Some problems in Hungarian mathematical competition. II.

Fang Chen
Department of Mathematics, Xinjiang Normal University
Urumchi 830054, China
Email: chenfang@stu.xjnu.edu.cn

Abstract

In this work, we continue to present some interesting problems in the Transylvanian Hungarian Mathematical Competition held in 2012.

B1st Problem. Solve in \mathbb{R} equation $\left[\log _{2} x\right]=\sqrt{x}-2$, where $[x]$ denotes the integer part of x.

Ferenc Kacsó

B2nd Problem. Find all real solutions of equation $7^{\log _{5}\left(x^{2}+\frac{4}{x^{2}}\right)}+2\left(x+\frac{2}{x}\right)^{2}=25$.

Mihály Bencze

B3rd Problem. a) Prove that for each $z \in \mathbb{C}$ the following inequality holds:

$$
\left|z^{2}+2 z+2\right|+|z-1|+\left|z^{2}+z\right| \geq 3
$$

b) When does the equality hold?

B4th Problem. In triangle $A B C$ with $A B=A C$ let I denote the incenter of the triangle. Line $B I$ meets the circumcircle secondly in point D. Find the measures of the angles of the triangle, if $B C=I D$.

Géza Dávid

B5th Problem. a) Show that an interior point M of a triangle $A B C$ belongs to the median from A if and only if area $[M A B]=$ area $[M A C]$;
b) Determine that interior point M of the triangle $A B C$, for which

$$
\frac{M A}{\sin (\widehat{B M C})}=\frac{M B}{\sin (\widehat{C M A})}=\frac{M C}{\sin (\widehat{A M B})}
$$

B6th Problem. Find the 73 th digit from the end of $\underbrace{111 \ldots 1^{2}}$.
2012digits
Anna-Mária Darvas

