.2, 0.7]x
2
 + [0, 0.9]x

5
 

 
are fuzzy interval polynomial with entries from Ic, then min  

{q(x), p(x)} = [0, 0] so we see the operation does not do justice 

to every term; we feel ‘min’ operation on fuzzy interval 
polynomials does not yield a satisfactory result.  Thus we can 

use only max function on fuzzy interval polynomials.  Solving 

roots is not very difficult as the fuzzy interval polynomials are 

written as a fuzzy polynomial intervals.  
 

 For if p(x) = (0, 0.7] + (0.7, 1]x + (0.6, 0.9]x
2
 + (0, 0.2]x

3
 + 

(0.7, 0]x
4
 + (0.3, 0.2]x

5
 be a fuzzy interval polynomial, then  

   p (x)   = (p1(x), p2(x)) 

     = (0.7x + 0.6x
2
 + 0.7x

4
 + 0.3x

5
, 0.7 + x  

    + 0.9x
2
 + 0.2x

3
 + 0.2x

5
]   

where p1(x) and p2(x) are fuzzy polynomials. 
 

 One can at present exploit the existing methods of solving 

these equations however one has to invent some other ways for 
the existing methods  are not satisfactory.  Thus writing fuzzy 

interval polynomials as fuzzy polynomial intervals we get the 

roots. 
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Chapter Six 
 
 

 
 
CALCULUS ON MATRIX INTERVAL 
POLYNOMIAL AND INTERVAL 
POLYNOMIALS  
 
 
 

In this chapter we introduce the notion of matrix whose 

entries are interval polynomials and show how in general 

interval polynomials are differentiated and integrated.   

 
 First we know if (a, b] is an interval in Noc(R) then for any 

integer n. n (a, b] = (na, nb] is in Noc(R); n can be positive or 

negative.  We will first show how differentiation is carried out.  
 

 Let p (x) = [6, 0.3) + [0.31, 6.7)x + [8, –9)x
2
 + [11, 15)x

3
 + 

[0, –30)x
4
 be an interval polynomial then the derivative of  

p(x) is  

d

dx
 (p(x)) = 

d

dx
([6, 0.3) + [0.31, 6.7)x + [8, –9)x

2
 +  

[11, 15)x
3
 + [0, –30)x

4
) 

 
= [0, 0] + [0. 31, 6.7) + [16, –18)x + [33, 45)x

2
 + [0, –120)x

3
. 
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 Let q(x) = [9, 0] + [–8, 1]x + [–5, 10]x
3
 + [7, 7]x

4
 + [10,  

–11]x
5
 +  [7, 10]x

7
 be an interval polynomial.  

 

 The derivative of q(x) is given by  

 

q′(x) = 
dq(x)

dx
 = 

d

dx
([9, 0] + [–8, 1]x + [–5, 10]x

3
 + [7, 7]x

4
 +  

[10, –11]x
5
 + [7, 10]x

7
) 

 

= [–8, 1] + 3 [–5, 10]x
2
 + 4 [7, 7]x

3
 + 5 [10, –11]x

4
 + 7 [7, 10]x

6
 

 

= [–8, 1] + [–15, 30]x
2
 + [28, 28]x

3
 + [50, –55]x

4
 + [49, 70]x

6
. 

 

 We can find the second derivative  
 

d

dx
(q′(x)) = q″(x) = 2 [–15, 30]x + 3 [28, 28]x

2
 + 4 [50, –55]x

3
 

+ 6 [49, 70]x
5
  

 
= [–30, 60]x + [84, 84]x

2
 + [200, –220]x

3
 + [294, 420]x

5
. 

 

 We can find third, forth or upto seventh derivatives. We 
show if q(x) = [q1(x), q2(x)] represented as the polynomial 

interval then we can find the derivatives of q1(x) and q2(x) 

separately as follows: 
 

 We will show the derivative of an interval polynomial is the 

same as the derivative of the polynomial interval.  

 
 Now  

q(x) = [9,0] + [–8, 1]x + [–5, 10]x
3
 + [7, 7]x

4
 + [10,  

–11]x
5
 + [7, 10]x

7
 

 

= [q1(x), q2(x)] 

 
= [9–8x – 5x

3
 + 7x

4
 + 10x

5
 + 7x

7
, x + 10x

3
 + 7x

4
 – 11x

5
 + 10x

7
] 
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q′(x) = 
d

dx
 (q(x)) = [ ]1 2q (x),q (x)′ ′  

 

 = 1 2

d d
(q (x)), (q (x))

dx dx

 
 
 

 

 
 = [–8 – 15x

2
 + 28x

3
 + 50x

4
 + 49x

6
, 1 + 30x

2
 + 28x

3
 – 55x

4
 + 

70x
6
] 

 
= [–8, 1] + [-5, 30]x

2
 +[28, 28]x

3
 + [50, –55]x

4
 + [49, 70]x

6
 

= q′(x). 
 

Thus we can easily prove that if p(x) = [p1(x), p2(x)] is an 

interval polynomial than the derivative of p(x) is the same as the 
derivatives of p1(x) and p2(x) and vice versa. 

 

Now on similar lines we can define the integration of p(x), 

where p(x) is the interval polynomial.  
 

∫ p(x)dx  = ∫ [p1(x), p2(x)] dx 
 

   = ∫ p1(x) dx + ∫ p2(x) dx. 
 

We will illustrate this situation by an example. 
 

Let  

p(x) = [9, 2] + [–2, 7]x + [–7, –9]x
2
 + [3, 9]x

3
 + [8, 10]x

5
 be an 

interval polynomial.  

 

p(x)= [p1(x), p2(x)] 

 = [9 – 2x – 7x
2
 + 3x

3
 + 8x

5
, 2 + 7x – 9x

2
 + 9x

3
 + 10x

5
]. 

 

∫ p(x) dx = ∫ [p1(x), p2(x)] dx. 
 

Now  

 

∫ p(x)dx = ∫ [9, 2]dx + ∫ [-2, 7]x dx + ∫ [-7, -9]x
2
 dx +   

∫ [3, 9]x
3
 dx + ∫ [8, 10]x

5
 dx 
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= [9, 2] x + 
2[ 2,7]x

2

−
+ 

3[ 7, 9]x

3

− −
 + 

4[3,9]x

4
 + 

6[8,10]x

6
 + C. 

 
=  [9, 2]x + [–1, 3.5]x

2
 + [–7/3, –3]x

3
 + [0.75, 2.25]x

4
 +  

 

[4/3, 5/3]x
6
 + C 

 

where C ∈ Nc(R). 
 

 Now we can write  

∫ p(x) dx  = [∫ p1(x) dx, ∫ p2(x) dx] 
 

 = [∫ 9–2x – 7x
2
 + 3x

3
 + 8x

5
 dx, ∫ 2+ 7x – 9x

2
 + 9x

3
 + 

10x
5
dx] 

 

= 
2 3 4 6

1

2x 7x 3x 8x
9x C ,

2 3 4 6


− − + + +


 

 
2 3 4 6

2

7x 9x 9x 10x
2x C

2 3 4 6


+ − + + + 


 

 
= [9, 2] x + [–1, 3.5]x

2
 + [–7/3, –3]x

3
 + [3/4, 9/4]x

4
  

 

+ [8/6, 10/6]x
6
 + [C1, C2]. 

 

 We see ∫ p(x) dx = [∫ p1(x) dx, ∫ p2(x) dx]. 
 

 The differentiation and integration of interval polynomials 

is a matter of routine and can be carried out easily with the very 
simple modification by writing a interval polynomial as the 

polynomial interval.  

 
 Now we proceed onto define the notion of interval matrices 

whose entries are interval polynomials is one or more variables. 
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Let A = 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
 be a matrix where  

 

aij ∈ Nc(R)[x] = {p(x) = p0 = p1x + … + pnx
n
 | pi ∈ Nc(R)};  

1 ≤ i, j ≤ n. 
 

 We call A as the interval polynomial matrix or interval 

matrices with interval polynomial entries.   
 

We will give example of this situation. 

 

A = 

3 2 7

3 8 3

7 7 8

[0,1)x [3,0)x [16,10)x [1,1)x

[6,7)x [1,1)x [0,0) [5,7)x

[6,10)x [1,0)x [2,3)x [0,9)x

 +

 
+ 

 + 

 

 

be the interval matrix with polynomial entries from Nco (Z) [x]. 

 

 A interval matrix is differentiated by differentiating every 
element in the matrix in the classical way. 

