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Abstract

In this work I will study the Dirac Gamma matrices in Majorana basis and Ma-
jorana spinors. A Fourier like transform is defined with Gamma matrices, defining
a momentum space for Majorana spinors. It is shown that the Wheeler propagator
has asymptotic states with well defined momentum.
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1 Introduction

The Dirac matrices, γµ, in Majorana basis are purely imaginary. That means that
iγµ are 4x4 real matrices.

An example of such matrices in a particular basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0

+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(1.1)

The metric, given by the anti-commutator of the matrices, is the Minkowski space-time
metric:

gµν = −{iγµ, iγν} = γµγν + γνγµ = diag(1,−1,−1,−1), µ, ν = 0, 1, 2, 3 (1.2)

In fact, when working with 4x4 real matrices, we can only find a set of 5 anti-
commuting matrices. This means that with 4x4 real matrices we can describe the
Minkowski space-time, but we can not describe, for instance, a 4D euclidean space.

We define /p = γµpµ. The Dirac equation for the free fermion can be written only with
real matrices:

iγ0(iγµ∂µ −m)Ψ(x) = iγ0(i/∂ −m)Ψ(x) = 0 (1.3)

And we can express Lorentz transforms only with real matrices.
The spin operators are defined as:

σk =iγkiγ5 k = 1, 2, 3 (1.4)

They verify:

[σi, σj] =iγ0εijk σ
k (1.5)

Where εijk is the Levi-Civita symbol. Note that iγ0 commutes with σk and squares to −1,
so it can be thought of as the imaginary unit in the spin algebra.

We will use the following conventions:
If p is a Lorentz vector:

(γµpµ)(γµpµ) = (/p)(/p) = pµpµ = p · p = p2 = (p0)2 − (p1)2 − (p2)2 − (p3)2 (1.6)

Given a 3-vector ~p and a real number m > 0, we define:

~pi = pi, i = 1, 2, 3 (1.7)

~/p = ~γ · ~p (1.8)

Ep =
√
~p2 +m2 (1.9)

/mp = γ0Ep − ~γ · ~p (1.10)

/m−p = γ0Ep + ~γ · ~p (1.11)

Note that ( /mp)
2 = m2. We use the definition /mp to distinguish from /p when p0 6= Ep.

A Majorana spinor is a real 4D vector on which the Dirac matrices act. A Dirac
spinor is a complex 4D vector, on which the Dirac matrices act.

The references I most used were [2] and [3].
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2 Lorentz transformations

A Lorentz transformation can be represented by a tensor a µ
ρ which leaves the metric

invariant:

gρσa µ
ρ a

ν
σ = gµν (2.1)

Let S be a Majorana matrix that verifies:

γρa µ
ρ = S−1γµS (2.2)

Then it verifies γ0S−1 = STγ0 and γ5S = Sγ5. In the particular case of a Lorentz boost,
the S matrix is given by:

SL =
/mpγ

0 +m√
Ep +m

√
2m

(2.3)

S−1
L = −α0STLα

0 =
γ0 /mp +m√
Ep +m

√
2m

(2.4)

where ~p
m

= ~v√
1−~v2 ,~v is the boost velocity. In the particular case of a rotation, the S matrix

is given by:

SR = exp(iγ5γ0γiϕi), i = 1, 2, 3 (2.5)

S−1
R = STR = −γ0STRγ

0 (2.6)

In general, the S matrix is the product of a Lorentz boost and a rotation.

3 Fourier-Majorana transform (in space)

Given a 4x4 matrix M(~x), the Fourier-Majorana transform (in space) is defined as:

M(~p) =

∫
d3~xO(~p, ~x)M(~x) (3.1)

Where O is the real 4x4 matrix given by:

O(~p, ~x) = e−iγ
0~p·~x /mpγ

0 +m√
Ep +m

√
2Ep

(3.2)

The inverse Fourier-Majorana transform is given by:

M(~x) =

∫
d3~p

(2π)3
OT (~p, ~x)M(~p) (3.3)

Where OT is the transpose of O, given by:

