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the Schwartzschild metric and the Kerr metric
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Abstr act

Black holes generally are defined as stellar objedtich do not release any light. The Schwarzsdfaittus, derived
from GRT, defines the horizon radius for non-ratgtblack holes. The Kerr metric is supposed tongethe “event
horizon” of rotating black holes, and this metricderived from generally “acceptable” principlesieTimit for the
Kerr metric's horizon for non-rotating black holeshe Schwarzschild radius.

By analysing the horizon outcome for rotating and-notating black holes, using the Maxwell Analdgy Gravitation
(MAG)B478(or historically more correctly: the HeavistéléAnalogy for Gravitation, often called gravitomatjsm), |
find that the Kerr metric must be incomplete iratign to the definition of “event” horizons of rtiteg black holes. If
the Maxwell Analogy for Gravitation (gravitomagreati) is supposed to be “a good approach” of GRTmag assume
that it is a valid analysis tool for the star honzmetrics.

The Kerr metric only defines the horizons for lightit not the “mass-horizons”. | find both the Highorizons” and the
the “mass-horizons” based on MAG. Moreover, | dédibe equatorial radii of rotating black holes. Tatebable origin
of the minutes-lasting gamma bursts near blackshislainveiled as well. Finally, | deduct the spaloeity of black
holes with a 'Critical Compression Radius'.

The deductions are based on the findings of my igdjed Einstein cheat?’, “On the geometry of rotary stars and
black holes”and“On the orbital velocities nearby rotary stars abthck holes”.
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1. The orbital velocities nearby Rotary Stars and Black Holes.

Introduction: the meaning of mass-horizons.

The horizon can -unhappily- be defined as the atarpossible orbit of masses about the spinninglstarder to find
the horizon's radius in this chapter, | look after orbit which has an orbital velocity of the sp@é light. This horizon
| call the “mass-orbit horizon” or simply the “malserizon”. If the horizon's radius is greater thha star radius, we
can speak of a black hole of the mass-horizon-typat least of a “equator black hole” (or “partiddick-hole”) of the
mass-horizon-type. Indeed, the region of the polespinning stars do not respond to the same rendnts than the
equator, and thus is not emission-free.

Let us look at the bending of objects about stai drbits. Firstly, we have the Newtonian graviatforce.

Secondly, we have the attracting force due to piie af the star. Therefore, we first need to fihd second gravitation
field (“magnetic” part of gravitomagnetism, whatdll “gyrotation”).

From my papefA coherent double vector field theory for Gravitat’, we have the basic equation of the gyrotation

part 2 (“magnetic” part) of gravitomagnetism for spheres

. GmR* (. 3F&F)
Qe U - 532 (w_ = j (1.1)
or, in general:
. GI (. 3FwlF)
Q.u- w- 1.2
ext 2r3c2( r’ ] (42

. N 2 N
wherein we have replaced the inertial moment oktiteerel :ngz by a general inertia momentum

This equation follows from the integration of eqaat(1.5) below, for constant gravity, over the Wéhsphere. The set
of Maxwell equations for Gravitomagnetism is giugnthe equations (1.3) to (1.10) below.

FOom(g+vxQ) (1.3) .90 p/{ (@4 ccOx Q0 j/{+aglot (15)

wherej is the mass flow through a fictitious surface. Térend g/0 t is added for same the reasons such as Maxwell
did: the compliance of formula (2.3) with the eqoat:

divjd -dp/ot (1.6) It is also expected thativ 2=0. Q=0 (1.7)
and [Oxg 0O -0L/0t (1.8)
It is possible to speak of gyrogravitation wavethwiansmission spee]

=1/({r1) (1.9)  wherein r=4nG/c? (1.10).

