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The symmetry group of the 18-j(H) Wigner symbol is restructured by splitting two symmetry
equations (Yutsis et al. 1962) into three generators. The symmetry groups of two 21-j Wigner
symbols (Ponzano 1965) are complemented to form groups of order 8. This summarizes systematic
evaluation of the automorphisms of the associated simple cubic graphs with McKay’s nauty program.
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I. INTRODUCTION

A. Motivation

Following up on a tabulation of “irreducible” Wigner
graphs complete up to the 21-j symbols [1], one of the
symmetry operations of one 18-j symbol, labeled H in
the reference [2], appeared to be missing.

Understanding that visual inspection of these triva-
lent graphs is tricky, this report shows the results of an
industrial-scale investigation of the 18-j and 21-j symbols
(graphs on 12 and 14 vertices) with Brendan McKay’s
nauty program [3, 4].

B. Notation

In the graphical representation of angular momentum
coupling, the angular momenta are represented by 3n
edges in a trivalent (commonly referred to as “cubic”)
graph [2, 5]. The number of edges is a multiple of three,
and the number of vertices is 2n.

In an effort of economizing of the notation, the ver-
tices vi will be enumerated from 0 up to 2n − 1. The
angular momenta j carry two subscripts which show the
two vertices they connect. In the standard literature,
the symmetry operations describe which edge label is
mapped onto which other edge label. Here, in the vertex-
oriented notation, the operations are considered permu-
tations of the vertex labels. Permutations are written in
cycle notation (v1 v2 . . . vi)(vj vk . . . vk). . . , which spec-
ifies vertex replacements v1 → v2, v2 → v3,. . . vi → v1,
vj → vk. . . vk → vj cyclically within each of the paren-
theses. Vertices that remain fixed are not written down.

Symmetry operations are transcribed back to the orig-
inal notation of the edges by applying the operation sepa-
rately to the two indices of each j-label. If the two indices
emerge in the opposite order, a sign flip in the edge ori-
entation is also induced, which generates a phase factor
(−1)j.,. according to the rules of the graphical evaluation.
We shall omit the + and − symbols of handedness on the
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vertices; phase factors that result from the restructuring
of these will be ignored. In that sense, the symmetries
reported below conserve absolute values, but not neces-
sarily signs of the 3n-j symbols.

II. SPLIT SYMMETRY FOR THE 18j(H)
SYMBOL

The representation of one (out of 18) 18-j symbol is
shown in Figure 1. (The labels in this manuscript gener-
ally differ from my table [1] and have been renumbered
along a Hamiltonian circle in the planar view of the ref-
erence publications.) Labels of the reference work [2]
emerge renamed in the economized vertex notation as fol-
lows: j0,1 = k1, j0,8 = k′1, j0,11 = k′′1 , j1,2 = j2, j5,1 = j1,
j3,2 = k2, j2,7 = j3, j3,4 = k′′2 , j3,9 = k′2, j4,5 = j′′3 ,
j11,4 = j′′2 , j6,5 = k′′3 , j6,7 = k3, j6,10 = k′3, j7,8 = j′1,
j8,9 = j′2, j9,10 = j′3, j10,11 = j′′1 .
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FIG. 1. 18-j class H from [2, Fig A. 3.8]. LCF notation
[6,-5,-4,4,-5,4,6,-4,5,-4,4,5] [1, Fig 15].

Three generators for permutations of labels that gener-
ate a group of 18 symmetries (isomorphic to the Dihedral
Group D18) for the graph are g1 ≡(1 11 8)(2 4 9)(5 10
7), g2 ≡(2 5)(3 6)(4 7)(8 11)(9 10) and g3 ≡(0 3)(1 2)(4
8)(5 7)(9 11).

