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Abstract: Here is presented a new type of exact solutions for photogravitational 

restricted three-body problem (a case of spiral motion). 

A key point is that we obtain the appropriate specific case of spiral motions from the 

Jacobian-type integral of motion for photogravitational restricted three-body problem 

(when orbit of small 3-rd body is assumed to be like a spiral). 

Besides, we should especially note that there is a proper restriction to the type of spiral 

orbital motion of small 3-rd body, which could be possible for choosing as the exact 

solution of equations for photogravitational restricted three-body problem. 

The main result, which should be outlined, is that in a case of quasi-planar orbital 

motion (of the small 3-rd body) the asymptotic expression for component z of motion 

is proved to be given by the proper elliptical integral. 
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1. Introduction. 

 

In this contribution, we present a new type of exact solutions for photogravitational 

restricted three-body problem [1-3], the case of spiral motions. 

According to the Bruns theorem [4], there is no other invariants except well-known 10 

integrals for three-body problem (including integral of energy, momentum, etc.). But 

in the case of restricted three-body problem, there is no other invariants except only 

one, Jacobian-type integral of motion [5-6]. 

The main idea is to obtain from the Jacobian-type integral of motion the appropriate 

specific case of spiral motion for photogravitational restricted three-body problem 

(when orbit of small 3-rd body is assumed to be like a spiral); besides, such a case of 

spiral motion should be adopted by the structure of the Jacobian-type integral of 

motion. 

In addition we should emphasize the appropriate astrophysical application of the 

constructed (exact) solutions of a spiral motion: for example, we could consider the 

Sun-Jupiter system as primaries and assume that only the larger primary (Sun) 

radiates. Besides, we could consider a small objects such as meteoroids or small 

asteroids (about 10 cm to 10 km in diameter) as the small 3-rd body for such a case.    

 

 

2. Equations of motion. 

 

Let us consider the system of ODE for photogravitational restricted three-body 

problem, at given initial conditions [2]. 

We consider three bodies of masses m₁, m₂ and m such that m₁ > m₂ and m is an 

infinitesimal mass. The two primaries m₁ and m₂ are sources of radiation;  q₁ and q₂ are 

factors of the radiation effects of the two primaries respectively, {q₁, q₂} (-, 1]. 

We assume that m₂ is an oblate spheroid. The effect of oblateness [7-8] is denoted by 

the factor A₂. 

http://en.wikipedia.org/wiki/Meteoroid
http://en.wikipedia.org/wiki/Asteroid
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Let  ri   (i =1, 2) be the distances between the centre of mass of the bodies m₁ and m₂ 

and the centre of mass of body m. The unit of mass is chosen so that the sum of the 

masses of finite bodies is equal to 1. 

We suppose that  m₁ = 1 - μ  and  m₂ = μ, where μ is the ratio of the mass of the smaller 

primary to the total mass of the primaries and  0 ≤ μ ≤ 0,5. The unit of distance is 

taken as the distance between the primaries. The unit of time is chosen so that the 

gravitational constant is equal to 1. 

 

The three dimensional restricted three-body problem, with an oblate primary m₂ and 

both primaries radiating, could be presented in barycentric rotating co-ordinate system 

by the equations of motion below [7-8]: 

 

 

 

- where 

 

- is the angular velocity of the rotating coordinate system and  A₂ - is the oblateness 

coefficient. Here 
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- where AE is the equatorial radius, AP is the polar radius and R is the distance 

between primaries. Besides, we should note that 

 

- are the distances of infinitesimal mass from the primaries. 

 

We neglect the relativistic Poynting-Robertson effect [9-10] which may be treated as a 

perturbation for cosmic dust or for small particles (less than 1 cm in diameter), we 

neglect the Yarkovsky effect of non-gravitational nature [11-13], as well as we neglect 

the effect of variable masses of 3-bodies [14-15]. 

 

The possible ways of simplifying of equations (2.1): 

 

- if we assume effect of oblateness is zero,  A₂ = 0  ( n = 1), it means m₂ is 

non-oblate spheroid (we will consider only such a case below); 

- if we assume q₁ = q₂ = 1, it means a case of restricted three-body problem. 

 

 

3. Exact solution (a case of spiral motion). 

 

Regarding the orbit of small 3-rd body, let us assume such an orbit to be presented like 

a spiral (Pic.1). 
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Pic.1. Type of spiral motion. 

 

Besides, let us remind that we could obtain from the equations of system (2.1) a 

Jacobian-type integral of motion [5-6]: 

 

  

- where C is so-called Jacobian constant. 

