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Abstract. The astrophysics literature tries to make a case for the existence of a 
supermassive black hole at the center of Milky Way, in the location of the radio source 
Sagittarius A*. We think that, with arguments of the very same nature, the evidence 
points quite to the contrary. While the observational data on the orbits of the starry 
objects around Sagittarius A*, being of a projective character, are entirely reliable, their 
physical explanation uses quite a particular type of Newtonian forces, namely those with 
magnitude depending exclusively on the distance between bodies. To begin with, this 
limitation assumes a priori that the bodies connected by such forces are special material 
points, viz. space positions endowed with mass. At space scales such as that of the 
galactic center region in discussion, this assumption is not realistic, and therefore, 
implicitly, such particular forces are themselves not quite realistic. Still using Newtonian 
forces in argument, strongly suggested by observational data as a matter of fact, one 
should allow, on such an occasion, their full generality. This means that we only need to 
assume that they are central forces with no other further constraints. Within the 
framework of the Newtonian theory of forces this freedom has important theoretical 
consequences discussed in the present work. Among these the chief one, from 
astrophysical point of view, is that the presence of a supermassive black hole in the center 
of Milky Way might not be a sustainable assumption. An alternative is presented. 
Key Words: Sagittarius A*, Milky Way, central forces, Newtonian theory of forces, 
electromagnetic field, production of field, astrophysics, fundamental physics 

 Introduction 
 The story starts with the discovery of the galactic radiosource called Sagittarius A* in the 
center of the Milky Way (Balick, Brown, 1974). The scientific consensus is that, physically, 
such a source should be correlated with the existence of a material body in that place. For, the 
fundamental physical notion is that the electromagnetic field is only created by the motion of 
matter. However, such a body is optically invisible at that position. And as, according to 
fundamental physical understanding, one cannot presume that the center of a spiral galaxy is 
simply an empty location emitting electromagnetic radiation, the astronomers got quite a mystery 
in their hands. 
 Then, later on, the adaptive optics stepped down from the military to scientific uses, and 
starting from about the beginning of the last decade of the previous century, it allowed to 
astrophysicists distinguishing starry isolated objects moving against the background of the center 
of the Milky Way. It was thus possible to notice coherent patterns in the motion paths of such 
stars, as projected on the canopy (for an outstanding review of the history, evidence and 
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elimination of the many alternative physical explanations see Reid, 2009 and the original 
literature cited there). One such object, called S02, even completed an elliptic path, under our 
eyes so to speak, in about 16 years, proving beyond any doubt that its motion is Keplerian. 
Further analysis revealed many such gravitating stars, whose paths are only partially accessible 
though. Nevertheless their observed positions are enough for allowing astrophysicists to infer 
that their complete orbits are ellipses. 
 The common feature of all these orbits is that they all contain the radiosource Sagittarius A* 
in one of their foci, therefore they should be Keplerian orbits, or at least very close to these. And 
as this source is dim in any kind of perturbations that can reach the Earth, one can easily suspect 
that not all radiation comes out from the source. First, the object is invisible. Therefore the 
optical part of the spectrum does not reach the Earth, and this can have a rational explanation: it 
is swallowed by the matter existing between the center of the Milky Way and the solar system. 
This seems only reasonable, inasmuch as the matter between the center of galaxy and the solar 
system dims the light by some 30 orders of magnitude. In other regions of spectrum we are 
luckier: infrared and radio waves are dimmed only by about three orders of magnitude. However, 
there is still a big discrepancy between the mass to be assigned to the body assumed to create the 
gravitational field responsible for the motions of those stars and the amount of radiation we are 
supposed to receive from such a body. This fact helped gradually built the conclusion that the 
central body works in the way in which a black hole is supposed to work. For, if one applies the 
Newtonian theory of forces in a classical way (see for instance Gillessen et al, 2009), the mass 
of an object that fits the requirement of being the source of such a gravitational field is about four 
million and a half solar masses: a supermassive black hole! 
 It is our opinion that the very theory of forces used to disentangle such a case is not 
completely adequate to the task, so the conclusion of the existence of a black hole in the center 
of Milky Way, or in the center of any other galaxy for that matter, might not be the appropriate 
one. In fact the observational data may be pointing out to the necessity of approaching the 
physics of the center of Milky Way with the ingenuity of Newton himself when he approached 
its prototype, the Keplerian synthesis of planets’ motion. Thus, while we agree entirely with the 
statement that the Milky Way’s center is “a laboratory for fundamental astrophysics and galactic 
nuclei” (Ghez Et Al, 2010), we think a little further, namely of ‘a laboratory for fundamental 
physics’ at large. For, the data itself may compel us to change the ideas about the fundamental 
forces as we claim to know them today. And that by doing nothing more than looking a little 
deeper into the history of those forces, and considering it face value. 
 Indeed, we are, here and now, in that unique situation in which the science was only once in 
its history. That was in the times when Newton, having at his disposal the Keplerian synthesis of 
Tycho Brahe’s data on Mars, has invented the forces of which the physicists and astronomers 
speak today. Thus, on one hand, we have at our disposal the outstanding synthesis, allowed by 
the adaptive optics, of the motions of the stars in the very central part of our galaxy (see Eckart 
Et Al, 2002; Ghez Et Al, 2005 and the earlier original works cited there). Like the old Kepler 
synthesis, the new synthesis points out to coherent motions, of stars this time, which projected on 
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the canopy appear as elliptical motions. Therefore, in reality they cannot be but Keplerian 
motions, no matter of the orientation of their planes in space. Being based on projections on the 
canopy, the conclusion is by no means affected by the uncertainty in the galactic metric 
parameters (for a recent critical study of such uncertainties see for instance McMillan, Binney, 
2010). It is therefore the most reliable conclusion one can draw based on observations. Now, 
when the orientation of those planes of motion is taken into consideration in extracting the orbits 
from the data, all these orbits reveal that Sagittarius A* is in one of their foci, just like the Sun in 
the Kepler’s case. But unlike the planets of the solar system, the stars orbiting around Sagittarius 
A* are not in the same plane. All we can say is that as conic sections they belong to a family a 
quadrics having a common focus. This fact may, by itself, indicate that the case of the black hole 
is unsustainable. 
 For, on the other hand, the usual physical explanation of this observational synthesis stops at 
some quite particular class of forces that might not be appropriate to the task. These forces are 
assumed to be well known, being of the type which Newton used in order to explain the ideal 
Kepler motions, amended, on occasions, to account for the almost insignificant rotations of the 
orbits. In fact, with rare exceptions, the whole speculative physics today uses only such forces, 
distinguished by the fact that they are conservative and have the magnitude depending 
exclusively on the distance between the attracted and the attracting bodies. Provided, of course, 
these bodies can be considered material points in the classical sense, i.e. space positions 
endowed with physical properties (mass, charge, etc). 
 So, regarding the main physical argument used in explaining the observational data – the 
forces – we think that it calls for a more careful consideration. Specifically, we should go way 
deeper with the assumptions about the forces responsible for the contemporary Kepler motions in 
the center of Milky Way, at least as deep as Newton went in the prototypical case of the original 
Kepler motion. It appears therefore as only appropriate to start our present undertaking with the 
essentials of Newton’s approach of his invention of central forces (see Newton, 1995, Book I, 
Sections II & III). 

