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Abstract

We discuss the continuum field theory limit of the physical scenario described in Ref. [1],
the universe arising from the interpretation of the most general collection of logical codes in
terms of distributions of units of energy along units of space. This limit leads in a natural
way to string theory as the theory which allows to perturbatively parametrize the geometric
structures in terms of propagating particles and fields. We discuss some general properties
of the spectrum, masses and couplings, the existence of the strong force, with particular
attention to the excited states, and the implications for the physics of high energy colliders.
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1 Introduction

In Ref. [1] we have presented an updated discussion of a theoretical scenario which can be
viewed as a way of ordering the whole of information in its most generic formulation. In
this space of logical structures, or strings of information, we have introduced a time ordering
using the natural ordering given by the inclusion of sets, and, through the interpretation of
logical codes in terms of distributions of energy along a target space, we have shown how this
space leads to a universe with the physical and geometrical properties of the universe we live
in, with a three-dimensional space governed by a quantum-relativistic physics. The physical
universe is given by the superposition of all the configurations, of any space dimensionality,
at a given total amount of energy, which plays also the role of time, or age of the universe.
Three dimensional space arises as the dominant configuration, while the configurations not
contributing to the “classical” part sum up to produce in any observable quantity one can
define in the three dimensional space a smearing which corresponds to the Heisenberg uncer-
tainty. The basic expression is the sum over all the possible energy configurations, weighted
by their entropy (i.e. the (relative) weight given by the volume of their combinatorial group)
in Ψ(E), the space of all the configurations (that is, of all the codes, or logical structures)
with a fixed total amount of energy, E:

Z(E) =
∑

Ψ(E)

eS(Ψ(E)) , (1.1)
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where S(Ψ) is the entropy of the configuration Ψ in the phase space {Ψ}, related to the
volume of occupation in the phase space, W (Ψ), in the usual way: S = logW . This sum can
be considered as the “partition function”, or the functional generating all the observables,
of the theory. The dynamics is intrinsic in 1.1, which means that the time evolution is
uniquely given by the entropy-weighted sum: at any time the universe, and therefore also
any subregion/subsystem is given by a staple of configurations, weighted by their entropy
in the phase space of all the configurations corresponding to the given total energy, or
equivalently age, of the universe. By definition any type of “force” or interaction is therefore
entropic.

In this work we continue the discussion, and consider the large-energy limit, in which the
discrete universe can be approximated by a continuous description of space and its geometry.
In this limit, the physical scenario encoded in 1.1 naturally leads to a parametrization in
terms of quantum superstrings. The properties of the mapping to this parametrization allow
to recognize in the various perturbative string constructions different realizations of subsets
of the same scenario, thereby allowing its identification as the “underlying theory”, which
therefore in particular encloses also the so-called M-theory, or whatever is the name one
wants to give to this no-better-defined theory. We discuss the relation between the non-
perturbative formulation, and the representation of space in the perturbative constructions
of the string. In particular, the perturbative limit is important because it allows to identify
the spectrum of free particles. We discuss the meaning of mass of an elementary particle
and field, and the couplings in a scenario in which, as a consequence of 1.1, the dynamics
is of entropic type. We discuss in general how these quantities are related to volumes in
the phase space, and how they are computed as functions of the age of the Universe. The
detailed inspection of the spectrum and the numerical evaluation of masses and couplings is
however left to the analysis of Ref. [2], to which we refer the reader for more information.
Particular attention is devoted here to the strong interaction in general terms, to the reason
and meaning of the existence of a strong force, besides an (electro-)weak one, discussing how
its existence is necessarily required and implied by the coupling with gravity. The last part
of the work is a general discussion of the phenomenon of resonance in its various aspects, and
how it arises as another consequence of the only rationale of the universe in this theoretical
framework, the entropy in the phase space of all the configurations. To this regard, we
discuss how the entropy-weighted sum 1.1 reduces in the field theory limit to the Feynman
Path Integral. The phenomenon of resonance is considered with particular attention to the
physics of particle colliders, with a section devoted to the excited states we expect to show
up as resonance picks in the proton-antiproton high-energy collisions.

2 From combinatorials to strings

As discussed in Ref. [1], the dominant geometry of the universe at energy N is the one of
a three sphere of radius ∼ N . Here the unit of measure can be identified with the Planck
scale. In the limit of large N , this scenario can be approximated by a description in terms
of interacting quantum particles and fields, propagating along a time coordinate. Since we
start from a description of every observable in terms of geometric distribution of energy,
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these particles and fields will not simply move inside a space within a well defined geometry,
but will determine themselves the geometry. Namely, we will have a parametrization of the
staple of geometries through propagating fields. To this purpose, we need to associate a
fiber to any point (= elementary cell of Planck size) of a base, which must correspond to
the space, the three dimensional space, because, according to the analysis in section 3 of
Ref. [1], dimensions other than three are already taken into account by the fact of working
with quantum objects. We have seen there that the universe behaves like a black hole with
horizon at radius T (where T is the continuum limit of N), plus “quantum corrections”;
in the parametrization in terms of quantum fields the base is therefore holographic. This
means that the independent part of the information we want to parametrize is contained in
a two-dimensional sphere which would correspond to the horizon of a black hole extended as
much as the age/length of the universe, T . The amount of energy we must distribute along
the fiber is therefore:

Ef = k
1

T
, (2.1)

where k is an appropriate numerical coefficient. In total we have:

Etot = (volume of base) × Ef ∝ T 2 ×
1

T
= T 2 . (2.2)

