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Summary 

This article introduces a new model for the non-

Euclidean spaces’ representation, in which the 

coordinates and distances are considered as digital 

nature. This model, called Ulianov Sphere Network 

(USN), presents a new way for visualizing the curved 

spaces, such as those defined in the context of the 

General Relativity Theory (GRT).  

USN model has the potential to facilitate the calculation 

procedures concerning the problems handled by GRT, 

since it relies on a very simple mathematical formulation, 

which can be easily implemented in numerical 

computing systems. 

The proposed model is a mathematical tool that 

facilitates the manipulation of non-Euclidean spaces, for 

the simple expedient of constructing over a continuous 

plain space, a network of hyperspheres that behaves as 

a non-Euclidean digital space. 

Initially, the USN model has no real connection with the 

observed physics in our universe, being basically a 

theoretical abstraction. However, as will be shown in this 

article, the application of the UNS model allows inferring 

some formulas related to GRT and also with the 

Newton’s Law of Gravitation. Thus, the hypothesis that 

the USN model is actually somehow related to the 

physical basis of operation of our universe is not 

discarded. 

 

 

1 – Introduction 

About 300 years before Christ, the Greek philosopher 

Euclid [1] organized the geometric knowledge in a 

formal system, called Euclidean geometry, by defining a 

series of entities (point, line, plane, etc...) within a set of 

postulates, for example, that the sum of internal angles 

of a triangle is always equal to 180 degrees. 

The universal validity of Euclidean geometry began to 

be questioned in the 18
th
 century by the Italian 

mathematician Sacchieri [2], but it was only in the 19
th
 

century that some mathematicians, like the German 

Gauss [3], the Russian Lobachevsky [4] and the 

Hungarian Bolyai [5] envisioned the possibility that 

alternative (non-Euclidean) geometries could also be 

valid. 

 

 

In the twentieth century, several works such as 
Riemann's [6] and Poincare´s [7] formalized postulates 
applicable to non-flat spaces, thereby generating a 
series of non-Euclidean geometry. 
These geometries are no longer mere mathematical 

curiosity with the Einstein’s publication [8] of the General 

Relativity Theory, whose mathematical basis was given 

by the Italian mathematician Tullio Levi-Civita who 

defined Tensor calculus [9], which is based on 

manipulation of non-Euclidean geometries. 

In the GRT, Einstein unified space and time in a four-

dimensional continuum, which is modeled as a 

Minkowski space [10] and which curvature will depend 

on the content of matter-energy in the considered space. 

Therefore, in the context of the GRT, phenomena 

related to matter, such as planet’s orbits, are no longer 

explained by interactions among the gravitational forces 

and began to be interpreted as geodesic paths  [11] 

(shortest trajectory between two points) within 

Minkowski space. 

The main equation of the GRT is based on two tensors: 

The Einstein Tensor ( µvG ) which is related to the 

curvature of space-time and the energy-momentum 

Tensor ( µvT ) which depends on the distribution of 

matter and energy. This equation is defined as: 
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Where G  is the gravitational constant and c  is the 

speed of the light. 

In a space without matter-energy, the space time 

coordinates ( zyxct ,,, ) are related to a flat space where 

the Einstein Tensor is given by: 
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In this case, a metric of a flat Minkowski space is given 

by: 
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In the presence of matter-energy, Einstein Tensor can 

be defined as: 

 

µv2µvµvµv

8
 

2

1
TRG

c

G
gR

π
−=−=  (4) 

 

Where µvR is the Ricci tensor and R  is a scalar of 

curvature. 

 

From equation (4) the GRT field equations can be 

assembled, resulting in a series of partial differential 

nonlinear equations of second order and with hyperbolic 

elliptical coupling. 

These equations are usually not very easy to be solved, 

even for the simplest cases, and for more complex 

cases the solution involves the use of numerical 

simulations. 

In the basic case, where there is a single spherical body 

of mass M in an empty space, the resolution of the 

equation (4) generates a solution called the 

Schwarzschild metric [12]. 

This metric can be defined in spherical coordinates by 

the following equation: 
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Where 
2Ωd  is defined by: 
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Where ( φθ ,,r ) indicates the considered point from a 

spherical coordinate system, whose center is positioned 

at the gravity center of the considered spherical body. 

For M equal to zero, the equation (5) relapses into the 

Minkowskian metric for a flat space generating the 

equation (3), which can also be written in spherical 

coordinates, as follows: 

222222 Ω−−= drdrdtcds
 

(7) 

ForM values greater than zero, there will be an r value 

(Schwarzschild radius) for which the value that multiplies 

2dr  tends to the infinite, while the value that multiplies 

2dt  tends to zero: 
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Since equation (5) is valid only for the space outside the 

considered spherical body, if the radius of the body is 

greater than the Schwarzschild radius a division by zero 

in equation (5) will be avoided. In cases where the body 

radius is less than the Schwarzschild radius, there will 

be a situation in which the space curvature is so 

pronounced that not even the light can overcome it, 

creating an object called a black hole [13]. 

If the body has neither electric charge nor spin, the 

value of the Schwarzschild radius will define the events 

horizon of the black hole. 

 

It is interesting to notice that the solution of equation (4) 

is quite complex and even Einstein only published the 

solution to the simplest case (space without matter and 

energy).The solution to the case of a single spherical 

body, presented in equations (5) and (6), was only 

obtained by the physicist Karl Schwarzschild about a 

year after Einstein had published the equation (4) in the 

context of GRT. 

 

2 – Traditional view of the space-time curvature  

The contraction of space-time caused by the presence 

of matter-energy is somewhat difficult to visualize, 

particularly considering that the time is also curved. 

Thus, even the simplest case represented by equation 

(5), where a single body distorts the space, can hardly 

be viewed in its full four-dimensional form. 