OT (~p, ~x) =
/mpγ

0 +m√
Ep +m

√
2Ep

eiγ
0~p·~x (3.4)
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To prove it:∫
d3~p

(2π)3
OT (~p, ~y)O(~p, ~x) =

∫
d3~p

(2π)3Ep

/mpγ
0 +m√

2(Ep +m)
eiγ

0~p·(~y−~x)
/mpγ

0 +m√
2(Ep +m)

(3.5)

=

∫
d3~p

(2π)3
ei

/mp
m
~p·(~y−~x)

/mpγ
0

Ep
(3.6)

=

∫
d3~p

(2π)3
cos(~p · (~y − ~x)) (3.7)∫

d3~p

(2π)3
(−cos(~p · (~y − ~x))

~/pγ0

Ep
+ sin(~p · (~y − ~x))

miγ0

Ep
(3.8)

= δ3(~y − ~x) (3.9)

Note that both cos(~p · (~y − ~x))
~/pα0

Ep
and sin(~p · (~y − ~x))miγ

0

Ep
are odd in ~p and therefore do

not contribute to the integral.∫
d3~xO(~q, ~x)OT (~p, ~x) =

∫
d3~xe−iγ

0~q·~x /mqγ
0 +m√

Eq +m
√

2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
eiγ

0~p·~x (3.10)

=
/mqγ

0 +m√
Eq +m

√
2Eq

/mpγ
0 +m√

Ep +m
√

2Ep

∫
d3~xcos(~q · ~x)cos(~p · ~x)+ (3.11)

− iγ0
/mqγ

0 +m√
Eq +m

√
2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
iγ0

∫
d3~xsin(~q · ~x)sin(~p · ~x) (3.12)

= (2π)3
/mqγ

0 +m√
Eq +m

√
2Eq

/mpγ
0 +m√

Ep +m
√

2Ep

δ3(~q − ~p) + δ3(~q + ~p)

2
+ (3.13)

− (2π)3iγ0
/mqγ

0 +m√
Eq +m

√
2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
iγ0 δ

3(~q − ~p)− δ3(~q + ~p)

2
(3.14)

= (2π)3 δ
3(~q − ~p)

2
(

/mqγ
0 +m√

Eq +m
√

2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
+ (3.15)

− iγ0
/mqγ

0 +m√
Eq +m

√
2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
iγ0)+ (3.16)

+ (2π)3 δ
3(~q + ~p)

2
(

/mqγ
0 +m√

Eq +m
√

2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
+ (3.17)

+ iγ0
/mqγ

0 +m√
Eq +m

√
2Eq

/mpγ
0 +m√

Ep +m
√

2Ep
iγ0) (3.18)
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= (2π)3 δ
3(~q − ~p)

2
(

/mqγ
0 +m√

Eq +m
√

2Eq

/mqγ
0 +m√

Eq +m
√

2Eq
+ (3.19)

− iγ0
/mqγ

0 +m√
Eq +m

√
2Eq

/mqγ
0 +m√

Eq +m
√

2Eq
iγ0)+ (3.20)

+ (2π)3 δ
3(~q + ~p)

2
(

/mqγ
0 +m√

Eq +m
√

2Eq

/m−qγ
0 +m√

Eq +m
√

2Eq
+ (3.21)

+ iγ0
/mqγ

0 +m√
Eq +m

√
2Eq

/m−qγ
0 +m√

Eq +m
√

2Eq
iγ0) (3.22)

= (2π)3
/mqγ

0 + γ0 /mq

2Eq
δ3(~q − ~p) (3.23)

= (2π)3δ3(~q − ~p) (3.24)

4 Fourier-Majorana transform (in space-time)

Given a 4x4 matrix M(x), the Fourier-Majorana transform (in space-time) is defined
as:

M(p) =

∫
d4xO(p, x)M(x) (4.1)

Where O is the real 4x4 matrix given by:

O(p, x) = eiγ
0p0x0O(~p, ~x) = eiγ

0p·x /mpγ
0 +m√

Ep +m
√

2Ep
(4.2)