Notice that in this framework 1/T is the ground energy of the “massless” fields, because in
the classical limit, the limit in which we neglect quantum corrections to the geometry, the
space is compact (radius T ∼ N). The minimal momentum is therefore the inverse of the
extension of space. Energies above k/T are here considered as quantum fluctuations. We
incidentally observe that this is also the ground momentum of a string in a compact space,
and the fact that it is “anchored” on a two-dimensional space is quite reminiscent of the fact
that, in the light-cone gauge of the four-dimensional compactifications of string theory only
two transverse coordinates are independent. Indeed, the existence of a minimal distance,
the “Planck length”, means that when we want to parametrize this on the continuum we
need extended objects. The string is the minimal one, out of which one can also build more
extended ones, which indeed turn out to be generated by string theory 1. With the string,
we can “eat” two coordinates of the target space, and go to the so-called light cone gauge,
therefore realizing the identification of the base with the two-dimensional surface of the
holographic universe in expansion. These facts are therefore related, although understanding
how one comes out with two transverse coordinates in a flat space requires some intermediate
considerations, that we are going to report. In this set up, extended objects are not only
the natural implementation of a theory with a built-in minimal length, but also the only
possible objects of a quantum scenario. The reason is that, in a quantum theory, having non-
extended objects, like point-like massive particles, means that one has black-holes, namely

1There cannot be a consistent quantum theory of non-extended objects with a cut-off on the length, that
establishes the existence of a minimal length, because this is like saying that these objects must be extended.
Indeed, by considering interactions, and therefore superpositions, of several ones, one can build a momentum
spread that leads to a position uncertainty lower than the minimal length: ∆x ∼ 1/∆p (it is essential here
that we are speaking of quantum theory, not simply classical theory). With the string, the extension of the
object generates a “dual” sector to momenta, the windings, which somehow say how the theory behaves for
lengths lower than the minimal one: in its simplest version, it just reproduces the theory above this length.
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objects with an extension below the Schwarzschild radius threshold: ∆x << E ∼ 1/∆x.
However, as discussed in [3] and [1], in our scenario black holes do not exist as localized
objects.

2.1 The logarithmic map

This “string” scenario is in its ground non-perturbative and in a regime of full interaction.
In order to obtain the properties (spectrum, masses, interactions) of the elementary particles
we must decouple the theory. This means going to the flat limit of the space, from a sphere
to a product of circles. In [4] and [1] the entropy of the three-sphere has been computed to
be:

S(3) ∼ N2 , (2.3)

whereas the entropy of the circle is:

S(1) ∼ lnN . (2.4)

In our case, owing to holography, the “base” of space is a two-sphere, and decoupling the
theory implies its transformation into a torus (the product of two circles):

S : N2 → 2 lnN . (2.5)

This corresponds to the coordinate transformation N → lnN , or, in the continuum limit,
T → ln T . This procedure introduces the perturbative string construction, compactified on
circles (toroidal compactification), which turns out to be the realization of this scenario in
a logarithmic picture, and justifies working with toroidally compactified string orbifolds in
order to derive the spectrum of free particles.

In the perturbative string limit, holography reflects in the fact that one can go to light-
cone gauge. This interpretation is not evident as long as one considers the space-time to
be of infinite extension; however, as soon as space is compactified, this property translates
into the fact that space is stirred by the expansion of a massless field, whose propagating
degrees of freedom are in bijection with the transverse coordinates of the string target space.
It is therefore a co-dimension 1 front (horizon-like) which is blown up. This space reduces
to just two dimensions upon reduction of the so-called internal coordinates of the string
to the Planck scale size. Indeed, as is well known, a consistent string theory can only be
constructed by embedding the string in a higher dimensional target space. The number of
these dimensions is fixed by the requirements of supersymmetry (basically needed in order
to introduce fermions, i.e. in order to implement a relativistic description of space-time)
and quantum consistency, and are apparently not related to the dimension (three) of the
space we want eventually describe. These two things are however deeply related. Namely,
superstring theory is consistent precisely in the right number of dimensions to make of it the
theory which implements a description of the universe we are discussing. Indeed, the eventual
number of space dimensions of the universe. i.e. three, is automatically fixed as the minimal
number of dimensions string theory can be consistently reduced upon compactification, once
canonical quantization is imposed. To this regard, we want to show that the “canonical”
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form of the Uncertainty Principle, namely the inequality with the appropriate normalization
∆E∆t ≥ 1/2, which in a relativistic context goes together with ∆P∆x ≥ 1/2, implies,
and is implied by, only one dimensionality of space, with a well defined geometry. In our
combinatorial construction, Ref. [1], section 3, we have seen that we obtain a ”classical”
D = 3 dimensional space, plus the Heisenberg Uncertainty. The dimensionality of space
becomes D = 3 + 1 once we implement the ”time” T = Etot in a time coordinate suitable
for a field theory description. Taking this into account, what we have seen is that:

combinatorial scenario ⇒ [D = 3 + 1] ∪ [∆E∆t ≥ 1/2] . (2.6)

This means also that:
∆E∆t ≥ 1/2 ⇔ D = 3 + 1 . (2.7)

Let us suppose in fact by absurd that ∆E∆t ≥ 1/2 ⇔ D 6= 3 + 1. Then, in the sum
of the rests considered to derive the uncertainty (section 3 of Ref. [1]), the ratio between
weight of the classical and weights of quantum configurations is different, something that
would lead to a different uncertainty. But there is more: ∆E∆t ≥ 1/2 not only is uniquely
related to the dimensionality, but also to the geometry of space, because geometries different
from the sphere have different entropy, and therefore different weight, leading to a different
uncertainty. This means that the relation ∆E∆t ≥ 1/2 not only fixes dimension and main
geometry, but also the spectrum of the theory.

