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ABSTRACT 

 
 The gravitomagnetic vector potential and corresponding gravitomagnetic 
field generated by a rotating sphere with a homogeneous mass density are 
investigated. Outside the sphere both vector potential and field may coincide with 
the results from the ideal dipole model. For the axial gravitomagnetic field inside the 
sphere a new exact expression is derived. 
 More general expressions for both vector potential and field inside the sphere 
are proposed and checked. Their validity is compared with series expansions for the 
equatorial gravitomagnetic vector potential and gravitomagnetic field. Application 

of Stokes’ theorem to the basic gravitomagnetic equation is compatible with the 
ideal dipole result for the gravitomagnetic field at the surface of the sphere. Starting 
from the basic gravitomagnetic equations, the validity of the general internal 
gravitomagnetic field is confirmed. Observations of two LAGEOS satellites, Gravity 
Probe B mission and planned ring-laser experiment are shortly discussed. 
 Starting from the Maxwell equations, the present treatment can also be 
applied to the electromagnetic case. Analogous results are found for the 
electromagnetic vector potential and the electromagnetic field. 

 
1. INTRODUCTION 

 

 The analogy between the magnetic field generated by moving charge and a so-

called "magnetic-type" gravitational field generated by moving mass has been noticed by 
many authors. For this reason, e.g., Heaviside [1], Singh [2], and Cattani [3] already 

proposed Maxwell-type gravitational equations. Several deductions of the gravito-

magnetic equations, analogous to the Maxwell equations, has been introduced later on in 

the development of the theory of general relativity. Starting from the Einstein equations 
in the slow motion and weak field approximation, Peng [4], Biemond [5, 6, 7], Ruggiero 

and Tartaglia [8] and many others deduced a set of four differential equations. 

 In the stationary case the gravitomagnetic field B can be obtained from the 
following gravitomagnetic equations [5, 6, 7] 

Equation Section (Next) 

 
1

214 and 0,c G     B v B  (1.1) 

 

where v is velocity and ρ is the density of a mass element dm =  dV. Choosing a 
dimensionless constant β in (1.1), the field B obtains the dimension of a magnetic 

induction field. Depending on the definition of the field B, different values for the 

dimensionless constant β of order unity have been introduced in the past (see ref. [7, p.7] 
for a discussion of this point). Moreover, alternative choices for the dimension of the field 

B are mathematically possible, leading to other dimensions for β. It is noticed that 

Gaussian units are used throughout this paper. 

 Since .B = 0, the field B can be derived from a gravitomagnetic vector potential 

A (B = ×A). The field B can be derived in a similar way as in the corresponding 
electromagnetic case (see, e.g., Landau and Lifshitz [9, § 43 and § 44])). For a massive 

rotating sphere with angular momentum S the following expression satisfies to (1.1) 
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Here R is the position vector from the centre of the sphere to the field point F, where the 

vector potential A is measured (R is the corresponding scalar value of R). This expression 
applies when R is much larger than the radius r0 of the sphere, but it displays the flaw of a 

singularity at R = 0. Special attention will be paid in this work to the vector potential A 

inside the sphere. Moreover, the case R ≈ r0 will be investigated. 

 The angular momentum S of the sphere with total mass m in (1.2) is given by 
 

 22
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where ω is the angular momentum vector (ω = 2π  ν is the angular velocity of the sphere 

and ν is its rotational frequency), I is the moment of inertia of the sphere and fs is a 
dimensionless factor depending on the homogeneity of the mass density ρ of the sphere. 

For a homogeneous mass density fs = 1, but when the mass density is greater near the 

centre of the sphere fs will be less than unity value. In this work the former case will be 

considered. 
 The expression for A in (1.2) can be rewritten in terms of the gravitomagnetic 

dipole moment M defined by 
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Insertion of (1.4) into (1.2) then yields 
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For R ≥ r0 this expression represents the gravitomagnetic vector potential A of an ideal 

dipole, located in the centre of the sphere. Combining (1.3) and (1.4) leads to the relations 
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Combination of (1.5) and (1.6) yields the following components for the vector potential A 
expressed in spherical coordinates (R, θ and φ) 

 

 
1

2 2

0

2 2

sinsin
0, 0 and ,

5
R

G m rM
A A A

R cR
 

  
      (1.7) 

 
where θ is the angle between the directions of the vectors S and R. 

 Subsequently, the components of the gravitomagnetic field B in spherical 

coordinates can be calculated from B = ×A 
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Insertion of (1.7) into (1.8) leads to the following expressions for BR and Bθ 
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By combining (1.9) and (1.10) the following vector expression for the field B follows 
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Note that this equation is completely analogous to the corresponding electromagnetic 

relation. At large distance R from the centre of the sphere, the gravitomagnetic field B is 

adequately described by the dipole field of (1.11). In the vicinity of the sphere, however, 
deviations may occur. The dipole model is not generally valid within the sphere and fails, 

when R approaches to zero value. Since observational tests are often carried out near or at 

the surface of the sphere, special attention is paid to the region R ≈ r0 in this study. 
 A first measurement of Earth’s gravitomagnetic field B has been performed by 

Ciufolini et al. [10–13] by analysing the precession of the orbits with R ≈ 1.9r0 of two 

artificial satellites: LAGEOS (laser geodynamics satellite) and LAGEOS 2. The satellites 

can be regarded as gyroscopes with an angular momentum Sorbit, which is subjected to 
Earth’s gravitomagnetic field B (and its gravity field). The precession of Sorbit around 

field B is called the Lense-Thirring precession. Another spacecraft, Gravity Probe B, 

equipped with a set of four spherical gyroscopes, was launched in a polar orbit with R ≈ 
1.1r0 around the Earth in 2004. Last year, the observed precessions of the gyroscopes, 

depending on the gravitomagnetic field B were published by Everitt et al. [14]. A 

comparison of observed and theoretical results of both missions has been given by 
Biemond [15]. In addition, Bosi et al. [16] are planning an underground ring-laser 

experiment for the observation of Earth’s gravitomagnetic field B. Using a tri-axial laser 

detector, they will try to separate the gravitomagnetic precession rate and the geodetic 

precession rate of the light probe from Earth’s rotation rate. 
 It has previously been proposed [5–7, 15, 17–19], that the gravitomagnetic field B 

= B(gm) generated by rotating mass and the electromagnetic field B(em) due to moving 

charge may be equivalent. Application of this special interpretation of the gravito-
magnetic field results in the deduction of four new gravitomagnetic precession 

frequencies, which have been identified with observed low frequency QPOs [18] for 

pulsars and black holes. Predictions of the proposed model were compared with observed 

low frequency QPOs of the pulsars SAX J1808.4–3658, XTE J1807–294, IGR 
J00291+5934 and SGR 1806–20. The results seem to be compatible with the presented 

model. Moreover, similar results have been obtained for the stellar black hole XTE 

J1550–564 and the supermassive black hole Sgr A* [19]. The proposed interpretation is 
in contradiction with the results reported from Gravity Probe B and LAGEOS satellites. 