 The Newtonian Forces 
 In order to make our message more clear, let us rephrase the Corollary 3 of the Proposition 
VII from Principia, with reference to an arbitrary orbit, not just a Keplerian one. This confers 
maximum generality to the concept of Newtonian force and to its quantitative definition, 
pointing out the particular situation of the mass itself in the construction of force. This corollary 
is, in our opinion, the key of understanding the action of all forces in the universe. In a simplified 
expression, extracted from Newton’s original (Newton, 1995, p.48), and adapted for our specific 
needs, it sounds like: 

The force by which a body P … revolves about a center of force S, is to the force 
by which the same body may revolve in the same orbit, and the same periodic 
time, about another center of force R, as the volume SP×RP2, … to the cube of 
the straight segment SG, drawn from the first center of force S, parallel to the 
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distance RP of the body from the second center of force R, and meeting the 
tangent PG of the orbit in G. 

One can easily draw a figure in order to better assess the geometrical situation. The points S and 
R can occupy any positions with respect to the observed orbit in its plane. 
 To our knowledge, J. W. L. Glaisher appears to be the first one who properly put this 
statement into an analytical form, with no recourse whatsoever to dynamical principles, and with 
reference to the eliptic, therefore closer to Keplerian, form of the orbit (Glaisher, 1878). The 
theory goes, by and large, along the following lines. Assume that, in the Cartesian coordinates of 
the plane of motion, the equation of the observed orbit is the quadratic non-homogeneous 
equation 
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Then the relation between the two forces expressed in the statement above can be translated into 
equation: 
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and ε⃗ ≡  SR����⃗ . r⃗ denotes here the position vector of the moving point P with respect to S, and r is its 
magnitude – i.e. what we call here the distance, when not otherwise specified. 
 Equation (2) shows how to calculate analytically the force in P toward point S, when we 
happen to know the force in P toward the point R from the plane of motion. This is the basic 
mathematical principle of the Newtonian natural philosophy. It is not hard to see that it 
extends… naturally the observations related to the ‘working principle’ of sling shooting, 
whereby the force of gravity – i.e. the weight – acting vertically, is actually ‘compared’, by 
means of the sling itself, with the centrifugal force, acting horizontally or in any other direction. 
 Now, the force toward R can be taken as reference in measuring the force in the current point 
P of the orbit in any other direction. So, in this case, we are sort of compelled, so to speak, to a 
choice of R that makes the theory of forces universal, at least in the Keplerian situations. This 
leads, within modern theoretical physical views, to a calibration of Newtonian forces. In the 
cases where R occupies the position of the center of the orbit, Newton has inductively shown 
that the force toward it is directly proportional with the distance between R and P, i.e. with the 
distance from the center to the orbiting point. If we use this result in equation (2), then the force 
we need to know is 
 3)1(rStowardFORCE ε⋅ξ+⋅⋅µ=
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where µ is a constant of proportionality, coming from the force toward the center of orbit. If, 
further on, we use the components (3) of the vector ξ⃗, we get: 
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in the reference frame where S is in origin. This result can be, of course, expressed in different 
manners, depending on the way of writing the equation of the conic representing the orbit. 
However, it carries an even more important message, at least from a geometrical point of view. 
 With the substantial help of the analytical geometry of conics, in words the result sounds: the 
force toward a certain center by means of which a certain material point describes a conical 
orbit around that center, is directly proportional to the distance from the point to the center of 
force and inversely proportional with the third power of the distance from the point to the 
straight line conjugated to the center of force with respect to the orbit. This is a theorem first 
given by W. R. Hamilton (Hamilton, 1847) on the “occasion of a study of Principia.” Therefore, 
once again, the center of force can occupy any position with respect to the orbit, but in the case 
of conical orbits, and with a standard choice of the reference force – i.e. in modern terms, in a 
standard calibration or gauging of the forces – the definition of Newtonian force involves the 
very same elements as the definition of the orbit itself: the distances of the generic point of orbit 
from the center of force and from the polar line coresponding to that center of force. 
 This fact should be more obvious if we write the equation of force in the form: 
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Here the equation of the orbit is understood in the form 
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It expresses the fact that, geometrically, the orbit is determined by its tangent lines – real or 
imaginary – in the two points where the straight line polar to the center of force with respect to 
the orbit cuts it. The tangents are considered as having the equations: 
 0cybxa;0cybxa 222111 =++=++  (8) 
while the polar itself of the center of force with respect to the orbit is taken as given by equation 
 0ayaxa 332313 =++  (9) 
Now, based on this general presentation, let’s see where the limitation to the dependence of the 
magnitude of force exclusively on the distance enters the physics of gravitating systems. For, one 
can see from equation (6) that, in general, such a behavior of the magnitude of force is far from 
being the general case. Rather, the magnitude of the Newtonian force as we read it even in 
conical orbits, with no further specification of the position of the actual center of force, depends 
also on the current direction of the orbiting body. 
 The very idea of force in explaining celestial harmony started from the first of the Kepler 
laws: the planets describe elliptical orbits with the Sun in one of their foci. This last information 
is crucial. For, if the position of the center of force is in a focus of the ellipse, then the magnitude 
of force cannot depend but on the distance, and that even in a very special way. Indeed, we can 
then use the equation of the orbit referred explicitly to one of its foci. By the definition of a conic 
section, the ratio between the distances from the planet to one of the foci and from the planet to 
the corresponding directrix (the polar of focus) is constant: the eccentricity. This comes down 
analytically to the equation 
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where ‘e’ is a number proportional to the eccentricity of the orbit. In this case, using the equation 
(7), equation (6) leads directly to: 
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with µ – a constant. This is the force of ‘universal gravitation’ to which the classical physics 
makes always reference, with no mention though of the prerequisites of its expression: that the 
point of attraction and the point attracted have to be only… points, and furthermore, the point of 
attraction has to occupy a privileged position with respect to orbit – that of one of its foci. For, if 
the point of attraction occupies any other position in the plane of motion, with rare exceptions, 
we may be in the situation that the magnitude of force depends also on the direction from the 
center of force to the moving body. Thus the universally used Newtonian force of gravity is 
actually quite a particular choice among the possible forces responsible for the Kepler synthesis. 
 For the sake of completeness, let’s see what other cases may occur of dependence of the 
magnitude of Newtonian forces only on distance. The motion of planets is not the only one given 
to our experience, although we have to recognize that it is the one that stirred up everything. 
Thus, for instance, the immediate experience has certainly to do with with elastic forces too. 
These are the forces that ‘gauge’ – and that in a quite precise manner we should say (see Mazilu, 
Agop, 2012) – all the modern positive science, insofar as it needs to be submitted to 
experimental verification. And such forces are obtained, within the Newtonian program sketched 
above, in cases where the center of force coincides with the center of the orbit. In equation (7) 
this means a13 = a23 = 0, and therefore equation (6) becomes: 
 r)y,x(f ⋅µ=  (12) 
where µ is another constant, not necessarily that from equation (11). This might seem as a 
tautology – we started specifically from the idea that the force toward the center of the orbit is an 
elastic one – but, at a closer scrutiny we might have to change this opinion. First of all, equation 
(12) shows that the theory is not self-contradicting, and this is an important fact by itself. 
Secondly, this shows that the Newtonian formula works for the same point in the plane of orbit 
in two different instances – as material point and empty position – and this is most important 
conclusion for theoretical physics. 