Let us see now how many internal dimensions do we need. We want to describe all the
possible perturbations of the geometry of a sphere in three dimensions, as due to fields and
particles that propagate in it. Notice that it is not a matter of building a set of fields framed

in a certain space, i.e. functions of space-time coordinates. It is a matter of promoting the
deformations of the geometry themselves to the role of fields. One may think at a description
in terms of vector fields. Once provided with a time coordinate, the three-sphere × the time
coordinate, which can be considered the D = 3+1 “background” space, corresponds to vector
fields possessing an SO(3, 1) symmetry. However, we must have both bosons and fermions.
Fermions are needed because we want a quantum relativistic description of fields. It is
relativity what leads to the introduction of spinorial representations of space. This does not
mean we need bosons and fermions in equal number, nor even that they must have the same
mass (implying supersymmetry of the theory): supersymmetry is not a symmetry of the real
world (in the sense of an exact symmetry). In terms of spinorial representations, SO(3, 1) is
locally isomorphic to SU(2)×SU(2), a group with 3+3 generators, which, once parametrized
in terms of bosonic fields, correspond to a space with six bosonic coordinates. One would
like to conclude that, in order to have both a vectorial and a spinorial representation of
the background space with all its perturbations we need therefore the original 3+1 plus

3+3 internal coordinates. With six internal dimensions it seems we are sure that whatever
internal configuration can be mapped to a configuration of space-time, allowing for a non-
trivial (and complete) mapping between the ”fiber” and the ”base” space, ensuring to have
a non-degenerate and complete description of all the perturbations. Ten is precisely the
dimension of any perturbative quantum superstring. There is however one more coordinate,
obtained by the “un-freezing” of the gravitational coupling, the unit scale, which is indeed
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the coupling of the theory. Perturbatively, this coupling is flattened into a coordinate (it
appears explicitly as such in the 11-dimensional supergravity) 2.

The tight relation we have found between canonical form of the Heisenberg uncertainty
and dimensionality of space, together with the absolute generality of the scenario described
by 1.1, namely the fact that it considers the collection of all possible configurations, imply
also the universality of its translation into the continuum, in terms of string theory, namely
the existence of a unique theory underlying all the possible perturbative constructions.

2.2 Entropy in the string phase space

In order to reproduce the scenario of 1.1 and therefore be a representation of the same
physics, also the string phase space, i.e. the space of all string constructions, must be ordered
according to the energy content. In particular, the string target space must be considered
always as compact, with the consequence that supersymmetry is always broken. According
to the relation 2.2 the time-ordering through energies translates into an ordering through
the (average) radius of compactification. It is not so important to define it more precisely,
because entropies in the space of all string compactifications are related to the amount of
symmetry possessed by the various configurations. Of course the larger is the volume of the
target space, the larger is also the continuous group of space symmetry, but what is going
to interest us for the identification of the most entropic configurations at any time of the
evolution of the universe is the symmetry of the internal space of a string compactification.
On the string space, 1.1 becomes:

ZV =

∫

V

Dψ eS(ψ) , (2.8)

where ψ indicates now a whole, non-perturbative string configuration, and V is the volume
of the target space, intended as “measured” in the duality-invariant Einstein frame. In order
to understand what kind of “universe” comes out of all the possible string configurations
we must therefore find out which ones correspond to the maximal entropy in the phase
space. It turns out that the string construction with the highest entropy is the one with
the lowest amount of symmetry, intended both as geometric symmetry of the target space,
and symmetry of the spectrum, being these two aspects tightly related. The symmetries of
the target space reflect in fact on the entire string spectrum, in the sense that, if different
target spaces of a specific string construction have symmetry represented by the groups G
and G′ respectively, such that G′ = G/H , and the initial spectrum has a symmetry G̃, the
corresponding spectra will have respectively symmetry G̃ and G̃′, such that G̃′ = G̃/H̃ ,
where H̃ ∼= H . We may say that both H and H̃ are representations of the same group,
that for simplicity we call H 3. Let’s consider the action of the group H on an initial string
configuration, that we call Ψ. That means, the action of H on its target space and on the

2If one wants to keep part of the non-perturbative string description, i.e. with a non-trivial Planck length,
one is forced to keep non-trivial part of the coupling even in a perturbative construction. This may lead
to some artifacts, that produce the impression, when looking at just a subset of the construction, that the
fundamental theory lives in twelve dimensions (See for instance the works on F-theory, first proposed in [5]).

3Notice that we are not saying that G ∼= G̃ nor G′ ∼= G̃′!
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spectrum. Let us call Ψ′ the configuration obtained by this modding by H . Elements h ∈ H
map Ψ′ to Ψ′′ = hΨ′, physically equivalent to Ψ′, in the sense that, by construction, there is
a one-to-one map between Ψ′ and Ψ′′ which simply re-arranges the degrees of freedom. From
a physical point of view, there are therefore ||H|| ways of realizing this configuration. The
occupation in the whole phase space is therefore enhanced by a factor ||H|| as compared
to the one of Ψ. By reducing the symmetry of the target space, we have enhanced the
possibilities of realizing a configuration in equivalent ways in the string phase space. In this
way, we see that, starting from the most symmetric configuration, perturbatively realized
on a product of tori, we obtain the most entropic configuration as the one in which the
initial symmetry is reduced to the minimal possible one. As one could expect from the
considerations expressed above, it turns out that in this configuration all the coordinates
of the string target space are twisted, except, in the light cone gauge, from two transverse,
corresponding to the “front” of an expanding universe with three space dimensions (see
Ref. [2] for a detailed derivation of this result).