A simple analogy, which facilitates the understanding of 

the space contraction is to consider only two dimensions 

of space. The Figure 1 shows the case of an elastic 

network (represented by black lines ) that is distorted by 

the presence of mass in a spherical body (represented 

in blue). 

 

 
Figure 1 - Spherical body bending an elastic network. 

 

In Figure 1, the two red circles represent geodesic 

trajectories followed by bodies of negligible mass 

(represented in red). 

If these bodies are moved with no friction on a flat space 
in a uniform rectilinear motion, its geodesic trajectory will 
be given by a straight line. As for the case of the curved 
space shown in Figure 1, the geodesic trajectory will 
take the shape of a circle or more generally the shape of 
an ellipse. 
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Despite the elastic network’s analogy is  somewhat 

grossly simplified, it shows how  planets orbiting around 

a star can assume circular paths, based solely on the 

space-time curvature without adding any gravitational 

force which acts at distance. 

One of the failures in the analogy shown in Figure 1 is  

that some of the "houses" in the elastic network, if near 

to the central mass, become larger. This is because 

these homes "sink" into a third dimension that does not 

actually exist (because the model used is a two-

dimensional space). 

In a more realistic representation, shown in Figure 2, it is 

observed that all "homes" defined in a two-dimensional 

curved space, in fact shrink and approach to the point 

occupied by the mass. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Figure 2 - Curvature in a two-dimensional space. 

 

3 – Digital representation of an Euclidean space 

In this section we will start presetting the USN model, 

approaching at first a simple representation of a flat 

space, in which both space and time are defined in a 

digital form. This means there will be a minimum 

distance in time and space, which cannot be subdivided. 

Thus, any considered displacement will always be set as 

a integer value that multiplies a minimum distance of 

time or space. 

In practice, these minimum distance values can be 

associated with a unitary scale based on the Planck 

distance [14] (1.616 x 10
-35

m) and in the Planck time 

(5.391 x 10
-44

s). 

As the value of Planck distance is extremely small, the 

representation in meters of an integer number of Planck 

distances generates a value with precision of up to 35 

digits after point, which in practice can be considered as 

a real number. 

A simple two-dimensional digital space can be defined 

based on a chess board with squares set on a real 

plan ),( yx , as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 
Figure 3 - Board forming a digital space 

 

Considering that each house of this board has a unitary 

size ( ul ), a digital space composed of two integers 

coordinates ),( NyNx can be defined, which relate to 

the real plan ),( yx  by the following equations: 
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Where the term ul 5.0± indicates a positioning 

uncertainty inherent to any considered digital space. 

The representation of Figure 3, however, is flawed in the 

sense it generates two preferential directions given by 

the rectangular shape of the squares sets .and imposing 

a fixed direction for the axes ),( yx
. 
 

Circular units should be used in a more realistic 

representation, as shown in Figure 4, where the axes 

defining the coordinate system may take any position. 

 

 

 

 

 

 

 
 

 

Figure 4 - Board with circular units. 

 

For the digital space shown in Figure 4, a digital time 

can be defined by using a series of overlapped boards, 

as shown in Figure 5. 

 

 

  

 

 

 

 
Figure 5 - Time definition through boards overlapping. 
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In this model, it can be defined a point-like particle that 

occupies a certain position on  the board and moves by 

“jumping” one house at a time, similar to a “king” moving 

on a chessboard. 

 

In Figure 6, in order to facilitate viewing, the three-

dimensional board which has been shown in Figure 5 is 

divided into "time frames", shown in sequence. This is 

an analogous representation to a movie pellicle where 

individual “slides” sequences will compose the film. 

 

Two particles represented by blue and red circles can be 

seen in Figure 6. Although the particles are always at 

rest in each frame, in the frames sequence it can be 

observed that the red particle moves at unitary speed 

while the blue particle always occupies the same 

position. 

This aspect is also seen in a movie pellicle, where each 

frame itself contains only static objects and the sense of 

movement and speed comes only when the frames are 

observed in sequence. 

 
 

 

 
Figure 6 – Point-like particles in a digital space-time. 

 

In a more realistic representation,, the circular houses in 

Figure 6 can be conceived as spheres, defined over a 

three-dimensional space, like ping pong balls piled up in 

a rectangular box.  

In this case a balls layer at the bottom of the box will 

define a two-dimensional board for a given time. 

Inclusion of new balls will grow the pile generating 

overlapped boards in a similar way to what was 

presented in Figure 5. But in this case an "inclined" plan 

inside the box can be defined, where the dimensions of 

space and time cease to be clearly distinct, creating a 

unique space-time entity. 

In the models presented in Figures 4 and 5, two-

dimensional spaces were considered in order to 

facilitate viewing.  

A more complete model should consider a three-

dimensional space and also time. In this case, for a 

complete space-time representation, it must be 

considered a set (a network) of hyperspheres (spheres 

of four dimensions) 

Any house within this network can be defined by 

counting the hyperspheres in relation to a system of four 

orthogonal axes. This representation implies in a set of 

four integers coordinates ),,,( NzNyNxNt .  

By multiplying each one of these coordinated by the 

Planck distance, we can define a space-time as a 

function of four coordinates ),,,( zyxct  that in practice 

can be treated as real numbers. 

 

By using a scale where the speed of light and the Planck 

distance and Planck time assume unitary values, we can 

define a network of hyperspheres whose diameters are 

also unitary. Thus, the center of each hypersphere will 

be positioned in a uniform grid defined over a 

continuous space, as shown in Figure 7. In this figure it 

is displayed once more a two-dimensional case, which 

can also be seen as a cut in four-dimensional network, 

where the values of other coordinates are fixed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 - Positioning of a uniform network of 

 spheres over a two-dimensional space. 

