YARKOVSKY EFFECT IN MODIFIED PHOTOGRAVITATIONAL 3-BODIES PROBLEM

Sergey V. Ershkov,
Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia e-mail: sergej-ershkov@yandex.ru

Abstract

Here is presented a generalization of photogravitational restricted 3-bodies problem to the case of influence of Yarkovsky effect or YORP-effect, which are known as reason of additional infinitesimal acceleration of a small bodies in the space (due to anisotropic re-emission of absorbed energy from the sun, other stellar sources).

Asteroid is supposed to move under the influence of gravitational forces from 2 massive bodies (which are rotating around their common centre of masses on Kepler's trajectories), as well under the influence of pressure of light from both the primaries.

Analyzing the ODE system of motion, we explore the existense of libration points for a small body (asteroid) in the case when the 2-nd primary is non-oblate spheroid.

In such a case, it is proved the existence of maximally 256 different non-planar equilibrium points in modified photogravitational restricted 3-bodies problem when we take into consideration even a small Yarkovsky effect (YORP-effect).

AMS Subject Classification: 70F15, 70F07
Key Words: Yarkovsky effect, YORP-effect, photogravitational restricted three body problem, stability, equilibrium points, libration points, oblateness

1. Introduction.

The Yarkovsky effect is a force acting on a rotating body in space caused by the anisotropic emission of thermal photons, which carry momentum [1]. It is usually considered in relation to meteoroids or small asteroids (about 10 cm to 10 km in diameter), as its influence is most significant for these bodies. Such a force is produced by the way an asteroid absorbs energy from the sun and re-radiates it into space as heat by anisotropic way.

In fact, there exists a disbalance of momentum when asteroid at first absorbs the light, radiating from the sun, but then asteroid re-radiates the heat. Such a disbalance is caused by the rotating of asteroid during period of warming as well as it is caused by the anisotropic cooling of surface \& inner layers; the processes above depend on anisotropic heat transfer in the inner layers of asteroid.

During thousands of years such a disbalance forms a negligible, but important additional acceleration for a small bodies, so-called Yarkovsky effect. Thus, Yarkovsky effect is small but very important effect in celestial mechanics as well as in calculating of a proper orbits of asteroids \& other small bodies.

Besides, Yarkovsky effect is not predictable (it could be only observed \& measured by astronomical methods); the main reason is unpredictable character of the rotating of small bodies [2-3], even in the case when there is no any collision between them.

If regime of the rotating of asteroid is changing, we could observe a generalization of Yarkovsky effect, i.e. the Yarkovsky-O'Keefe-Radzievskii-Paddack effect [2].

YORP effect for short, is a second-order variation on the Yarkovsky effect which changes the rotation rate of a small body (such as an asteroid). The term was coined by Dr. David P. Rubincam in 2000. Note also that the YORP effect is zero for a rotating ellipsoid if there are no irregularities in surface temperature or albedo [2].

2. Equations of motion.

Let us consider the system of ordinary differential equations for photogravitational restricted 3-bodies problem, at given initial conditions [4-5].

In according with [5], we consider three bodies of masses m_{1}, m_{2} and m such that $m_{1}>$ m_{2} and m is an infinitesimal mass. The two primaries m_{1} and m_{2} are sources of radiation; q_{1} and q_{2} are factors characterizing the radiation effects of the two primaries respectively. We assume that m_{2} is an oblate spheroid. The effect of oblateness is denoted by the factor A_{2}. Let $r_{i}(i=1,2)$ be the distances between the centre of mass of the bodies m_{1} and m_{2} and the centre of mass of body m [5].

Now, the unit of mass is chosen so that the sum of the masses of finite bodies is equal to 1 . We suppose that $m_{1}=1-\mu$ and $m_{2}=\mu$, where μ is the ratio of the mass of the smaller primary to the total mass of the primaries and $0 \leq \mu \leq 1 / 2$. The unit of distance is taken as the distance between the primaries. The unit of time is chosen so that the gravitational constant is equal to 1 [5].