2.3 The scaling of energy

Let us now see how does the fiber look in the perturbative string construction. Through the
logarithmic map of the coordinates the amount of energy on the fiber is mapped as:

Ef =
k

T

log
−→ log T + log k . (2.9)

The first term on the r.h.s. is the contribution of the zero modes (what comes from the
regularization of the target space, and is usually quoted as a “logµ” term), whereas the
second term is the contribution of the internal space of the string. For a compactification in
which the entire internal space is twisted 4, and supersymmetry is broken, this contribution
is of order one. It may seem strange that what one writes as coordinates of space-time in
the target space of a perturbative string construction are indeed the logarithm of the true,
physical coordinates. Usually, this is what one would expect just for the coupling. The reason
is that in usual field theory the interacting fields are framed in a space-time; here they are the
space-time coordinates themselves, and the coupling is the scale of the geometry of this space.
This property has important consequences for what matters the relation between what one
computes in whatever perturbative string vacuum, and the corresponding physical quantity
observable in the universe. For instance, let us consider the cosmological constant generated
by the breaking of supersymmetry. This is related to the vacuum energy, and it would seem
obvious that a breaking of supersymmetry at the Planck scale (here the unit scale) leads to
a cosmological constant of order one. However, from the expression 2.9 one can clearly see
that an additive contribution to the energy, in this case of order one, from a physical point of
view is a multiplicative renormalization. Indeed, the Planck scale is not correctly represented

4We make here an extensive use of the language and properties of string orbifolds, but the same con-
siderations apply also to other types of compactifications: in general the term log k is the volume of the
internal space. Using the language of orbifolds is here justified by the fact that of this type turns out to be
the structure of the most entropic string vacuum. In particular, the radius of the internal space is of order
1.
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in the perturbative string vacuum. In the scenario implied by 1.1 supersymmetry is indeed
broken at the Planck scale, and the cosmological term is of order 1/T 2. This is true also
in the string representation, once the artifacts of the bad representation introduced in the
perturbative construction are taken into account. From a formal point of view, this is done
by changing the normalization of the string amplitudes, as it was proposed in Refs. [2]: if
one considers that, out of the approximation of the perturbative construction, the theory is
defined on a compact space, the vertex operators are not to be normalized by the volume
of space, i.e. the volume of the group of translations in the four-dimensional space time.
There is in fact no more symmetry under translations, and therefore no over-counting along
the orbit of this group, a displacement in space or time representing now an evolution of
the universe to a different age. As a consequence, one does not compute anymore densities
but global quantities that, in order to be correctly inserted in an effective action, must be
divided by an appropriate volume factor of the space-time. A quantity of order one, such as
the vacuum energy in the case of supersymmetry broken at the Planck scale, must then be
divided by the volume of the base, picking a factor 1/T 2, the right factor to give the correct
size of the cosmological term, as well as the energy density, at present time 5. Considering
string theory as defined on a compact space, and viewing infinitely extended space only as
a limiting case of a compact space, entails therefore a deep change of perspective, full of
consequences for the interpretation of things that we compute in string theory.

3 masses

In this scenario, masses are energy clusters that propagate at a speed lower than the one of
expansion of the universe itself, and can therefore be localized in some way. Like the spectrum
of elementary fields and particles, also their masses must be explored in the representation in

5The reason why in the traditional approach string computations produce densities, to be compared with
the integrand appearing in the effective action, lies in the fact that space-time is assumed to be infinitely
extended. In an infinitely extended space-time, there is a “gauge” freedom corresponding to the invariance
under space-time translations. In any calculation there is therefore a redundancy, related to the fact that
any quantity computed at the point “~x” is the same as at the point “~x + ~a”. In order to get rid of the
“over-counting” due to this symmetry, one normalizes the computations by “fixing the gauge”, i.e. dividing
by the volume of the “orbit” of this symmetry ≡ the volume of the space-time itself. Actually, since it is
not possible to perform computations with a strictly infinite space-time, multiplying and dividing by infinity
being a meaningless operation, the result is normally obtained through a procedure of “regularization” of the
infinity: one works with a space-time of volume V , supposed to be very big but anyway finite, and then takes
the limit V → ∞. In this kind of regularization, the volume of the space of translations is assumed to be V ,
and it is precisely the fact of dividing by V what at the end tells us that we have computed a density. In any
such computation this normalization is implicitly assumed. In our case however, there is never invariance
under translations: a translation of a point ~x → ~x+~a is not a symmetry, being the boundary of space fixed.
On the other hand, a ”translation” of the boundary is an expansion of the volume and corresponds to an
evolution of the universe, it is not a symmetry of the present-day effective theory. In our framework, the
volume of the group of translations is not V . Simply, this symmetry does not exist at all. There is therefore
no over-counting, and what we compute is not a density, but a global value. In our case, compactification
of space to a finite volume is not a computational trick as in ordinary regularization of amplitudes, it is a
physical condition. In our interpretation of string coordinates, there is therefore no “good” limit V → ∞, if
for “∞” one intends the ordinary situation in which there is invariance under translations. In our case, this
symmetry appears only strictly at that limit, a point which falls out of the domain of our theory.
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which these degrees of freedom show up, namely, in the string representation. Masses appear
as the lowest momentum of a given particle, and are related to the scale of the universe,
which, we recall it, at any time corresponds to a space-time of finite extension. Indeed,
since space is of finite extension, and, in the limit in which free fields and particles show up,
“compact” (a torus), the lowest momentum is simply the inverse of the radius of the classical
universe, 1/T , and corresponds to the typical lowest energy of a massless field living in a box
of size T with periodic boundary conditions. This is also the minimal energy of a photon
(and in fact it does not make any sense to think of probing an energy corresponding to a
wavelength longer than the universe itself up to the horizon of observation, namely longer
than a light-path from the big-bang to us). Of course, in the limit in which this space is
considered of infinite extension, as are all the current string constructions, this appears as
a true massless field. Massive fields are generated via symmetry reduction. A reduction of
the symmetry on the fiber leads to a higher concentration of energy, and therefore also of
ground energy, producing true massive particles and fields. Let us consider we start with a
massless field (i.e. with “mass” 1/T ) with multiplicity k, and therefore also symmetry G0