This graph has been singled out from the set of 18 dif-
ferent 18-j symbols because only two symmetry relations
have been published [2, A 4.8]:
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• The first part of equation [2, A 4.8] mixes edges in
two long cycles j1 → j′′3 → j′′2 → j′′1 → j′3 → j′2 →
j′1 → j3 → j2 → j1 and k1 → k′′3 → k′′2 → k′′1 →
k′3 → k′2 → k′1 → k3 → k2 → k1. Translation to
vertex labels with the list above says these equal
j5,1 → j4,5 → j11,4 → j10,11 → j9,10 → j8,9 →
j7,8 → j2,7 → j1,2 → j5,1 and j0,1 → j6,5 → j3,4 →
j0,11 → j6,10 → j3,9 → j0,8 → j6,7 → j3,2 → j0,1.
This is rewritten as the vertex permutation (1 5 4
11 10 9 8 7 2)(3 0 6), which is the element g2g3

of the permutation group—application of g3, then
g2—in terms of the three generators defined above.

• The second part of equation [2, A 4.8] swaps edges
in pairs, j1 ↔ j′1, j2 ↔ j3, j′2 ↔ j′′3 , j′3 ↔ j′′2 ,
k1 ↔ k3, k′1 ↔ k′′3 , k′2 ↔ k′′2 , k′3 ↔ k′′1 . In vertex-
notation the maps are j5,1 ↔ j7,8, j1,2 ↔ j2,7,
j8,9 ↔ j4,5, j9,10 ↔ j11,4, j0,1 ↔ j6,7, j0,8 ↔ j6,5,
k3,9 ↔ j3,4, k6,10 ↔ k0,11, equivalent to the per-
mutation (0 6)(1 7)(4 9)(5 8)(10 11), which is the
group element g3g2g3.

If we call the two permutations (symmetries) of the two
parts of the equation h1 ≡ g2g3 and h2 ≡ g3g2g3, these
are two generators of the full group of with 18 elements.
In particular g1 = h3

1, g2 = h2h
−2
1 , and g3 = h1h2, where

h−2
1 is the two-fold application of the inverse of h1 and

h3
1 the three-fold application of h1. The description of

the group by the three generators g1, g2 and g3 is nicer,
because they have more fixed points and contain cycles
of lower order.

The symmetry generated by iterating g1 is illustrated
by re-drawing the graph as in Figure 2: it sends vertex
1 to 11 and then to 8, and in parallel 2 to 4 and 9, with
5 to 10 and 7. The three vertices 3, 6 and 0 stay in
the middle of the picture, fixed. They are essentially
handing over their edges by rotating the 9 vertices in the
“outer” cycle 1-2-7-8-9-10-11-4-5-1 counter-clockwise in
a modulo-3 pattern.

Return to the original notation is easy with the list of
associations noted above. Example: as g1 maps 10 to 7
and 11 to 8, it maps j10,11 to j7,8, therefore j′′1 to j′1.

One might ask: is the mirror operation which swaps
the right and left vertices in Figure 2 as 8 ↔ 9, 7 ↔ 10,
0 ↔ 3, 2 ↔ 11, 1 ↔ 4, not missing? This symmetry
is actually represented by the group member g1g3, i. e.,
application of (0 3)(1 2)(4 8)(5 7)(9 11) followed by (1 11
8)(2 4 9)(5 10 7).

Similarly, the symmetry operation which mirrors the
elements in Figure 1 from the left to the right is
g3g
−1
1 g2g3, where g−1

1 denotes the inverse operation of
g1 (shifting elements cyclically left in each parenthesis).

FIG. 2. 18-j symbol H, illustrating the symmetry (1 11 8)(2
4 9)(5 10 7) where 0 acts as the symmetry center for the
1→ 11→ 8 cycle, 3 as the symmetry center for the 2→ 4→ 9
cycle, and 6 for the 5→ 10→ 7 cycle.

TABLE I. Orders of the Automorphism groups of all 18-j
symbols.

|A| 18-j symbol [2]
48 C
24 A, B
18 H
16 F, G
8 D, E, I, K
4 L, M, N, P
2 R, S, T, V

III. PONZANO’S 21-j SYMBOLS

A. 21-j(1)

We tersely review the eight 21-j symbols that have
been mentioned in a previous publication [6].

Ponzano’s 21-j(1) symbol has a symmetry group of
order 2 with generator (3 5)(6 8)(9 11), as published, if
referring to the labeling of Figure 3.