The three dimensional restricted 3-bodies problem, with an oblate primary m_{2} and both primaries radiating, could be presented in barycentric rotating co-ordinate system by the equations of motion below [5-6]:

$$
\begin{align*}
& \ddot{x}-2 n \dot{y}=\frac{\partial \Omega}{\partial x}, \\
& \ddot{y}+2 n \dot{x}=\frac{\partial \Omega}{\partial y}, \tag{2.1}\\
& \ddot{z}=\frac{\partial \Omega}{\partial z}, \\
& \Omega=\frac{n^{2}}{2}\left(x^{2}+y^{2}\right)+\frac{q_{1}(1-\mu)}{r_{1}}+\frac{q_{2} \mu}{r_{2}}\left[1+\frac{A_{2}}{2 r_{2}{ }^{2}} \cdot\left(1-\frac{3 z^{2}}{r_{2}{ }^{2}}\right)\right] \tag{2.2}
\end{align*}
$$

- where

$$
n^{2}=1+\frac{3}{2} A_{2},
$$

- is the angular velocity of the rotating coordinate system and A_{2} - is the oblateness coefficient. Here

$$
A_{2}=\frac{A E^{2}-A P^{2}}{5 R^{2}}
$$

- where $A E$ is the equatorial radius, $A P$ is the polar radius and R is the distance between primaries. Besides, we should note that

$$
\begin{aligned}
& r_{1}^{2}=(x+\mu)^{2}+y^{2}+z^{2} \\
& r_{2}^{2}=(x-1+\mu)^{2}+y^{2}+z^{2}
\end{aligned}
$$

- are the distances of infinitesimal mass from the primaries.

We neglect the relativistic Poynting-Robertson effect which may be treated as a perturbation for cosmic dust (or for small particles, less than 1 cm in diameter), see Chernikov [7], as well as we neglect the effect of variable masses of 3-bodies [8].

3. Modified equations of motion (YORP-effect).

Modified equations of motion (2.1) for the three dimensional restricted 3-bodies problem, with an oblate primary m_{2}, both primaries radiating, and the infinitesimal mass m under the influence of YORP-effect, should be presented in barycentric rotating co-ordinate system in the form below:

$$
\begin{align*}
\ddot{x}-2 n \dot{y} & =\frac{\partial \Omega}{\partial x}+Y_{x}(t), \\
\ddot{y}+2 n \dot{x} & =\frac{\partial \Omega}{\partial y}+Y_{y}(t), \tag{3.1}\\
\ddot{z} \quad & \frac{\partial \Omega}{\partial z}+Y_{z}(t),
\end{align*}
$$

- where $Y_{x}(t), Y_{y}(t), Y_{z}(t)$ - are the projecting of YORP-effect acceleration $\boldsymbol{Y}(t)$ on the appropriate axis $O x, O y, O z$.

4. Location of Equilibrium points.

The location of equilibrium points for system (3.1) in general is given by conditions:

$$
\begin{gather*}
\ddot{x}=\ddot{y}=\ddot{z}=\dot{x}=\dot{y}=0 \\
\frac{\partial \Omega}{\partial x}=-Y_{x}(t), \quad \frac{\partial \Omega}{\partial y}=-Y_{y}(t), \quad \frac{\partial \Omega}{\partial z}=-Y_{z}(t) . \tag{4.1}
\end{gather*}
$$

Let us consider the case when the effect of oblateness is absent, $A_{2}=0(\Rightarrow n=1)$, see the appropriate expression:

$$
n^{2}=1+\frac{3}{2} A_{2}
$$

It means a significant simplifying of expression (2.2) in the system of equalities (4.1):

$$
\begin{aligned}
& -Y_{x}=n^{2} \cdot x-\frac{q_{1}(1-\mu) \cdot(x+\mu)}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}-\frac{q_{2} \mu \cdot(x-1+\mu)}{\left((x-1+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \\
& -Y_{y}=n^{2} \cdot y-\frac{q_{1}(1-\mu) \cdot y}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}-\frac{q_{2} \mu \cdot y}{\left((x-1+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \\
& -Y_{z}=-\frac{q_{1}(1-\mu) \cdot z}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}-\frac{q_{2} \mu \cdot z}{\left((x-1+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} .
\end{aligned}
$$