with volume ||G0|| = k. Massive states correspond to distributions of the same amount of
total energy along the fiber with a lower symmetry, so that:

mi

m0
=

||G0||

||Gi||
, (3.1)

m0 being here the lowest momentum, indeed the minimal energy of massless states. Roughly
speaking, this relation says that we can have a certain number p of states with a certain mass
mp, or a number p/2 of states with mass 2mp, and so on. The configuration with the lowest
symmetry is the one that produces the free state with highest mass. The string vacuum
with lowest symmetry is indeed a superposition (a staple) of configurations, such that the
state of lowest mass appears once as “stand-alone” state, (||G0|| − ||G1||) times stapled to
the state of mass m1, which in turn appears (||G1|| − ||G2||) times in the staple forming
the state with mass m2 (and therefore contains also the state of mass m0) and so on, in a
pyramidal sequence. As a consequence, ratios of masses are given as ratios of volumes in
the phase space of propagating degrees of freedom. Owing to the artifacts of the logarithmic
representation, what appear as rigid ratios translate into ratios of exponents of the age of
the universe, so that the physical masses are given as a sequence of the type:

mi

m0

=
1

T
||Gi||

||G0||

. (3.2)

As one can see, heavier masses are not the same as higher momentum excitations, which are
multiples of a fundamental one, like the higher frequency modes of a string. In the series of
elementary masses, there is no particle with a mass given exactly as a multiple of another
one. Therefore, a transition from a particle of higher mass to a (set of) lower mass particles,
that is, a decay, always entails an energy gap which goes into kinetic energy. This is precisely
what, according to our scenario, makes such a transition physically favoured as compared
to its non-occurring: it produces a higher spread of energy along space, thereby increasing
the symmetry of the geometry, and therefore the overall entropy of the universe (see Ref. [1]
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for the relation between entropy and symmetry of the geometry). The “coupling” of the
interaction depends therefore on the amount of momentum/energy space which is made free
by the transition. We define here the couplings as ratios of weights on the fiber, i.e. of
volumes of symmetry groups; they can therefore be translated into ratios of masses. The
amplitude of transition from the particle i to the particle j with mj < mi is given by:

αij =
mj

mi
, mj < mi . (3.3)

This simply expresses the fact that the particle i “contains” the particle j in its phase space,
and the higher is the ratio mi/mj , the higher is the number of type-j particles in the phase
space of i, namely the higher is the appearance of i in the form of the particle j 6. This at
least for a transition not involving a boson exchange. It can be called a “rigid” transition. Of
this type are transitions like the CP violating effects, that we consider in detail in [7]. As we
show there, only in first approximation, and up to a very limited extent, these phenomena
can be parametrized within a traditional gauge field theory approach: the incapacity of
correctly accounting for the amount of CP violation in the D-mesons system, as well as
the failure in predicting, even approximately, the baryonic asymmetry, are signals of the
problem.

Due to its being the superposition of all possible configurations, in the universe of this
scenario all symmetries are broken, and this reflects also in the fact that there are no elemen-
tary states with the same mass. What survives the breaking is the U(1) (gauge) symmetry
corresponding to the photon. From a technical point of view, its survival is related to the
basic representation of matter as complex fields, a structure explicitly preserved in any su-
perstring construction. From a physical point of view, this construction is precisely tuned
in a way to preserve the spinorial character of the fundamental description of space-time, as
required by the combination of quantum mechanics and relativity. For transitions involving
the exchange of bosons other than the photon (weak decays), the coupling and the mass of
gauge bosons is still related to a ratio of volumes, in this case through a composite relation:

αij =
mj

α−1
iWMW

, (3.4)

where
αiW =

mi

MW
. (3.5)

This transition has in fact to be considered a composite one, as if it was made of two “rigid”
transitions, one from particle i toW , and then the other fromW to particle j. The amplitude
is therefore the ratio of the volume of particle j to the effective volume of the boson W , i.e.
the fraction of the volume of W projecting on the particle i, and therefore the volume of W
projecting on both the particles, common to both the transitions. This can be rewritten as:

αij =
mimj

M2
W

. (3.6)

6Although expressed in an additive form because of the logarithmic representation, the relation 3.3 is
the one which is found in semi-freely acting orbifold contructions in which the rank of the gauge group is
reduced by raising the rank of the representation, like those considered in Ref. [6].
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Notice that this can be viewed also as the averaged coupling of the boson to the pair ij.
We refer the reader to Ref. [2] for a detailed computation, which shows that indeed the so
defined masses and couplings reproduce with astounding accuracy the experimental ones, as
functions of the age of the universe.

4 the strong force

The couplings we have just defined correspond to the “weak” interactions of the theory.
However, together with the gravitational interaction, which in our framework is by definition
the fundamental one, the one setting the unit scale, they do not exhaust all the types of
interaction. Let us consider again the decay of particles. We have said that it is entropically
favoured. However, in itself it leads to a universe made out of just the lightest particles
(the first generation of neutrino, electron and quarks). It would seem all fine, but a universe
made just out of these free particles breaks the geometric interpretation of the scenario itself.
This is to be expected, because free particles are obtained precisely in the limit of decoupling
the theory, and in particular of flattening the geometry of space. Reintroducing gravitation
leads necessarily to the strong coupling of the theory. In order to see how this precisely
works, let us consider what is expected to be the “mean mass”, namely the typical mass
eigenvalue of this space. This must correspond to the typical ground momentum, given as
the inverse of the mean radius of space. Indeed, since we are talking of elementary masses,
the masses of degrees of freedom which appear in the string representation, this radius is not
the radius of the three-dimensional sphere, but the one of the full string space. According
to our considerations about the number of internal dimensions, it turns out that we have a
kind of ellipsoid with 10 space dimensions (eleven-dimensional space-time), of which 3 are
extended up to T , whereas the remnant 7 are frozen at the Planck length, the unit scale.
The corresponding mass is therefore:

< m >
1

2





10

√

√

√

√

(

10
∏

i

Ri = T 3 × 17

)





−1

=
1

T 3/10
. (4.1)

This is the mass scale of stable matter, neutral for all the interactions (it is the mass of
a hypothetical particle of which our universe would be made if it had only gravitational
interactions). As discussed in Ref. [2], this corresponds to the mass of the system neu-
tron+proton+electron+neutrino plus their conjugates, therefore more or less four times the
neutron mass mn, producing the relation:

mn =
1

8
T −3/10 , (4.2)

which can be used in order to derive the precise value of the age of the universe to be inserted
in all the other mass and coupling expressions. The neutron mass turns out to be higher than
the mass of the bare quarks of lowest mass. This means that the only process of weak decay
alone leads to stable matter of weight too low to ensure the existence of a geometric scenario,
implying that there must be another type of force at work, stronger than the gravitational

11



one, which counterbalances the electro-weak one. It is the geometry, based on the Planck
scale, what requires the existence of both types of interactions! At the string level, this is
realized through the existence of T-duality, the stringy way of implementing the existence of
a minimal length, ensuring thereby that the string is consistently an extended object. Since
in the string realization the coupling of the theory too is a coordinate, T-duality results in
a so-called S-duality, namely the strong-weak duality. Much like T-duality, also S-duality
is eventually broken in the configuration of highest entropy. Nevertheless, it does not com-
pletely disappear: simply, strongly and weakly coupled sectors are not perfectly symmetrical
to each other. A consequence of T- or S-duality is also that there is no perturbative string
realization in which all the states and their interactions are visible. The string compactified
on circles, as is our case, has momenta and windings, and one cannot wash out the ones or
the other: any perturbative realization is based on a choice of limiting procedure, in which
one decides which ones have to appear and which of the two (momenta or coupling) must
be truncated out. In infinite space-time one could think to take a freely-acting orbifold and
keep just the ones or the other, thereby realizing perturbatively the full theory. But in this
scenario, space is compact, and there is always a part of the theory which is simply “hidden”.

Let us now see how the strong force precisely acts on the mass values. We try to derive
the exponent expressing the power of T corresponding to the mean mass scale (3/10 in
our geometric evaluation of above) by simply averaging on the various bare masses of the
sequence 3.2, that is, averaging over the groups Gi (we have one state for each symmetry
group). This means taking the average over the projections we have to apply in order to
arrive at the string configuration of minimal symmetry. As explained in Ref [2], in the Z2

orbifold approximation non-vanishing masses are generated by orbifold shifts along the two
transverse coordinates of space-time (the base in the language of the previous sections).
There is room for two Z2 shifts which act as 1/2-scale factor projections in the logarithmic
picture, therefore all elementary mass scales fall between the 1/2 (square-root) and the 1/4
(fourth root) scale of the universe 7. The average scale is roughly obtained as:

〈root〉 ≈
1

∆x

∫ 4

2

1

x
dx =

1

2
ln 2 ∼ 0, 34657 . . . . (4.3)

Inserting the value of the age of the universe, in inverse Planck units T ∼ 5 × 1060 (see
Appendix of Ref. [2]), we obtain a mass scale < m >= T −<root> ∼ 11, 2MeV, leading to a
neutron mass m′

n = 1
8
< m >∼ 1, 4MeV, around 670 times smaller than the actual neutron

mass. This is close to the mass scale of the bare quarks of the first family! The strong force
acts raising the mean mass scale, because it assigns a larger fraction of the phase space to the
quarks as compared to the leptons. We can try to account for this asymmetry by correcting
the mean scale by a factor 6/7, obtained by considering that the projection leading to the
separation between leptons and quarks, and thereby separating the electron from the lightest
quark the up quark, counts as 1/7 of the total group volume (see Ref. [2]), but effectively

7The square root scale is the one of the appearance of masses, and therefore the one of the smallest
non-vanishing mass, while with the second shift one obtains the string configuration of minimal symmetry,
and therefore the one giving rise to the massive state of highest mass.
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produces almost no mass difference me ∼ O(mu). In this way we obtain:

〈root〉  ∼ 0, 29706 . . . , (4.4)

already much closer to the value 0,3 of expression 4.1.

5 Resonances

Resonances are a well known effect occurring in physical systems, both at the macroscopic
level, for instance in case of momentum transfer between scattering balls or particles, vibrat-
ing strings etc..., and at the microscopic level. Of this type are in fact also the absorption of
radiation by an atom, or a pick of scattering cross section when a threshold of production of
a real particle in the otherwise virtual intermediate channels is opened. In particular this last
phenomenon is used as signal of the existence of particles/fields in high energy accelerators.
Common to all these phenomena is the energy transfer from a system to another one, when
the amount of energy corresponds to a typical emission/absorption band. For what concerns
the opening of real channels, the effect is formally parametrized by the (denominator of the)
field theory propagator, of the type ∼ 1