Equations (1.3) till (1.10) below form a cohereahge of equations, similar to the Maxwell equatiofise electric
charge is then substituted by mass, the magnetidt ffiy gyrotation and the respective constants are also substituted

(the gravitation acceleration is written @s the so-callegyrotation fieldas 2, and the universal gravitation constant
out of G* = 411 {, whereG is the "universal” gravitation constant. We ugmsdll instead of = because the right-
hand side of the equations causes the left-hared $iois signl] will be used when we want insist on the induction
property in the equatiotk- is the resulting force/ the speed of mass' with density0.

Combined with (1.3)F =m' (g + v x Q) , this becomes for the equator plate<0) :
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Gmm' GmlIav Gmm Gmla
F = T+ 5 = — 3 (1.12)
r 2c¢’r r 2cr
whereinV is in this case the velocity of the light= C. The sign fof has been omitted because we consider quantities
here, no vectors.

Gm GIa

Instead of forces, | prefer to use accelerationpuitinga = F/m'. Hence : @ = 2 + 2er’

(1.12)

This acceleration forms a circular orbitdf = V2/r , whereinv is the orbital velocity of the objecWemit = V .

ﬁ_Gm+GIcu

2

r r 2¢r’ (19

By puttingVoi: = €, We can find the orbit radius where the orbibedtly should reach the speed of light. This dedurcti
is purely theoretical, because very probably taseowill lead to a disintegration of the orbitingtter into gamma
rays. For any orbit closer to the black hole, ndatemaorbits will still subsist.

By filling Vorbit = C in (1.12), we get:
zz—Gm+G“2° (1.14)
r 2cr

The positive solution of (1.14)

This equation is quadratic mif we multiply it byr2. And of the two solutions, we only keep the pesitbne:

2
G m G m GIw
r = + + 1.15
MH 9 2 \/(ZCZJ 2¢° (1.15)

Thus, the faster the star spins, the larger théemhbrizon-radius’ = I vy becomes. It is probable that (1.15) gives
the condition of disintegration of matter near msjmg star, due to the high energies involvednasses reaching the
speed of light, and it seems reasonable to takedount this possibility.

And for non-rotating black holes, the orbit rad{osatter horizon) becomes:

Gm _ R, ,
Iy =——> = if w=0 (1.16)
c 2
26 m
which is half the Schwarzschild radids; : R = 5 (2.17)
c

Equation (1.16) means that if an object is orbitiigalmost) the speed of light about a star withmspin, that star
must not be larger than half the diameter of a $chschild black hole.

In the following lines, | simplify (1.15) for fastpinning stars with masses of at least that ofstie Equation (1.15)

becomes after some manipulation:
roo = G m 1+ s+ 21cw
MH 2 cz sz (1.18)= (1.15)

The second term under the root sign is smaller tharhus, knowing that:
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x<<1l = \/1+X:1+;X (1.19)

it follows that:
r _Gm 1+ ITcw . Ica <1 L 20,8 (115
MH Cz Zsz or Zsz Elzog)):( )

The expression (1.20.b) is valid for all the knovatestial objects.

Since the definition of the Schwarzschild radius is

2G' m
Rs = 3 (1.17)
cC
the equation (1.20.a) can be re-written
R, I
Iy = + (1.21)= (1.15)
2 2mc

The equation (1.21) shows that the evolution ofrtfasss-horizon radius is nearly lineardn The faster the star spins,
the wider away from its center the mass-horizontdmecomes. This equation means that no mass wanivs' for that

radius, nor smaller radii. Moreover, when massteras close as the matter-horizon-radius I vy , the orbit speed
must reactC and matter must disintegrate.

The negative solution of (1.14)

Remark that the negative solution of the quadedigation (1.14) does not have yet a clear physieaning here. It
would be quite speculative to associate this egnatith the empty inner space of a torus black hwml this option
merits a closer study.

_Gm (ijz GIw
r= - +

2c? 2c? 2¢3 (1.22)

In my former papefOn the shape of black holes demonstrated, using MAG, the high probabilitytofus black
holes when they spin fast. These two mass-horizoukl signify the confirmation of my earlier findjn

Here, the equations describe the (quite unusualditons of an orbital velocity of matter at theesg of light. In the
discussion chapter, these issues will be furthptagéxed.