 The Concept of Field and the Modern Idea of Gauging 
 Indeed, this is the very essence of the idea of field in physics. For a better understanding, 
consider the situation of light. What we usually accept is that the Newtonian force is proportional 
to distance in the cases where the center of force is material and located in the center of the orbit. 
What about the cases when that center of force is simply an empty position? This is plainly the 
case of the Fresnel ellipse in the plane waves of light, perpendicular to the light ray: there is no 
material center of force on the light ray, and yet the light can be described as if there is one there. 
This fact reveals the real merit of the Newton’s definition of the force: it can be calculated with 
respect to any point, once the geometric setup is Keplerian! The force has indeed the 
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characteristics of a true field, as these came down to us from the theoretical physics of the 19th 
century. This would mean, for instance, that in the case of a light ray there is always a 
Newtonian central force acting along the ray, toward or away from the source of light. The idea 
was always rejected from the realm of physics, based exclusively on the fact that the force 
should be a vector, for which the formulas like (11) and (12) give the magnitude unconditionally. 
As Glaisher’s analysis clearly shows, this was not at all the case when Newton has invented the 
forces. 
 Regarding the light phenomenon per se, this philosophy was materialized even from the 
times of Fresnel, by the ‘gauging’ proposal of James Mac Cullagh (Mac Cullagh, 1831) for the 
representation of the light according to Newtonian view of forces. Let us briefly see what Mac 
Cullagh’s point of view is about. He was concerned with the elliptically polarized light, like the 
light passing through rock crystals. He found that this light can be represented by two harmonic 
vector processes in the same plane, like the processes invented by Fresnel to help explaining the 
light phenomenon, making a certain angle between them. Later on (Mac Cullagh, 1836) he 
noticed that the theory can be put in a space-time form by a system of coupled differential 
equations, which led him to the foundations of a theory of ether (Mac Cullagh, 1839) – 
improved afterwards by Lord Kelvin and Joseph Larmor – and finally to an exquisite explanation 
of the phenomenon of double refraction in quartz (Mac Cullagh, 1840). It is to be noticed that 
the veiled persuading argument of Mac Cullagh’s feat seems to have been the faulty notion of 
describing the light by a displacement, advanced initially by Fresnel. Indeed, in the case of light 
– a continuum phenomenon – the mechanical displacement has no object, i.e. it is not referring to 
a material point, but simply to an empty position in space, for no matter as we know it is located 
there. This very fact made Newton’s natural philosophy hardly relevant to the light, a detail 
corrected, as we see, in a brilliant way by Mac Cullagh. These observations explain, by and 
large, the almost explicit contribution of Mac Cullagh to the future electromagnetic theory of 
light (Darrigol, 2002, 2010). In hindsight though, Mac Cullagh’s seems to us to be much more 
than an electromagnetic theory. It should be taken, indeed, as the very first specimen of a gauge 
theory (see Mazilu, Agop, 2012 for a discussion of light in ‘Mac Cullagh’s gauge’) of the kind 
that came into existence more than a century afterwards, in the form of the Yang-Mills theory 
(Yang, Mills, 1954). 
 Returning, for one last consideration, back to the equations (11) and (12), they reveal forces 
whose magnitude is exclusively dependent only on the distance between the points assumed to 
be physically correlated by them. These happen also to be the only forces that satisfy the Kepler 
geometry per se, i.e. the only ones having closed orbits (Bertrand, 1873). But, one can see from 
these examples that the dependence of the magnitude of force exclusively on distance is 
acquired, first of all, by the special position of the center of force with respect to the orbit. 
Secondly, and by no means less important, is the fact that the universal ‘comparison force’, the 
gauging force of the Newtonian procedure as it were, is the elastic force, which may or may not 
be actual after all, when referred to criteria dictated by our senses. For, the actuality of those 
forces depends on the circumstance that the center of orbit contains matter or not. And any 
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comparison force, other than the elastic isotropic one, used in the Newtonian procedure of 
defining forces, would make the formula (6) more complicated, perhaps even prohibitively. This 
moment in the definition of force in the Newtonian philosophy turns out to have universal 
significance even through the modern idea of ‘gauging’ from theoretical physics. From this 
perspective it shows even more: nothing can be reproducibly described in physics, unless we 
have a gauge for it. 
 Nevertheless, it turns out that the equations (11) and (12) are used nowadays in theoretical 
physics with no reference to their Newtonian foundation, and therefore with no further 
qualifications about their very possibility at that. For instance there are occasions, and very often 
at that, when the force from equation (11) is considered a static force. This should entail special 