p2−m2 where m is the mass of the transferred particle

or boson, which has a singularity at p2 = m2, leading to a sudden increase of the (integrated
over the momenta and mediated) amplitude. The propagator on the other hand shows up as
the inverse of the kinetic term of the Lagrangian. In fact, it is already contained in the prin-
ciple of minimal action, corresponding to the vanishing of the term T − V , which translates
here into (Kinetic Energy) − (Rest Energy), and as such can be also seen to directly derive
from the field theoretical version of the Feynman Path Integral. This phenomenon appears
therefore to be correctly implemented in the theory, and not simply “introduced ad hoc”.
However, besides the rather refined technical definitions and implementations, the problem
of a deeper understanding of resonance is simply translated in understanding why should
the evolution of a system be driven by an action principle. In our framework, the entire
dynamics is of entropic type, and phenomena do occur simply because they dominate from
a simple combinatorial point of view the phase space of all possible configurations. Entropic
are not only all forces, but, as we have discussed, the very existence of a three dimensional
universe, and its quantum and relativistic nature. We expect therefore that also resonances
should find an explanation of this kind. To see that indeed it is so, we first make a digression
and show how the sum over configurations weighted by their entropy indeed reduces, in the
field theory limit, to the Path Integral.

5.1 A string path integral

Any configuration ψV contributing to 2.8 describes in itself a “universe” which, along the
set of values of V , undergoes a pressureless expansion. In this case, the first law of thermo-
dynamics:

dQ = dU + PdV , (5.1)

specializes to:
dQ = dU . (5.2)
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Plugged in the second law:

dS =
dQ

T
, (5.3)

it gives:

dS =
dU

T
. (5.4)

Here T is the temperature of the universe, defined as the ratio of its entropy to its energy. In
the case of the configuration of maximal entropy, the universe behaves, from a classical point
of view, as an expanding, three-dimensional Schwarzschild black hole, and the temperature is
proportional to the inverse of its total energy, or equivalently, its radius: T = ~c3/8πGMk,
where k is the Boltzmann constant and M the mass of the universe, proportional to its
age according to 2GM = T . By substituting entropy by energy and temperature in 2.8
according to 5.4, we get:

Z ≡

∫

Dψ e
∫

dU

T , (5.5)

where U ≡ U(ψ(T )). If we write the energy in terms of the integral of a space density, and
perform a Wick rotation from the real temperature axis to the imaginary one, in order to
properly embed the time coordinate in the space-time metric, we obtain:

Z ≡

∫

Dψ ei
∫
d4xE(x) . (5.6)

Let’s now define:

S ≡

∫

d4xE(x) . (5.7)

Although it doesn’t exactly look like, S is indeed the Lagrangian Action in the usual sense.
The point is that the density E(x) here is a pure kinetic energy term: E(x) ≡ Ek. In the
definition of the action, we would like to see subtracted a potential term: E(x) = Ek − V.
However, the V term that normally appears in the usual definition of the action, is in this
framework a purely effective term, that accounts for the boundary contribution. Let’s better
explain this point. What one usually has in a quantum action in the Lagrangian formulation,
is an integrand:

L = Ek − V , (5.8)

where Ek, the kinetic term, accounts for the propagation of the (massless) fields, and for
their interactions. Were the fields to remain massless, this would be all the story. The reason
why we usually need to introduce a potential, the V term, is that we want to account for
masses and the vacuum energy (in other words, the Higgs potential, and the (super)gravity
potential). In our scenario, non-vanishing vacuum energy and non-vanishing masses are not
produced, as in quantum field theory, through a Higgs mechanism, but arise as momenta of
a space of finite extension, acted on by a shift that lifts the zero mode (see Ref. [2]). When
we minimize 5.7 through a variation of fields in a finite space-time volume, we get a non-
vanishing boundary term due to the non-vanishing of the fields at the horizon of space-time
(moreover, we obtain also that energy is not conserved). In a framework in which space-time
is considered of infinite extension, as in the traditional field theory, one mimics this term
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by introducing a potential term V, which has to be introduced and adjusted “ad hoc”, with
parameters whose origin remains obscure 8.

The passage from the entropy sum over configurations to the path integral is not just a
matter of mathematical trickery. It involves first of all the reinterpretation of amplitudes as
probability amplitudes. This is on the other hand implemented in the string construction.
But besides this, there is something that may look odd at first sight. In the usual quantum
(field) theoretical approach, mean values as computed from the Feynman path integral are
in general complex numbers, as implied by the rotation on the complex plane leading to
a Minkowskian time, 1/T → it. Real (probability) amplitudes are obtained by taking the
modulus square of them. This means that what we obtain from 2.8, 5.6 is somehow the
square of the traditional path integral. This is related to the fact that, in order to build up
the fine inhomogeneities of a vectorial representation of space, as implied by the staple of
energy distributions, we resort to a spinorial representation of space-time. Roughly speaking,
spinors are “square roots” of vectors. Indeed, as discussed in [2] and [8], masses are here
originated by a Z2 orbifold shift on the string space. This shift gives rise to massive particles
by pairing left and right moving spinor modes (spinor mass terms in four dimensions are of
the type mψψ̄). The Z2 orbifold projection halves the phase space by coupling two parts,
and raises the ground momentum. In terms of the weight in the entropy sum, we have at
the exponent a pairing/projection (S + S)/Z2, what makes clear that the amplitudes of 2.8
are squares of those of the elementary fields (with “weight” expS). Had we just a vectorial
(bosonic) representation of space, this would not occur, because vectorial (spin 1, or scalar,
spin 0) mass terms are of the typem2A2,m2ϕ2. That is, a mass pairs with one boson (usually
one sees this in terms of dimension of the field). One can see that the effective rest energy
term E0 introduced by the existence of a boundary of space has precisely the right sign to
produce the kinetic term of type E−E0: an effective action on a compact space with energy
term E is equivalent to an effective action with a lower energy term, E−E0, integrated over
an infinitely-extended space. Therefore, the entropic approach correctly reproduces the term
E−E0 which, once inverted, gives the singular term of the propagator, leading to resonance.