 

The network of spheres shown in Figure 7, seems to be 
defined in terms of a certain orientation of axes. 
However, in a digital representation, there will be an 
uncertainty in the positioning, which results in some 
overlap of adjacent hyperspheres.  
Considering this uncertainty, we obtain a representation 
as shown in Figure 8, where a preferential spatial 
orientation ceases to exist. 
      

 

 

 

 

 

   

 

 

 

  

 

 

 
Figure 8 - Uncertainty of positioning of a two-dimensional spheres 

network . 
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4 – Digital representation of a non-Euclidean space 

In order to define a digital representation of a non-

Euclidean space in the USN model, should be 

introduced a special type of hypersphere, called Ulianov 

Sphere (usphere). An usphere can be defined 

accordingly to the following properties: 

• An usphere consists of a spherical surface of null 

thickness (spherical shell) defined over a continuous 

four-dimensional Euclidean space; 

• An usphere is completely defined by a center point 

and by a given radius (or diameter); 

• The diameter of an usphere always takes a real 

value greater or equal to one unit (defined in the 

Planck unitary system); 

• Undergoing an usphere to a positive radial force 

field, as shown in Figure 9, its radius tends to 

increase in proportion to the intensity of the applied 

field; 

• Undergoing an usphere of unitary diameter to an 

unitary radial negative force field, as shown in 

Figure 10, it is collapsed (the diameter becomes 

null). In this condition the usphere becomes an 

Ulianov Hole (uhole). If the force field is removed, 

the uhole expands generating again an usphere of 

unitary diameter. 

 

 

 

 

 

 

Figure 9 - a) Usphere subjected to a positive radial force field. b) 

Usphere with increased radius. 

 

 

 

 

 

 

Figure 10 - a) Usphere subjected to a negative radial force field b) 

Usphere collapsed becomes uhole. 

By observing Figures 9 and 10 we can affirm that in an 

equilibrium condition, with no  force being applied, the 

diameter of an usphere will always be unitary. 

An uhole exists only while a force field is compressing it. 

At the time when this field is eliminated, the uhole 

expands and becomes an usphere. 

Another important property of an usphere is its surface 

formed by the aligning of a large number of uholes, 

tending to the infinite. Thus if an usphere is placed in an 

empty space, then some uholes that form it will tend to 

expand until they occupy all available spaces.   

 

 

  

 

 

Figure 11 - Generation of an usphere Network. 

This process is shown in Figure 11,  initially there is a 

single uhole being compressed by a force field. When 

this field is removed, there is initially a single usphere. 

Then, some uholes forming the surface of the original 

usphere also expand, generating new uspheres and so 

on.  

The final formed structure takes the form of a 

hyperspheres network, which was called Ulianov Sphere 

Network (USN). 

An USN is originated from a single compressed uhole, 

as shown in Figure 11 and it expands until filling all the 

available spaces. 

When an USN ceases expanding, each one of the 
infinite uholes composing it will be submitted to an 
unitary radial negative force field, because otherwise the 
USN would still be expanding. This generates an infinite 
tension on the USN, which will cause each usphere to 
touch its neighbors forming a compact network with no 
empty areas. 
It is important to notice in Figure 11 that the USN own 

evolution in time is shown within red circles that 

represent sequences of uspheres expanding in time. 

Thus, a complete USN will have four dimensions, three 

related to space and one related to time.  

Usually, an USN will expand occupying the entire 

available volume in the spatial dimensions and will tend 

to grow continuously in the time dimension. 

In a uniform USN, there will be a similar organization to 

that shown in Figure 7, in which all the uspheres have 

unitary diameter. 

Starting from a uniform USN, if we apply a force field 

inside an usphere, this usphere will be compressed, 

generating an uhole.  

However, this new uhole is different from all other 

uholes (which form the walls of the existing uspheres) 

because the force field that created it, generates a 

reaction field that acts on the USN tending to expand all 

existing uspheres inside it. 

(b)(a)

(b)(a)
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This special type of uhole was called Ulianov Dynamic 

Hole (udyhole). 

The neighboring uspheres to the formed udyhole will 
tend to expand further, as shown in Figure 12, in which 
a red dot indicates the location where three uspheres 
were compressed at one same point generating three 
overlapping udyholes. We can also consider that the 
overlapping of several udyholes on the same point 
generates a single udyhole, which is "bigger" only in the 
direction where it distorts more the uspheres which are 
its neighbors. 

 

 
 Figure 12 – Ulianov Sphere Network distortion caused by the 

compression of some uspheres. 

A udyhole has characteristics of a point-like particle and 

can move around on the network, "jumping" from one to 

another usphere. Thus, an udyhole moves in digital 

space-time defined by the USN, always jumping a house 

at a time.  

On this way, for each new unitary time (Planck time) a 

given udyhole can stand still or move a unitary distance 

(Planck distance). Therefore, the udyhole speed will 

always be zero or equal to the speed of light. 

The Udyhole movement can also be associated to the 

movement of the force field that defines it. Thus, we can 

consider the udyhole not actually moving, but the force 

field passing from an usphere to another, and so the 

abandoned house “inflates" while the new house 

occupied by the field gets "empty". 

An important observation is that an udyhole always 
moves a "house" at a time, regardless of the effective 
usphere diameter that will be occupied next. Thus, from 
the point of view of an udyhole, an USR will be uniform 
with all network uspheres always having unitary size. 
 

 

 

 

 

 

 

 

 
   Figure 13 - Analogy of a river crossed by rows of stones. In (a) the 

actual width is observed and (b) the number of leaps. 