 

dA

dx
= 

2 6

2 7 2

6 6 7

3[0,1)x 2[3,0)x 7[16,10)x [1,1)

3[6,7)x 8[1,1)x [0,0) 3[5,7)x

7[6,10)x [1,0) 7[2,3)x 8[0,9)x

 +

 
+ 

 + 

 

 
 

= 

2 6

2 7 2

6 6 7

[0,3)x [6,0)x [112,70)x [1,1)

[18,21)x [8,8)x [0,0) [15,21)x

[42,70)x [1,0) [14,21)x [0,72)x

 +

 
+ 

 + 

. 

 

 We can differentiate 
dA

dx
  the second time  
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2d A

dx
= 

5

6

5 5 6

2[0,3)x [6,0) 6[112,70)x [0,0)

2[18,21)x 7[8,8)x [0,0) 2[15,21)x

6[42,70)x 6[14,21)x 7[0,72)x

 +

 
+ 

 
 

 

 

and so on.  We can find any number of successive derivatives of 
A. 

 

 Now we show we can write A = [A1, A2) where A1 and A2 

are matrix with polynomial entries and differential of A1 and A2 
remains the same. 

 

 Now A = [A1, A2)   
 

=

2 7 3 7

3 8 3 3 8 3

7 7 7 7 8

3x 16x x x 10x x

6x x 0 5x , 7x x 0 7x

6x x 2x 0 10x 3x 9x

    
   

+ +    
   +    

. 

 

 

Now 
dA

dx
 = 1 2dA dA

,
dx dx

 


 
 

 

 

= 

6 2 6

2 7 2 2 7 2

6 6 6 6 7

6x 112x 1 3x 70x 1

18x 8x 0 15x , 21x 8x 0 21x

42x 1 14x 0 70x 21x 72x

    
   

+ +    
   +    

 

 

= 

2 6

2 7 2

6 6 7

[6,0)x [0,3)x [112,70)x [1,1)

[18,21)x [8,8)x [0,0) [15,21)x

[42,70)x [1,0) [14,21)x [0,72)x

 +

 
+ 

 + 

=
dA

dx
 . 

 

 Thus 
dA

dx
 = 1 2dA dA

,
dx dx

 


 
. 
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 Suppose we have the polynomial ring in two variables say 

x, y with interval coefficients that is  
 

Nc(R)[x, y] = {p(x, y) | the coefficients of p(x, y) is in 

Nc(R)}.  It is easily verified Nc(R)[x,y] is just a ring and an 

integral domain.  Likewise we can have polynomial ring in three 
variables say Nc(R)[x, y, z] and any n variables; the only 

difference being that R [x, y, z] take their coefficients from R 

(reals) where as Nc(R)[x, y, z] take their interval coefficients 

from Nc(R) = {[a, b] | a, b ∈ R} (It is important to note that 
Nc(R) can be replaced by Noc(R) or Nco(R) or No(R) and R can 

also be replaced by Z or Q). 

 

 Now if we have interval polynomials with more than one 
variable then we can only define the partial derivative on them.  

This is direct, however we will illustrate this situation by some 

examples / illustrations. 
 

 Let  

p(x, y) = (0, 7) + (2, 5)x
3
y + (–7, 0)x

2
 y

3
 + (0, –14)x

4
 y

4
 +  

(9, 8)x
5
 y

2
 ∈ No(Q)[x, y] 

 
 Now the partial derivative of p(x, y) with respect x and y 

are as follows: 

 

(p(x, y))

x

∂

∂

  = 0 + 3 (2, 5)x
2
 y + 2 (–7, 0)xy

3
  + 4 (0, –14)x

3
 y

4
 +      

   5 (9, 8)x
4
 y

2
 

 

   = (6, 15) x
2
 y + (–14, 0)xy

3
 + (0, –56)x

3
 y

4
 +  

   (45, 40)x
4
 y

2
. 

 

(p(x, y))

y

∂

∂

  = 0 + (2, 5)x
3
 + 3 (–7, 0)x

2
 y

2
 + 4(0, –14)x

4
 y

3
  

   + 2 (9, 8)x
5
 y  

 
= (2, 5)x

3
 + (–21, 0)x

2
 y

2
 + (0, –56)x

4
 y

3
 +  

   (18, 16)x
5
 y. 
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Now we find the second derivative 
 

(p(x, y))

y x

∂ ∂ 
 

∂ ∂ 
 = (6, 15)x

2
 + 3 (–14, 0)xy

2
 + 4 (0, –56)x

3
y

3
 +  

            2 (45, 40)x
4
y 

 

= (6, 15)x
2
 + (–42, 0)xy

2
 + (0, –224)x

3
y

3
 +  

   (90, 80)x
4
y 

 

(p(x, y))

x y

 ∂ ∂

 
∂ ∂ 

 = 3 (2, 5)x
2
 + 2 (–21, 0)xy

2
 + 4 (0, –56)x

3
y

3
 +  

           5 (18, 16)x
4
y  

 
= (6, 15)x

2
 + (–42, 0)xy

2
 + (0, –224)x

3
y

3
 +  

   (90, 80)x
4
y. 

 
 

 It is easily verified 

 

(p(x, y))

x y

 ∂ ∂

 
∂ ∂ 

 = 
(p(x, y))

y x

∂ ∂ 
 

∂ ∂ 
. 

 

 Thus  
2 2p(xy) p(xy)

x y y x

∂ ∂
=

∂ ∂ ∂ ∂

. 

 

 Thus we see the partial derivatives of interval polynomials 

behave like partial derivatives in usual polynomials. 
 

 Now we proceed onto give matrix whose entries are interval 

polynomials in two variables.  

 
 Consider  
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A = 

2

3 3 3 2

7 5 3 5

6 3 7 2

[0,3]xy [6,0]x [7,0]

[7,0]x y [2,2]xy [8,1]x y

[5,1]x [3,2]xy [3,12]x y [0,7]y

[3,2]x y [5,2]x y [3,1]y

 +


+

 + +


+

 

 
3 9 3 2

2 3

3 4 3

8 3 5

[8,9]x y [9,8]y x [7,9]y

[5,0]x y [7,2]xy [8,9]

[7,9]x y [1,1]y [9,9]x

[3,12]x y [8, 11]y

+


+ 

+


− 

 

be a interval polynomial matrix with entries from Nc(R)[x, y].  
We find the first and second partial derivatives of A with 

respect to x and y. 

A

x

∂

∂

= 

2 3 2 2

6 5 2

5 3 6 2

[0,3]y [12,0]x 0

[21,0]x y [2,2]y [24,3]x y

[35,7]x [3,2]y [9,36]x y

[18,12]x y [35,14]x y

+


+
 +




 

 
2 9 3

3

2 4 2

7 3

[24,27]x y [9,8]y

[10,0]xy [7,2]y 0

[21,27]x y [27,27]x

[24,96]x y 0




+ 




. 

 

2A

y x

∂

∂ ∂

= 

2 2 2

4 2

5 2 6

[0,3] 0

[21,0]x [6,6]y [48,6]x y

[15,10]y [9,36]x

[54,36]x y [70,28]x y




+




 

 
2 8 2

2

2 3

7 2

[216,243]x y [27,24]y

[10,0]x [21,6]y 0

[84,108]x y 0

[72,288]x y 0




+ 




. 
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2

2

A

x

∂

∂

= 

2

5

4 3 5 2

[12,0] 0

[42,0]xy [48,6]xy

[210,42]x [18,72]xy

[90,60]x y [210,84]x y








  

9

4

6

[48,54]xy 0

[10,0]y 0

[42,54]xy [54,54]x

[168,672]x 0








. 

 

 

Now  
A

y

∂

∂

= 

3 2 3

4 3 4

6 2 7

[0,3]x [0,0]

[7,0]x [6,6]xy [16,2]x y

[15,10]xy [3,12]x [0,35]y

[9,6]x y [10,4]x y [3,1]




+
 +


+

 

 
3 8 2

2 2

3 3

8 2 4

[72,81]x y [27,24]y x [14,18]y

[5,0]x [21,6]xy 0

[28,36]x y [1,1] 0

[9,36]x y [40, 55]y

+


+ 

+


− 

. 

 

 

2A

x y

∂

∂ ∂

= 

2 2 2

4 2

5 2 6

[0,3] 0

[21,0]x [6,6]y [48,6]x y

[15,10]y [9,36]x

[54,36]x y [70,28]x y




+




 

 
2 8 2

2

2 3

7 2

[216,243]x y [27,24]y

[10,0]x [21,6]y 0

[84,108]x y 0

[72,288]x y 0




+ 




. 

