2 Page Solution for Collatz conjecture

The Collatz Conjecture states that for any natural number n, if n is even, divide it by 2 , if n is odd, multiply it by 3 and add 1 , repeat the process indefinitely, and you reach 1 regardless of what number you start with.

Now, let x be $1+\ldots+1$, such that there are even number of 1 's. Let y be $1+\ldots+1$, such that there are odd number of 1 's. The natural number is a repetition of 4 different number types: even number of 2 ' s, even number of 2's plus 1 , odd number of 2 ' s, odd number of 2 ' $5+1$, even number of 2 ' s, and so on.

Formula:
Case $1: i=2+\ldots+2$, such that there are even number of 2 's.
Case $2: \mathrm{i}=2+\ldots+2+1$, such that there are even number of 2 's +1 .
Case $3: i=2+\ldots+2$, such that there are odd number of 2 's.
Case $4: i=2+\ldots+2+1$, such that there are odd number of 2 's +1 .
Case 1:
$i=2 x, i=x, i=y, i=3 y+1=3 x / 2+1$, start the formula again

$$
(x / 2)
$$

Case 2:

$i=2 x+1, I=6 x+4, I=3 x+2, i=3 x / 2+1$, start the formula again

Case 3:

$\mathrm{i}=2 \mathrm{x}+2, \mathrm{i}=\mathrm{x}+1, \mathrm{i}=3 \mathrm{x}+2, \mathrm{i}=3 \mathrm{x} / 2+1$, start the formula again

Case 4:

$i=2 x-1, i=6 x-4, i=3 x-2, i=3 x / 2-1$, start the formula again
Whatever the starting number is, by the recursive formula, the number gets smaller and smaller.
Now, the problem is that how do we know it reaches 1 ? Consider the following equations.

Case 1	Case 2	Case 3	Case 4
$2 x>3 x / 2+1$	$2 x+1>3 x / 2+1$	$2 x+2>3 x / 2+1$	$2 x-1>3 x / 2-1$
$x>2$	$x>0$	$x>-2$ i.e. $x>0$ since it has to be >0	$x>0$
$2 x>4$	$2 x+1>1$	$2 x+1>2$	$2 x-1>0$

Now, we can write a recursive function $\mathrm{f}(\mathrm{x})$ such that:

Hence, for any natural number we start with, we reach 1.