Besides, we assume all equations (4.1) to be a united system of algebraic equations. That's why we substitute an expression for z from 3-rd equation above to the 2 -nd $\&$ the 1-st equation:

$$
\begin{align*}
& z \cdot Y_{x}=z \cdot\left(-n^{2} \cdot x+\frac{q_{1}(1-\mu)}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)+Y_{z} \cdot(x-1+\mu), \\
& -z \cdot Y_{y}=y \cdot\left(z \cdot n^{2}-Y_{z}\right), \Rightarrow Y_{z} \cdot y=z \cdot\left(n^{2} \cdot y+Y_{y}\right), \tag{4.2}\\
& Y_{z}=z \cdot\left(\frac{q_{1}(1-\mu)}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\frac{q_{2} \mu}{\left((x-1+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right) .
\end{align*}
$$

Moreover, we obtain from the 3-d equation of system (4.2) that planar equilibrium points exist only if $\left\{Y_{z}=0, z=0\right\}$ simultaneously. But the case $Y_{z}=0$ - is very rare, specific condition for asteroid, which has unpredictable character of the regime of rotating during a flight through the space [2]; the same is obtained for the case $y=0$.

Therefore we will consider only non-planar equilibrium points $z, y \neq 0$. So, we obtain from the 1 -st \& 3-d equations of system (4.2):

$$
\begin{align*}
& \frac{q_{1}(1-\mu)}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=Y_{x}+n^{2} \cdot x-Y_{z} \cdot \frac{(x-1+\mu)}{z} \\
& z=Y_{z} \cdot \frac{y}{\left(n^{2} \cdot y+Y_{y}\right)}, \quad y \neq-\frac{Y_{y}}{n^{2}} \tag{4.3}\\
& \frac{q_{2} \mu}{\left((x-1+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=-Y_{x}-n^{2} \cdot x+Y_{z} \cdot \frac{(x+\mu)}{z}
\end{align*}
$$

Hence, we finally obtain the system of algebraic equations for meanings of $\{x, y\}$, which determine the location of equilibrium points (4.1):

$$
\left\{\begin{array}{l}
\frac{q_{1}(1-\mu)}{\left((x+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=Y_{x}+n^{2} \cdot x-Y_{z} \cdot \frac{(x-1+\mu)}{z} \tag{4.4}\\
\frac{q_{2} \mu}{\left((x-1+\mu)^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=-Y_{x}-n^{2} \cdot x+Y_{z} \cdot \frac{(x+\mu)}{z}
\end{array}\right.
$$

- where $(n=1)$

$$
z=Y_{z} \cdot \frac{y}{\left(n^{2} \cdot y+Y_{y}\right)}, \quad y \neq-\frac{Y_{y}}{n^{2}} .
$$

The last system (4.4) could be presented as below ($n=1$):

$$
\left\{\begin{array}{l}
\frac{q_{1}^{2}(1-\mu)^{2} \cdot\left(n^{2} \cdot y+Y_{y}\right)^{6} \cdot y^{2}}{\left(\left((x+\mu)^{2}+y^{2}\right) \cdot\left(n^{2} \cdot y+Y_{y}\right)^{2}+Y_{z}^{2} \cdot y^{2}\right)^{3}}=\left(y \cdot\left(Y_{x}+n^{2} \cdot x\right)-(x-1+\mu) \cdot\left(n^{2} \cdot y+Y_{y}\right)\right)^{2} \\
\frac{q_{2}^{2} \mu^{2} \cdot\left(n^{2} \cdot y+Y_{y}\right)^{6} \cdot y^{2}}{\left(\left((x-1+\mu)^{2}+y^{2}\right) \cdot\left(n^{2} \cdot y+Y_{y}\right)^{2}+Y_{z}^{2} \cdot y^{2}\right)^{3}}=\left(-y \cdot\left(Y_{x}+n^{2} \cdot x\right)+(x+\mu) \cdot\left(n^{2} \cdot y+Y_{y}\right)\right)^{2},
\end{array}\right.
$$

- where the maximal polynomial order of equations is equal to $16 \times 16=256$: indeed, the order of 1 -st polynomial equation is equal to 16 (in regard to variables x, y); the order of 2-nd polynomial equation is also equal to 16 (in regard to x, y).