 

Clearly 
2A

x y

∂

∂ ∂

 = 
2A

y x

∂

∂ ∂

. 
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 Now we find 
2

2

A

y

∂

∂

  

 

=

3 7

3

3 3 3 2

6 7 8 3

0 0 [516,648]x y [54,48]yx [14,18]

[12,12]xy [16,2]x [42,12]xy 0
.

[60,40]xy [0,140]y [84,108]x y 0

[18,12]x y [10,4]x [18,72]x y [160, 220]y

 +

 
 
 
  

− 

 

 
 We will give an example of a matrix with interval 

polynomials in three variables and give their partial derivatives. 

 

Let M = 
3 3 3 3 3

2 2 2 3 3 2 6

[0,3]xyz [2,1]x z [4,5]x y z [0,1]xy

[0,10]x y [3,2]xy z [7,2]x z [3,7]x

 + +

 
+ + 

. 

 
 Clearly elements of M are from Nc(Q)[x, y, z] = {all 

polynomials in the three variables x, y, z  with coefficients from 

Nc(Q)}. 
 

Now we find 

 
 

M

x

∂

∂

 =
3 2 3 3 3

2 2 3 2 2 5

[0,3]yz [6,3]x z [12,15]x y z [0,1]y

[0,20]xy [3,2]y z [21,6]x z [18,42]x

 + +

 
+ + 

. 

 

 

M

y

∂

∂

 =
3 3 2

2 3

[0,3]xz [12,15]x y z [0,1]y

[0,20]x y [6,4]xyz [0,0]

 +

 
+ 

. 

 
 

M

z

∂

∂

 =
2 3 2 3 3

2 2 3

[0,9]xyz [6,3]x z [4,5]x y

[9,6]xy z [14,4]x z

 +

 
 

. 
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2M

y x

∂

∂ ∂

 =
3 2

3

0 [36,45]x y z [0,1]

[0,40]xy [6,4]yz 0

 +

 
+ 

. 

 

 
3M

z y x

∂

∂ ∂ ∂

=
3 2

2

0 [36,45]x y

[18,12]yz 0

 
 
 

. 

 
2M

z x

∂

∂ ∂

 =
2 2 3 3

2 2 2

[18,9]x z [12,15]x y

[9,6]y z [42,12]x z

 
 
 

. 

 
3M

y z x

∂

∂ ∂ ∂

=
3 2

2

0 [36,45]x y

[18,12]yz 0

 
 
 

. 

 

 Thus interested reader can find higher derivatives as it is a 
matter of routine.  

 

 Now we can also integrate a matrix which entries are 
interval polynomials in the single variable x. 

 

Let  
 

A = 

3 7 3

5 2 7 3

9 2 9

[0,3]x [7,1]x [2,1] [6,5]x [7,0]x

[9,2]x [2,3]x [8,1]x [3,2]x

[21,5]x [3,10]x [1,3]x [9,1]x

 + + +


+ +

 + +

 

 

3 2

5 4

[ 3,12]

[7,5]x [3,2]x [7,5]

[9,5]x [13,2]x [3,2]x [0,1]

− 


+ + 
+ + + 

 

 
be a matrix with interval polynomial entries, with elements from 

Nc(R)[x] the integral of A denoted by 
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 ∫ Adx =  
 

4 8 4 2

6 3 8 4

10 3 2 10

[0,3/4]x [7/8,1/8]x [2,1]x [6/4,5/4]x [7/2,0]x

[9/6,1/3]x [2/3,1]x [1,1/8]x [3/4,2/4]x

[21/10,5/10]x [3/3,10/3]x [1/2,3/2]x [9/10,1/10]x

 + + +


+ +

 + +
 

4 3

6 5 2

[ 3,12]x

[7 / 5,5 / 4]x [1,2 / 3]x [7,5]x

[9 / 6,1/3]x [13/ 5,2 / 5]x [3/ 2,1]x [0,1]x

− 


+ + 
+ + + 

 

 

+ 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 with ai ∈ Nc(R); 1 ≤ i ≤ 9. 

 

 We can integrate matrix with interval polynomial entries 

from Nc(R). 
 

 Thus the matrix of interval polynomial integration and 

differentiation are carried as a matter of routine.  We can also 
write the interval matrix M of polynomials from Nc(R) (or 

Noc(R) or No(R) or Nco(R) as matrix polynomial intervals and all 

operations on them can be carried out as a matter of routine.  

 
 We will illustrate this situation by a simple examples. 

 

Suppose A = 
3 5

2 4

[0,5) [2, 10)x [6,0)x

[9,1) [20,1)x [7,3)x

 + − +


+ +

 

 
2 3

3 7

[5,2) [11,3)x [7,11)x [0,2]x

[3,0) [12.4)x [1,0)x

+ + +


+ + 

 

 

be a interval matrix polynomial with interval polynomials from 

Nco(R)[x] then  
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dA

dx
 = 

2 4

3

[6, 30)x [30,0)x

[40,2)x [28,12)x

 − +


+

  
2

2 6

[11,3) [14,22)x [0,6)x

[36,12)x [7,0)x

+ +


+ 

. 

 

Now this interval matrix polynomial can be rewritten as 
matrix interval polynomial of A = [A1 A2) 

 

= 
3 5 2

2 4 3 7

2x 6x 5 11x 7x

9 20x 7x 3 12x x

 + + +

 
+ + + + 

, 

 

 
3 2 3

2 4 3

5 10x 2 3x 11x 2x

1 x 3x 4x

 − + + +

  
+ +  

. 

 

 

dA

dx
 = 1 2dA dA

,
dx dx

 


 
 

 

 

= 
2 4

3 2 6

6x 30x 11 14x

40x 28x 36x 7x

 + +

 
+ + 

,
3 2

3 2

30x 3 22x 6x

2x 12x 12x

 − + +

 
+ 

 

 

 

= 
2 4 2

3 2 6

[6, 30)x [30,0)x [11,3) [14,22)x [0,6)x

[40,2)x [28,12)x [36,12)x [7,0)x

 − + + +

 
+ + 

. 

 
 

 We see  
dA

dx
 = 1 2dA dA

,
dx dx

 


 
. 

 

 Thus we see we can without any difficulty write the 

derivative of any interval polynomial matrix as derivative of 
matrix interval polynomial and both are equal. 
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Now we find  

 

∫ Adx = 
4 6

3 5

[0,5)x [2 / 4, 10 / 4)x [1,0)x

[9,1)x [20 / 3,1/3)x [7 /5,3/ 5)x

 + − +


+ +

 

 
2 3 4

4 8

[5,2)x [11/ 2,3/ 2)x [7 /3,11/ 3)x [0,2 / 4)x

[3,0)x [3,1)x [1/8,0)x

+ + +


+ + 

 

 
 

 ∫ A1 dx + ∫ A2 dx  = 
3 5 2

2 4 3 7

2x 6x 5 11x 7x
dx,

9 20x 7x 3 12x x

  + + +

  
+ + + +  

∫  

 
3 2 3

2 4 3

5 10x 2 3x 11x 2x
dx

1 x 3x 4x

 − + + +

  
+ +  

∫  

 

 

= 

4 6 2 3

3 5 4 8

2x 6x 11x 7x
5x

4 6 2 3

20x 7x 12x x
9x 3x

3 5 4 4

 
+ + + 

 
 

+ + + + 
 

, 

 
 

4 2 3 4

3 5 4

10x 3x 11x 2x
5x 2x

4 2 3 4

x 3x 4x
x

3 5 4

 
− + + +  

 
 

+ +  
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= 

4 6

3 5

2 10
x [0,5)x [6,0)x

4 4

20 1 7 3
[9,1)x , x , x

3 3 5 5

  
− + + 

 
    

+ +   
   

 

 

2 3 4

4 8

11 3 7 11 1
[5,2)x , x , x 0, x

2 2 3 3 2

1
[3,0)x [3,1)x ,0 x

4

     
+ + +     
      

 
+ + 

  

 

is the integral of the matrix interval polynomials. 

 

 Now having seen integration and differentiation of interval 

matrix polynomials and matrix integral polynomials we proceed 
onto give their applications. 
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Chapter Seven 
 
 

 
 
APPLICATIONS OF INTERVAL MATRICES 

AND POLYNOMIALS BUILT USING 
NATURAL CLASS OF INTERVALS  
 
 
 
This chapter has two sections. First section indicates the 

derivation of some classical results in case of interval matrices 

using the natural class of intervals from Nc(R) or No(R) or 

Noc(R) or Nco(R) (R replaced by Z or Q).  Second section of this 
chapter suggest some applications. 

 

7.1 Properties of Interval Matrices   
 

In this section the notion of finding determinant of interval 

matrices and finding inverse of interval matrices are illustrated 
by examples.  We find the determinant of an interval matrix A. 