Note that Ep and /mp don’t depend on p0. The inverse Fourier-Majorana transform is
given by:

M(x) =

∫
d4p

(2π)4
OT (p, x)M(p) (4.3)

Where OT is the transpose of O,given by:

OT (p, x) = OT (~p, ~x)e−iγ
0p0·x0 =

/mpγ
0 +m√

Ep +m
√

2Ep
e−iγ

0p·x (4.4)

To prove it:∫
d4p

(2π)4
OT (p, y)O(p, x) =

∫
d3~p

(2π)3
OT (~p, ~y)(

∫
dp0

2π
e−iγ

0p0(y0−x0))O(~p, ~x) (4.5)

= δ(y0 − x0)

∫
d3~p

(2π)3
OT (~p, ~y)O(~p, ~x) (4.6)

= δ4(y − x) (4.7)
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∫
d4xO(q, x)OT (p, x) =

∫
dx0eiγ

0q0x0(

∫
d3~xO(~q, ~x)OT (~p, ~x))e−iγ

0p0x0 (4.8)

= (2π)3δ3(~q − ~p)
∫
dx0eiγ

0(q0−p0)x0 (4.9)

= (2π)4δ4(q − p) (4.10)

In what follows we will call just Fourier-Majorana transform to both Fourier-Majorana
transforms in space and space-time. It will be clear from the context to which we are
referring to.

5 Dirac equation

The Dirac equation for the free fermion is:

iγ0(i/∂ −m)Ψ(x) = 0 (5.1)

Where Ψ is a spinor, a vector of the 4D space, on which the Dirac matrices act. Note
that the equation contains only real matrices.

We can make a Fourier-Majorana transform and go to momentum space:

iγ0(i/∂ −m)Ψ(x) =

∫
d4p

(2π)4
(i
/mp

m
p0 − iγ0~/p

/mp

m
− iγ0m)OT (p, x)Ψ(p) (5.2)

=

∫
d4p

(2π)4
(i
/mp

m
p0 + i~/p

Ep
m
− iγ0

E2
p

m
)OT (p, x)Ψ(p) (5.3)

=

∫
d4p

(2π)4
(i
/mp

m
p0 − i

/mp

m
Ep)O

T (p, x)Ψ(p) (5.4)

=

∫
d4p

(2π)4
OT (p, x)iγ0(p0 − Ep)Ψ(p) (5.5)

The Dirac equation in momentum space is then:

iγ0(p0 − Ep)Ψ(p) = 0 (5.6)

The solution is:

Ψ(p) = (2π)δ(p0 − Ep)ψ(~p) (5.7)

Making an inverse Fourier-Majorana transform we get:

Ψ(x) =

∫
d3~p

(2π)3

/mpγ
0 +m√

Ep +m
√

2Ep
e−iγ

0p·xψ(~p) (5.8)

Where p0 = Ep and ψ(~p) is a spinor. If ψ(~p) is a real spinor, then the solution Ψ(x) is
real.

6



6 Spin

A real spinor has 4 degrees of freedom. When we want a real spinor to satisfy the
Dirac equation, we are left with 2 degrees of freedom, because we are rejecting spinors of
the type:

Ψ(x) =

∫
d3~p

(2π)3

/mpγ
0 +m√

Ep +m
√

2Ep
eiγ

0p·xψ(~p) (6.1)

Which would satisfy the Dirac equation with negative mass. The 2 degrees of freedom
that left correspond to the spin up/down property of the spinor.

The spin vector s verifies sµsµ = −1 and s0 = 0. The spin operator /sγ5 commutes
with iγ0 and squares to 1. Therefore, it has eigenvalues 1 (up) and −1 (down). The
eigen-vectors of /sγ5, in momentum space, can be defined as:

ψ(~p, s) =
1 + /sγ5

2
ψ(~p) (6.2)

ψ(~p,−s) =
1− /sγ5

2
ψ(~p) (6.3)

And the Majorana spinor in momentum space with a defined spin and that satisfies the
Dirac equation is:

Ψ(x0, ~p, s) = e−iγ
0Epx0ψ(~p, s) (6.4)

The spin operators are defined as:

σk =γkγ5 k = 1, 2, 3 (6.5)

They verify:

[σi, σj] =iγ0εijk σ
k (6.6)

Where εijk is the Levi-Civita symbol. Note that iγ0 commutes with σk and squares to −1,
so it can be thought of as the imaginary unit in the spin algebra.