This aspect is illustrated at the analogy shown in Figure 

13, in which a uniform width river is crossed by a series 

of stones of different sizes. Suppose now that a frog will 

cross the river, passing from one stone to another with 

only one jump (regardless of the stone size). For this 

frog, the river has no longer a constant width being 

narrower on the central point and becoming wider at the 

edges. Thus, for the frog, it seems like all the stones of 

the river had the same size, as shown in Figure 13-b. 

Therefore, we can use the motion of a udyholes to 

define a digital metric, in which the distance between 

two given points can be measured by counting the 

number of spheres that the udyhole should "jump" to go 

from one point to another, considering a path defined by 

a straight line in real space that contains the network. 

Thus, in the USN model there will always exist two 

representations of distance, a "real metric" given as a 

function of space containing the network and other 

"digital metric" given by the counting of the number of 

spheres, regardless of the size of each one of them. For 

a uniform network, these two metrics will be identical, 

but in the presence of udyholes distorting the network, 

the two metrics become quite distinct. 

 

        
Figure 14 - a) Usphere network seen by a real metric. b) Usphere 

network seen by a digital metric. 

Figure 14 illustrates a simple case of application of 

these two metrics over a distorted network. We observe 

in Figure 14-a, the network from the point of view of real 

metric, in which the square in blue represents the 

displacement of an udyhole accordingly to a rectangular 

trajectory. Figure 14-b, in turn, displays the same 

network accordingly to the digital metric. In this case, the 

displacement of the udyhole is represented by a red 

trapezoid, whose internal angles are equal to 90 

degrees. Thus although the real metric is always 

Euclidean, the digital metric, for a distorted network, will 

typically be associated with a non-Euclidean space. 

 

Figure 15 illustrates a case where an USN is strongly 

distorted due to the presence of a large number of 

udyholes placed at its center. The grid drawn in this 

figure illustrates the observed distance accordingly to 

the digital metric, and the real metric is shown in two 

points with the aid of the red circles observed in the 

figure. Notice that there is a similar grid between the 

lines represented in Figure 15 and the river margin 

represented in Figure 13. In terms of a real metric, these 

lines are parallel and form a uniform grid, while in the 

(a)                                                                    (b) 

(a) (b)
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digital metric, the lines bend towards the figure center. 

Therefore, in both representations the angles among all 

the lines that intersect to form the grid are always equal 

to 90 degrees. Moreover, in digital metric, despite the 

grid lines are curved they still represent the shortest 

distance between two points on its edges, which 

indicates that these curved lines represent geodesic 

trajectories. 

 

 

 

 

 

 

 

 

 

 

Figure 15 - USN with a big distortion in its central point on which was 

drawn a uniform grid. 

If we compare Figure 2 as defined in the context of GRT 

with Figure 15 defined in the USN model, we can 

observe the effect of an accumulation of udyholes at the 

center of a uniform usphere network is similar to that 

obtained by the accumulation of mass at the center of 

an empty space. Thus, we can associate udyholes to a 

unitary value of mass ( muK ), and so the association of 

N unitary udyholes at one point generates a new 

udaynahole with mass M  that is equal to muKN .  

On this way, if a certain amount of mass is associated to 

udyholes, the results obtained in the USN model will be 

very similar to those obtained by the GRT, but using a 

much more trivial mathematics. 

However, it is important to note that the USN model and 

the GRT operate accordingly to opposite premises. It 

occurs because the GRT considers the presence of 

mass that "shrinks" the space while the USN model 

considers that the presence of mass (udyholes) actually 

"expands" the space. 

 

5 – Calculation of the Schwarzschild Metric 

In order to validate the USN model, it will be used in this 

section for a simple case in which a spherical body of 

mass M is positioned in an empty space and a solution 

similar to the equation for the Schwarzschild metric 

(presented in equation 5) must be obtained.    

Initially we can define a flat continuum space-time, in 

which a point is represented by four real coordinates: 

),,,( 4321 aaaaPr =  
(10) 

 

On this space we will initially define a uniform USN, 

composed of uspheres with radius equal to
0r . On this 

network we can define an orthogonal system composed 

by four Cartesian axes that locates a given usphere 

within the network from four integers coordinates: 

),,,( zyxtI NNNNP =
 

(11) 

 

Over this digital space we can define a Minkowski 

space, presented in equation (3), multiplying the space 

coordinates by the Planck distance defined by the 

parameter pl : 

) , , ,(),,, ( pppp zyxt NNNNzyxtc llll=
 

(12) 

 

Considering that the USN is uniform, the center of each 

usphere can be located as follows: 

)2,2,2,2(),,,( 00004321 zyxt NrNrNrNraaaa =
 

(13) 

 

Now consider a line of Uspheres leaving the origin 

towards any direction of the space. On this line an axis 

will be defined in which a distance d, in relation to the 

origin (real metric), is associated to a count of spheres 

dN  (digital metric). 

Applying a unitary radial force field in a single usphere in 

the center of the considered space, it will be 

compressed, becoming an udyhole, as shown in Figure 

16. 

  

 

 

 

 

 

 

 
 

Figure 16 - Usphere network with an udyhole being formed. 

 

We can see in Figure 16, the collapse of the black 

sphere moves the nearby spheres and slightly increases 

their sizes. The farther from the udyhole is the 

considered sphere, smaller its radius increase will be. 

Considering only values greater than zero for dN , we 

can show the considered radius in the line, after 
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compression of the central usphere will assume the 

following value: 

)
)1(

1
1()( 0 +
+=

dd

dx
NN
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Since for the equation (14) the sum of value added to 

the radius of each sphere is given by: 
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Thus, equation (14) generates an increase in the 

uspheres radius whose sum is exactly equal to the 

space generated by the compression of the central 

usphere. On this way, the total volume occupied by the 

USR remains constant. 