B. 21-j(2)

Ponzano’s 21-j(2) symbol has a symmetry group of or-
der 8, isomorphic to the direct product C2×C2×C2. The
three generators from nauty are (1 13)(2 3)(4 5)(6 8)(9
10)(11 12), (2 11)(3 12)(4 9)(5 10) and (0 7)(1 8)(2 4)(3
5)(6 13)(9 11)(10 12), referring to the labeling conven-
tion of Figures 4 and 5. The generators are two mirror
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FIG. 3. 21-j(1) symbol
[−5, 5,−5, 7,−6, 3,−5, 6,−3, 5, 7, 5, 6,−6] [6].
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FIG. 4. 21-j(2) symbol [6].

plane and one inversion operation on the graph— obvious
symmetries in the two figures.

The number of three equations by Ponzano [6, (2)]
matches the number of generators, so they fully catch
the symmetry.

FIG. 5. 21-j(2) symbol [7,−4, 3,−4, 4,−3, 4]2, 3D view of
Figure 4.

C. 21-j(3)

Ponzano’s 21-j(3) symbol has a symmetry group of
order 8, isomorphic to the Dihedral Group D8. Three
generators proposed by nauty are g1 ≡(0 2)(3 13)(4 7)(5
8)(6 9), g2 ≡(0 3)(1 12)(2 13)(4 8)(5 7), and g3 ≡(0 4 13
5)(1 9 12 6)(2 8 3 7)(10 11). The translation of the vertex-
labeled nomenclature proposed in Figure 6 to the edge-
labeled nomenclature is: j1,0 = k′1, j1,11 = k′2, j2,1 = k′3,
j2,3 = p′, j3,4 = j, j3,12 = j′3, j4,9 = j3, j5,2 = k, j5,4 = p,
j5,6 = k3, j6,7 = k1, j6,10 = k2, j8,0 = g, j8,7 = q,
j9,8 = j1, j10,9 = j2, j10,11 = n, j12,11 = j′2, j12,13 = j′1,
j13,0 = q′, j13,7 = h.

Only two equations are found in the reference article
[6].

• The first implies the right-left mirror operation (0
7)(1 6)(2 5)(3 4)(8 13)(9 12)(10 11), which is g−1

3 g1

in terms of the three generators.

• The second equation is the map k3 ↔ j3, k1 ↔ j1,
k2 ↔ j2, k′2 ↔ j′2, k ↔ j, k′1 ↔ j′1, k′3 ↔ j′3, h ↔
g, which translates to the vertex-oriented labeling
j5,6 ↔ j4,9, j6,7 ↔ j9,8 j6,10 ↔ j10,9, j1,11 ↔ j12,11,
j5,2 ↔ j3,4, j1,0 ↔ j12,13, j2,1 ↔ j3,12, j13,7 ↔ j8,0.
This operation is found to be the permutation (1
12)(2 3)(6 9)(4 5)(7 8)(0 13), which is g2g1.

These two equations combined generate only a subgroup
of order 4, isomorphic to C2×C2, so by using g1, g2 and
g3 the symmetry is indeed extended.

It may be interesting to note that the symmetry g3 ≡(0
4 13 5)(1 9 12 6)(2 8 3 7)(10 11) maps vertex 0 to 4 and
vertex 1 to 9, for example, therefore j0,1 → j4,9, which is
k′1 → j3 in the original publication. This rearrangement
induces a cross-mix of entries in the reduction to a sum
over products of 9-j and 18-j symbols [6, (3)]. It cannot
be stated to be a symmetry within the 9-j symbol or
the 18-j symbol of the reduction, and this is one of the
reasons why it might have been missed.
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FIG. 6. 21-j(3) symbol [5,−3, 4, 6, 6,−5,−4;−] [6].

D. 21-j(4)

Ponzano’s 21-j(4) symbol has a symmetry group of
order 4, isomorphic to the direct product C2×C2. nauty
proposes the two generators (0 7)(1 6)(2 5)(3 4)(8 13)(9
12)(10 11), and (0 8)(1 9)(2 4)(3 5)(6 12)(7 13), which
matches the number of equations given by Ponzano. The
first generator represents the left-right mirror symmetry
in Figure 7 (planar diagram), and the second a front-back
mirror plane in Figure 7 (3D view).
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FIG. 7. 21-j(4) symbol [5,−3, 5, 6, 6,−5, 5;−] [6].
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E. 21-j(5)