7 The Partition Function

In the second quantization, a fermion must obey to the Fermi-statistics. This is
achieved by considering that the fields Ψa(x) are Grassmann numbers (anti-commuting).
The Lagrangian for the free Majorana fermion (real spinors) is:

L(x) =
1

2
ΨT (x)γ0(i/∂ −m)Ψ(x) (7.1)

The Lagrangian is invariant under Lorentz transformations:

Ψ→ SΨ (7.2)

xµ → xρa µ
ρ (7.3)

L → L (7.4)
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Where S is the matrix that makes Lorentz transformations and a µ
ρ is tensor of the Lorentz

transform, verifying:

γρa µ
ρ = S−1γµS (7.5)

The action is given by:

S =
1

2

∫
d4xΨT (x)γ0(i/∂ −m)Ψ(x) (7.6)

In momentum space, the action is given by:

S =
1

2

∫
d4p

(2π)4
ΨT (p)γ0(p0 − Ep)Ψ(p) (7.7)

= − i
2

∫
d4p

(2π)4

d4q

(2π)4
ΨT (p)∇(p, q)Ψ(q) (7.8)

Where the matrix ∇ is:

∇(p, q) = δ4(p− q)iγ0(p0 − Ep) (7.9)

Returning to the space of the coordinates, we get:

∇(x, y) =

∫
d4p

(2π)4
OT (p, x)α0(p0 − Ep)O(p, y) (7.10)

=

∫
d4p

(2π)4
e−i

/mp
m
p·(x−y)miγ0p

0 − Ep
Ep

(7.11)

And:

S = − i
2

∫
d4xd4yΨT (x)∇(x, y)Ψ(y) (7.12)

The matrix ∇ is real and antisymmetric, that is ∇(x, y)ab = −∇(y, x)ba. This property
is very important, because we are working with Grassmann variables and a symmetric
part of ∇(x, y)ab would not contribute to the action.

In what follows it will be convenient to represent the variables in the same way we
treat the spinor indexes and represent both by the same index. This way, the action can
be written as:

S = − i
2

Ψx∇xyΨy = − i
2

ΨT∇Ψ (7.13)

The Partition Function is defined by the Feynman path integral:

Z[η] =

∫
DΨeiS[Ψ]+ηTΨ (7.14)

Note that iS is real. The functional integral is done in the Ψx space: DΨ =
∏

x dΨx.
Where η is the external source of the field, composed by Grassmann numbers. We can
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express the Partition Function as:

Z[η] =

∫
DΨexp(iS + ηTΨ) (7.15)

=

∫
DΨexp(

1

2
(Ψ−∇−1η)T∇(Ψ−∇−1η) +

1

2
ηT∇−1η) (7.16)

= exp(
1

2
ηx∇−1

xy ηy)

∫
DΨexp(iS) (7.17)

= exp(
1

2
ηx∆xyηy)

∫
DΨexp(iS) (7.18)

Where the relation ∇−1T = −∇−1 was used. ∆ ≡ ∇−1 is the propagator. We can now
use the partition function to obtain information about the system.

8 Propagator

The Propagator is the solution to the linear differential equation:

iγ0(i/∂x −m)∆(x, y) = δ4(x− y) (8.1)

The general solution to the linear differential equation is the sum of the general solution
of the related homogeneous equation ∆H(x, y) and a particular solution ∆W .

Going to momentum space we get:

iγ0(p0 − Ep)∆(p, q) = 1 (8.2)

With solution:

∆(p, q) =
(
− iγ0

p0 − Ep
+ δ(p0 − Ep)M(~p)

)
(2π)4δ4(p− q) (8.3)

Where M(~p) is an arbitrary matrix and 1
p0−Ep should be understood as the Cauchy

Principle Value. The arbitrariness of M(~p) comes from the fact that the inverse of
(p0 − Ep) must be done in the sense of the distributions and (p0 − Ep)δ(p0 − Ep) = 0.