In our theoretical framework, a resonance occurs whenever the initial energy equals the
energy of a state of the theory, because in the space of the configurations of energy distri-
butions there is no distinction between “types” of energy: there is only a staple of ways of

8Here we have another way to see why the cosmological constant, accounting for the “vacuum energy”
of the universe, as well as the other two contributions to the energy of the universe, correspond to densities
ρΛ, ρm, ρr, whose present values are of the order of the inverse square of the age of the universe T :

ρ ∼
1

T 2
. (5.9)

Were these “true” bulk densities, they should scale as the inverse of the space volume, ∼ 1/T 3. They instead
scale not as volume densities but as surface densities: they are boundary terms, and as such they live on a
hypersurface of dimension d = dim[space-time] − 1. The Higgs mechanism of field theory itself can here
be considered a way of effectively parametrizing the contribution of the boundary to the effective action in
a compact space-time. The Higgs mechanism, needed in ordinary field theory on an extended space-time in
order to cure the breaking of gauge invariance introduced by mass terms, is somehow the pull-back to the
bulk, in terms of a density, i.e. a “field” depending on the point ~x, of a term which, once integrated, should
reproduce the global term produced by the existence of a boundary.
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assigning a certain amount of energy with a certain space distribution. Localizing an amount
of energy corresponding to the mass of a particles is absolutely equivalent to producing a
particle with the same degree of localization, for the simple reason that the concepts of
particle or wave or what else belong more to our way of organizing the description of phys-
ical phenomena than to the intrinsic essence of physical phenomena in themselves. In this
sense, also processes of energy emission and/or absorption in atomic systems are types of
resonances, and the smearing of the pick (for instance of absorption) has basically the same
origin as the quantum nature of physics itself, namely the fact of being the universe a super-
position of configurations. In some sense, the 1/x2 behaviour of the propagator 1/(p2 −m2)
can be considered as the approximation of an exponential (Gaussian) behaviour:

e−x
2

− 1 ∼
1

x2
+ . . . . (5.10)

An example is the case of the emission of radiation from transitions between atomic energy
levels, which has an exponential width, usually formalized in the assumption that a physical
photon is a wave-packet of solitonic type, therefore a function of the type of hyperbolic sinus,
i.e. with a Gaussian dependence on the energy spread. The Gaussian suppression out of the
resonance pick is due to the fact that in the micro-universe corresponding to the experiment,
with total energy E ∼ N , configurations corresponding to a different total energy n < N
are suppressed by a factor en

2−N2

, as if they correspond to a micro-universe of lower age
T ′ ∼ n < T ∼ N (see discussion in Ref. [1] about the weight of configurations at previous
age / lower energy).

5.2 Excited proton states

Since a lot of attention is focussed today on the physics at LHC, it is interesting to investigate,
in the light of our theoretical framework, what are the possible resonances to be expected in
high-energy proton-antiproton scatterings. Besides the usual thresholds opened at energies
corresponding to the production of real particles, there is another kind of enhanced channels,
which can only be understood in the light of the non-perturbative framework we have dis-
cussed, and the multiplicative properties of the phase space, as opposed to the usual additive
description one gives in the perturbative regime, when particles can with good approximation
be considered as “free”. Consider the electric force between two charged particles of elemen-
tary integer charge e. Perturbatively (that is, on the tangent space, i.e. in the logarithmic
picture, or perturbative string picture) one has:

EV ∼
e2

R2
∼

α

R2
, (5.11)

where for simplicity we have neglected all numerical factors and fundamental constants
(which can be considered to be set to one). For a “bound” state the distance R goes “to
zero”, that is, in our physical framework, to the Planck length: R → 1. Therefore, for a
state such as a proton-antiproton pair at their collision, that we indicate as pp̄, the electric
potential energy is simply:

EV ∼ α . (5.12)
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The total energy in the rest frame of this state is:

Epp̄ ∼ mp + mp̄ + α . (5.13)

Out of the logarithmic picture, namely, on the real physical picture, this sum becomes a
multiplication, as can be seen by considering the electric interaction between the pp̄ state
and its decay product, i.e. the unbound pair of “free” proton and antiproton, that we indicate
as p ∪ p̄. This is similar to the relation 3.4 for mass ratios, in which now i and j are the pp̄
and p ∪ p̄ states, and instead of W we have the photon, with p2γ = (mpp̄ −mp∪ p̄)

2 ∼ m2
pp̄

substituting M2
W . We have therefore:

mp∪ p̄

mpp̄
= α , (5.14)

where mp∪ p̄ = mp +mp̄. Inserting the value of the electric coupling α at the quark scale,
∼ 1/133, and the proton mass value ∼ 938, 2MeV, we obtain mpp̄ ∼ 250GeV. However,
this is not the lightest excited state: there is also the possibility of forming (p e−) excited
states, through pp̄ → (p e−) e+p̄, and then (p µ) excited states via pp̄ → (p µ) µ̄ p̄. In
this case, the resonance energy is around ∼ 124, 7GeV and ∼ 128GeV respectively 9. The
interactions of these excited states are the same of the non-excited state, in the same way
as the excite states composed of quarks interact through their elementary constituents, and
therefore they inherit the strength of the couplings. What changes are the volume factors
due to a different energy gap between initial state and the masses of the final products. The
same type of excited states exists also in the lepton-antilepton scattering. However, in this
case the resonances, namely the electron excited states, as a matter of fact superpose to the
physical particles, which are almost at the same “distance” in the phase space (see Ref. [2]
for a detailed analysis of the mass hierarchy).

9Values obtained, as the previous one, with an effective value of the coupling α rescaled from the electron
scale assuming an effective logarithmic running up to the Planck scale.
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