 

Example 7.1.1:  Let  
 

A = 
[3,2] [4,0]

[5,2] [0, 7]

 
 

− 
 = [A1, A2] 

be a 2 × 2 interval matrix. 
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|A| = 
[3,2] [4,0]

[5,2] [0, 7]

 
 

− 
= [3, 2] [0, -7], - [4, 0] [5, 2] 

  
= [0, –14] – [20, 0] 

 

= [–20, –14]. 

 
det A  = |A| = det [A1, A2] 

 

      = [det A1, det A2] 
 

      = 
3 4 2 0

det ,det
5 0 2 7

    
    

−    
 

 

      = [–20, –14] 
 

      = det A = | A |. 

 

Example 7.1.2:  Let 
 

A = 

[3,0) [0,0) [1,1)

[2, 1) [2, 1) [3,1)

[0,4) [1,0) [0,1)

 
 

− − 
  

 

 

be a 3 × 3 interval matrix with entries from Nco(Q).  To find the 
determinant of A. 

 

det A  = 

[3,0) [0,0) [1,1)

[2, 1) [2, 1) [3,1)

[0,4) [1,0) [0,1)

 
 

− − 
  

 

 

      = [3, 0) 
[2, 1) [3,1)

[1,0) [0,1)

− 
 
 

 – [0, 0)  



 145

[2, 1) [3,1)

[0,4) [0,1)

− 
 
 

 + [1, 1) 
[2, 1) [2, 1)

[0,4) [1,0)

− − 
 
 

 

 

= [3, 0) [[2, -1) [0, 1) – [3, 1) [1, 0)] – [0, 0) + [1, 1) [[2, -1)  
       [1, 0) – [2, -1) [0, 4)] 

 

= [3, 0) [[0, -1) – [3, 0)] + [1, 1) ([2, 0) – [0, -4)) 

 
= [3, 0) [-3, -1) + p1, 1) [2, 4) 

 

= [-9, 0) + [2, 4) = [-7, 4). 
 

 

Now consider  
 

A = [A1, A2] = 

3 0 1 0 0 1

2 2 3 , 1 1 1

0 1 0 4 0 1

    
   

− −    
       

. 

 

det A = det [A1, A2] = [det A1, det A2] 
 

= 

3 0 1 0 0 1

det 2 2 3 ,det 1 1 1

0 1 0 4 0 1

    
    

− −    
        

 

 

= [3 (2.0 – 3.1) + 1 (2.1 – 2.0), 1 × 4) 
 

= [–9 + 2, 4) = [–7, 4). 

 

Thus det A = det [A1, A2) 

 
= [det A1, det A2) = [–7, 4). 
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Example 7.1.3:  Let  

 

A = 

(1,2) (2,0) ( 1,1) (3,0)

(2,1) (1,1) ( 2,0) (3,1)

(3,0) (1,2) (2, 1) (1,0)

(1,1) ( 1,0) (0,2) (2,1)

− 
 

− 
 −

 
− 

 

 

be a 4 × 4 interval matrix with entries from No(Q).   
 

 det A = |A|  = 

(1,2) (2,0) ( 1,1) (3,0)

(2,1) (1,1) ( 2,0) (3,1)

(3,0) (1,2) (2, 1) (1,0)

(1,1) ( 1,0) (0,2) (2,1)

− 
 

− 
 −

 
− 

 

 

    = (1, 2) 

(1,1) ( 2,0) (3,1)

(1,2) (2, 1) (1,0)

( 1,0) (0,2) (2,1)

− 
 

− 
 

− 

 

 

    –  (2, 0) 

(2,1) ( 2,0) (3,1)

(3,0) (2, 1) (1,0)

(1,1) (0,2) (2,1)

− 
 

− 
 
 

 

 

    + (–1, 1) 

(2,1) (1,1) (3,1)

(3,0) (1,2) (1,0)

(1,1) ( 1,0) (2,1)

 
 
 
 

− 

 

 

    – (3,0) 

(2,1) (1,1) ( 2,0)

(3,0) (1,2) (2, 1)

(1,1) ( 1,0) (0,2)

− 
 

− 
 

− 
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= (1, 2) 
(2, 1) (1,0)

(1,1)
(0,2) (2,1)

 − 
  
  

– (–2,0) 
(1,2) (1,0)

( 1,0) (2,1)

 
 

− 

  

    + (3,1) 
(1,2) (2, 1)

( 1,0) (0,2)

− 
 

−   
 

 

 

– (2, 0) 
(2, 1) (1,0)

(2,1)
(0,2) (2,1)

 − 
  
  

 

 

 – (–2,0) 
(3,0) (1,0)

(1,1) (2,1)

 
 
 

  

 

    + (3,1) 
(3,0) (2, 1)

(1,1) (0,2)

− 
 
  

 

 

+ (–1, 1)  
(1,2) (1,0)

(2,1)
( 1,0) (2,1)

  
  

−  
 –  (1,1) 

(3,0) (1,0)

(1,1) (2,1)

 
 
 

  

          

 + (3,1) 
(3,0) (1,2)

(1,1) ( 1,0)

 
 

−   
 

 

  – (3, 0)  
(1,2) (2, 1)

(2,1)
( 1,0) (0,2)

 − 
  

−  
 –   

 

(1,1) 
(3,0) (2, 1)

(1,1) (0,2)

− 
 
 

 +  (–2,0) 
(3,0) (1,2)

(1,1) ( 1,0)

 
 

−   
 

 

= (1, 2) [[(4, –1) – (0, 0)] – (–2, 0) [(2, 2) – (–1, 0)] 
+ (3, 1) [(0, 4) – (–2,0)]] – [(2, 0) [(2, 1) (4, –1) – (0, 0)]  
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– (–2,0) [(6, 0) – (1, 0)] 

+ (3, 1) [(0,0) – (2, –1)]] +  
(–1, 1) [(2, 1) [(2, 2) – (–1, 0)] 

– (1,1) [(6, 0) – (1, 0)] 

+ (3, 1) [(–3, 0) – (1, 2)]] 

 
– (3, 0) [(2, 1) [(0, 4) – (–2, 0)] – (1, 1) [(0, 0) – (2, –1)] 

+ (–2, 0) [(–3, 0) – (1, 2)]] 

 
= (1, 2) [(4, –1) – (–6, 0) + (6, 4) (–2, 0) [(8, –1) –  

  (–10, 0) – (6, –1)] 

+ (–1, 1) [(6, 2) – (5, 0) + (–12, –2)] 
– (3, 0) [(4, 4) + (2, –1) + (8, 0)] 

 

= (1, 2) (16, +3) – (–2, 0) (12, 0) + (–1, 1) (–11, 0) –  

(3, 0) (14, 3) 
 

= (16, 6) – (24, 0) + (11, 0) – (42, 0) 

 
= (–39, 6), 

 

Now let A = [A1, A2] we find matrix interval determinant 
 

|A| = det A = det [A1, A2] = [|A1|, |A2|] 

 

= 

1 2 1 3 2 0 1 0

2 1 2 3 1 1 0 1
,

3 1 2 1 0 2 1 0

1 1 0 2 1 0 2 1

 −   
    

−    
    −

    
−     

 

 

= 

1 2 3 2 2 3 2 1 3 2 1 2

1 1 2 1 2 3 2 1 ( 1) 3 1 1 3 3 1 2

1 0 2 1 0 2 1 1 2 1 1 0

 − − −


− + − −

 − − −

, 
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1 0 1 1 1 1

2 2 1 0 0 1 0 2 0 0

0 2 1 1 0 1




− − + − 



 

 

= [16 – 2 (12) + (–1) (–11) – 3 (14), 2 [1 (–1 – 0) + 1 [2, –0] + 

1 [–2]]] 
 

= [–39, 6].  

 

 Thus we see the determinant of an interval matrix is the 
same as that of the matrix interval.  

 

 Now we find the inverse of interval matrix and matrix 
interval. 

 

Example 7.1.4:  Let  
 

M = 
[2,3] [1,5]

[4,2] [7,1]

 
 
 

 

 

be a 2 × 2 interval matrix.  To find inverse of M. 
 

   Clearly |A| = 
[2,3] [1,5]

[4,2] [7,1]
 

 

      = ([2, 3] [7, 1] – [1, 5] [4, 2]) 
 

      = [[14, 3] – [4, 10]] 

 

      = [10, –7] ≠ [0, 0]. 
 