So, (4.4) is the polynomial system of equations of 256 -th order which has maximally 256 different roots, we should especially note that each of them strongly depends on various parameters $\left\{\mu, q_{1}, q_{2} ; Y_{x}, Y_{y}, Y_{z}\right\}$. Such a system of polynomial equations could be solved only by numerical methods (in general, it is valid for polynomial equation of order >5).

Besides, analysing the equations of system (4.2), we should note that a case of Yarkovsky effect is negligible determines the existence of quasi-planar equilibrium points in which conditions $\{Y z \rightarrow 0, z \rightarrow 0\}$ are valid simultaneously.

The strongest simplifying of system (4.4) is possible when Yarkovsky effect is zero, $Y_{x}=Y_{y}=Y_{z}=0$. In such a case, it has been proved the existence of maximally 9 different equilibrium points $\{L, \ldots, L 9\}$ in photogravitational restricted 3-bodies problem [9].

5. Conclusion.

It has been proved the existence of maximally 256 different non-planar equilibrium points $z, y \neq 0$ in modified photogravitational restricted 3-bodies problem when we take into consideration even a small Yarkovsky effect (YORP-effect). This result is different both from classical restricted 3-bodies problem and photogravitational restricted 3-bodies problem.

Stability of such a points is an open problem in celestial mechanics for the case of non-zero YORP-effect (the Yarkovsky-O'Keefe-Radzievskii-Paddack effect) [2].

This model may be applied to examine the dynamic behaviour of small rotating objects such as meteoroids or small asteroids (about 10 cm to 10 km in diameter).

Acknowledgements

I am thankful to CNews Russia project (Science \& Technology Forum, branch "Gravitation") - for valuable discussions in preparing this manuscript. Especially I am thankful to Dr. Fedotov P.V. for valuable suggestions in preliminary discussions of this manuscript.

References:

[1] Radzievskii, V. V. (1954). "A mechanism for the disintegration of asteroids and meteorites". Doklady Akademii Nauk SSSR 97: 49-52.
[2] Rubincam, David P. (2000). "Radiative spin-up and spin-down of small asteroids", Icarus, 148, 2-11.
[3] Ershkov S.V. (2011). 'Exact solution of Euler's equations in the case of non-zero applied torques (rigid body dynamics): reduction to Abel ordinary differential equation". http://arxiv.org/abs/1101.1670
[4] Radzievskii, V.V. (1950). "The restricted problem of three bodies taking account of light pressure". Akad. Nauk. USSR, Astron,Journal Vol. 27, p. 250.
[5] Shankaran, J.P.Sharma and B.Ishwar (2011). "Equilibrium points in the generalized photogravitational non-planar restricted three body problem". International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 63-67.
[6] Douskos C.N. \& Markellos V.V. (2006). "Out-of-plane equilibrium points in the restricted three body problem with oblateness". A\&A , Vol. 446, pp.357-360.
[7] Chernikov, Y.A. (1970). "The Photogravitational Restricted Three-Body Problem". Soviet Astronomy, Vol. 14, p. 176.
[8] Jagadish Singh, Oni Leke (2010). "Stability of the photogravitational restricted threebody problem with variable masses". Astrophys Space Sci (2010) 326: 305-314.
[9] Zheng Xuetang, Yu Lizhong (1993). "Photogravitationally Restricted Three-Body Problem and Coplanar Libration Point". Chinese Phys. Lett. (1993), Vol. 10, №1(1993), pp.61-64. See also:
http://cpl.iphy.ac.cn/qikan/manage/wenzhang/0100061.pdf