Ponzano’s 21-j(5) symbol has a symmetry group of or-
der 4, isomorphic to the direct product C2 × C2. The
two generators can be chosen as g1 ≡(1 4)(2 5)(3 6)(9
12)(10 11) and g2 ≡(0 7)(1 3)(4 6)(8 13) using the labels
in Figure 8. The number of generators matches the num-
ber of equations given by Ponzano. The left-right mirror
symmetry in the planar view of Figure 8 is g2g1 =(0 7)(1
6)(2 5)(3 4)(8 13)(9 12)(10 11).
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FIG. 8. 21-j(5) symbol [5, 6,−5, 6, 6,−5, 6;−], planar and 3D
view.

F. 21-j(6)

Ponzano’s 21-j(6) symbol has a symmetry group of
order 16, isomorphic to the direct product C2×D8. The
four generators proposed by nauty are g1 ≡(3 5)(6 8)(9
11), g2 ≡(1 13)(2 4)(10 12), g3 ≡(2 10)(3 9)(4 12)(5 11),
and g4 ≡(0 7)(1 8 13 6)(2 3 4 5)(9 12 11 10), assuming
the labels of Figure 9.

Ponzano provided matching four equations. The first
equation [6, (6)], for example, is characterized by the
following substitutions of cycle order 2: j1 ↔ j′1, j2 ↔ j′2,
j3 ↔ j′3, j4 ↔ j′4, l1 ↔ l3, k1 ↔ k′1, k2 ↔ k′2, l′1 ↔ l′3,
which represents the right-left mirror operation on the
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FIG. 9. 21-j(6) symbol [−3, 5, 7,−5, 3, 5,−5]2, planar and 3D
view.

associated planar view. The equivalent vertex-labeled
permutation is (0 7)(1 6)(2 5)(3 4)(13 8)(12 9)(11 10)
= g−1

4 g1, applying g1 followed by the inverse of g4.

G. 21-j(7)

Ponzano’s 21-j(7) symbol, Figure 10, has a symme-
try group of order 1, containing only the identity. This
matches the original article which gave no equation.

H. 21-j(8)

Ponzano’s 21-j(8) symbol has a symmetry group of or-
der 8, isomorphic to D8. Three generators can be chosen
as follows: g1 ≡(0 2)(3 13)(4 8)(5 7), g2 ≡(0 3)(1 12)(2
13)(4 5)(6 9)(7 8) and g3 ≡(0 4 2 8)(1 9)(3 7 13 5)(6
12)(10 11) if labels follow the convention of Figure 11.

Given only two equalities in the reference [6, (8)], at
least one generator is missing:

• The first two terms in [6, (8)] represent the left-
right symmetry in the planar view in Figure 11,
realized by (0 7)(1 6)(2 5)(3 4)(8 13)(9 12)(10 11),
which is g2g

−1
3 in terms of these three generators.
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FIG. 10. 21-j(7) symbol
[−5,−4, 4, 7,−5, 3,−4, 5,−3, 5, 7, 4,−5, 5] [6].

0

1

13

2

11

7

34

12

5

9

6

10

8

FIG. 11. 21j(8) symbol [4, 6,−5, 5,−4, 5, 6;−] [6].

• The first and third term describe the operation
l3 ↔ l′3, l1 ↔ l′1, l2 ↔ l′2, h ↔ k, s ↔ t, j2 ↔ j′2,
j1 ↔ j′1, j3 ↔ j′3. In vertex-label notation, this is
j6,5 ↔ j0,1, j4,9 ↔ j13,12, j4,5 ↔ j0,13, j10,9 ↔
j11,12, j6,10 ↔ j1,11, j3,2 ↔ j7,8, j3,12 ↔ j9,8,
j1,2 ↔ j6,7, which represents the permutation (5
0)(6 1)(4 13)(9 12)(10 11)(3 8)(2 7), equivalent to
the right-left symmetry in the 3D view in Figure
11. This permutation is the group element g−1

3 g2

in terms of the three generators.

Altogether, these two symmetry elements construct a
subgroup of only order 4, isomorphic to C2 × C2.