 Starting from a rotating circular torus with homogeneous mass density, truncated 

series expansions for the φ-component Aφ of the vector potential A of a rotating sphere 
have recently been calculated [15] for the whole interval from R = 0 to R → ∞. In section 

2 of this work the latter result is compared with the proposed, internal (i.e., 0 ≤ R ≤ r0) 

vector potential Aint for a sphere. In section 3 a quantitative derivation is given for the 

internal axial gravitomagnetic field Bint, ax. Two limiting cases (R → 0 and R = r0) follow 
from this new formula for Bint, ax. In section 4 a general expression for the internal 

gravitomagnetic field Bint is proposed and checked. Application of Stokes’ theorem to 

(1.1a) in section 5, leads to an alternative calculation of component Bθ of the 
gravitomagnetic field B for R = r0. In section 6 the electromagnetic vector potential 

A(em) and electromagnetic field B(em) are given and discussed. In section 7 the 

properties of the gravitomagnetic field B at different values of R are discussed. Finally, in 
section 8 a comparison with observations is given and conclusions are drawn. 
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2. THE GRAVITOMAGNETIC VECTOR POTENTIAL A 

 

 The external vector potential A given in (1.5) applies to the range R ≥ r0. For the 
interval 0 ≤ R ≤ r0 the following important vector potential A of the sphere, Aint, will 

firstly be postulated 
Equation Section (Next) 
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This relation can, however, be checked for several limiting cases. As a simple example, 
for R = r0 (2.1) reduces to (1.5), representing the external (R ≥ r0), gravitomagnetic vector 

potential of an ideal dipole. 

 Utilizing (1.6), the component Aφ, int can be found from (2.1) (compare with (1.7)) 
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whereas the components AR, int and Aθ, int are zero. For small values of R the equatorial 

component Aφ, int of (2.2) (i.e., θ = 90º), denoted by Aφ, int, eq, reduces to 
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This linear relationship between Aφ, int, eq and R can also be derived by a more simple 

calculation [15]. Note that Aφ, int, eq reduces to zero value in the limiting case R → 0. The 
validity of (2.2) in the equatorial plane (i.e., θ = 90º) will further be discussed below. 

 

 In order to find a rigorous derivation of the component Aφ of the sphere for the 
range 0 ≤ R ≤ ∞, we now first calculate the component Aφ'  for a circular torus containing 

a total mass dm = ρdV (ρ is the homogeneous mass density of the torus). The derivation 

of Aφ'  follows from a method given by Jackson [20]. As an example, a torus lying in an 
x'-y' plane at distance s from the origin O' is chosen, as shown in figure 1. The x'-y' plane 

is parallel to the x-y plane through the centre O of the sphere. A radius vector R' from O' 

to a field point F is fixed by the spherical coordinates R', θ' and φ' = 0. At field point F, 

the mass current dm/dt = dm ν (ν is the frequency of the mass current) in the torus 
generates the following azimuthal component of the vector potential A in the y direction, 

i.e. Aφ' (R', θ') 
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where K(k) and E(k) are complete elliptic integrals of the first kind and second kind, 

respectively. See for the properties of these integrals, e.g., [21, § 2.57, § 8.11–§ 8.12]. The 

modulus k of the elliptic integrals is given by 
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A number of limiting cases for Aφ' (R', θ') can be distinguished. When θ' ≈ 0, R' >> s, or s 

>> R', k
2
 is small. Then, Aφ' (R', θ') of (2.4) reduces to relative simple expressions. For k = 1 
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K(k) and Aφ' (R', θ') become infinite. We will now first consider the limiting case θ' ≈ 0. 

Subsequently, an example of R' >> s, or R' → ∞ with F in the x-y plane (i.e., the 

equatorial plane) will be considered. 

 

 
 

Figure 1. Spherical coordinates R', θ' and φ' = 0 of a field point F relative to the origin O'. A point 

mass δm in a torus is located in the x'-y' plane at coordinates s and φ' = φ'. The total mass dm of the 

torus is given by ∑δm = dm = ρdV = 2πρsrdφdr. The angular velocity vector of the sphere is 

given by ω. The distance OP = R denotes a position below or at the pole of the sphere. 

 
 In the limiting case θ' ≈ 0, the value of k

2
 is small and the expression between 

parentheses in (2.4), denoted by F(k), reduces to 
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Combination of (2.4)–(2.6) then yields for Aφ' (R', θ') (compare with Jackson [20]) 
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where the relation ω = 2π  ν has been inserted. When a field point P is chosen in the 

vicinity of the rotation axis, the angle θ' and Aφ' (R', θ') approach to zero value. According 

to (1.8a), however, the gravitomagnetic field BR' (R', θ') need not to be zero (in section 3 
the latter field is calculated). 