Despite the above premise being fairly obvious, there 

are actually two basic possible considerations when a 

usphere in a USR is compressed, generating an 

udyhole: 

• The total USN volume does not change - In this 

case the volume generated by compression is 

equal to the volume increase in the other 

uspheres and the equations (14) and (15) are 

valid. Within this consideration we can deduce 

the formula of Newton's gravitation law, which 

will be more detailed in the next section; 

• The total USN volume increases - In this case 

the volume increase in all uspheres is greater 

than the usphere volume that was compressed 

and so the equations (14) and (15) become 

invalid. Within this consideration we can 

deduce compatible formulas with the GRT, 

which will be seen next. 

     

In order to define a new equation modeling the increase 

in radius of each usphere, we initially must calculate the 

increase in the final volume in the distorted USN. 

However, this increase will vary in function of space’s 

characteristics in which the USN is defined.  

Thus, we will build on a specific case (considering only 

the USN spatial dimensions) in which a three-

dimensional USN is contained on the surface of a 

hypersphere of four dimensions.  

Under these conditions, the USN will occupy all 

available volume on the surface of the hypersphere. In 

this case, the USN volume can also be associated to the 

volume contained within a three-dimensional sphere 

defined in a flat space.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 - Two-dimensional usphere network defined on the surface 

of a sphere (in red) and flattened on a circular area (in blue) equivalent 

to the spherical surface area. 

In order to facilitate the visualization of this model, we 

initially consider an analogous case shown in Figure 17 

in which a two-dimensional usphere network 

(represented in red) is defined on a sphere surface. This 

two-dimensional network can also be defined on a flat 

surface, creating an equivalent circular area, shown in 

blue in Figure 17. 

Notice both representations, shown in Figure 17, are 

quite equivalent for the uspheres in the network center, 

but at the flattened network there will be an "edge" that 

does not really exist in the original spherical surface. 

Now, consider the case of the three-dimensional USN, 

analogous to two-dimensional case shown in Figure 17 . 

This three-dimensional USN will then be defined inside a 

sphere (related to blue circle in Figure 17) of radius 

equal to LN . This sphere was called "general sphere" 

(GS) and will contain the entire network. 

We can define a subnet contained in a spherical shell 

concentric whit GS and whit radius equal to dN . The 

area on the surface of this spherical shell, for the case of 

one uniform USN will be defined by: 

 

  
2 4 )( ddU NNA π=
 

(16) 

 

This spherical shell will cut a certain number ( CN ) of 

uspheres. If we consider that these uspheres will be 

divided in half, creating a circular section, we can make 

the following approximation: 
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π

=

≅
 

 

 

(17) 

 

 

Whereα  is an adjustment factor whose value is slightly 

larger than the unit. 

Considering now the distorted network, we will 

compress a single usphere which is found in the center 

of the network. We can then assume the radius of the 

neighboring uspheres will increase, causing an increase 

in volume and surface area of each network usphere. 

Generically it is possible to consider that the area of 

each usphere in the distorted network will increase 
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accordingly to the function )( dNK , where dN is the 

distance between the point considered, and the 

distortion point, in network center. 

 

In this context, the following generic equation, relating 

the radius of the distorted usphere )( dx Nr  with the 

original radius 0r can be defined as: 

 

  ))(1( )( 2

0

2

ddx NKrNr +=
 

(18) 

 

We now need to consider the increasing of the USN 

total volume due to compression of an usphere in its 

interior. Figure 18 shows the case of the flattened USN 

network, presented in blue in Figure 17, with one inside 

usphere being compressed. The uspheres in Figure 18-

b increase in size due to two factors: occupation of the 

space left by the compressed usphere and occupation of 

the space created in function of the network expansion. 

 

 

 

 

 

 

 

 

 

 

 
Figure 18 - a) Uniform two-dimensional usphere network, b) Distorted 

network .The collapse in central usphere (represented in black) 

generates an increase in the network total area. 

 

For the case of a three-dimensional USN, defined within 

the GS, we will calculate a surface area ( DA ) defined in 

the distorted network. Considering that the number 

( CN ) of uspheres that intersects the defined spherical 

shell will not vary, it can be applied the equation (18) in 

equation (17), obtaining: 

  
))(1()( )(

))(1(  2  )( 2

0

ddUdD

dCdD

NKNANA

NKrNNA

+=

+= πα
 

 

(19) 

 

Equation 19 indicates that for the distorted USR, the 

radius increasing leads to an increase on the individual 

areas of each usphere which is equivalent to the 

increment observed on the spherical shell distorted area 

DA . 

 

If we now take the spherical shell defined by the GS 

(
Ld NN = ) applying equation (16) we obtain the value 

of the total area undistorted in GS (
UGSA ): 

  
2 4 LUGS NA π=
 

(20) 

 

Within the analogy shown in Figure 18, suppose that at 

the distorted three-dimensional USR, the radius of the 

GS increases by one unit. In this case it is like the 

collapse of the central usphere generates a new 

uspheres shell on the three-dimensional network edge. 

Thus, applying equation (20), with the LN  value 

increasing by one unit, the total area of the distorted GS 

( DGSA ) is then given by: 

  

)2( 4 

)12( 4 

)1( 4 

2

2

2

LLDGS

LLDGS

LDGS

NNA

NNA

NA

+≅

++=

+=

π

π

π

 

 

 

 

(21) 

 

Applying the equations (20) and (21) in equation (19) the 
results are the following: 

  

L

L

LL

L

L

LLLL

dUGSDGD

N
NK

NKN
N

N

NKNNN

NKAA

2
)(              

))(1(  )
2

(1     

))(1( 4 )2(4

))(1(                 

22

22

=

+=+

+=+

+=

ππ

 

 

 

 

 

(22) 

 

Thus, the increase in radius defined in equation (18) will 

be given by the following function: 

    

)
2

1()(

)
2

1()(

0

2

0

2

d

dx

d

dx

N
rNr

N
rNr

+=

+=

 

 

 

(23) 

 

Equation (23) describes the radius increase of each 

usphere in a uniform network where a single udyhole is 

being generated for the case in which the final volume of 

the distorted network increases, similarly to that shown 

in Figure 18. 