considerations, because originally the very existence of such force carries a precise identity: it is 
clearly related to a Keplerian motion, and moreover, the value (11) is referred to a gauging 
elastic isotropic force that might not even be actual. In hindsight though, judging by the success 
of such universal ‘anonymous’ forces in the history of physics, specifically in the theory of light 
and astrophysics, there seem to be no need at all for the existence of matter in the center of the 
conic, in order to ratify their actuality. If one needs a ratification anyway, this comes simply 
from the fact that the elastic forces are an expression of the existence of a privileged coordinate 
system – that of harmonic coordinates (Mazilu, Agop, 2012). 
 In the case of those two time-honored central forces with magnitude depending exclusively 
on distance, we have as centers of force the very center of the orbit and its focus. But these are 
by no means singular cases leading to a force with magnitude depending exclusively on distance. 
If, for instance, the motion is elliptic and the center of force is located on the orbit itself, the 
magnitude of the force accounting for this motion is inversely proportional with the fifth power 
of the distance. By the same token, if the orbit is of a special shape – other than a conic section – 
we may also have forces exclusively depending on distance. This is, for example, the case when 
the motion has the space form of a logarithmic spiral, like the arms of a galaxy. The force 
accounting for such a motion pulls toward the pole of the spiral with a magnitude inversely 
proportional with the third power of the distance from that center. 
 The case presented by Sagittarius A* is outstanding mostly from a special point of view of 
natural philosophy, that may induce us to reconsider the previous old natural philosophy founded 
by Newton. As we have already mentioned above, the only criterion that validates the decision 
that a body is acted upon by a force pulling towards a certain point in space is the perceived 
matter in that point. This can be actually quoted as the very first gauging criterion of physics, the 
‘zeroth principle’ as it were. It turns out to work even today in full swing. According to this 
criterion, Sagittarius A* should be such a point, even though only ‘partially perceived’. 
However, it does not satisfy itself to another criterion that historically became essential, but 
actually turned out to be quite arbitrary: that of mass. In order to define this criterion, and to 
recognize its true meaning, let’s follow the evolution of Newtonian ideas along the theory of 
continuum material, leading to Poisson’s equation. This is actually the route which led to the 
modern theoretical physics’ idea of gauging in the first place. 
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 The Mass and the Newtonian Theory of Forces 
 Perhaps we would have never talked about the whole theoretical physics as it is today, if 
Newton would not have insisted on the idea that the force of gravity should be directly 
proportional with the ‘quantities of matter’ of the bodies involved in the interaction represented 
by that force. More precisely, in modern vector notation, the Newtonian force created by a body 
of mass M on a body of mass m, can be written as 
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Here G is the so-called gravitational constant, and r⃗ is the position vector of m with respect to M, 
again, both considered as material points. Now this force can be thought of as existing by itself, 
separated from its roots so to speak, i.e. disregarding its Keplerian origin. As we have mentioned 
before, it can even be considered a static force. The physical problem now moves on to the realm 
of mechanics: can this force explain the observed motions? and how? The answer is well known, 
and resides in the principles of dynamics, put forward by Newton in order to be able to profitably 
use the force. This time though, the force is assumed to be the independent cause of the motion. 
 Our way of writing the force here points to the fact that the force is attractive, being opposite 
to the orientation of the position vector. Its magnitude does not depend but on the distance 
between the two material points assumed to be correlated by force, and this in a very special 
way, shown above in equation (11) as specific to a Keplerian setting involving an elliptical orbit 
with the center of force in one of its foci: 
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Therefore μ ≡ GMm in formula (11) above. 
 Newton insisted at length on the fact that the force of gravitation should be proportional with 
the quantities of matter of both bodies involved in the interaction represented by force, otherwise 
nothing would make sense. This is a rather arbitrary assumption by itself (for the only critical 
approach of the issue, at least as far as we can judge, see Poincaré, 1897, and Poincaré, 1921, 
Ch. VII). It was like Newton was mindful of the fact that, some two hundred years after him, the 
general relativity would have to come into existence, and he ought to create its possibility. 
However, he was apparently guided in his insistence only by the fact that a force like that from 
equation (14) is able to offer physical support to the marvelous synthesis by Kepler of the motion 
of the planet Mars. 
 Indeed, in modern terms, in order to obtain the Kepler laws it is sufficient to solve the 
Newtonian equations of motion written in the form 
 