 When values of θ' >> 0 occur, the approximate value of F(k) in (2.6) is no longer 

valid and a series expansion of F(k) in terms of k
2
 is possible. Such an evaluation up to the 

terms in k
14

, has recently been performed [15] for field points F, lying in the equatorial 

plane of the sphere (i.e., the x-y plane in figure 1). In this calculation the parameters R', θ' 

and s occurring in (2.4) and (2.5), are replaced by the coordinates R, r and φ, where 
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In addition, the following relations are used 
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The obtained double integral depending on φ and r is first integrated over φ from φ = 0 to 

φ = π. Subsequently, the remaining integral is integrated over r from r = 0 to r = r0. The 
following complicated result for the equatorial component Aφ, denoted by Aφ, eq, of the 

sphere is then obtained [15] 
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This results applies to the whole interval from R = 0 to R → ∞. For very large values of R 

the r. h. s. of Aφ, eq in (2.10) reduces to the external φ-component Aφ, ext, eq 
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This relation coincides with the ideal dipole result of (1.7c) for θ = 90º. It is noticed, that 

apart from the term in (r0/R)
2
 in (2.11) the series expansion of Aφ, ext, eq in (2.10) also 

produces terms in (R/r0)
2
, R/r0, real numbers, r0/R, (r0/R)

2
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4
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6
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and (r0/R)
8
, but their sums all cancel (higher order terms than (r0/R)

8
 have not been 

calculated). Only the term in (r0/R)
2
 survives in the performed calculation. 

 In addition, the r. h. s. of Aφ, eq in (2.10) for the interval 0 ≤ R ≤ r0 can be rewritten 
as (terms up to (R/r0)

7
 have been calculated) 
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Apart from the terms in R/r0 and (R/r0)

3
, all terms of the truncated series expansion, like 

terms in (R/r0)
2
, (R/r0)

4
, (R/r0)

5
, (R/r0)

6
 and (R/r0)

7
 reduce to zero value. Moreover, the 

coefficient 11/10 of the surviving term in (R/r0)
3
 will decrease, when terms higher than 

seventh order in R/r0 are taken into account in an extended calculation of (2.10). 

 The postulated formula for Aφ in (2.2) reduces for θ = 90º to the following 

expression for Aφ, int, eq (see also comment to (2.3)) 
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Table 1. The terms T1 through T7 of Aφ, eq from the r. h. s. of (2.10) are given, expressed in units 

of –βc – 1G½mω, for different values of R, expressed in units of r0. In addition, the sum of the 

seven contributions to Aφ, eq, S, again in units of –βc – 1G½mω, is added. Moreover, the values of 

Aφ, int, eq from (2.13), E (educated guess), and Aφ, ext, eq from (2.11), D (ideal dipole model), in units 

of –βc – 1G½mω, are also given for values of 0 ≤ R ≤ r0 and R ≥ r0, respectively. The ratio S/D in 

percent is added, too. See also text. 
 