 

  A
-1

 = 

t
[7,1] [ 4, 2]1

[ 1, 5] [2,3][10, 7]

− − 
 

− −−  
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     = 
[7,1] [ 1, 5]1

[ 4, 2] [2,3][10, 7]

− − 
 

− −−  
 

 

     = 
[7 /10, 1/ 7] [ 1/10,5 / 7]

[ 4 /10,2 / 7] [2 /10, 3/ 7]

− − 
 

− − 
 

 

  

Now A.A
-1

  = 
[2,3] [1,5]

[4,2] [7,1]

 
 
 

[7 /10, 1/ 7] [ 1/10,5 / 7]

[ 4 /10,2 / 7] [2 /10, 3/ 7]

− − 
 

− − 
 

 

    = 
[1,1] [0,0]

[0,0] [1,1]

 
 
 

 

 

   = I2×2. 
 

Now we show if A = [A1, A2] = 
2 1 3 5

,
4 7 2 1

    
    
    

 

 

   Then A
–1

  = [ 1 1

1 2A ,A− − ]. 

 

   Thus |A|  = |[A1, A2]| 
 

      = [|A1|, |A2|] 

 

      = [10, –7]. 
 

Now A
–1

 = 
7 1 1 51 1

,
4 2 2 310 7

 − −   
    

− −−    
 

 

= 
7 /10 1/10 1/ 7 5/ 7

,
4 /10 2 /10 2 / 7 3/ 7

 − −   
    

− −    
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Now A, A
-1

 = 
2 1 3 5

,
4 7 2 1

    
    
    

 ×  

 

7 /10 1/10 1/ 7 5/ 7
,

4 /10 2 /10 2 / 7 3/ 7

 − −   
    

− −    
 

 

= 
2 1 7 /10 1/10 3 5 1/ 7 5/ 7

,
4 7 4 /10 2/10 2 1 2/ 7 3/ 7

 − −       
        

− −        
 

 

= 
1 0 1 0

,
0 1 0 1

    
    
    

 

 

   = 
[1,1] [0,0]

[0,0] [1,1]

 
 
 

 = I2×2. 

 

 Hence the claim. 

 
Example 7.1.5:  Let  

 

M = 

(3,1) ( 1,2) ( 2, 2)

(2, 1) (0,3) ( 1,0)

(3,0) ( 5, 2) (0,1)

− − − 
 

− − 
 − − 

 = [M1, M2] 

 

be a 3 × 3 interval matrix with entries from No(R). To find M
–1

 
by elementary row transformation. 

 

 M  = 

(1,1) (0,0) (0,0)

(0,0) (1,1) (0,0)

(0,0) (0,0) (1,1)

 
 
 
  

 

(3,1) ( 1,2) ( 2, 2)

(2, 1) (0,3) ( 1,0)

(3,0) ( 5, 2) (1,0)

− − − 
 

− − 
 − − 
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=  

(3,1) ( 1,2) ( 2, 2)

(2, 1) (0,3) ( 1,0)

(3,0) ( 5, 2) (0,1)

− − − 
 

− − 
 − − 

 = [M1, M2] 

 

= 

3 1 2 1 2 2

2 0 1 , 1 3 0

3 5 0 0 2 0

 − − −   
    

− −    
    − −    

 

 

= 1 2

1 0 0 1 0 0

0 1 0 M , 0 1 0 M

0 0 1 0 0 1

    
    
    
        

 

 

 (In M1 R1 → R1 – R2 and in M2 R2 → R1+R2) 
 

1 1 1 1 2 2

2 0 1 , 1 3 0

3 5 0 0 2 1

 − − −   
    

− −    
    − −    

 

 

= 1 2

1 1 0 1 0 0

0 1 0 M , 1 1 0 M

0 0 1 0 0 1

 −   
    
    
        

 

 

(Making R2 → R2 + (–2) R1 

and R3 → R3 + (–3) R1 in M1 and R2 → R2+2R3) 

 
We get  

 

1 1 1 1 2 2

0 2 1 , 0 5 2

0 2 3 0 2 1

 − − −   
    

−    
    − −    
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= 1 2

1 1 0 1 0 0

2 3 0 M , 1 1 2 M

3 3 1 0 0 1

 −   
    

−    
    −    

 

 

 (Apply R2 = R1 (1/2) in M1 and R1 → R1 + (–2) R2 and R3 

→ R3 + 2R2 in M2) 
 

1 1 1 1 0 2

0 1 1/ 2 , 0 1 0

0 2 3 0 0 1

 − − −   
    
    
    −    

 

 

= 1 2

1 1 0 1 2 4

1 3/ 2 0 M , 1 1 2 M

3 3 1 2 2 5

 − − − −   
    

−    
    −    

 

 

 Now making R1 → R1 + R2 and R3 → R3 + 2R2 in M1 and 

R1 → R1 + 2R3 in M2. 
 

 We get 
 

1 0 1/ 2 1 0 0

0 1 1/ 2 , 0 1 0

0 0 4 0 0 1

 −   
    
    
        

 

 

= 1 2

0 1/ 2 0 3 2 6

1 3/ 2 0 M , 1 1 2 M

5/ 4 3/ 2 1/ 4 2 2 5

    
    

−    
    −    

 

 

(Applying R3 → ¼ R3 in M1 no operation on M2) 
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1 0 1/ 2 1 0 0

0 1 1/ 2 , 0 1 0

0 0 1 0 0 1

 −   
    
    
        

 

 

= 1 2

0 1/ 2 0 3 2 6

1 3/ 2 0 M , 1 1 2 M

5/ 4 3/ 2 1/ 4 2 2 5

    
    

−    
    −    

. 

 

(Applying R2 → R1 + ½  R3, R2 → R2 – ½ R3 in M1) we get 
 

1 0 0 1 0 0

0 1 0 , 0 1 0

0 0 1 0 0 1

    
    
    
        

 

 

= 1 2

5/8 5/ 4 1/8 3 2 6

3/8 3/ 4 1/8 M , 1 1 2 M

5/ 4 3/ 2 1/ 4 2 2 5

 −   
    

− −    
    −    

. 

 

We see M
-1

 = ( 1 1

1 2M ,M− − ) 

 

= 

5/8 5/ 4 1/8 3 2 6

3/8 3/ 4 1/8 , 1 1 2

5/ 4 3/ 2 1/ 4 2 2 5

 −   
    

− −    
    −    

 

 

= 

( 5 /8,3) (5 / 4,2) (1/8,6)

( 3/8,1) (3/ 4,1) ( 1/8,2)

( 5 / 4,2) (3/ 2,2) (1/ 4,5)

− 
 

− − 
 

− 

. 

 

We will show MM
-1
 = 

(1,1) (0,0) (0,0)

(0,0) (1,1) (0,0)

(0,0) (0,0) (1,1)
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Consider MM
-1

 =  
 

(3,1) ( 1,2) ( 2, 2)

(2, 1) (0,3) ( 1,0)

(3,0) ( 5, 2) (0,1)

− − − 
 

− − 
 

− − 

( 5 /8,3) (5 / 4,2) (1/8,6)

( 3/8,1) (3/ 4,1) ( 1/8,2)

( 5 / 4,2) (3/ 2,2) (1/ 4,5)

− 
 

− − 
 

− 

 

 

= 

(1,1) (0,0) (0,0)

(0,0) (1,1) (0,0)

(0,0) (0,0) (1,1)

 
 
 
 
 

. 

 

We see by this method of writing an interval matrix as a matrix 
interval find the inverses. 

 

Here we give examples of finding eigen values and eigen 
vectors of interval matrices with entries from Nc(R) (or No(R) or 

Nco(R) or Noc(R)). 

 
Example 7.1.6:  Let  

M = 
[0,8] [2,1]

[0,0] [9,1]

 
 
 

 

 

be a 2 × 2 interval matrix with entries from Nc(R). 
 

To find interval eigen values and interval eigen vectors of 

M. 

 

|M–λ| = 2 2

[0,8] [2,1]
I

[0,0] [9,1]
×

 
− λ 

 
 

 

   = 
[0,8] [1,1] [2,1]

[0,0] [9,1] [1,1]

− λ 
 

− λ 
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   = 
[ ,8 ] [2,1]

[0,0] [9 ,1 ]

−λ − λ 
 

− λ − λ 
 

 

   = [–λ, 8–λ] [9–λ, 1–λ] – [2,1] [0,0] 
 

   = [(9–λ)(–λ),(8–λ)(1–λ)] 
 
   = [0, 0]. 

 

 λ=9, λ=8 and λ = 1 
 

Thus the interval eigen values are [9, 8] and [9, 1]. 
 

Now we find interval eigen values in case of 3 × 3 interval 
square matrices.  