0
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r

r
Kr 2


 =+  (15) 

as one proceeds routinely today. Here K ≡ GM, and so it is obvious that the description of 
motion by this equation is universal even in the more precise sense that it does not depend on the 
mass of the moving body. So, if the independence of the force (13) of its physical origin could 
still be counted as an arbitrary assumption, the undeniable success of the mathematics handling 
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of equation (15) bestows upon it an equally incontestable actuality. For, this is the first moment 
where the idea of field, independent of matter, came up to science. 
 The Newtonian force from equation (13) is conservative, i.e. can be derived from a potential. 
The existence of a potential in the problem of classical gravitational field means however more 
than the mere law of conservation of the mechanical energy. It also opens the path of 
speculations regarding the structure of matter and of the characterization of a continuum from 
mechanical point of view, as initiated by Newton himself. In order to show this, let us notice that 
we can write the Newtonian force in the form 
 

r
GM)r(V);r(Vm)r(f 11 ≡∇=
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where ∇ is the operation of gradient and V1 is the potential energy. Considering only the force 
per unit mass, the force from equation (16) is: 
 )r(V)r(f 1
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This force is therefore an intensity, characteristic of the space around the mass assumed to exert 
that force. It is this space, thus physically characterized, that came to be known as a field: the 
gravitational field. The force exists in every point of space, no matter of the other physical 
properties of that point: it can be simply a position in space, as well as the location of a material 
particle. Therefore the force is a continuous vector function of the position in space, and can very 
well be a characteristic of a material continuum filling the space. Which characteristic was not so 
long in coming to physical considerations, being, as it were, a necessity forced upon the 
mathematics of natural philosophy by the space expansion of material bodies. 
 Indeed, inasmuch as one can think of a physical structure of a material continuum, this gives 
us the right to calculate the flux of force around a certain point in space. Considering the force 
from equation (13) as a static force, we can use a spherical surface around origin of coordinates. 
If we calculate its flux through a spherical surface of radius r according to the usual formula 
 ∫∫ ⋅
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where n� is the unit normal to the sphere and dA is its elementary area, we get an interesting 
result. As the unit normal vector to the sphere is just the versor of the position vector, and dA = 
r2sinθdθdφ, we have 
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Therefore the flux of force of the gravitational field is, up to a universal factor, the mass of the 
material point creating the field – appropriately called the source of field. Now, the mass of that 
source can be represented, according to Newton’s definition of the density of matter (Newton, 
1995, p. 9), by a volume integral: 
 ∫∫∫ρ=

Volume
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where ρ( ) denotes the Newtonian density at the chosen location and d3r⃗ is the volume element at 
the same location. Using the equations (17), (19) and (20) we get 
 ∫∫∫∫∫ ρπ=∇⋅

Volume

3

Sphere
1 rd)r(G4dA)r(Vn̂   (21) 

where the ‘Volume’ is that of the corresponding ‘Sphere’. Further on, using Gauss’ theorem for 
the left hand side of this equation, we have 
 { } 0rd)r(G4)r(V

Volume

3
1

2 =ρπ+∇∫∫∫   (22) 

In fairly general continuity conditions, the integrand of this equation should then be zero. This 
gives us the Poisson’s equation, relating the Newtonian density of matter that generates the field 
to the field potential. Usually, the potential is taken without the gravitational constant, which 
comes to a simple redefinition: V1 = GV. So, the equation of Poisson becomes the one we 
usually write today: 
 )r(4)r(V2 