Term 

number 
R = 0 R = 0.1r0  R = 0.2r0  R = 0.3r0  R = 0.4r0  R = 0.5r0 

1 0 +0.0312469 +0.0432267 +0.0472507 +0.0475916 +0.0461814 

2 0 +0.0106746 +0.0221416 +0.0289268 +0.0319998 +0.0326946 

3 0 +0.0039251 +0.0116314 +0.0178846 +0.0215995 +0.0231816 

4 0 +0.0016328 +0.0065119 +0.0115847 +0.0151783 +0.0170706 

5 0 +0.0007711 +0.0387613 +0.0078341 +0.0110629 +0.0130061 

6 0 +0.0004101 +0.0243873 +0.0054966 +0.0083107 +0.0101881 

7 0 +0.0002419 +0.0161256 +0.0039804 +0.0064011 +0.0081623 

S 0  +0.0475115 +0.0865397 +0.1153536 +0.1333668 +0.1415765 

E 0 +0.0497 +0.0976 +0.1419 +0.1808 +0.2125 
 

Term 

number 
R = 0.6r0 R = 0.7r0 R = 0.8r0 R = 0.9r0 R = r0 R = 1.1r0  

1 +0.0439672 +0.0414333 +0.0388319 +0.0362936 +0.0338831 +0.0316289 

2 +0.0319887 +0.0305148 +0.0286632 +0.0266683 +0.0246673 +0.0227371 

3 +0.0232930 +0.0224948 +0.0211883 +0.0196387 +0.0180121 +0.0164081 

4 +0.0176020 +0.0172096 +0.0162614 +0.0150233 +0.0136719 +0.0123166 

5 +0.0137516 +0.0136112 +0.0129059 +0.0118903 +0.0107422 +0.0095756 

6 +0.0110365 +0.0110579 +0.0105239 +0.0096726 +0.0086792 +0.0076589 

7 +0.0090516 +0.0091792 +0.0087701 +0.0080442 +0.0071716 +0.0062674 

S +0.1421401 +0.1374703 +0.1296533 +0.1202518 +0.1103271 +0.1005433 

D     +0.2 +0.1652893 

E +0.2352 +0.2471 +0.2464 +0.2313 +0.2  

S/D(%)     55.16 60.83 
 

Term 

number 
R = 1.2r0 R = 1.3r0 R = 1.4r0 R = 1.5r0 R = 1.6r0 R = 1.7r0 

1 +0.0295400 +0.0276142 +0.0258439 +0.0242189 +0.0227277 +0.0213588 

2 +0.0209182 +0.0192289 +0.0176746 +0.0162528 +0.0149571 +0.0137787 

3 +0.0148825 +0.0134640 +0.0121641 +0.0109843 +0.0099202 +0.0089644 

4 +0.0110212 +0.0098192 +0.0087249 +0.0077414 +0.0068650 +0.0060884 

5 +0.0084579 +0.0074247 +0.0064918 +0.0056623 +0.0049326 +0.0042952 

6 +0.0066805 +0.0057809 +0.0049757 +0.0042680 +0.0036536 +0.0031248 

7 +0.0054007 +0.0046085 +0.0039061 +0.0032960 +0.0027736 +0.0023305 

S +0.0912805 +0.0827297 +0.0749623 +0.0679783 +0.0617383 +0.0561829 

D +0.1388889 +0.1183432 +0.1020408 +0.0888889 +0.078125 +0.0692042 

S/D(%) 65.72 69.91 73.46 76.48 79.03 81.18 
 

Term 

number 
R = 1.8r0 R = 1.9r0 R = 2.0r0 R = 2.5r0 R = 3.0r0 R = 10r0 

1 +0.0201015 +0.0189453 +0.0178807 +0.0136599 +0.0107457 +0.0015747 

2 +0.0127084 +0.0117364 +0.0108537 +0.0074995 +0.0053622 +0.0003321 

3 +0.0081080 +0.0073417 +0.0066565 +0.0041702 +0.0027153 +0.0000717 

4 +0.0054028 +0.0047989 +0.0042676 +0.0024285 +0.0014420 +0.0000163 

5 +0.0037410 +0.0032607 +0.0028451 +0.0014727 +0.0007982 +0.0000039 

6 +0.0026721 +0.0022861 +0.0019577 +0.0009228 +0.0004570 +0.0000010 

7 +0.0019572 +0.0016440 +0.0013820 +0.0005938 +0.0002688 +0.0000002 

S +0.0512453 +0.0468582 +0.0429577 +0.0289126 +0.0206161 +0.0019838 

D +0.0617284 +0.0554017 +0.05 +0.032 +0.0222222 +0.002 

S/D(%) 83.02 84.58 85.92 90.35 92.77 99.19 
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Compared to (2.10), this choice for Aφ, int, eq implies that all terms (R/r0)
n
 with n > 8 in 

(2.10) are supposed to be zero. Moreover, the additional contributions to the term in 

(R/r0)
3
 have to converge to a total term 3/10(R/r0)

3
, instead of the term 11/10(R/r0)

3
 

obtained in (2.12). 
 The right hand side of (2.10) contains seven terms between parentheses, denoted by 

T1 up to T7. For increasing values of R in the interval 0 ≤ R ≤ 10r0 the separate values of 

these terms have been given in table 1, expressed in units of –βc
– 1

G
½
mω. Moreover, the 

sum S of these seven terms has also been added. In addition, the values of the vector 

potential Aφ, int, eq from (2.13), denoted by E (educated guess), and again expressed in units 

of –βc
– 1

G
½
mω, have been given for the interval 0 ≤ R ≤ r0. Finally, the values of Aφ, ext, eq 

from (2.11) for an ideal dipole, denoted by D and given in units of –βc
– 1

G
½
mω for the 

interval r0 ≤ R ≤ 10r0 have been included. The absolute value of the ratio S/D in percent is 

also added to table 1. It appears that the values of D are always more negative than those of 

S. For values of R ≥ 10r0 both values coincide within 0.8%. 
 In figure 2 the terms T1, T2, T3, T5, T7, the sum S, and the vector potential E have 

been plotted against increasing values of R. The T1 curve accurately describes the 

behavior of the vector potential Aφ, eq for the limiting cases R → 0 and R → ∞. It can be 
seen from figure 2, that the maximum values for T1 up to T7 shift to higher values of R. 

The S versus R curve illustrates the more accurate overall behaviour of Aφ, but is still a 

rough approximation. The result for S would improve when more terms in the series 
expansion of (2.10) would have taken into account, but their calculation is too 

cumbersome. The S versus R curve can be compared with E versus R curve from (2.13) 

for the interval 0 ≤ R ≤ r0  Calculation from (2.13) shows, that maximum value of the E 

occurs for R = ⅓(5)
½

r0= 0.7454r0. The D versus R curve from (2.11) for the interval r0 ≤ 
R ≤ 2r0 has also been given. For R = r0 the functions E and D are equal and continuous 

(∂Aφ, eq/∂R = –2M/R
3
). The area between the S curve one side and the E and D curves on 

the other side may reflect our uncertainty. 
 

 

   R 

 

Figure 2. Values of the terms T1, T2, T3, T5, T7 and the sum S of the terms T1 through T7 of Aφ, eq 
from (2.10), all expressed in units of –βc – 1G½mω, have been plotted against increasing values of 

R, in units of r0. In addition, the vector potential E from (2.13) and the ideal dipole value D from 

(2.11) have been plotted in the same way. The values of E are given for the interval 0 ≤ R ≤ r0, 

whereas those for D are shown for the interval r0 ≤ R ≤ 2r0. See also text. 
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3. THE INTERNAL AXIAL GRAVITOMAGNETIC FIELD Bint, ax OF A SPHERE 

 

 Starting from the potential Aφ' (R', θ') of (2.7), the internal (i.e., 0 ≥ R ≥ r0) 
gravitomagnetic field at a field point F, located on the rotation axis, will be calculated in 

this section. Application of (1.8a) to this approximated (i.e., θ' ≈ 0) expression yields the 

radial component BR' (R', θ') for the gravitomagnetic field, due to a torus with radius s and 
mass dm 

Equation Section (Next) 

 
 

1
2

5
2

2 2 2

2 2

2 2 sin cos
( , ) .

2 ( 2 sin )
R'

G dm s s R' sR' ' '
B R' '

c s R' sR' '

   




  


 
 (3.1) 

 

When the angle θ' in (3.1) reduces to zero, the field point F shifts to the rotation axis of 

the sphere, or z-axis (see figure 3a). Eq. (3.1) then simplifies to 
 

 

1
2

3
2

2

2 2
( , ) .

( )
R'

G dm s
B s R'

c s R'

 



 (3.2) 

 

Note that the field BR' (s, R') has always a negative sign for the choice β = +1. The mass of 
the torus dm in (3.2) can be written as 

 

 2 | |.dm dV sds dR'    (3.3) 

 
Substitution of (3.3) and (2.9b) into (3.2) yields 

 

 
1

2

3
2

3

3 2 2

0

3 | |
( , ) .

2 ( )
R'

G m s ds dR'
B s R'

cr s R'

 



 (3.4) 

 

When BR' (s, R') is integrated over s from s = 0 to s = s0, one obtains 
 

 
1

2
1

2

1
2

2
2 2

03 2 2

0 0

3
( ) ( ) 2 | |.

2 ( )
R'

G m R'
B R' s R' R' dR'

cr s R'

   
    

 

 (3.5) 

 

BR' (R') represents the field at distance R' from a disk with radius s0 and a thickness of 

|dR' |, acting at the field point F located on the rotation axis (see figure 3a and 3b). 
 We now first calculate the contribution to the radial field, denoted by BR(low), 

from the lower part of the sphere (i.e., the part of the sphere below the plane through 

point F and perpendicular to the direction of the angular momentum vector ω (see figure 
3a)). In that case, (3.5) can further be evaluated by utilizing the following relations 

 

 
0 0 0 0sin , cos and | | sin ,s r R' r R dR' r d        (3.6) 

 
where the distance OF is replaced by R (0 ≥ R ≥ r0, see figure 3a). Insertion of (3.6) into 

(3.5), followed by integration over φ from φ = 0 to φ = φ0 (cosφ0 = – R /r0) yields for BR, low 

 
3 51

2 22 3 2 2 2 2 5 2

0 0 0 0 0 0
, low 3 2 3 3

0

( )( ) ( ) ( ) ( ) 3( )
.