 

As per assumption above, it means that components of solution {xi } = {x(t), y(t), z(t)} 

(i =1, 2, 3) should be presented as below: 

 

- where the angular velocity is chosen w = 1;  (t) - is a spiral factor. For example: 

 

1)  If (t) = at + c, z(t) = bt - we should obtain the spiral of screw line type, 

2)  If (t) = aexp(bt), z(t) = ct - we should obtain the 3-D logarithmic spiral, 

 

- here{a,b,c} are supposed to be the arbitrary positive real constants. 

)1.3(),,(2)()()( 222 Czyxzyx  
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Thus if we substitute the representation (*) for the components of solution {xi } = {x(t), 

y(t), z(t)} into the Equation (3.1), we should obtain the proper equation below 

 

- where the expression for  (t) in (2.2) should be simplified in the case of non-

oblateness A₂ = 0 (n = 1): 

 

So, taking into consideration the expression (3.3) for  (t), we obtain from (3.2) 

 

Besides, we should note from (3.4) that the proper restriction below should be valid: 

 

- here {q₁, q₂} (-, 1].  There are two possibilities to solve the equation (3.4): 
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- 1)  first, we assume z (t) to be given as a proper function of parameter t, then 

we should obtain a solution of ODE of the 1-st kind for  (t); 

- 2) or the 2-nd, we assume  (t) to be given as a proper function of parameter t, 

then we should obtain a solution of ODE of the 1-st kind for z (t). 

 

For example, if we choose the 2-nd way of above, we should obtain from (3.4):  

 

 

 

We should note also that the question ‘Will the spiral (*) converge to a fixed point or 

diverge to infinity?’ should be researched additionally, depending on initial data of the 

proper case. So, stability of a spiral motion is an open problem in celestial mechanics.  

 

 

4. Conclusion. 

 

We have obtained a new type of exact solutions for photogravitational restricted three-

body problem [1-3] (the case of spiral motion). 

According to the Bruns theorem [4], there is no other invariants except well-known 10 

integrals for three-body problem (including integral of energy, momentum, etc.). But 

in the case of restricted  three-body problem, there is no other invariants except only 

one, Jacobian-type integral of motion [5-6]. 
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A key point is that we obtain the appropriate specific case of spiral motion from the 

Jacobian-type integral for photogravitational restricted three-body problem (when 

orbit of small 3-rd body is assumed to be like a spiral). Besides, we should especially 

note that there is a proper restriction to the type of spiral orbital motion of small 3-rd 

body, which could be possible for choosing as the exact solution of equations for 

photogravitational restricted three-body problem. 

 

Let us demonstrate the proper asymptotic simplifications of the considered solutions; 

Eq. (3.5) could be simplified if we consider a quasi-planar case of orbital motion:  

 

- where the left side of Equation (4.1) could be transformed to the proper elliptical 

integral [16] in regard to z.  Indeed, if we assume (for example): 

 

- it let us obtain the ordinary differential equation of the 1-st order for  (t), but the left 

side of Equation (4.1) should be transformed to the proper elliptical integral of a 

simple kind [16] in regard to z, as below 
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Or in other case, taking into consideration the assumption {(z/r₁), (z/r₂)} → 0, we 

could additionaly assume: 

 

- then (4.1) let us obtain as below 

 

- where the left side of expression above could be transformed to the proper elliptical 

integral [16] in regard to z only in case of a spiral of screw line type:  (t) = at + c.  

 

The case below should be excluded from the variety of possible solutions: 

 

Indeed, in such a case we could obtain from Eq. (3.5) that component z is under the 

linear dependence on the time-parameter t  (but we assumed: {(z/r₁), (z/r₂)} → 0).   

 

Besides, the appropriate restrictions of meanings of variables should be valid for all 

meanings of parameter t ≥ 0 in (4.1) as below: 
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Under a quasi-planar assumption above: {(z/r₁), (z/r₂)} → 0, it means that the proper 

restrictions at choosing of the spiral factor  (t) should be given as below: 

 

For example, if   (t) ≫ 1 we should obtain for the asymptotical final motions t → ∞ 

(constants are chosen as below):  

 

It means that we should choose a polinomial function with extent of time-parameter t 

less than < 2/3 as the spiral factor for the modelling of a spiral motion in such a case. 

  

 

5. Discussions. 

 

We obtain the appropriate specific case of a spiral motion for photogravitational 

restricted three-body problem from the Jacobian-type integral of motion (when orbit of 

small 3-rd body is assumed to be like a spiral). 

The main result, which should be outlined, is that in a case of quasi-planar orbital 

motion (of the small 3-rd body) the asymptotic expression for component z of motion 

is proved to be given by the proper elliptical integral. But the elliptical integral is 

known to be a generalization of the class of inverse periodic functions. 
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Thus, by the proper obtaining of re-inverse dependence of a solution from time-

parameter we could present the expression of z(t) as a set of periodic cycles. So, the 

meaning of component z(t) is proved to be limited in the proper range of values.  
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