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Abstract: Here is presented a generalization of photogravitational restricted 3-bodies 

problem to the case of influence of Yarkovsky effect or YORP-effect, which are 

known as reason of additional infinitesimal acceleration of a small bodies in the space 

(due to anisotropic re-emission of absorbed energy from the sun, other stellar sources). 

Asteroid is supposed to move under the influence of gravitational forces from 2 

massive bodies (which are rotating around their common centre of masses on Kepler’s 

trajectories), as well under the influence of pressure of light from both the primaries. 

Analyzing the ODE system of motion, we explore the existense of libration points 

for a small body (asteroid) in the case when the 2-nd primary is non-oblate spheroid. 

In such a case, it is proved the existence of maximally 256 different non-planar 

equilibrium points in modified photogravitational restricted 3-bodies problem when 

we take into consideration even a small Yarkovsky effect (YORP-effect). 
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1. Introduction. 

 

The Yarkovsky effect is a force acting on a rotating body in space caused by the 

anisotropic emission of thermal photons, which carry momentum [1]. It is usually 

considered in relation to meteoroids or small asteroids (about 10 cm to 10 km in 

diameter), as its influence is most significant for these bodies. Such a force is 

produced by the way an asteroid absorbs energy from the sun and re-radiates it into 

space as heat by anisotropic way. 

In fact, there exists a disbalance of momentum when asteroid at first absorbs the light, 

radiating from the sun, but then asteroid re-radiates the heat. Such a disbalance is 

caused by the rotating of asteroid during period of warming as well as it is caused by 

the anisotropic cooling of surface & inner layers; the processes above depend on 

anisotropic heat transfer in the inner layers of asteroid. 

During thousands of years such a disbalance forms a negligible, but important 

additional acceleration for a small bodies, so-called Yarkovsky effect. Thus, 

Yarkovsky effect is small but very important effect in celestial mechanics as well as in 

calculating of a proper orbits of asteroids & other small bodies. 

Besides, Yarkovsky effect is not predictable (it could be only observed & measured by 

astronomical methods); the main reason is unpredictable character of the rotating of 

small bodies [2-3], even in the case when there is no any collision between them. 

If  regime of the rotating of asteroid is changing, we could observe a generalization of 

Yarkovsky effect, i.e. the Yarkovsky–O'Keefe–Radzievskii–Paddack effect [2]. 

YORP effect for short, is a second-order variation on the Yarkovsky effect which 

changes the rotation rate of a small body (such as an asteroid). The term was coined 

by Dr. David P. Rubincam in 2000. Note also that the YORP effect is zero for a 

rotating ellipsoid if there are no irregularities in surface temperature or albedo [2]. 

 

 

 

http://en.wikipedia.org/wiki/Force_%28physics%29
http://en.wikipedia.org/wiki/Anisotropic
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http://en.wikipedia.org/wiki/Meteoroid
http://en.wikipedia.org/wiki/Asteroid
http://en.wikipedia.org/wiki/Momentum
http://en.wikipedia.org/wiki/Yarkovsky_effect
http://en.wikipedia.org/wiki/Asteroid
http://en.wikipedia.org/wiki/David_P._Rubincam
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2. Equations of motion. 

 

Let us consider the system of ordinary differential equations for photogravitational 

restricted 3-bodies problem, at given initial conditions [4-5]. 

In according with [5], we consider three bodies of masses m�, m� and m such that m� > 

m� and m is an infinitesimal mass. The two primaries m� and m� are sources of 

radiation;  q� and q� are factors characterizing the radiation effects of the two primaries 

respectively. We assume that m� is an oblate spheroid. The effect of oblateness is 

denoted by the factor A�.  Let  ri   (i =1, 2) be the distances between the centre of mass 

of the bodies m� and m� and the centre of mass of body m  [5].  

Now, the unit of mass is chosen so that the sum of the masses of finite bodies is equal 

to 1. We suppose that  m� = 1 - µ  and  m� = µ,  where µ is the ratio of the mass of the 

smaller primary to the total mass of the primaries and  0 ≤ µ ≤ ½. The unit of 

distance is taken as the distance between the primaries. The unit of time is chosen so 

that the gravitational constant is equal to 1  [5]. 