Now we define a particular solution ∆W :

∆W (p, q) = − iγ0

p0 − Ep
(2π)4δ4(p− q) (8.4)

And the general solution of the related homogeneous equation ∆H .

∆H(p, q) = δ(p0 − Ep)M(~p)(2π)4δ4(p− q) (8.5)

The general solution to the linear differential equation is the sum of a particular solution
∆W and the general solution of the related homogeneous equation ∆H .

Making an inverse Fourier-Majorana transform in time we get:

∆W (x0, ~p, y0, ~q) = −(2π)3δ3(~p− ~q)
∫
dp0

2π

iγ0e−iγ
0p0(x0−y0)

p0 − Ep
(8.6)
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We make the change of variables ξ = p0 − Ep, obtaining:

∆W (x0, ~q, y0, ~p) = −(2π)3δ3(~p− ~q)e−iγ0Ep(y0−z0)(

∫
dξ

2π

iγ0e−iγ
0ξ(x0−y0)

ξ
) (8.7)

= −(2π)3δ3(~p− ~q)e−iγ0Ep(y0−z0) sign(x0 − y0)

2
(8.8)

Where ϑ is half the sign function. We can recover the propagator in coordinate space as:

∆W (x, y) = −
∫

d3~p

(2π)3
e−i

/mp
m
p·(x−y)

/mpγ
0

Ep
ϑ(x0 − y0) (8.9)

With p0 = Ep. This particular solution is called the Wheeler propagator. [4].
The general solution to the homogeneous equation:

iγ0(i/∂ −m)∆H(x, y) = 0 (8.10)

Is given by:

∆H(x, y) =

∫
d3~p

(2π)3
e−i

/mp
m
p·(x−y)M(~p) (8.11)

One can now obtain other particular solutions, for particular M(p). The Retarded prop-
agator is:

∆R(x, y) = ∆W (x, y)−
∫

d3~p

(2π)3
e−i

/mp
m
p·(x−y)

/mpγ
0

2Ep
(8.12)

= −
∫

d3~p

(2π)3
e−i

/mp
m
p·(x−y)

/mpγ
0

Ep
θ(x0 − y0) (8.13)

Where θ(x0 − y0) is the Heaviside step function. The Advanced propagator is:

∆A(x, y) = ∆W (x, y) +

∫
d3~p

(2π)3
e−i

/mp
m
p·(x−y)

/mpγ
0

2Ep
(8.14)

=

∫
d3~p

(2π)3
e−i

/mp
m
p·(x−y)

/mpγ
0

Ep
θ(y0 − x0) (8.15)

The Feynman propagator is:

∆F (x, y) = ∆W (x, y)−
∫

d3~p

(2π)3
e−i

/mp
m
p·(x−y)mγ

0

2Ep
(8.16)

= −
∫

d3~p

(2π)32Ep
(( /mp +m)e−ip·(x−y)θ(x0 − y0) + (− /mp +m)eip·(x−y)θ(y0 − x0))γ0

(8.17)
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9 Causality and anti-symmetry lead to the Wheeler

propagator

We will show that a propagator is null for x− y space-like ((x0 − y0)2 < (~x− ~y)2) if
it is of the form:

∆(x, y) =

∫
d3~p

(2π)3Ep
e−i

/mp
m
p·(x−y) /mpγ

0f(x0 − y0) (9.1)

Where f(x0 − y0) is a scalar verifying −∂x0f(x0 − y0) = δ(x0 − y0). Since x− y is space-
like, by making a Lorentz transform we can go to a referential in which x0′ − y0′ = 0 and
(~x′ − ~y′)2 > 0. Now we have:

∆(x, y) = S∆′(x′, y′)ST (9.2)

With

∆′(x′, y′) =

∫
d3~p

(2π)3Ep
e−i

/mp
m
p·(x′−y′) /mpγ

0f ′(x0′ − y0′) (9.3)