 

Example 7.1.7:  Let  
 

M = 

[0,2] [0,0] [1,0]

[1,3] [1,2] [0,0]

[0,0] [0,0] [3,5]

 
 
 
 
 

 

 

be a 3 × 3 interval matrix with entries from Nc(R). 
 

 Let λ be such that |M – λI| = 0. I is the 3 × 3 interval 
identity interval matrix is given by  

 

I =  

[1,1] [0,0] [0,0]

[0,0] [1,1] [0,0]

[0,0] [0,0] [1,1]

 
 
 
 
 

 

 

= 

[0,2] [0,0] [1,0] [1,1] [0,0] [0,0]

[1,3] [1,2] [0,0] [0,0] [1,1] [0,0]

[0,0] [0,0] [3,5] [0,0] [0,0] [1,1]

   
   

− λ   
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= 

[0,2] [1,1] [0,0] [1,0]

[1,3] [1,2] [1,1] [0,0]

[0,0] [0,0] [3,5] [1,1]

− λ 
 

− λ 
 

− λ 

 

 

 

= [–λ, 2 – λ] 
[1 ,2 ] [0,0]

[0,0]
[0,0] [3 ,5 ]

− λ − λ

−

− λ − λ

 

 

   + [1,0]
[1,3] [1 ,2 ]

[0,0] [0,0]

− λ − λ

 

 

= [–λ, 2–λ] [1–λ, 2–λ] [3–λ, 5–λ] = [0,0] 
 

= [–λ (1–λ) (3–λ), (2–λ)2 (5–λ)] = [0,0] 
 

  [λ = {0, 1, 3},  
 

  {2, 2, 5}]. 
 

 Hence the interval eigen values are [0, 2], [0, 2], [0, 5],  

[1, 2], [1, 2], [1, 5], [3, 2], [3, 2] and [3, 5]. 
 

 Thus one of the reasons for introducing polynomial 

intervals is that they can be used in solving the characteristic 
equations where the coefficients are intervals.  

 

 Thus one can as in case of usual matrix theory find for 

interval matrices the eigen values and eigen vectors without any 
difficulty.  

 

 We now show by examples how this is done. 
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Example 7.1.8: Let  

M = 

[6, 2] [7,0] [1,1]

[0,0] [2,1] [0,0]

[4, 1] [0,0] [1,5]

− 
 
 
 − 

 

 

be a 3 × 3 interval matrix with entries from Nc(R).  Now M can 
be written as the matrix interval as M = [M1, M2]. 

 

= 

6 7 1 2 0 1

0 2 0 , 0 1 0

4 0 1 1 0 5

 −   
    
    
    −    

 

 

 where  

 

M1 = 

6 7 1

0 2 0

4 0 1

 
 
 
  

 and 

 

M2 = 

2 0 1

0 1 0

1 0 5

− 
 
 
 − 

 

 

are usual 3 ×3 matrix and M = [M1, M2] is the matrix interval or 
natural class of matrix interval. 

 
 We can find the eigen values of M as the separate eigen 

values of M1 and M2 separately. 

  

[M–λI] = |[M1, M2] = [λ1I, λ2I]| 

 

= [|M1 – λ1I|, |M2 – λ2I|] 
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= 1

6 7 1 1 0 0

0 2 0 0 1 0 ,

4 0 1 0 0 1

    
    

− λ    
       

2

2 0 1 1 0 0

0 1 0 0 1 0

1 0 5 0 0 1

−   
   

− λ    
   −    

 

 

= 

1 2

1 2

1 2

6 7 1 2 0 1

0 2 0 , 0 1 0

4 0 1 1 0 5

 − λ − − λ

 
− λ − λ 

 − λ − − λ 

 

 

= 
1

1

1

2 0
(6 ) 7 | 0 |

0 1

 − λ

− λ − +
− λ

 

 

21

2

2

1 00 2
1 ,( 2 )

0 54 0

− λ− λ

− − λ

− λ

 - 0 + 1 
20 1

1 0

− λ


− 

 

 

= [(6–λ1)  (2–λ1) (1–λ1) + 4 (2–λ1), – (2+λ2) (1–λ2) (5–λ2) +  

    (1–λ2)]. 
 

 

The roots after simplification are  
 

= 
7 i 15 3 45

{2, },{1, }
2 2

 ± ±

 
  

 

 

= 
3 45

[2,1], 2,
2

  ± 
  
    

. 

 
For the interval matrix is defined over R.  

 

 However we see we cannot find all the characteristic roots 
as a pair of roots are complex. 

 

 Thus even in case of interval matrices of natural class of 

intervals we see we can solve for eigen values of eigen vectofrs 
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using matrix intervals.  From the example it is clear the how 

working is carried out in a simple way. 
 

 We can generalize this situation and illustrate it for any  n × 
n interval matrix. 

 

    Let A  = [(aij)]n×n 
 

      = ([
1 2

ij ija ,a ])n×n 

 

 where 1 ≤ i, j ≤ n with 
t

ija  ∈ R. t = 1,2. 

 
Now how to find the eigen values  

 

|A – λIn×n|=  |[(aij)]n×n – λIn×n| 
 

 

= [|(
1

ija )– λ1 In×n |, |(
2

ija ) – λ2 In×n|] 

 

1 1 1 2 2 2

11 1 12 1n 11 2 12 1n

1 1 1 2 1 2

21 22 1 2n 21 22 2 2n

1 2 1 2 n n

n1 n2 nn 1 n1 n2 nn 2

a a ... a a a ... a

a a ... a a a ... a
,

a a ... a a a ... a

    −λ −λ
    

−λ − λ    
=     
    
 − λ − λ       

� � � � � �

 

 = [(0,0)] 
 

= [nth degree polynomial in λ1, nth degree polynomial in λ2]. 
 

If { 1 1

1 n, ...,α α } and { 2 2

1 n, ...,α α } are roots  then we get 

 

 1 2

1 1[ , ]α α , 1 2

1 2[ , ]α α , …, 1 2

1 n[ , ]α α , 1 2

2 1[ , ]α α , …, 1 2

2 n[ , ]α α , …, 
1 2

n n[ , ]α α  are the interval roots of |A – λ In×n| = (0, 0). 

 

 Now calculating the interval eigen vector is also a matter of 
routine for we case of matrix interval and find the solution. 



 161

 Hence by using the natural class of intervals we can easily 

make the interval matrix and the interval polynomial into matrix 
interval and polynomial intervals respectively.  

 

We just show if p(x) = [a0, b0] + [an, bn]x + … + [an, bn]x
n
 

be an interval polynomial with [ai, bi] ∈ Nc(R); 0 ≤ i ≤ n; then 
the polynomial interval corresponding of p(x) is  

   [a0 + a1x + … + anx
n
,  b0 + b1x+… + bnx

n
]; ai, bi ∈ R; 0 ≤ i ≤ n. 

 
 Now if  

 

M = 

1 1 1 1

1 1 n n

2 2 2 2

1 2 n n

n n n n

1 1 n n

[a ,b ] ... [a ,b ]

[a ,b ] ... [a ,b ]

[a ,b ] ... [a ,b ]

 
 
 
 
 
  

� �
 

 

be the interval matrix t t

i i[a ,b ] ∈ Nc(R); 1 ≤ t ≤ n, 1 ≤ i ≤ n; this 

interval matrix can be written as a matrix interval as follows.  
 

 

M = 

1 1 1 1 1 1

1 2 n 1 2 n

2 2 2 2 2 2

1 2 n 1 2 n

n n n n n n

1 2 n 1 2 n

a a ... a b b ... b

a a ... a b b ... b
,

a a ... a b b ... b

    
    
    
    
            

� � � � � �
 

 

 = (M1, M2) is a matrix interval where t t

i ia ,b  ∈ R, 1 ≤ t ≤ n 

and 1 ≤ i, j ≤ n. 
 

 Now finding eigen values for these matrix interval is easy or 

it is carried out as in case of usual matrices however many 

choices of solutions (i.e., eigen values).  For 2×2 matrices we 

can have 4 interval choices as solution.  In case of 3×3 matrices 
we have 9 interval solutions. 
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7.2  Possible Applications of these New Natural Class of Intervals 
 
 In this section we give the probable applications of these 

natural class of intervals in due course of time when this 

concept becomes familiar with researchers.  When these new 
class of intervals are used in finite element analysis certainly the 

time used to code will not be NP hard. 

 

 Secondly unlike the usual interval matrix operations when 
these natural class of intervals are used the time for finding 

determinant, matrix multiplication and finding the inverse we 

see the time is as that of coding the usual matrices.   
 

 These structures can also be used in modeling. 

