Some problems in Hungarian mathematical competition. I.

Fang Chen
Department of Mathematics, Xinjiang Normal University
Urumchi 830054, China
Email: chenfang@stu.xjnu.edu.cn

Abstract

In this work, we present some interesting problems in the Transylvanian Hungarian Mathematical Competition held in 2012.

A1st Problem. Find that numbers $x, y \in \mathbb{N}$ for which relation $x+2 y+\frac{3 x}{y}=2012$ holds.

Béla Kovács

A2nd Problem. Let $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \in \mathbb{R} \backslash\{0\}$ with $a_{1}^{2}+b_{1}^{2}+c_{1}^{2}=a_{2}^{2}+b_{2}^{2}+c_{2}^{2}$. Prove that at least one of equations $a_{1} x^{2}+2 c_{2} x+b_{1}=0, b_{1} x^{2}+2 a_{2} x+c_{1}=0$, and $c_{1} x^{2}+2 b_{2} x+a_{1}=0$ has real solutions.

Mihály Bencze

A3rd Problem. Solve equation $2^{[x]}=1+2 x$ with $x \in \mathbb{R}$, where $[x]$ denotes the integer part of x .

Anna-Mária Darvas

A4th Problem. Prove that for every acute angled and not isosceles triangle with the half of the segment determined by a vertex and the orthocenter, with the median from the same vertex, and with the circumradius of the triangle we can construct a triangle.

A5th Problem. The measures two angles of a triangle are of 45° and 30°. Find the ratio of the longest side of the triangle and the median from the vertex of the angle of 45°.

A6th Problem. Prove that among every seven vertexes of a regular 12-gon there exist three which are vertexes of a right-angled triangle! Is it also true that among every seven vertexes of a regular 12-gon there exist three which are vertexes of a right-angled and isosceles triangle?