 

The three dimensional restricted 3-bodies problem, with an oblate primary m� and both 

primaries radiating, could be presented in barycentric rotating co-ordinate system by 

the equations of motion below [5-6]: 
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- where 

 

- is the angular velocity of the rotating coordinate system and  A� - is the oblateness 

coefficient. Here 

 

- where AE is the equatorial radius, AP is the polar radius and R is the distance 

between primaries. Besides, we should note that 

 

 

- are the distances of infinitesimal mass from the primaries. 

 

We neglect the relativistic Poynting-Robertson effect which may be treated as a 

perturbation for cosmic dust (or for small particles, less than 1 cm in diameter), see 

Chernikov [7], as well as we neglect the effect of variable masses of 3-bodies [8]. 

 

 

3. Modified equations of motion (YORP-effect). 

 

Modified equations of motion (2.1) for the three dimensional restricted 3-bodies 

problem, with an oblate primary m�, both primaries radiating, and the infinitesimal 

mass m under the influence of YORP-effect, should be presented in barycentric rotating 

co-ordinate system in the form below: 
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- where Y x (t), Y y (t), Y z (t) – are the projecting of YORP-effect acceleration Y (t) on 

the appropriate axis Ox, Oy, Oz. 

 

 

4. Location of Equilibrium points. 

 

The location of equilibrium points for system (3.1) in general is given by conditions: 

 

 

 

Let us consider the case when the effect of oblateness is absent,  A� = 0  (⇒ n = 1), see 

the appropriate expression: 

 

It means a significant simplifying of expression (2.2) in the system of equalities (4.1): 
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Besides, we assume all equations (4.1) to be a united system of algebraic equations. 

That’s why we substitute an expression for  z  from 3-rd equation above to the 2-nd & 

the 1-st equation: 

 

 

 

 

Moreover, we obtain from the 3-d equation of system (4.2) that planar equilibrium 

points exist only if {Y z = 0,  z = 0} simultaneously. But the case Y z = 0 – is very rare, 

specific condition for asteroid, which has unpredictable character of the regime of 

rotating during a flight through the space [2]; the same is obtained for the case y = 0. 
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Therefore we will consider only non-planar equilibrium points  z, y ≠ 0. So, we obtain 

from the 1-st & 3-d equations of system (4.2): 

 

 

 

Hence, we finally obtain the system of algebraic equations for meanings of {x, y}, 

which determine the location of equilibrium points (4.1): 

 

 

 

- where (n = 1) 
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The last system (4.4) could be presented as below (n = 1): 

 

 

 

-  where the maximal polynomial order of equations is equal to 16 x 16 = 256: indeed, 

the order of 1-st polynomial equation is equal to 16 (in regard to variables x,y); the 

order of 2-nd polynomial equation is also equal to 16 (in regard to x,y). 

 So, (4.4) is the polynomial system of equations of 256-th order which has maximally 

256 different roots, we should especially note that each of them strongly depends on 

various parameters { µ, q�, q� ; Y x, Y y , Y z }. Such a system of polynomial equations 

could be solved only by numerical methods (in general, it is valid for polynomial 

equation of order > 5). 

 

Besides, analysing the equations of system (4.2), we should note that a case of 

Yarkovsky effect is negligible determines the existence of quasi-planar equilibrium 

points in which conditions {Y z → 0, z → 0} are valid simultaneously. 

The strongest simplifying of system (4.4) is possible when Yarkovsky effect is zero,    

Y x = Y y = Y z = 0. In such a case, it has been proved the existence of maximally 9 

different equilibrium points {L�, …, L	} in photogravitational restricted 3-bodies 

problem [9]. 
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5. Conclusion. 

 

It has been proved the existence of maximally 256 different non-planar equilibrium 

points z, y ≠ 0 in modified photogravitational restricted 3-bodies problem when we 

take into consideration even a small Yarkovsky effect (YORP-effect). This result is 

different both from classical restricted 3-bodies problem and photogravitational 

restricted 3-bodies problem. 

Stability of such a points is an open problem in celestial mechanics for the case of 

non-zero YORP-effect (the Yarkovsky–O'Keefe–Radzievskii–Paddack effect) [2]. 

This model may be applied to examine the dynamic behaviour of small rotating 

objects such as meteoroids or small asteroids (about 10 cm to 10 km in diameter). 
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