Figure 19 shows a comparative graph between 

equations (14) and (23) where we can observe, that as 

expected, the increase in radius for the case of equation 

(23) is much larger than the increase described by 

equation (14). 

 

(a)                                                             (b) 
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Figure 19 - Expansion of the usphere radius in function of its distance 

from the distortion point. 

 

If we consider that instead of a single udyhole in the 

distortion point, there are N udyholes being formed, we 

can assume that the factor )( dNK  will be applied N  

times.  
Thus, the increase in radius described in equation (23) 

will be achieved by using a )( dNNK  factor. 

Considering also that each udyhole has a unitary mass 

( muK ), the total mass associated to the space distortion 

is given by: 
 

muKNM =
 

(24) 

 

Based on equations (23) and (24) the following equation 

can be defined: 

 

)
K

2
1()(

)
2

1(  )(

mu

2

0

2

0

d

dx

d

dx

N

M
rNr

N
NrNr

+=

+=

 

 

 

 

 

(25) 

 

Equation (25) defines how each usphere’s radius of a 

symmetric network varies accordingly to the presence of 

a mass M at its center. 

In order to translate the equation (25) accordingly to a 

metric of non-Euclidean space, we need to consider two 

ways for calculating the distance in space-time defined 

in the USN model. The real metric should take into 

account the effective radius of each network usphere, 

given by equation (23), while the digital metric is 

obtained by simply counting of uspheres without 

worrying about the actual size of each one of them. 

Considering the treatment of the space-time in a 

Minkowski metric, a distance (real metric) in the space-

time is given by: 

22

3

222

421
aaaada −−−=

 
(26) 

 

From equation (12), each usphere’s diameter is 

associated to a Planck distance and the measurement 

of distances in digital metric assumes the following form: 

222222 dydydxdtcds −−−=
 

(27) 

 

Equations (26) and (27) are defined in a context where 

the distance da  is related to a real metric, while the 

distance ds  is related to a digital meter, so that for an 

undistorted network the two distance values are 

proportional. 

 

Thus, using equations (12) and (13) in (26) and (27), for 
a uniform network, we obtain the following linear relation 
between these two metrics: 
 

2

2

0

2

p2 da
r

ds
l

=  

 

 

(28) 

 

Writing equation (26) for the space ),,,( 4321 aaaa
 
being 

defined in terms of spherical coordinates we obtain: 

2222

1

2 Ω−−= drdrdada RR  
(29) 

 

Where Rr  represents a defined radius in real metric and 

2Ωd  is defined as shown in equation (6). 

Likewise, equation (27) can be written in spherical 

coordinates: 

222222 Ω−−= drdrdtcds
 

(30) 

 

Where r represents a radius defined in digital metric 

and 
2Ωd  is defined as shown in equation (6). 

 
For a uniform network, the relation between the radius 
defined by two metrics is given by: 
 

r
r

rR
0

pl=
 

(31) 

 

In case of N  udyholes (total mass equal to M) that 

distorts the network, we can consider that the value 
2da  

can be calculated by equation (25) applied as follows: 

)
K

2
 (1)()(

mu

22

d

d
N

M
daNda +∞=

 

 

 

(32) 
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Where the term )(2 ∞da
 
indicates the metric for an 

infinite distance from the distortion point, which is equal 

to the original uncompressed network metric: 

2222

1

2 )( Ω−−=∞ drdrdada
 

(33) 

 

Equation (32) shows that the presence of mass causes 

a change in the digital metric in the center of the network 

in which the distances are smaller, because the 

uspheres radius increase is bigger in this point.  

 

Figure 20 shows again the analogy of a river crossed by 

rows of different sizes of stones. In Figure 20-a, the blue 

square represents a river, where in the left margin 

"stones" are observed, represented in red, they have the 

original size and in the right margin they are multiplied 

by a factor b ( equal to two in this example). Figure 20-b 

shows the digital metric in which all the "stones"  have 

the same size. In Figure 20-a, we also observe two 

green circles that have the same area (
2X ) and will be 

used as objects of analysis. The green circle, on the 

right on Figure 20-b, will have only ¼ of the original 

area, because the uspheres of the right margin doubled 

it size in real metric.  

 

  

 

 

 

 

 

 

  

 
Figure 20 - Analogy of a river crossed by rows of stones: a) Real 

metric; b) Digital metric. 

 

We can see from this example that when a factor 
2b multiplies the value )(2 ∞Rdr in the real metric, the 

same factor 
2b  will divide the value of objects areas 

(
2X ) in the digital metric. Thus, the expansion of 

uspheres in the real space generates a "shrinking" of 

distances and areas in digital space. 

  

 

 

 

 

 

 

 
Figure 21 - Analogy of a pellicle being "stretched" so that each frame 

has twice the size. 

However, this consideration of "shrinkage" is not valid 

for the temporal dimension. In order to observe this 

aspect, let us take an analogy of a movie pellicle where 

the total time can be associated to the number of slides 

multiplied by the width (related to the time dimension) of 

each slide. 

In the analogy of Figure 21, suppose that a "time 

distortion" stretches every frame of the film making it last 

twice its duration. In this case, for example, a one hour 

duration film will be displayed in two hours. 

More generally this means that if 
2

1da  (which is related 

to time in the real metric) is multiplied by a certain factor, 

then the "temporal distance" in digital metric also will be 

multiplied by the same factor. 