In the following lines, | simplify (1.22) for fastpinning stars with masses of at least that ofstie Equation (1.22)
becomes after some manipulation:

G m 2/Icw
r= 1- 1+
2c? G m’

(1.23)= (1.22)
The second term under the root sign is expectée far smaller than 1. Hence, knowing that:
x<<1l = \/1+x=1+;x (1.19)

it follows that for fast spinning stars, the secomalss-horizon becomes:
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I
2mc

Iypy- =~

(1.24)

It might be very possible that equation (1.24) hagphysical meaning. Remark that it is mass-indégen

The torus shape of fast spinning stars

In the papetOn the shape of rotary stars and black holdsieduct that fast spinning stars are torus-sha@ad this
also be deducted from the MAG mass-horizon?

Indeed, in the same paper, | come to the conclusiahwhen particles arrive in the torus' hole, ahéy stable motion
is a circular equatorial orbit which is retrogradethe torus' spin. When looking at (1.24) , thisra surprising minus
sign. And this is perfectly complying with a retrade orbit. When (1.21) and (1.24) are graphicadlgresented
(fig.1.1) , it becomes clear that the two mass#ums (red boundaries) differ only with the width lodlf the

Schwarzschild radius.

b

-lw/(2mc)

>
R/2+lwl(2mc)

Fig.1.1.The spinning star mass-horizons (red lines)

Thus, according to an earlier paper [8] , the state mass-horizon of fast spinning stars isddike, and it can be
expected that such spinning stars are torus-likeediswith a thickness much belofs/2.

This chapter gives the solution for the zone ne#nbyblack hole where matter tends to orbit atsgheed of light.
Before discussing the findings of this chapter mordepth, | first study the general problem of bending of light
nearby black holes.

2. Thebending of light into a circular orbit.

Introduction: the meaning of a light-horizon ane tierr Metric.

Another approach could be the study of the bendinlight by the spinning star. Schwarzschild foumte “event”
horizon for non-rotation black holes by applying TGRVith the Kerr metric, which gives the conditiomsarby black
holes, two horizons are found. Here, | look foribons via the Maxwell Analogy.

Although this chapter seems to be quite identicahé former one, there is an important differemtere, | speak of the

bending oflight in the gyrogravitation field, and not abaugtterin an orbit. And the result of circular light-bend is
called thdight-horizon
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For this purpose, we take the solution which weehfaund in Did Einstein cheat?!, equation (6.14), written in its
general form.

] 2
2mm’+Gmm’ y +Gmmez
2 2 ZVICOS a 22

r 2r'c S5c'r

-F, =G

b.a cos’ ¢ (2.1)

This equation describes the bending of light, tgkim account three forces and thus three termsdbas :1° the
pseudo-gravitational effect for light, which is twimes the value of the Newton gravitati@i;the gyrotation force due

to the orbit velocity of the star in its galaxy ¢ime present case: of the Milky Way, wheaies the angle between the
orbiting object at velocity1 and the axis between the center of the Milky wag the sun) an@° the star rotation (in

the present case: the sun) while the light pastescartain latitudegp . And | found this equation to be far more
accurate than the GRT derivation.

The finding in this derivation was that light istrzent by gravitational effects (because the restavof light is zero),
but only by the gyrotation field of the mass bedirthe light wave itself, traveling in the gravitati field of the star.

The equation (2.1) has been written for light tisegrazing the sun (or any massive object). Thistrbe changed into
an equation that is valid for any distance of tightlto the center of the celestial object anddaoy type of inertial

moment, not only for spherical objects. Below, thif be adapted by starting from the following cepts : the first

term of (2.1) remains valid, the second term wit be considered further and the third term willauapted as said
before.

What specifies the light-horizon of black holes?

In this case, of course, | do not consider the WiNKay's dragging velocity: , which | assume to be insignificant
nearby the black holes we want to study.