 
 Thus we see lot of applications can be found and the 

existing intervals operation can be replaced by the natural 

operation for these intervals. 
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Chapter Eight 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
 

In this chapter we introduce problems some of which are 

very difficult only a few problems are easily solvable.  Many 

problems suggested can be viewed as research problems. 
 

Further these concepts of new class of intervals works akin 

to the reals but arriving results akin to reals for these new class 
of intervals is not easy. 

 

1. Find for the interval matrix  

 

A = 

[0,1) [1,0.7) [0.1,0) [0,1)

[1,0) [0.2,0.4) [1,0.1) [0.2,1)

[0.3,0.1) [0.5,0.1) [0,0) [1,1)

[1,0.2) [0.7,0.9) [1,1) [0,0)

 
 
 
 
 
 

, elements of A are  

 

from Nco(R). 

(i)   The characteristic interval polynomials. 

(ii)   Characteristic interval values 
(iii)  Characteristic interval vectors. 
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2. Prove the collection of all 2 × 2 interval matrices with 
intervals from Noc(R) is a ring with zero divisors and is non 

commutative. 

 

3. Prove the collection of all 2 × 7 interval matrices V with 
intervals from Nc(R) is a semigroup under addition. 

 (i) Does V have ideals? 

 (ii) Can V has subsemigroups which are not ideals? 

 
4. Let  

M = {all 3 × 3 interval matrices with entries from Nco(R)};  
 (i) Is M a commutative ring? 

 (ii) Can M have ideals? 
 (iii) Can M have subrings which are not ideals? 

 (iv) Is M a S-ring? 

 (v) Can M have S-zero divisors? 

 (vi) Can M have S-units? 
 

5. Find the interval eigen values and interval eigen vectors of 

 

 M = 

(0,3] (0,0] (1,0] (2,3]

(0, 31] (1,2] (0,0] (5, 1]

(0,0] (1,1] (2,1] 0,4]

(1,0] (2,2] (0,1] (1,1]

 
 

− − 
 
 
 

. 

 
6. Find the differential of the interval polynomial. 

 p(x) = (6,2)x
9
 – (7, –3)x

6
 + (3,5)x

4
 + (–3, –10)x

3
 + (2, –7)x  

    + (3,3). 
a) Is it possible to solve and find the interval roots of p(x). 

 

7. Find the interval roots of the polynomial 

 p(x) = [0, –7) + [2,0)x
7
 + [3,3)x

5
 + [4, –1)x

3
 + [1, 0)x.  

 

8. Obtain some interesting properties about interval  

polynomial ring Noc(R)[x]. 
 

9. Find some applications of interval polynomial ring  

Nco(Z)[x]. 
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10. Compare Z[x] and No(Z)[x]. 
 

11. Is Noc(Z)[x] a ring which satisfies ascending chain 

condition? 

 
12. Can Noc(R)[x] have ideals? 

 

13. Can Nc(Q)[x,y] have minimal ideals? 
 

14. Find principal ideals if any in Noc(Z). 

 
15. Prove  

V = {(a1, …, an) | ai ∈ Nco(R); 1 ≤ i ≤ n; ai = [ 1 2

i ia ,a ]; 1 2

i ia ,a  ∈ 

R} is a interval vector space over R. 

 a) Is V finite dimensional? 
 b) Find a basis of V over R. 

 c) Find interval subspaces of V over R. 

 d) Is it possible to write V as a direct sum? 

 
16. Give some nice applications of  

M = {(aij) = 
1 2

ij ij([a ,a )) | 
1 2

ij ija ,a  ∈ R; 1 ≤ i, j ≤ n}. 

 a) Prove M is a non commutative ring with unit and zero  

divisors. 
 b) Is M a vector space over R of finite dimension? 

 c) Find a basis of M over R. 

 

17. Give some applications of interval fuzzy matrices. 
 

18. Prove interval matrices and matrix intervals of same type 

are isomorphic. 
 

19. Prove the program of finding the determinant of an interval 

matrix is the same as the program of finding the determinant 

of matrix intervals. 
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20. Does A = 

[0,6] [8,6] [7,1]

[4, 5] [9,2] [3,3]

[8,8] [11,11] [0,0]

 
 

− 
  

 have inverse? 

 a) Find interval eigen values of A. 
 

21. Let X = 

3 2 6

8 6 4

3 7

8 4 2 5

[0,3)x [7,7)x [2,0) [9,8)x

[1,2)x [ 4,5)x [3,7)x [0,9)x [1,1)x

[1,1)x [3,5)x [1,0) [11,8)x [2,1)

[9,8)x [1,0)x [1, 9)x [14,5)x

 + +


+ − + +

 + + +


+ + −

 

 

 

13 2

10 2

2 3

9

[0,31)x [7,7)x [3, 1)

[8,1)x [5,4)x [3,2)

[10,9)x [1,5)x [1,1)x

[9,9)x [1,2)x [3,4)

+ + −


+ + 

+ +


+ + 

 

be a interval polynomial matrix. 

 (i) Find the first 3 derivatives of X. 

 (ii) Write X = [
1 2

ij ijX ,X ) as the polynomial matrix interval. 

 (iii) Find the integral of X. 

 

22. Find application of finite interval analysis using these 

polynomial interval matrices? 
 

23. Can these interval matrices be used in any other application 

of stiffness matrices? 
 

24. Give any other interesting properties enjoyed by interval 

matrices? 
 

25. Give an example of irreducible interval polynomial with 

coefficients from Noc(Q). 

 
26. Can these interval matrices be applied to rounding error 

analysis? 

 
27. Give nice applications of fuzzy interval matrices. 
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28. Construct a model in which the fuzzy interval matrices are 
used. 

 

29. Give a model in which fuzzy interval matrices cannot be 

used only interval matrices can be used. 
 

30. Find the roots of p(x) = [8,0) + [3,5)x
2
 – [7,2)x

3
.  How 

many roots exist of p(x)? 
 

31. Let p(x) = x
2
 – (9, 16] ∈ Noc(R)[x] find roots of p(x). 

 

32. Let p(x) = x
2 

+ (3, –4) ∈ No(Z)[x]; find roots of p(x) in 
No(Z)? 

 

33.  Let p(x) = x
3
 + (6, 9] ∈ Noc(R)[x] be an interval polynomial; 

does roots of p(x) ∈ Noc(R)[x]. 
 
34. Can every interval polynomial in Noc(R)[x] be made monic? 

 Justify your answer. 

 

35. Give p(x) ∈ Noc(R)[x] such that p(x) is irreducible. 
 

36. Give p(x) ∈ Nc(Z)[x] which is reducible. 

 
37. Let p(x) = No(Z)[x] which is non monic yet linearly 

reducible. 

 
38. Does an interval polynomial of degree n in Nc(R)[x] have 

more than n roots?  Justify. 

 
39. Can we say every interval polynomial p(x) of degree n in 

Noc(R)[x] has atmost n
2
 roots if p(x) is completely 

reducible? 

 
40. Is it true, “Every nth degree polynomial p(x) in Nc(R)[x] (or 

Noc(R)[x] and so on) have n
2
 and only n

2
 roots? 
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41. Is No(C) (Noc(C) or Nco(C) or Nc(C)) an algebraically closed 

interval ring?  Justify. 
 

42. Obtain any other interesting properties of Nc(R)[x]. 

 

43. Let M be a n × n interval matrix with entries from Nc(R).  
Does M have only n eigen values? 

 

44. Let M is a 2× 2 interval matrix with entries from No(R).  
Prove M has 4 eigen values.  

 

45. Can a n × n interval matrix have less than n
2
 interval eigen 

values?  Justify. 
 

46. Let M = 

[0,2] [0,0] [0,0]

[7,3] [1,2] [0,0]

[0,4] [0,0] [0,3]

 
 
 
  

 be a 3 × 3 interval matrix with  

 
entries from Nc(R).  Can M have 3

2
 eigen values or less?  

(Justify your claim). 

 

47. Find the characteristic values of  
 

 A = 
[0,6] [7,0]

[0,4] [2,0]

 
 
 

 the entries of A are from Nc(R). 

  
Can A have 4 characteristic values? 

 

48. Solve p(x) = (0,8] + (8,1]x + (1,2]x
2
 +(1,2]x

3
, the 

coefficients are from Noc(Q). 

 

49. Let M = (aij) where [
1 2

ij ija ,a ) ∈ Nco(R); 1 ≤ i, j ≤ 9.  Find all 

characteristic values of M. 
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50. Let X = 

[9,2] [1,0] [1,0]

[0,1] [0,2] [0,3]

[0,1] [3,0] [1,0]

 
 
 
 
 

 be a 3 × 3 interval matrix with  

 

entries from Nc(R). 