In terms of equations, this means that for a factor β  

that multiplies the space-time real metric, in digital 

metric, the time will be multiplied by the same factor β  

and the space will be multiplied by the inverse of 

factor β . Therefore, considering the relation given by 

equation (28) we can state that: 

 

)()( 22

2

0

2

p2

1 dNdtc
r

da ββ =∞
l

 

 

(34) 

)(
1

)( 2

2

0

2

p2

dR Ndr
r

dr
β

β =∞
l

 
(35) 

 

It is worth to remember that the angular displacement  
2Ωd  defined on a sphere does not vary when the radius 

of this sphere is multiplied by any non-null factor. 

Thus, considering the expansion of an usphere in the 

point dN  given by a factor β , equation (29) can be 

written as:   

2222

1

2

2222

1

2

)()()()(

))()()(()(

Ω−∞−∞=

Ω−∞−∞=

dNrdrdaNda

dNrdrdaNda

dRRd

dRRd

ββ

β
 

 

(36) 

 

Applying equation (28) in equation (36) we obtain: 

))()()(()( 2222

12

0

2

p2 Ω−∞−∞= dNrdrda
r

Nds dRRd ββ
l

 

 

(37) 

 

Since applying the equations (34) and (35) in equation 

(37) we obtain: 

22
2

222

22
2

222

               

)(
)(

)()(

Ω−−=

Ω−−=

dr
dr

dtcds

dNr
Ndr

NdtcNds d
d

dd

β
β

β
β

 

 

 

 

 

(38) 

(a)                                                                       (b) 

)(2 ∞Rdr )(2

dR Ndr

02r
02rb

2X 2

2

b

X

)(2 ∞Rdr
)(2 ∞Rdr

)(22 ∞Rdrb

2X
2X

(a)                                                                  (b) 
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In order to complete the proposed analysis we must now 

calculate the factor β  to be used in equation (38). 

Looking again at equation (25) we can consider that this 

factor is given by: 

)
K

2
 (1

mudN

M
+=β

 

 

 

(39) 

 

However, there is a problem associated with the 

equation (39) application which regards to the 

parameter dN . This parameter is related to a distance in 

the digital metric of the undistorted network, which is 

directly connected to the real metric. Thus, we need to 

obtain the factor β  based on the observed distances in 

the digital metric with distorted network, which will be 

calculated from the example shown in Figure 22. 

Figure 22 represents a similar scheme to that shown in 

Figure 20, but with uspheres areas being represented in 

a rectangular shape for easy viewing. 

Figure 22-a presents a real metric, where the red 

rectangle represents an undistorted usphere while the 

blue rectangle represents an amplified usphere due to 

the distortion of the network. The ratio of the areas in 

Figure 22-a is obtained based on equation (32). 

 

 

 

 

 

 

 

 

 

 

Figure 22 – Observation of the variation of the metric in two view 

points: a) Real metric; b) Digital metric. 

In the table shown in Figure 22-b we observe the view of 
the digital metric where the blue area decreases after 

being multiplied by a factor 1 / β . Based on Figure 22-b, 

we can obtain the following equation: 

 

)
K

2
1)(()(

))(1)(()(

)()()()(

)()()()(

mu

22

22

222

222

d

d

dd

dd

dd

N

M
daNda

NKdaNda

NKdadaNda

NKdaNdada

−∞=

−∞=

∞−∞=

∞+=∞

 

 

 

 

 

 

(40) 

 

 

 

 

Considering in this case the factor β  is defined by: 

 

)()(
1 22 ∞= daNda dβ  

 

(41) 

 

Applying equation (41) in equation (40) the factor β can 

be calculated by: 

)
K

2
 (1

mudN

M
−=β

 

 

 

(42) 

The parameter 
dN used in equation (42) was obtained 

in the context of the distorted network digital metric, thus 

being usable by an observer who has access to this 

metric. Also considering that in the desired point the 

r value is given by: 

pldNr =
 

 

(43) 

 

Applying equation (43) in (42): 

)
K

2
1(

mu

p

r

Ml
−=β  

 

 

(44) 

 
We can demonstrate that the Planck distance and 
unitary mass values are defined by the following 
equation: 
 

 
3p
c

Gh
l =  

 

(45) 

G

ch
=muK  

 

(46) 

 

Applying (45) and (46) in (44) we obtain: 

)
 2

1(       

)
 2

1(

2

3

rc

GM

c

G

c

G

r

M

−=

−=

β

β
h

h

 

 

 

 

 

 

(47) 

 

Finally, applying equation (47) in equation (38) we 

obtain: 

22

2

2
22

2

2

 2
1

)
 2

1( Ω−
−

−−= dr

rc

GM

dr
dtc

rc

GM
ds  (48) 

 

Where equation (48) is equal to the expression (5), quod 

erat  demonstrandum. 

)(2 ∞da

(b)                          (a)

)(2

dNda

)()(2

dNKda ∞

)(2 ∞da )(2

dNda

)(2 ∞da

)()(2

dNKda ∞
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5.1 – New Interpretation of the Schwarzschild 

Radius 

Within the USN model, the Schwarzschild radius has an 

interesting interpretation when its value is observed in 

Planck units and the mass M
 
is distributed along a 

straight line, as shown in Figure 23. 

 

 

 

 

 

 

 

 

 

Figure 23 - Division of the original mass M in equal "cubes" aligned 
along a straight line. 

 

 

In Figure 23 we can observe the number ( sN ) of 

"cubes", in which the mass M was distributed, is given 

by: 

p

s
s

r
N

l
=

 (49) 

Thus the mass ( xM ) of each "cube” shown in Figure 23 

will be given by: 

s

x
N

M
M =  (50) 

Applying equations (49) and (45) in the equation (50) we 

obtain: 

3c

G

r

M
M

s

x

h
=  

(51) 

Applying equation (8) which defines the Schwarzschild 

radius in equation (51) we obtain: 

 

mux

x

G

c
M

c

Gc

GM

M
M

K
2

1

2

1

2 3

2

==

=

h

h

 

 

 

 

(52) 

 

Thus each "cube" will have half of a unitary mass value, 

in other words, half the mass of an udaynahole. 