2 5 5 2
R

r R r R r R r R r R r RG m
B

cr R R R R

         
     

  

 (3.7) 

 

In the integration over φ the quantity R has been considered as a constant parameter. The 
field BR, low, acting at point F, represents the field from the lower part of the sphere. 
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Figure 3. Calculation of the axial gravitomagnetic field BR, int, ax at field point F, located on the 

rotation axis. The calculation starts with the gravitomagnetic field BR' (R', θ') of (3.1) for a torus 

with radius s and mass dm at a position with coordinates R' and θ' near the rotation axis (see figure 

3a). Subsequently, the field BR'(R') of (3.5) at point F (OF = R) at distance R' from a disk with 

radius s0 and a thickness of |dR'|, is calculated. Finally, by integrating over φ from φ = 0 to φ = φ0 

the field BR, low of (3.7) is obtained, representing the total field of the sphere minus the upper part 

above the field point F (see figure 3a). Likewise, using figure 3b, the field BR, high of (3.9) of the 

upper part can be found. The sum BR, int, ax = BR, low + BR, high is given by (3.10a). 

 

 The part of the sphere above the plane through point F and perpendicular the 

direction of rotation axis or z-axis (see figure 3b) also contribute to the radial field and 
will be denoted by BR, high. The distance OF is again replaced by R. In order to calculate 

BR, high, expression (3.5) can be used as starting point. This equation can be evaluated by 

utilizing the relations 
 

 
0 0 0 0sin , cos and | | sin .s r R' r R dR' r d        (3.8) 

 

Insertion of (3.8) into (3.5), followed by integration over φ from φ = 0 to φ = φ0 (cosφ0 = 
R /r0) yields the field BR, high 

 
3 51

2 22 3 2 2 2 2 5 2

0 0 0 0 0 0
, high 3 2 3 3

0

( )( ) ( ) ( ) ( ) 3( )
.

2 5 5 2
R

r R r R r R r R r R r RG m
B

cr R R R R

         
     

  

 (3.9) 

 

 The total radial field of the sphere BR, int, ax, acting at field point F on the rotation 

axis, is given by the sum BR, int, ax = BR, low + BR, high from (3.7) and (3.9), respectively. 
Calculation yields for BR, int, ax, and for the internal axial gravitomagnetic field Bint, ax 

 

 

1
2 2 2

, int, ax int,ax2 3 2

0 0 0 0

3 5 3
1 , or 1 .

5 5
R

G m R R
B

cr r r r

     
       

   

M
B  (3.10) 

 
To my knowledge, this exact expression for the internal, axial gravitomagnetic field Bint, ax 

has been derived here for the first time. 

 Two limiting values for Bint, ax follow directly from (3.10): firstly, the field in the 

centre of the sphere, Bc, and secondly, the field at the poles of the sphere, Bp 
 

 

1 1
2 2

c p3 3

0 0 0 0

5 2 2
and .

5

G m G m

cr r cr r

 
     

ω M ω M
B B  (3.11) 
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φ
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dm
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ds 
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r0 

z b 

φ

  

R' 
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The latter results can be found more easily [15]. Note that the polar gravitomagnetic field 
Bp appears to coincide with the field from the ideal dipole approximation for R = r0 

(compare with (1.9)). Moreover, the result for Bc of (3.11) shows no singularity at R = 0, 

whereas the ideal dipole model of (1.9) and (1.10) displays such a flaw. 
 

4. THE INTERNAL GRAVITOMAGNETIC FIELD Bint OF A SPHERE 

 
 In order to find the general expression for the internal gravitomagnetic field Bint of 

a sphere, we start from the postulated expression for the gravitomagnetic vector potential 

Aint of (2.1) (see (2.2) for Aφ, int). Application of (1.8) to (2.2) yields for BR, int and Bθ, int, 

respectively 
Equation Section (Next) 

 
2

, int 3 2

0 0

cos 3
5 ,R

M R
B

r r

  
  

 

 (4.1) 

 

 
2

, int 3 2

0 0

sin 6
5 .

M R
B

r r


  
   

 

 (4.2) 

 
In addition, from AR, int = Aθ, int = 0 follows that Bφ, int = 0. It is noticed, that Bθ, int has 

remarkable properties. For example, for any value of θ this component reduces to zero for 

R = (5/6)
½

r0= 0.9129r0. As a consequence, BR, int is the only surviving component in this 
case, so that the direction of Bint is then always perpendicular to the surface of the sphere. 

In addition, Bθ, int of (4.2) reduces to + Msinθ/r0
3
 for R = r0 and to – Msinθ/r0

3
 for R = 

(2/3)
½

r0 = 0.8165r0. 
 Combination of (4.1) and (4.2) yields the following general relation for field Bint 

for the interval 0 ≤ R ≤ r0 

 

 
2

int 3 2 5 3

0 0 0 0

6 3
1 .

R

r r r r

   
      

   

M M R M
B R  (4.3) 

 

Although this general relation follows from the postulated vector potential Aint of (2.1) 

(see (2.2) for Aφ, int), several limiting cases can rigorously be deduced. For example, the 
formula for the axial gravitomagnetic field Bint, ax from (3.10b) follows from (4.3). As a 

consequence, both the expression for the field in the centre of the sphere Bc and the polar 

field Bp in (3.11) follow from (4.3). 
 Moreover, for the equatorial field Bint, eq follows from (4.3) 

 

 

1
22 2

int, eq 3 2 2

0 0 0 0

5 6 6
1 1 .