IV. 21-j SYMBOLS OF HIGH SYMMETRY

A. Order 336

The symbol in Figure 12 has an automorphism group
of order 336, isomorphic to the semi-direct product
PSL(3, 2) ∧ C2, generated by (4 8)(5 7)(9 13)(10 12),
(3 11)(4 10)(8 12)(9 13), (1 13)(2 4)(5 11)(6 12), and (0
1 2 3 4 5 10 9)(6 11 8 13)(7 12).

FIG. 12. 21-j symbol [−5, 5]7, the Heawood graph.

B. Order 28

The Möbius ladder graph in Figure 13 has an automor-
phism group of order 28, with generators (1 13)(2 12)(3
5)(4 6)(7 11)(8 10) and (0 1 2 3 4 11 10 9 8 7 6 5 12 13).

The graph G7,2 in Figure 14 has also an automorphism
group of order 28, with generators (2 7)(3 6)(4 5)(8 13)(9
12)(10 11), (0 1)(2 8)(3 9)(4 10)(5 11)(6 12)(7 13), and
(0 2)(1 13)(3 8)(4 9)(5 10)(6 11)(7 12).

C. Order 16

The graph in Figure 15 has an automorphism group
of order 16, with generators (7 9)(10 12), (3 5)(6 8), (2
11)(3 10)(4 13)(5 12)(6 7)(8 9), and (0 1)(2 4)(11 13).
The first, second and last of the generators are easily un-
derstood as unwinding one of the crossings in the picture
and recreating it at the adjacent position along the ring.

The graph in Figure 16 has an automorphism group
also of order 16, with generators g1 ≡(1 13)(5 11)(6 12),
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FIG. 13. 21-j symbol [7]14, the Wigner 21-j symbol of the
first kind.

FIG. 14. 21-j symbol [5, 3,−6, 6,−3,−5, 7]2, the Wigner 21-j
symbol of the second kind.

g2 ≡(0 1 2 13)(3 12 9 6)(4 11 10 5)(7 8), and g3 ≡(0 4)(1
5)(2 10)(3 9)(11 13). Two easily recognized mirror plane
symmetries are (0 10)(1 5)(11 13)(2 4)= g3g

−2
2 g1 and (0

1)(2 13)(7 8)(6 9)(3 12)(5 10)(4 11)= g2g1.

D. Order 14

Figure 17 is the sole Wigner 21-j graph with automor-
phism group of order 14, with generators g1 ≡(1 5)(2 6)(3
7)(4 8)(9 12)(10 11) and g2 ≡(0 1)(2 5)(3 4)(6 11)(7 12)(8
13). The left-right swap (0 5)(1 6)(2 10)(3 9)(4 13)(7 8)
is given by the operation g1g2g1.

FIG. 15. 21-j symbol [−4, 3, 5,−4,−3, 3, 5;−].

FIG. 16. 21-j symbol [−3, 5, 7,−5, 3, 5,−5]2.

FIG. 17. 21-j symbol [−5, 4,−4, 7, 4,−4, 5, 6,−4, 5, 7,−5, 4,−6].
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E. Order 12
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FIG. 18. 21-j symbol of Di-Leva and Ponzano
[−4, 5, 6,−4, 5, 6,−5;−] [7].

There are two 21-j symbols with 12 symmetries; only

one is considered here. A symbol with an automorphism
group of order 12, isomorphic to D12 is shown in Figure
18, generated by two generators, (1 10)(2 9)(3 4)(5 12)(6
11) and (0 2)(3 10)(4 11)(5 7)(8 13)(9 12). This implies
that one of the three equalities in [7, (25)] is redundant—
at least, if sign flips are left aside. The two generators
are mirror operations along 2 of 3 equivalent planes which
are easily recognized in the 3D view: the 4 vertices that
are fixed and not noted in the permutation are defining
the mirror plane.

V. SUMMARY

We dissassembled the symmetry operations of the 18-j
symbol commonly labeled as H. We added one symmetry
to Ponzano’s 21-j symbol number (3), and one symmetry
to Ponzano’s 21-j symbol number (8).
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Appendix A: Errata

The lower k′2 in the fourth column of the second term
in [6, (6)] should read k2.

The lower k2 in the second column of the second term
in [6, (6)] should read k′2.
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