πρ−=∇  (23) 
This is the equation which, from the perspective of general relativity for instance, is the 
fundamental equation of the classical mechanics. It is not usually considered quite by itself, but 
in conjunction with the implicit idea that we are always able to know the density of matter. It is 
therefore an equation giving us forces, when knowing that we have at our disposal the matter 
creating, as it were, these forces, provided that one can characterize this matter by a density in 
the Newtonian recognition. More than this, it contains, in the background at least, the idea that 
the material point of Newton is not simply a position in space, as actually the rigorous 
calculation requires: it should be endowed with a space expanse to be occasionally considered. It 
is in this general acceptance that the equation is used in characterizing the Sagittarius A* case. 
 Now, obviously, by equation (20), and therefore by equation (23), we actually describe the 
part of space inside the matter. Then, the Poisson’s equation itself becomes part of fundamental 
physics. Indeed, it is really necessary in the description of nature, inasmuch as it provides us 
knowledge on the space inside matter. The hard part of the problem is that the Newtonian density 
is only a hypothesis, and quite unreliable at that, because the matter is not inherently 
homogeneous with respect to space, and we do not have access to its space details – at least not 
always. Nevertheless, within certain quite natural assumptions, that knowledge is inferrable, as it 
was actually the case all along the time. The most reliable, and the only one entirely realistic we 
should say, of these assumptions is offered by the particular case of the Poisson’s equation, 
where the density of matter is zero, viz. the Laplace equation. Indeed, the Newtonian potential of 
the force from equation (13) above is actually a solution of Laplace equation, thus characterizing 
the situation in vacuum. And this fact is quite natural: the Newtonian force has not been invented 
otherwise, but specifically for describing the interaction between material points in vacuum. It is 
only its extension to the space inside matter – allowed by the equation of Poisson, which in turn 
was allowed by the special assumption of Newton on the position of masses in the expression of 
the magnitude of force – that creates the impression that the force depends physically on the 
density of matter. This line of thought was initiated indeed by Poisson in 1812, and put on 
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mathematical firm grounds by Gauss in 1839 (see Gauss, 1842). It is along it, that Einstein 
found flaws to classical physics, and thus pressed forward the ideas that led to the general 
relativity. A brief history of the main points of development of the theory is perhaps in order. 
 In 1812 Poisson noticed that inside matter the law of attraction between different material 
points cannot be the law of Newton, because the potential cannot satisfy there a Laplace equation 
(Poisson, 1812). He has actually noticed that the Newtonian density of matter becomes 
instrumental there, and that the law of Newton corresponds in fact to a zero density (see also 
Poisson, 1833). Poisson might have thus sensed the possibility of still other forces, besides those 
going inversely with the square of distance, corresponding to nonzero density of matter. Only 
after the work of Gauss became it gradually clear that the force inside matter should be taken 
first and foremost as a flux, and therefore expressed by its divergence, rather than by its curl as in 
mechanics of a single material point. And this divergence has as expression the Newtonian 
density of matter. However, in this approach the matter has to have the essential property of 
vacuum, which turns out to be the homogeneity with respect to space, in order to be possible to 
correctly characterize it by a density. This desideratum is, nevertheless, far from being satisfied 
with no further qualifications, for the homogeneity is a matter of scale. As Einstein says 
somewhere, the universe is homogeneous only ‘on average’. The physics of last century added to 
this the essential observation that the property of homogeneity ‘on average’ should be respected 
at any scale. 
 Indeed, ‘on average’ the density of matter is never zero, not even hypothetically. Although 
we can imagine some smearing out procedure in order to calculate a density, that doesn’t mean 
that we hit the real thing. As a matter of fact, the evaluations of the density of matter in universe 
taken today into consideration as scientific figures, don’t even represent the Newtonian density 
as required by the Poisson’s equation, but numbers obtained from various rough evaluations, 
with the substantial contribution of some numerical densities in the sense of Hertz (Hertz, 2003). 
These are combined with even more arbitrary values of the volume of space where evaluations 
are made, assuming, still quite arbitrarily, that the matter should have a certain constitution in 
those regions of space. This is also the manner of evaluation of density for all the analyses 
related to the case of Sagittarius A*. However, with so many uncertainties in our hands, one can 
hardly think of a right quantitative appreciation of the density of matter! Useless to say, the very 
same is the case of evaluation of any density to be used into Poisson’s equation. 

 Back to the General Newtonian Forces 
 We can see therefore, from what was shown right above, that the development of differential 
calculus gradually spirited away the identity of force so to speak, i.e. the physical parameters 
representing the orbit from the expression of the magnitude of force. Indeed, the force could now 
be calculated as a solution of a differential equation in satisfactory limiting conditions. The force 
thus became a plain vector. And the most natural among the analytical conditions a force vector 
should satisfy, when referring it to a continuum, seem to be the classical ones, generalizing the 
properties of the Newtonian force from equation (13), which show that it acts in vacuum and is 
conservative: 
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 0f;0f


=×∇=⋅∇  (24) 
In fact, at some moment, the classical theory of forces even stipulates specifically that a certain 
force vector can be split into a sum of a divergence-free part and a curl-free part – the so-called 
Helmholtz decomposition – and that the decomposition is unique. The conditions (24) legalize, as 
it were, the two essential properties of the Newtonian gravitational force, only implicitly 
contained in the Poisson equation. The first condition says that the source of forces is the 
Newtonian density, but a vacuum force, like the Newtonian gravitational force, has no source; 
the second condition shows that the force is central, therefore conservative. 
 Let’s say that we have obtained a formula for the magnitude of force in vacuum. The 
essential condition in order to be able to even use that formula is obviously that the force should 
satisfy the first equation (24). The second condition is only incidental, so to speak. However, if 
the magnitude of the force should depend exclusively on distance, then both conditions are 
satisfied only for the Newtonian force with magnitude inversely proportional with the square of 
the distance. Indeed, a central force with the magnitude depending exclusively on distance can be 
written in the form 
 

r
r)r(f)r(f



=  (25) 

where f(r) is the magnitude of force. The second condition from equation (24) is automatically 
satisfied, while the first condition amounts to 
 

2r
)r(f0)r(f2)r(fr µ
=∴=+′  (26) 

Here the accent denotes the derivative with respect to the variable. Now it becomes obvious that 
the central forces inside matter, with magnitude depending exclusively on distance, require also a 
certain behavior of the density of matter depending on that distance, otherwise it is not a possible 
force whithin matter. Such a property is hard to understand geometrically, but is easy to 
understand… parametrically, as it were. More specifically, it is hard to understand that a 
continuum has density decreasing in the same way in every direction starting from each one of 
its points. This would mean contradiction indeed, when we consider two different neighboring 
points. It is very easy to understand though, that a continuum has a certain density depending on 
the distance between its points, in cases where this distance can be defined. 
 However, if a force is central – therefore Newtonian – and has the magnitude dependent not 
only on distance but on direction too, then instead of equation (25) we must have 
 r)z,y,x()r(f 