5 5

R G m R

r r cr r

   
      

   

M ω
B  (4.4) 

 

This result can also more directly be calculated from (1.8b) and (2.13). In addition, Bint, eq 

reduces to the ideal dipole result for R = r0 

 

 

1
2

int, eq 3

0 0

.
5

G m

r cr


  

M ω
B  (4.5) 

 
 Alternatively, one may start from the truncated series expansion for Aφ,eq of (2.10). 

This results applies to the whole interval from R = 0 to R → ∞. By applying (1.8b) to 

(2.10) the corresponding truncated series expansion of the equatorial gravitomagnetic 
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field Beq has previously been obtained [15]. In addition, in this work graphical 

representations of Beq, corresponding to, e.g., term T1, sum S for Aφ, eq and the present 

figure 2, have been given. Utilizing (1.8b) a series expansion for Bint, eq, up to terms in 

(R/r0)
6
, can be obtained from (2.12) for the interval 0 ≤ R ≤ r0 

 

 

1
22 2

int, eq 3 2 2

0 0 0 0

5 22 22
1 1 .

5 5

R G m R

r r cr r

   
      

   

M ω
B  (4.6) 

 

Note that only terms in (R/r0)
0
 and (R/r0)

2
 survive. In a series expansion more extended 

than Aφ, eq in (2.12) the value of the coefficient 22/5 in (4.6) will reduce to a lower value, 

perhaps to the coefficient 6/5 in (4.4). Since the calculation of such an extension is too 
cumbersome, it has not been carried out. The difference between (4.4) and (4.6) reflects 

our uncertainty, although the coefficient might even be lower than 6/5. 

 For the limiting case R → ∞, application of (1.8b) to the truncated series expansion 
for Aφ, eq of (2.10) leads to the following expression for the external, equatorial field Bext, eq 

 

 
1

2 2

0
ext, eq 3 3

.
5

G m r

R cR


  

ωM
B  (4.7) 

 
This relation coincides with the required ideal dipole result from (1.11) 

 The validity of (4.3) can be tested in another way. Utilizing (1.4) and (2.9b), it can 

be shown, that the components BR, int of (4.1) and Bθ, int of (4.2) are solutions of the basic 
gravitomagnetic equations (1.1). In this way, the validity of the new formula (4.3) is 

confirmed! 

 

5. CALCULATION OF Bθ FOR R = r0 , USING STOKES’ THEOREM 

Equation Section (Next) 

 As an alternative method to calculate the component Bθ of the gravitomagnetic 

field B for R = r0, one may use Stokes’ theorem. We consider a mass current ρv in (1.1a) 
flowing through a surface bounded by the closed curve OABCO denoted in figure 4. 

Application of Stokes’ theorem to (1.1a) to this surface yields 

 

 
1

2

3

0

3
( ) ,

A B C O

O A B C

G m
d d d d d d d

cr


                    B S B s B s B s B s B s v S  (5.1) 

 

where (2.9b) has been used to rewrite the right hand side of (5.1). Note that the directions 

of the velocity v and the surface element dS coincide. 

 Utilizing the rigorous result for the internal, axial gravitomagnetic field Bint, ax 
gravitomagnetic field of (3.10), relation (5.1) can further be evaluated. One obtains 

 

 

1 102 2

2

2 3 2

0 0 00 0

8 3 2 10
sin .

rB C

A B

M G m G m M
d d d R dR

r cr c r


   

            B s B s  (5.2) 

 

Note that the integrations over the intervals OA and CO are equal. The two integrations 

left in (5.2) have to be carried out over the semi-circle ABC with radius r0. They can be 
calculated by introduction of the Bθ component of the gravitomagnetic field B for R = r0. 

Equation (5.2) then transforms into 

 

 
0 2

00

2
.

M
B r d

r



    (5.3) 
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Different expressions for Bθ may be compatible with (5.3). For example, the following 

one is possible 

 

 
3

0

sin
.

M
B

r



  (5.4) 

 

This relation for Bθ agrees with relation (1.10), representing the field of the ideal 
gravitomagnetic dipole. It is noticed that a related application of Stokes’ theorem has 

previously been given [15] for a closed surface outside the sphere. 
 

 
 

Figure 4. Application of Stokes’ theorem to the closed red curve OABCO in the y-z plane through 

the centre of the sphere O. S denotes the angular momentum of the sphere and M is its gravito-

magnetic moment. The angle between S and the position vector R is denoted by θ. Bθ is the θ-

component of the gravitomagnetic field B along the semi-circle ABC with radius r0. The red 

arrows denote the direction of the line elements ds in which the closed curve is traversed. 
 
 It is stressed that alternatives to relation (5.4) are mathematically possible. As an 

arbitrary example, the following possibility is chosen 
 

 3 2

32

0 0 0

sin
1 sin ,

n n

R R M
B a a

r r r





     
      

     

 (5.5) 

 
where a is a dimensionless constant. It has previously been calculated [15] that terms up 

to (R/r0)
6
 cancel, but higher order terms like (R/r0)

n
 with n ≥ 7 might contribute to Bθ. It 

can easily be shown, that Bθ of (5.5) also satisfies to (5.3). In the limiting case R = r0 and 
θ = 90º, (5.5) reduces to 

 

  1

32

0

1 .
M

B a
r

    (5.6) 

 

For a positive or negative value of a the field Bθ deviates from the ideal dipole result of 
(5.4). In view of the truncation of the series expansion of (2.10), such a deviation cannot 

be excluded for the field Bθ calculated in this section. 

 
6. THE ELECTROMAGNETIC VECTOR POTENTIAL A(em) AND THE 

ELECTROMAGNETIC FIELD B(em) 

Equation Section (Next) 
 Analogous to (1.1), the electromagnetic field B = B(em) in the stationary case can 

be obtained from the following Maxwell equations (see, e.g., [9, § 26 and § 30]) 

 

Bθ 

A 

ro 

R 
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M

n
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m
B O 
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 1

e4 and 0,c    B v B  (6.1) 

 

where v is velocity and ρe is the density of a charge element dq = e dV. Comparison of 

(1.1) and (6.1) shows that the factor –βG
½ has been replaced by +e. Note that B = 

B(em) has the dimension of a magnetic induction field. 