    

 

 

 

   

 
Figure 24 - Alignment of udyholes in a straight line. 

 

This means that if the original mass M is divided into a 

line of udaynaholes, with the distance between their 

centers equal to twice the Planck distance, its length of 

this line will be equal to the Schwarzschild radius, as 

shown in Figure 24. 

Figure 25 shows an analogy with a two-dimensional 

surface formed by an elastic membrane, in which some 

colored concentric circles were painted. Considering that 

this membrane is fixed on a flat surface with a hole in 

the center, the inclusion of an udyhole would be 

equivalent to pulling a circular area of the membrane 

into the hole. 

We can see in Figure 25 that each added udyhole 

"sucks" one of the colored rings, and thus, the total 

collapsed area will be proportional to the squared 

number of udyholes. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25 - Udyholes overlapping on an elastic surface. The number in 

each table indicates how many udyholes are overlapped on each 

event. 

 

For the three-dimensional case, the accumulation of 

N dyholes in the same position will collapse a volume 

proportional to the value of
3N . 

Thus dividing the mass M
 
in N  udyholes of unitary 

mass, the distance obtained by aligning them as 

illustrated in Figure 26, will define the total radius of the 

compressed sphere (equal to Npl2  ) which is the 

Schwarzschild radius itself. 

 

 

  

 

 

    

 

 

 

   

 
 

Figure 26 - Sphere with Schwarzschild radius in which a set of 

udyholes is aligned on an axis 
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6 – Deduction of the Newton’s law 

As mentioned in previous section we consider the USN 

total volume does not change when udyholes are 

generated in its interior and equations (14) and (15) are 

valid. In this case, we can consider that the collapse of 

an usphere, as shown in Figure 16 generates radial 

force fields that propagate through the network. Taking 

the forces in any radial direction we will notice that the 

force that compresses an usphere in the center of the 

network will propagate from a usphere to another, as 

shown in Figure 27, through a series of pairs of action 

forces (blue in the figure) and reaction (in red) that are 

decreasing in intensity, tending to null in the end of the 

USN. 

 

 

 

 

 

 

 

Figure 27 - Forces that arise in a given direction when the usphere is 

compressed. 

 
In this case equation (14) can generate the following 
simplified expression: 

 

)
1

1()(
20

d

dx
N

rNr +=
 

 

 

(53) 

 

Based on equation (53) and considering the force 

applied on the uspheres has an elastic behavior 

( KxF = ), the module of the forces shown in blue in 

Figure 24 will be modeled by the following equation: 

2

1
)(

d

Ud
N

FNF =
 

 

 

(54) 

 

Where UF  is a unitary force. 

 

If we have now, in the same USN two udyholes 

separated by a distance d given in meters ( dp Nd  l= ), 

each one of them will generate an equivalent force on 

the other, as defined by equation (54), which varies in 

function of the distance d accordingly to the following 

expression: 

2)/(

1

p

U
d

FF
l

=
 

 

 

(55) 

 

 

 

 

 

 

 

 

 

 
Figure 28 – Two groups of udyholes interacting from a distance d. 

 

Now considering a more general case, in which the first 

point, we have
 1N  udyholes and in the second point 

2N  
udyholes, as shown in Figure 28. The force arising 

between the two groups of udyholes is given by: 

2

2

21
d

FNNF
p

U

l
=

 

 

 

(56) 

 

Considering that each udyhole has a unitary mass 

defined as in the equation (24), the equation (56) can be 

written as follows: 

2

2

21

dK

M

K

M
FF

p

mumu

U

l
=

 

 

 

(57) 

 

Applying the equations (45) and (46) in (57) we obtain: 

2

21

4

2

2

21

3

d

MM

c

G
FF

d

MM

c

G

c

G
FF

U

U

=

=
h

h

 

 

 

 

 

(58) 

 

We can show that in the units system defined in the 

USN model, the force 
UF  can be calculated by: 

G

c
FU

4

=
 

 

 

(59) 

 

Applying equation (59) in (58) we obtain: 

2

21

d

MM
GF =

 

 

(60) 

 

Therefore, the equation (60) is equal to the gravitation 

law defined by Isaac Newton. 
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7 – Conclusion 

Besides providing a new way to display to non-

Euclidean spaces, the Ulianov Sphere Network model 

presented in this article allowed the calculation of the 

formula which defines the Schwarzschild metric and the 

deduction of Newton's law for gravitation. 

 

The key point of the USN model can be seen in Figure 

15, where the "space squares" expand due to the 

presence of udyholes generating an opposite view of the 

traditional model defined by Einstein in the GRT context 

where the presence of matter has the effect of shrinking 

the "space squares ". 

 

Although the USN model at first presents the same 

results already obtained by GRT, we believe that the 

complexity of calculation is much smaller, which should 

make the usage of the USN model interesting in terms 

of both analytical studies and in digital simulations. 

 

Please notice that the USN model at first is not directly 

related to the operation of our universe. However, the 

results obtained by applying the USN model point to the 

possibility that space-time in our universe may be in fact 

"sustained" by some kind of hyper-dimensional network,  

resembling the concept of ether, which was virtually 

eliminated in the GRT context. 

 

Thus, the author believes the USN model can be also a 

source of inspiration for theoretical physicists and 

represents another step towards a more complete model 

of the universe. 

 

NOTE: The Ulianov Sphere Network is part of a larger 

picture of theories developed by the author, called 

Ulianov Theory (UT) [15] [16].  
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