Besides staying at the equator level of the stéy, drconsider accelerations instead of forces. tBe, perpendicular
acceleration upon the light becomes, in analogh wduation (1.12), wherein only the Newtonian teaits a double
value :

26m GI1a
a= +

2

2.2
r 2cr’ @2)

Since this acceleration is a bending, thus, raatiakleration, and since we look at the light penfag a circular orbit,
the acceleratior@ is supposed to also comply with the centripetalelerationV2/r, which is a purely geometrical
formula. For light, we replace the speety C.

Hence: c? _2Gm+GIa)
r r’ 2¢r?

(2.3)

By making this equation quadratic in the radiusf the light-horizonr = r mn , we get the following solutions:

Gm |[(6Gm\ GIlw _Gm Tcw
=g T | T O Tw T 1+ 1+W (2.4.a) = (2.4.b)

The second term under the root sign is expectée far smaller than 1. Hence, knowing that:

x<<1 = \/1+X:1+;X (1.19)
we can write this as a positive and a negativetismiu
2G m ITcw Ia (2.5)= (2.4)
Iy, =—7s—| 1+ 7| and rpyy =- if Le az <<1 (2.6) (2.4)
c 8Gm 4mc 26 m (2.7)
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Remark thalrLH_ is independent from the mass. Hence, it is versside that (2.6) has no physical meaning, but it
might have the meaning of a retrograde orbit inliidehole of the torus.

Equation (2.5) also can be written as :

I
4dmc

ry,. =R+

s

(2.8)~ (2.4

wherein Rs is the Schwarzschild radius.
Equation (2.8) is thus describing the bendinggtitibeams in a circular orbit about black holes.

Horizons cannot be defined better than with thisa¢ign. In the discussion chapter, it will becorteacwhy this is so.

b

o

R, RS/2=
-lw/(4mc) < o
R+lw/(4mc)

\ 4

Fig.2.1. The spinning star mass-horizons (red Jiaesd its light-horizon (dark line).

As shown in fig.2.1, the external light-horizoniardeter is always smaller than the external maszdm diameter.

3. Deriving theradius of Pure Black Holes.

Evolution of the Pure Black Hole's radii.

If, as | found, (2.8) describes the horizon of kl&oles, there is a special case which even gogsnbethat result:
when the light-horizon coincides with the star équaa part of the star is invisible, even whenkiog from the poles
to the star, whereas this obscuration was notdke i the former horizons. | speak of “Pure BlHcdhkes” at the limit
where the equator of the star is obscured. Lighhaaescape, and the light horizon is the star tequblence, | can
describe partial black holes, whereof a part issible, even observed from the poles.

To manage this, we need to adapt the parameteguation (2.8) as follows :

For thin rings and thin toruses in genetal; A m R, whereR is the radius at the equatorial level of the siad the
factorA < 1
By puttingrl_H =R, | obtain a circular bending of light upon theuatpr of the star itself.

Since we look for the case whefew ~ C, equation (2.10) can then be replaced by:

__R, (3.1)

B =0 00)

whereinRs is again the Schwarzschild radius.
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We see immediately that, for a ring black hole, mitiee light horizon reaches the ring's radiusfitdkls ring's radius
must have reached about 24& the Schwarzschild radius (the Schwarzschildusdtands for the theoretical spherical
non-rotating black hole).

Note that the value for the spin rate of that FRlexk Hole equals tacv ~ C/ T , as defined earlier.

Remark that the concept of Pure Black Hole is dingoretical. If the spin velocity becomes clos¢hi speed of light,
disintegration of the matter particles is extreny@igbable.

The graphic evolutes as expected: the higher time g smaller the radius of the light circle bees. Equation (3.1)
is beautifully describing the required radius &t gguator level of rotating Pure Black Holes.