 Since .B = 0, the field B can be derived from an electromagnetic vector potential 

A = A(em) (B = ×A). For a rotating sphere with angular momentum S and homogeneous 
charge density, one finds analogously to (1.2) and (1.5) for R ≥ r0 (see, e.g., Landau and 

Lifshitz [9, § 43 and § 44])) 
 

 
3 3

,
2

Q

mc R R

 
 

S R M R
A  (6.2) 

 

where Q is the total charge and m the total mass of the sphere, respectively. The 
electromagnetic dipole moment M = M(em) is given by 

 

 1 11
2 .c m Q M S  (6.3) 

 

Comparison of the corresponding dipole moments M(gm) of (1.4) and M(em) of (6.3), 
respectively, shows that the following transformation has been carried out 

 

 
1

2 .G m Q   (6.4) 

 

Utilizing (6.4), the corresponding electromagnetic analogues for AR, Aθ and Aφ can be 

found from (1.7). Following the same method, the corresponding values for BR, Bθ and Bφ 

can be found from (1.8), (1.9) and (1.10), whereas the formula for B of (1.11) remains 
formally unchanged. 

 Analogously to (2.1), the internal (i.e., 0 ≤ R ≤ r0) electromagnetic vector potential 

A(em) of the sphere, Aint(em), can be found 
 

 
2 2

int 3 2 3 2

0 0 0

5 3 5 3
(em) .

2 2 2 2 2

Q R R

mc R r r r

    
      

   

S R M R
A  (6.5) 

 

Utilizing (6.4), the corresponding electromagnetic analogues for Aφ, int follows from (2.2) 

and (2.3). 
 In order to obtain the truncated series expansion for the electromagnetic component 

Aφ(em) of the sphere for the whole interval from R = 0 to R → ∞, the methods of sections 

2 and 3 can be applied. The equatorial component Aφ, eq(em) can be obtained from the 

corresponding expression Aφ, eq(gm) of (2.10) by using the transformation of (6.4). The 
same transformation can be applied to the results in table 1 and the representations in 

figure 2. Likewise, the results of (3.5), (3.7), (3.9), (3.10) and (3.11) can be transformed 

by (6.4). Numerical and graphical results for the electromagnetic field B(em) can be 
compared with their gravitomagnetic counterparts given in ref. [15]. 

 Furthermore, the general formula for the internal electromagnetic field of a sphere, 

denoted by Bint(em), formally coincides with its gravitomagnetic counterpart (4.3) 

 

 
2

int 3 2 5 3

0 0 0 0

6 3
(em) 1 .

R

r r r r

   
      

   

M M R M
B R  (6.6) 

 

The equatorial fields Bint, eq(em) following from (6.6) for different values of R can 

explicitly be obtained from (4.4) and (4.5), again by using (6.4). Finally, the component 
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Bθ of the electromagnetic field B(em) for R = r0, may be calculated by application of 

Stokes’ theorem. The result formally coincides with relation (5.4). 

 

7. PROPERTIES OF THE FIELD B AT DIFFERENT VALUES OF R 

Equation Section (Next) 

 In this section some remarkable properties of the gravitomagnetic (and electro-

magnetic) field B are examined. Firstly, the continuity of the external field B of (1.11) 
and the internal field Bint of (4.3) for R = r0 is considered. Comparison of the expressions 

for the internal field BR, int from (4.1) and the external field BR, ext from (1.9) shows that 

they coincide for R = r0 
 

 
2

, int , ext3 2 3

0 0 0

cos 3 2 cos
5 .R R

M R M
B B

r r r

  
    

 

 (7.1) 

 

The relation BR, int = BR, ext also follows directly from (1.1b). Application of the integral 

equivalent of (1.1b) to a pill-box shaped volume whose top and bottom surfaces dSext and 
dSint are parallel to the surface of the sphere, leads to 

 

 
, ext ext , int int( ) 0.R R

V

dV d B dS B dS      B B S  (7.2) 

 

For an infinitesimally small height of the pill-box is dSext = dSint. From (7.2) then follows 

that BR, ext = BR, int. 
 Furthermore, the values for the internal field Bθ, int from (4.2) and the external field 

Bθ, ext of (1.10) coincide for R = r0 
 

 
2

, int , ext3 2 3

0 0 0

sin 6 sin
5 .

M R M
B B

r r r
 

  
     

 
 (7.3) 

 

In this case the relation Bθ, int = Bθ, ext also follows from (1.1a). For a suitable, closed curve 

ABCDA across the boundary of the sphere the quantity ×B in (1.1a) approaches to zero 
value. A and B are points inside the sphere at distance dsint, whereas C and D are the 

corresponding points outside the sphere at distance dsext. Application of Stokes’ theorem 

to the curve ABCDA leads to 

 

 
, int int , ext ext( ) 0.d d B ds B ds        B S B s  (7.4) 

 

For infinitesimally small distances AB = dsint, BC, CD = dsext and DA it follows that BC = 

DA → 0 and dsext → dsint, so that Bθ, int → Bθ, ext. 
 Summing up, the values for the internal field BR, int from (4.1) and the external field 

BR, ext of (1.9) coincide for R = r0. In addition, the values for the internal field Bθ, int from 

(4.2) and the external field Bθ, ext of (1.10) also coincide for R = r0. These results are 
consistent with the basic relations (1.1b) and (1.1a), respectively. 

 Secondly, additional remarkable properties of the deduced gravitomagnetic (and 

electromagnetic) field B can be illustrated by figure 5. For large values of R the external 

gravitomagnetic field coincides with the results of the ideal dipole model (see (1.9), 
(1.10) and (1.11)). Previously, it has been shown [15] that for the polar gravitomagnetic 

field Bp = BR of (1.9) (θ = 0º) applies from R = r0 to R → ∞. In sections 4 and 5 the 

deviation of the external gravitomagnetic field Bθ, ext for R = r0 from the ideal dipole result 
of (1.10) is checked. Note that within the sphere the field patterns of panels a and b widely 

differ, whereas they may coincide for R ≥ r0. The corresponding electromagnetic fields 

B(em) yield analogous field pattern. 
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Figure 5. Sketch of the field lines of B(gm) from an ideal gravitomagnetic dipole moment M, 

located at the centre of a sphere with radius r0 (panel a). A more accurate picture of the field lines 

of B(gm), inspired by the relations (4.1), (4.2) and (4.3), is given in panel b. For the red circle with 

radius R = (5/6)½r0= 0.9129r0 the component Bθ, int of (4.2) is zero for any value of θ. Then BR, int 
of (4.1) is the only surviving component of Bint. For convenience sake, polar field lines are omitted. 