ψ=  (27) 
where x, y, z enter the expression of the magnitude of force by some algebraical combinations, 
other than the magnitude of the radius vector. In such a case the two conditions (24) boil down to 
 

0r;03
x

x


=ψ∇×=ψ+
∂
ψ∂∑  (28) 

Therefore the function ψ must be a homogeneous function of degree (–3), in the first place. If we 
limit our search to the functions derivable from the elliptic orbits of the planets, as Newton 
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actually did, then such a function cannot be but of one of the following forms, also derivable 
from the second principle of dynamics (Darboux, 1877): 
 23ji

ij
3 )xxa(;)ra( −−⋅


 (29) 

Here the vector a�⃗  and the entries of matrix a are arbitrary constants, the coordinates are 
considered as contravariant, and the summation convention is respected. The expressions of 
forces are defined up to a multiplicative constant. We recognize in these the forces deriving from 
the Corollary 3 of the Proposition VII of Newton’s Principia. Enforcing on them the second of 
conditions (28), shows that the first case is impossible, because the vector a�⃗  would then have to 
be null identically. The second case works only if the matrix a is a multiple of the identity 
matrix. But this shows that the force is simply the Newtonian gravitational one, with the 
magnitude inversely proportional with the square of the distance. We thus find the Newtonian 
force as a property of field, with no reference whatsoever to motion, once it is conditioned by 
equations (24). As we already expressed it, the identity of orbit – and therefore of force itself – is 
lost. However, it comes back, only this time it does that through the initial conditions serving to 
solve the differential equation (15). 
 The inference about the existence of such particular forces in a problem of astrophysics 
should therefore be conditioned by the fulfillment of conditions (28), therefore of the conditions 
(24). Those conditions reduce the class of forces, as equations (29) show it in the most general 
case. Only the existence of Keplerian orbits would guarantee that these forces depend 
exclusively on distance, and moreover that their magnitudes are inversely proportional with the 
square of distance. This is a condition plainly satisfied by all of the results in the Sagittarius A* 
case: it came to attention of the scientific community by the very specific stellar orbits in the first 
place! And as Sagittarius A* is always in one of the foci of these orbits, which are of course 
elliptical, there can be no question of the reality of Newtonian force (13) in this case. Provided, 
of course, the matter exists in that place, which is what the assumption of the existence of a black 
hole there brings about. We are not quite so sure as to what extent, and in what particular 
conditions, the Kepler’s second law, in its differential form, is satisfied for each one of those 
orbits. For, within Newtonian ideas, only the second of Kepler laws would be a clear indication 
of the presence and location of a center of force. As it happens though the theory of Newtonian 
forces works regardless of that law, and the conclusions of the present work should therefore 
remain theoretically valid (see Mazilu, 2010; Mazilu, Agop, 2012). 

 The Variation of Orbit and the Production of Fields 
 One of the main reasons for which we must appeal to the original Newtonian theory of forces 
in problems of astrophysics, like the one presented by the Sagittarius A* case, is that such a 
theory uses, almost explicitly we should say, an analogy which transcends the space scale of the 
problems in which this kind of forces is involved. The initial analogy was the one already 
mentioned in passing before, between sling shooting and the motion of planets. Then, with the 
gradual introduction of classical dynamics, the equation (15) made its entrance into the 
mathematics related to mechanics. And as long as we consider this equation as fundamental, one 
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can prove that the force given by equation (13) is the only one justified from the point of view of 
space scale transcendence. Indeed, the equation (15) transcends the space scale, and no other 
force introduced in it satisfies this condition (Mariwalla, 1982). Therefore we are entitled to use 
the classical dynamics in describing the central part of the Milky Way just as we are entitled to 
use it in the case of describing planetary motions, or to state that the the stars move around the 
galactic nucleus following Keplerian orbits. It is at this juncture though, that we need to pay 
close attention to the concept of force to be used in astrophysical matters, for it might indicate 
some other fundamental things if it is to consider the point of view of space scale transcendence. 
 One historically important, fundamental space scale transcendence is that allowing us to 
extend the conclusions of classical dynamics in the atomic realm. This means that the planetary – 
or nuclear – model of atom should be the only one entitled to close consideration from a 
theoretical physical point of view. This was indeed the case. Only, on this occasion we have 
learned that in the microscopic realm the model does not work the same way as the planetary 
system proper. For, the light gets in: insomuch as electromagnetic phenomenon it should be 
attached to the atom, due to the electrical properties of this last one. It is here the point where the 
contradictions started brewing, forcing us to assign the light to the transitions between electronic 
orbits (Bohr, 1913). While the original Bohr’s work is refering to the simplest atomic model – 
the one for which the electronic orbit is a circle – there are strong reasons to believe that his 
conclusion is quite general: the light or, in general, any perturbation that can reach our eyes 
directly or through the intermediary of measurement devices, is due to transitions between 
orbits. The arms of spiral galaxies can thus be interpreted as geometric loci of such transitions 
points (Mazilu, 2010; Mazilu, Agop, 2012), whereby the stars, revolving along Keplerian orbits 
around galactic nucleus, conglomerate in stable structures. 
 Therefore, through the planetary model of atom, theoretical physics actually just enacted a 
status quo, naturally existing a priori by the space scale transcendence. However, Bohr’s 
postulates show that it is quite precise in the choice of the terms of analogy so to speak: the 
atomic model from microcosmos is analogous to the galaxy from macrocosmos, rather than to 
the planetary system per se. Therefore one can say that, by quantum mechanics, the theoretical 
physics reinstated with full right the initial Newtonian forces, identified by the parameters 
representing the orbit from which they have been calculated. One might say that quantum 
mechanics of the atom was just a normal reaction of natural philosophy, which reclaimed the lost 
identity of the orbit in the expression of forces, or the lost identity of forces given by the orbit 
from which they were calculated. 