Where f ′(x0′ − y0′) = f(x0 − y0). Since x0′ = y0′ , we get:

∆′(x′, y′) =

∫
d3~p

(2π)3Ep
e−i

/mp
m
~p·(~x′−~y′) /mpγ

0f ′(0) (9.4)

=

∫
d3~p

(2π)3
cos(~p · (~x′ − ~y′))f ′(0) (9.5)

= δ3(~x′ − ~y′)f ′(0) (9.6)

Which is null for (~x′ − ~y′)2 > 0.
If we impose that the propagator is causal, then the Feynman propagator is excluded.

If we want the propagator to be anti-symmetric, to be consistent with the definition from
the partition function, then the Advanced and Retarded propagators are excluded. A
good candidate is the Wheeler propagator.

10 Transition Probability

Let’s consider two different points xi and xf , with x0
f > x0

i and two fixed spinor
indexes i and f . Let’s suppose we have:

ηa(x) = δ4(x− xf )δafηf + δ4(x− xi)δaiηi (10.1)

Where ηf and ηi are Grassmann numbers. The source ηi at x0 = x0
i is called the initial

state, the source ηf at x0 = x0
f is called the final state.

The wave function Ψfi(xf , xi), at point xf and spinor index f , which is solution to
the Dirac equation and has an initial source at point xi and spinor index i is obtained
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by:

Ψfi(xf , xi) = 2
δ2

δηfδηi

Z[η]

Z[0]
|ηf ,ηi=0 (10.2)

= 2
δ2

δηfδηi
e

1
2

∫
d4xd4yηT (x)∆W (x,y)η(y)|ηf ,ηi=0 (10.3)

= 2
δ2

δηfδηi
e
−ηf [

∫ d3~p

(2π)3
e
−i

/mp
m p·(xf−xi) /mpγ

0

2Ep
]fiηi |ηf ,ηi=0 (10.4)

= [

∫
d3~p

(2π)3
e−i

/mp
m
p·(xf−xi)

/mpγ
0

Ep
]fi (10.5)

With x0
f > x0

i . The causality is guaranteed by the fact that given two sources, we choose
for initial source the one with x0

i < x0
f . Note that for fixed i, Ψfi is a spinor in the index

f .
The density of probability of having the state f , given the source i, is:

dP (f) =
Ψ2
f (xf )d

3 ~xf∫
ΨT (x0

f , ~x)Ψ(x0
f , ~x)d3~x

(10.6)

The normalization is given by:∫
ΨT (x0

f , ~x)Ψ(x0
f , ~x)d3~x =

∑
f

∫
Ψfi(xf , xi)Ψfi(xf , xi)d

3~xf (10.7)

=

∫
d3~p

(2π)3
1 = 1δ3

x(0) (10.8)

Instead of sources in coordinate space, we can have sources in momentum space:

ηa(x
0, ~p) = + δ(x0 − x0

f )(2π)3δ3(~p− ~pf )[eiγ
0Epx0 ]afηf (10.9)

+ δ(x0 − x0
i )(2π)3δ3(~p− ~pi)[eiγ

0Epx0 ]aiηi (10.10)

In that case:

Ψfi(x
0
f , ~pf , x

0
i , ~pi) = (2π)3δ3(~pf − ~pi)δfi, (x0

f > x0
i ) (10.11)

The density of probability of having the state f , given the source i, is:

dP (f) =
Ψ2
f (x

0
f , ~pf )

d3~pf
(2π)3∫

ΨT (x0
f , ~p)Ψ(x0

f , ~p)
d3~p

(2π)3

= δ3(~pf − ~pi)δfid3~pf (10.12)

The normalization is given by:∫
ΨT (x0

f , ~p)Ψ(x0
f , ~p)

d3~p

(2π)3
=
∑
f

∫
Ψfi(x

0
f , ~p)Ψfi(x

0
f , ~p)

d3~p

(2π)3
(10.13)

= 1(2π)3δ3
p(0) (10.14)
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