 

 The general internal gravitomagnetic field Bint is given by (4.3). The component 

Bθ, int of (4.2) has remarkable properties. For example, for any value of θ this component 

reduces to zero for R = (5/6)
½

r0= 0.9129r0. As a result, in this case BR, int of (4.1) is the 
only surviving component. The direction of Bint is then always perpendicular to the 

surface of the sphere. Moreover, for values R much smaller than r0 the ideal dipole model 

completely fails. In that case, the latter model predicts the wrong sign and magnitude for 
the field Bθ, int (compare (1.10) with (4.2)). 

 

8. COMPARISON WITH OBSERVATIONS AND CONCLUSIONS 
 

 A comparison between observed and predicted Lense-Thirring precession rates for 

the LAGEOS/LAGEOS 2 satellites in orbits with R ≈ 1.9r0 around the Earth have been 
given by Ciufolini et al. [10–13]. Likewise, the gravitomagnetic precession rates of four 

gyroscopes in the Gravity Probe B spacecraft in a polar orbit with R ≈ 1.1r0 around the 

Earth have reported in 2011 by Everitt et al. [14]. All observations are in reasonable 
agreement with Earth’s gravitomagnetic field B of (1.11), derived from the ideal dipole 

model. A discussion of the results of both missions have been given by Biemond [15]. 

 In addition, Bosi et al. [16] are preparing an underground ring-laser experiment for 
the measurement of the local gravitomagnetic field B. Using a tri-axial laser detector, 

they are trying to separate the gravitomagnetic precession rate and geodetic precession 

rate of the light probe from Earth’s rotation rate. It is the aim of their experiment to test 

the validity of the external field B of (1.11), deduced from the ideal dipole model. 

a 

b 

M

M 

r0 

S

M 

M

M 

r0 

S
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 It has previously been proposed [5–7, 15, 17–19], that the gravitomagnetic field B 

= B(gm), generated by rotating mass and the electromagnetic field B(em), due to moving 

charge may be equivalent. Indications for this equivalence are the approximate validity of 

the so-called Wilson-Blackett law (for a review, see ref. [5, 6] and references therein; for 
pulsars, see [17]). In addition, this special interpretation of the gravitomagnetic field 

results in the deduction of four gravitomagnetic precession frequencies, which have been 

identified with observed low frequency QPOs for four pulsars and two black holes [18, 
19]. Predictions of the proposed model are compatible with observed low frequency 

QPOs of the pulsars SAX J1808.4–3658, XTE J1807–294, IGR J00291+5934 and SGR 

1806–20. For the stellar black hole XTE J1550–564 and the supermassive black hole Sgr 
A* similar conclusions could be drawn. Although the proposed interpretation is in 

contradiction with the results reported from Gravity Probe B and LAGEOS satellites, the 

cited observations also wait for an explanation. 

 Apart from the equivalence question of the fields B(gm) and B(em), the deduction 
of the gravitomagnetic vector potential A(gm) and gravitomagnetic field B(gm) for a 

sphere with homogeneous mass density have their own interest. The main results in red of 

this work are the internal (i.e., 0 ≤ R ≤ r0), gravitomagnetic vector potential Aint of (2.1) 
and the corresponding gravitomagnetic field Bint of (4.3). For field points lying on the 

rotation axis of the sphere a rigorous derivation for the internal axial gravitomagnetic 

field Bint, ax of (3.10) is obtained for the first time. The validity of the general internal field 
Bint of (4.3) is confirmed at the end of section 4. 

 It appears that the θ-component of this internal field Bint has remarkable properties. 

For example, for any value of θ this component Bθ, int reduces to zero for R = (5/6)
½

r0 = 

0.9129r0. As a consequence, the radial component BR, int is the only surviving component 
in this case. The direction of Bint is then always perpendicular to the surface of the sphere. 

In addition, Bθ, int of (4.2) reduces to + Msinθ/r0
3
 for R = r0 and to – Msinθ/r0

3
 for R = 

(2/3)
½

r0 = 0.8165r0. 
 Starting from a rotating circular torus with homogeneous mass density, truncated 

series expansions for the vector potential A, the component Aφ and the gravitomagnetic 

field B of a rotating sphere have recently been calculated [15] for the whole interval from 

R = 0 to R → ∞. In section 2 the series expansion for the internal equatorial component 
Aφ, eq has been compared with the corresponding component Aφ, eq of the postulated vector 

potential Aint. Since the series expansion is truncated, only partial agreement is obtained. 

For the limiting case R → ∞, however, the series expansions for both the external gravito-
magnetic vector potential A and the external gravitomagnetic field B coincide with the 

ideal dipole results A of (1.5) of B of (1.11), respectively. 

 Since observational tests are often carried out near or at the surface of the sphere, 
special attention is paid to the validity of the ideal dipole model for R = r0. For the polar 

gravitomagnetic field Bp there is no problem: it is equal to the ideal dipole result of 

(3.11b). From the general formula (4.3) for the internal gravitomagnetic field Bint, 

confirmed at the end of section 4, it also follows that the field Bint always coincides with 
the ideal dipole field for R = r0. Using Stokes’ theorem, it is shown in section 5 that the θ-

component Bθ, int of the internal field Bint is compatible with the ideal dipole result (5.4). It 

is demonstrated, however, that a deviation from the latter result cannot be excluded in 
that approach. 

 In addition, for a rotating sphere with homogeneous charge density the 

electromagnetic vector potential A(em) and the electromagnetic field B(em) follow from 
the Maxwell equations. Expressions for the internal fields Aint(em) and Bint(em), 

analogous to the gravitomagnetic case, are given and discussed in section 6. 

 In conclusion, the more detailed deduction of the gravitomagnetic (and 

electromagnetic) vector potential A and the gravitomagnetic field B of a rotating sphere 
with homogeneous mass density may be helpful in many future applications. 
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