 The Characteristic of Forces Transcending Mechanics 
 The second of conditions (24) precludes the Newtonian forces from transcending mechanics, 
for it is equivalent with the conservation of mechanical energy, to the extent this is defined by 
work. The general Newtonian forces do not have this restriction: they are dissipative. For 
instance, the force characterizing a material point describing a Kepler orbit is given, according to 
Glaisher, by equation (5). Without any loss of generality, it can be written in vector form as 
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where (x, y) are the coordinates in the plane of motion. This force is of the form given in 
equation (29) with an obvious identification of function ψ, and for a33 = 0, in order to be 
considered a vacuum force. The general expression independent of the plane of motion is 
obviously the one using the first expression (29): 
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The first condition (29) is implicit, while the second condition is no more satisfied. In fact, we 
have 
 

4)ra(
ra3f 



⋅
×

µ−=×∇  (32) 

Therefore, the elementary work of this force is not integrable in the ordinary sense. However it is 
integrable in the Frobenius sense, therefore in the thermodynamical sense, i.e. we have 
 wdFrdfL =⋅≡δ


 (33) 

for certain functions w and F. This can be proved directly by noticing that the Cartan 
integrability condition δL˄(d˄δL) = 0, where ‘˄’ is the sign of an ‘exterior’ operation (in this 
case differentiation) on differential forms, is satisfied in view of equations (31) and (32). 
 The classical motion sustained by the force from equation (31) is a Keplerian motion. This 
can be seen by solving the Binet’s equation of the Newtonian problem of motion 
 

θ
µ

=+′′ 3

3

cos
auu  (34) 

where u ≡ 1/r as usual, and the derivative is taken with respect to angle θ whose origin is the 
direction of the vector a�⃗ . The general solution of this equation 
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where w1 and w2 are some initial conditions of the problem. In the Cartesian coordinates ξ and η 
with respect to the center of force equation (35) becomes 
 0)a2(w)a2w( 23

2
23

1 =ξ−ηµ+ξη+ξµ−  (36) 
The center of the orbit has the coordinates 
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Therefore the physical parameters entering the force – the components of the vector a�⃗  – 
determine also the characteristics of the Keplerian orbit induced by that force. This orbit is plane, 
with the plane determined by the initial conditions represented by the vector w���⃗ . 
 The work of the force performed on the orbiting body is not zero, as in the case of the forces 
with magnitude depending exclusively on distance, but can be recognized by a flux through the 
surface enclosed by the orbit, for we have 
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 (38) 

What, though, if the orbit is not is not a closed curve?! In the Sagittarius A* case, for instance, 
all the data we have at our disposal, except the one referring to S02 of course, come only with 
segments of the whole orbit. Therefore, such data would only refer to the work done by force 
along an open segment of the orbit, and the proper question would be the to ask about the 
variation of this integral along the orbit. A solution to this problem is provided by the transport 
theorem (Betounes, 1983) in the form 
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Here we have a subtle understanding of things: Γ is the segment of curve initially accessible. It 
evolves due to the motions of heavens – not only of the body on which we have concentrated our 
attention. The evolution is accounted for by a family φt of morphisms depending on time in the 
sense that the time is a continuous index of the family: for each moment of time there is a 
morphism mapping the initial segment Γ, between points P and Q of the orbit, to the current one 
denoted φt(Γ). The equation (39) can be reckoned as a continuity equation, showing how the 
power generated by force is dissipated. 
 It is a formula like equation (39) that may be able to explain the transitions between 
Keplerian orbits along the spiral arms of a galaxy for instance. However, we stop here for a 
moment, in order to frame our conclusions about forces that might relate to the Sagittarius A* 
case. Only after this rounding up of the conclusions shall we get into an explanation of the 
occurences of that case. 

 Conclusions and Outlook 
 Sagittarius A* is an intricate case: we consider it an astrophysical subject of great theoretical 
interest for the whole physics. The theory of forces used in explanation of related occurences of 
the case, has to measure up with such a task, which turns out to be outstandingly complex, 
involving all of the aspects of theoretical physics known to us thus far, and perhaps much more. 
The main point of the work thus far is making clear what needs to be considered in the problem 
of forces, in order to make sure that these are able to be ‘equal to the task’. 
 The first general conclusion is that the classical Newtonian conservative force is much too 
poor a concept for the job at hand. The force to be considered should indeed be a central force, 
for we have no other possibility of classical explanation, but with no other restrictions upon it 
whatsoever. First, the conic shape per se, of the orbits of the stellar objects in the center of the 
Milky Way, is by no means indication that the center of force is in the focus of those orbits. 
Therefore, in their physical explanation we are not entitled to use the hypothesis of central force 
with magnitude depending exclusively on the distance. Secondly, the rich emission of 
electromagnetic energy from Sagittarius A*, may be an indication that the force is not 
necessarily conservative. In fact Sagittarius A* may be a transformer of energy as it were: the 
mechanical energy is transformed into electromagnetic energy in a kind of process like the one 
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acting in the atom and explaining the Bohr’s transitions at large. The explanation of the 
Sagittarius A* would then be crucial for the theoretical physics, for it gives clues regarding the 
mechanism of transition between orbits, and how the electromagnetic energy is created. 
 The whole theory thus far is based on the idea of material point in the classical acceptance: a 
position endowed with physical properties. Thus, the next step in our analysis seems to be a 
logically necessary one: what is the influence of the space expansion of the matter in the stars 
revolving around Sagittarius A*? For we are by no means entitled to consider the stars we 
observe by the means of adaptive optics as material points in a classical sense. The second part 
of the present work will be dedicated to this issue. 
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