 (i) Find the eigen values of X. 
 (ii) Does X have 9 eigen value or less?  Justify. 

 

51. Find the inverse of A = 

[0,3) [1,2) [10,5)

[11,1) [3,4) [1,1)

[2,2) [5,5) [2,10)

 
 
 
  

 in Nco(R). 

 

52. Give an example of a 5 × 5 interval matrix which has no 
inverse. 

 

53. Let N = 

(0,1) (1,0) (0,2) (2,0)

(4,0) (0,4) (0,1) (1,0)

(0,2) (2,0) (0,3) (3,0)

(1,0) (0,1) (0,1) (1,0)

 
 
 
 
 
 

 be an interval matrix  

 
with entries from No(Z). 

 Does N
-1

 exist?  Justify your answer. 

 
54. Can N in problem (53) have 16 eigen values or less than 16 

eigen values?  Prove your answer. 

 

55. Give a n × n interval matrix which has no inverse (entries 
from Noc(R)). 

 

56. Give an example of an interval polynomial which has 

repeated roots. 

 
57. Prove if an interval polynomial p(x) = p0 +p1x + … + pnx

n
  

where pi ∈ Noc(R)[x]; 0 ≤ i ≤ n has repeated roots then p′(x) 
and p(x) has a common root. 
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58. Find ideals in Noc(R)[x]. 
 

59. Find subrings of Nc(R)[x] which are not ideals. 

 

60. Can Nco(Z)[x] have ideals? 
 

61. Can Nco(Q) have ideals? 

 
62. Prove Noc(R) has ideals. 

 

63. Find ideals in No(Q). 
 

64. Prove if No(Q)[x] is a polynomial ring. 

 

65. Prove set of all 2 × 2 interval matrices M with entries from 
Noc(R) is a non commutative ring. 

 

 (i) Find right ideals which are not left ideals in M. 

 (ii) Find two sided ideals in M. 

 (iii) Can M have zero divisors? 
 

66. Can the ring of 3 × 3 interval matrices P with entries from 
Noc(Z) have invertible matrices. 

 
 (i) Find left ideals in P. 

 (ii) Find subring in P which are not ideals. 

 (iii) Can P have zero divisors? 

 (iv) Can P have idempotents? 
 

67. Define Jacobson radical for Noc(R). 

 Find Jacobson radical of Noc(R). 
 

68. Find p(x) and q(x) interval polynomials in Nc(R)[x], which 

are reducible. 

 

69. Let p(x) = x
2
 – [6,9] ∈ Nc(R)[x] find the ideal I generated 

by p(x).  Find cN (R)[x]

I
= M.  Is M a field?  (Justify). 
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70. Let p(x) = x
3
 + [6, –3]x

2
 + [–6, 40]x + [9,7] ∈ Nc(Q)[x].  

Let J be the ideal generated by p(x).  Find cN (Q)[x]

J
. 

 

71. Let M = 〈p(x) = x
3
 – [3,2], q(x) = x

4
 + [9, –3]x

2
 + [8,9]〉 be 

the ideal generated by M.  Find cN (R)[x]

M
. 

 

72. Give an ideal I in Noc(Q)[x] so that ocN (Q)[x]

I
 is not a 

field. 

 

73. Can Nc(Z)[x] have ideals I such that cN (Z)[x]

I
 is a field? 

 

74. Can Nc(Z)[x] have ideals I such that cN (Z)[x]

I
 is a finite 

field? 
 

75. Let P = {all 3 × 2 interval matrices with entries from 
Noc(R)} be a semigroup. 

 (i) Find subsemigroups of P. 

 (ii) Can P have subsemigroups which are ideals? 
 (iii) Is P a group under ‘+’?  Justify. 

 (iv) Can P be written as a direct sum of subgroups? 

 

76. Let B = {all 5 × 5 interval matrices with entries from 

Nc(R)} be a semigroup under multiplication. 
 (i) Prove B is non commutative. 

 (ii) Does B contain an interval matrix which has 5
2
 distinct  

eigen values? 
(iii) Does B contain an interval matrix for which the 

characteristic interval polynomial is reducible? 

(iv) Can B have an interval matrix which has only 5 eigen 

values? 
(v) Can B contain an interval matrix which is 

diagonalizable? 
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77. Let S = 

[ 3,0] [2,2] [0,4] [3,5]

[2, 4] [1,4] [4,0] [5,3]

[7, 8] [5,7] [9, 1] [1,1]

[4,5] [2,0] [2,7] [2,5]

− 
 

− 
 − −

 
 

 be a 4 × 4 interval  

matrix. 

(i) Find |S| (determinant of S). 
(ii) Is S invertible? 

(iii) Can S have 4
2
 eigen values in Nc(R)? 

(iv) Find the interval characteristic polynomial? 
 

78. Solve the equation 
[0,2] [1,3]

(x)
[4,0] [5,2]

 
 
 

��  + 
[1,1] [1,0]

(x)
[0,1] [3,5]

 
 
 

�   

 

+
[1,0] [0,1]

x
[5,2] [7,3]

 
 
 

 =  
[0,2] [1,0]

[7,2] [1,1]

 
 
 

 

 

 (x some unknown displacement vector) 

 (i) Can this equation be solved? 
 

 

79. Solve 
(3,0) (7,0)

(x)
(48,1) (8,1)

 
 
 

�  = 
(9,1) (1, 4)

x
(2,3) (5, 2)

− 
 

− 
.  

 

(x is unknown) 

 
80. Prove if equations are given in interval matrix converting 

them into matrix interval solves all problems. 

 

81. Prove this interval polynomial  
p(x) = [7,8)x

4
 + [–8,2)x

2
+[2,0) can be solved as polynomial 

intervals without any difficulty. 

Show this equation has 16 roots which are intervals of the 

form [a, b); a, b ∈ R. 

 
82. Let p(x) = (8, 2]x

2
 + (9,3]x + (7,2] find all roots of p(x). 
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83. Prove an interval polynomial can be solved in the same time 
as usual polynomial once an interval polynomial is written 

in its equivalent form as polynomial intervals. 

 

84. Invent a method for solving fuzzy equations. 
 

85. Solve p(x) = 0.89x
3
 + 0.75x

2
 + 0.2 = 0 

 
86. Solve f(x) = 0.43x

2
 + 0.7x + 0.3 = 0.  Does f(x) have roots 

in [0,1]? 

 
87. Can one guarantee all roots of a fuzzy polynomial (i.e., a 

polynomial which has its coefficients from [0,1]) have their 

roots in [0,1]? 

 
88. Can a fuzzy polynomial have its roots as a complex 

number? Justify.   

 
89. Solve p(x) = 0.2x

2
 + 0.3x + 0.7. 

 

90. Solve p(x) = 0.4x
4
 + 0.3x

2
 + 0.2. 

 

91. Find the determinant value of  

 

A = 

[0,1] [1,1] [0,0]

[0.3,0] [1,0] [1,0.3]

[0.1,1] [0.2,0.4] [0.7,0.2]

 
 
 
  

. 

 

(i) Is A invertible? 

(ii) Find eigen values of A. 
 

92. Let M = 

[1,1] [0,0.3] [0.7,0]

[0,1] [0.2,0.1] [1,0.7]

[1,0] [0.4,0.2] [0.1,1]

 
 
 
  

 be a fuzzy interval 

matrix. 

 (i) Find eigen values of M.   
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 (ii) Is M invertible? 

 (iii) Find the determinant value of M. 
 

93. Let P(x) = [0,1]x
3
 + [0.7, 0.2]x

2
 + [0.1, 0.5]x + [0,1] be a 

interval fuzzy polynomial.  

 
 (i) Is P(x) solvable? 

 (ii) Find all interval fuzzy roots of P(x). 

 
94. Find some interesting applications of interval fuzzy 

polynomials. 

 
95. Apply the concept of interval matrices in fuzzy element 

analysis method. 

 

96. Solve the equation p(x) = [0,3] + [6,0]x
2
 +[7,2]x

4
. 

 

97. Sketch the interval graph of f(x) = [x
2
+1, x]. 

 
98. Sketch the graph of f(x) =[0,3]x

2
 + [1,2]x + [3,2]. 

 

99. Draw the graph of f(x) = [sinx, cosx]. 
 

100. Find the 2
nd

 derivative of p(x) = [6,9]x
3
 + [7,3]x

2
 + [0,2]x +  

[1,1]. 

 
101. Find the integral p(x) in problem (100). 

 

102. Solve the equation p(x) in problem (100). 
 

103. Draw the graph of p(x) in problem (100). 
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