>

Fig.3.1The Pure Black Hole's light-horizon and mass-harizo

It is then clear that if | depict this graphicallyget fig.3.1. , wherein | show the light-horizflarge dark boundary) and
the mass-horizons (red boundaries) as well.

Spin velocity of Black Holes at the Critical Congs®n Radius.
In a former papé&, | have deducted the radius of continuous massoesaion at the equator level of spherical stars

(with negligible Newtonian-gravitation influencejhis deduction was based on the gyrotation fieldagiqns for a
sphere, and we use (1.2) in order to obtain a meneral equation. The minus sign signifies “attoact

o.n-¢I [a)_u(wuc)J

. 1.2
¢ 2rct 2 (.2)

r

Hereinr is the distance to the center of the sphlYis, the radius of the sphere atis the spin velocity.
The equatorial compressive gyrotation force is wilg the analogue Lorenz forc®, =« R 2, (3.2)
and the last term of (1.2) is zero in the directobthe spin axis, sd)y =0.

Hence, the acceleration due to gyrotation at theten plane is:

G1
2ric?

a=-w'R (3.3)

At the other hand, we have the following force® tientrifugal force and the gravitation force. Fast spinning stars,
the gravitation force can be neglected, and wetfiad, in general:

Gm GI
=—+WR|1-—— (3-4)
o =72 ( 2r3c2)
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which becomes zero at an equilibrium at the CongmasRadiug = R = Rc .

The angular velocity at which this occurs is givsn

_2 | GAm (3.5)
We=— |7
R\ R, -4R

wherein | have put = A m R2as a simplification. The dimensionless paramdteenerally has a value betwe8n

andl. Remark thaR must comply wittdR < Rs.
When that angular velocity has been reached, aadbthck hole became explosion-free, we call thelkblaole
“Perfect”.

Since in this case, the value of the angular vglois high, the Newtonian gravitation is much smalthan the
gyrotational one. By neglecting the Newtonian gi@tion, we find thad,  is zero, for thin ring-shaped pure black

holes, if:

R =AR, /4 (3.6)
a)C
<>
—
/@
\\
§ - ol R/2 g
R /4

Fig.3.2.The Perfect MAG Black Hole with spin veloaity, when the Critical Compression has been reached.

The non-explosion condition (3.5), valid for alhgishaped stars, defines the exterior radius ofittgeshaped spinning
star for a total continuous compression at the tegiah level. By comparing (3.6) with (3.1), théseno way by finding
a spinning black hole that is simultaneously Puré Berfect. Thus, black holes cannot be at the sangepure, and
explosion-free.

Indeed, the minimum requirements for the perfednrspg black hole, which cannot explode and whicm c
disintegrate orbiting matter, would then be giventhie combination of the metrics, given by fig.342.these metrics
can coexist mathematically.

4. Discussion: Three approaches, three important results.

Orbiting masses at the speed of light.

The first derivation (1.15) for finding horizonsstdted in the search of the orbit of matter travglat the speed of light
about the spinning star. The meaning of this dsbitowever not very clear. Could this be the horinb the star? Not
really, because this equation goes about matttradof light.

On the other hand, is seems to be correct that or@ tight can overpass this boundary, as far asemetffectively
disintegrate at that place.
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r ~R‘+Ia' (1.21)
ME 2 2me '

But when the matter disintegrates, and when itsfcam to gamma rays, these rays obey to other.riiles gamma
rays will be emitted and will —in most of the casemt be cached by the star. The disintegratioanobrbiting object
near such a star will indeed emit enormous gammstdduring seconds or minutes. Such gamma buestsheserved
and (1.21) is very probably the origin of theseesbations. Longer bursts are not likely, becaus#lypéisintegrated
masses become lighter, and will look up slowertsrli@ying at higher distances from the black hole.

Resuming, when one is purely speaking of the carieyent horizon”, which is the circular bendinglgfht, (1.15), or
(1.21) , is not exactly the expected solution.

In the first place, the Kerr metric is in contra@a with (1.15) concerning its horizon conceptcéigse of the doubtful
compliance of horizons with orbiting masses atgpheed of light. From (1.15) follows moreover that fion-rotating
stars the limit radius of the mass-horizon becomes:

K

w=0 = r=

(4.1)=(1.16)
Surprisingly, the Kerr metric is quasi identical(fo15) , apart from a constant factor 2 , whidbwas the Kerr metric
to obtain the Schwarzschild radius as a limitdor 0 . But this seems more to be an artifice.

The conclusion is that the Kerr metric simply hasto be considered as a matter horizon.

The bending of light and the Kerr metric.

More likely, the bending of light should be the mmt approach for defining the concept of “eventizan”. This
happens in (2.8):

Ia
4mc

rLH+ :R +

s

(2.8)

Herein, the Schwarzschild radius is obtained fer ltmit wherew = 0 . As explained before, it seems much more
logical to consider the circular bending of liglsttae correct definition of the event horizon.

The concept of the Kerr metric is in disagreemeit whe solution (2.4) , or (2.8) , but in agreemedth (1.15). The

mathematical expression (2.4) has a very simpleigensisting of a non-rotating term, and a tdimear in &, when
rotation occurs. Of course, the horizon exists @tlthe condition that its radius is larger thaa skar radius.

Comparing both types of horizons

Comparing graphically both equations (1.21) an#l)(8ives the picture (fig. 4.1).

The radius in the upper graphic (circular orbithe speed of light) raises very quickly with insiea spin velocity.
The lower graphic (circular bending of the lighthich is barely increasing, starts at the Schwéibecadius. So, for
black holes with a relatively slow rotation velggithe “light-horizon” is nearly constant at thatnse radius. The
“mass-horizon” graphic however moves immediatelyads higher radii.
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4 Radius

¥ ajud uids

Fig. 4.1.Comparing the radii of matter horizon (MH) and ligiorizon (LH).

A precise calculus shows that for an incoming dbjear a spinning black hole, the matter horizevagt follows after

the light horizon at a fixed distance I8§/2, whatever the spin rate is. This means that wemean see a disintegration
of matter (except by tidal forces) , because firstle limit of the light horizon has to be passelbhwever, since
spinning black holes are torus-like, matter digini¢ion at the matter horizon can be made visibltha side of the
poles of the star.

4. Conclusion.

There exist two types of horizons: the first onbased on the orbital velocities of matter, orlgitat the speed of light,
(called: mass-horizon) and the second is baseteohdnding of light towards a circular orbit (cdlléight-horizon).
Both are purely deducted from the Maxwell Analokgdry for Gravitation (gyrogravitation).

The mass-horizon type has two mathematical solstivhereof the negative signed one isn't totakyacibut which
might represent the inner hole of a torus blacle hdhis would totally comply with our former papbr.an earlier
papef?, | found indeed that fast spinning stars can allytexplode, and that they normally end up in $eshaped
black holes. This first type of horizon (mass-hongallows me to find a very plausible origin ohgaa bursts which
last for several seconds or minutes: the disintegraf mass at the speed of light (which becamesible to the eye)
into gamma rays, which suddenly become then visii#eause the light cannot be bent as much in ¢odemain
captured.

The Kerr metric is almost identical to the MAG ligorizon, in order to get the Schwarzschild ragias limit for
non-rotating black holes.

The MAG light-horizon defines the “event horizorf’ldack holes in its pure form, as the ultimateglar boundary of
visible light about the black hole.

Both horizon types can coexist, but at some venydad very high spin velocities, the light-horizalmscures the mass-
horizon, so that even gamma bursts might totallgd@ured by the spinning black hole, which migbidithese bursts
invisible, unless they can escape via the poleésefing (torus) black hole, as | explained in arlier pape¥.

Beyond these deductions, the radii of spinning rmadtspinning black holes are found, as a spectd oéthe light-
horizon.

Finally, the spin velocity of black holes with contous compression has been found.
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