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Abstract

The empirical violation of Bell’s inequality shows that the relativistic speed

limit is incompatible with the quantum entanglement. ‘Proper Present In-

terpretation’ shows a local relativistic theory without using hidden vari-

ables that is consistent with quantum entanglement. The method used is

a change of present. For every observer, his present in each moment is the

universe he observes. It involves a change of coordinates. It is explained

quantum problems related to quantum entanglement such as Einstein–

Podolsky–Rosen paradox, ‘Schrödinger’s cat’ and the Young’s double-slit

experiment. Are obtained simpler equations for the relativistic transforma-

tions of physical magnitudes by using the same transformation in all cases.

With this new concept, quantum and relativistic mathematics keep being

both valid and stop being mutually exclusive in relation to the concept of

locality. The results suggest a relational space-time reality.
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I. INTRODUCTION

Nowadays there are two theories that describe the nature, The Relativity and The Quan-

tumMechanics. Both theories describe a different parcel of that nature. But there is a known

problem, both theories are contradictory in relation to the locality of space-time. Relativity

tells us that nature is local, that is, the speed of light can not be overcome. Contrary Quan-

tum Mechanics tells us that nature is non-local. Alain Aspect empirically demonstrated

this non-locality through quantum entanglement phenomena predicted by quantum theory

(Aspect et al., 1982). Thereby this demonstration brings the conclusion that the space-time

is non local (so Relativity is wrong) or, it is necessary to change the concept of space-time

somehow.

The ‘Proper Present Interpretation of Quantum Mechanics’ describes a local relativistic

nature according to quantum results. Our local theory explains the effects of quantum

entanglement and it changes the concept of reality. All we do is to change the idea of ‘present’

for each observer, concept that we reflect in the single postulate of this theory. With this

postulate, the theory shows the cause of Einstein–Podolsky–Rosen paradox (Einstein et al.,

1935). It also simplifies and uncouples the relativistic equations for photon kinematics, for

the transformation of the electromagnetic field and for the relativistic transformation of the

mass, momentum and energy. Always applying the same transformation to those physical

magnitudes. Our theory explains many quantum results related to quantum entanglement,

such as the problem of Young’s double-slit experiment (Young, 1804) and the Schrödinger’s

cat paradox (Schrödinger, 1935).

II. DEFINITIONS.

A. Proper Present

The definition of ‘proper present’ is our postulate. ‘For each observer, his present is the

universe which he observes in that proper moment’.

The postulate does not change the value of the speed of light, in the sense of covered

space in an elapsed time, but it changes the idea of ‘present’ for each observer, in the sense

that in every proper time the observer notices what is happening at this moment in any

place of the universe because the fact he is observing it.
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B. Observation

We understand here that an observer observes an event if it changes the observer in a

different way from if it does not happen. That is, when he receives direct or indirect infor-

mation that the event has happened. It is different that the observer can see or understand

that information or he is aware of it. From now on we shall talk in this context about

observer and observation.

C. Locality

The concept of locality has a crucial importance in physics and in our theory, because of

that we remember here this concept.

Locality means that nothing, not even information, can travel quicker than the speed of

light, where the speed is the space covered in an elapsed time. Later we shall prove that

this postulate entails a local theory in the sense described here, because its application does

not violate the maximum speed limit.

D. Reality

Another way to think about our change of present is the following: ‘For each observer an

event has not happened until he receives the information about it has happened’.

This reasoning alters the concept of reality that Einstein proposed. His concept of reality

could either be read as: the aspects of nature have their values clearly defined even before

being measured; or as: an event is happening now even if we do not receive that information.

Einstein used to sum up this concept as ‘The Moon is out there even though we do not

observe it’ (this is contrary to the quantum entanglement phenomenon). Taking into account

our new theory, this concept will be changed for the following concept of reality. ‘If we do

not see an event (we do not receive the information) it has not happened for us yet’ because

it is below our ‘proper present’ (see next section).
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E. The present and particles that transmit information.

For an observer receives information that an event has occurred, such information must

be transmitted from the event to the observer. This transmission is usually performed by

electromagnetic waves (photons), but also by any other type of slower particles. Given this,

and watching our postulate, the new ‘present lines’ would be the path of the photons. Any

other particle would transmit the information in a more slowly way, this information will

refer to an event that has already past, because the same information has been provided by

photons before.

So the idea of ‘proper present’ means that, for each observer in a particular proper time,

the new present will be all the events contained in his, until this moment, known as ‘past

light cone’ of Minkowsky space-time (Minkowski, 1908/9). As a result, any second observer

will see the first one, in that instant, in a particular ‘proper present’. That event is contained

in one of his ‘past light cones’ and, at the same time, in a ‘future light cone’ for the first

observer. Then we see that the events below the ‘proper present’ plane, will be past for

the corresponding observer and those events that are above will be future for him, even the

contents in the ‘horizontal’ present plane (we label the concept of time and present, used

before this theory, as ‘horizontal’ in order to avoid confusions).

We have only changed the concept of present. What is happening ‘now’ in this star we

are looking at? So far the answer was that we had to wait many light years to know it.

However, with the change of concept, we shall say: what is happening now in the star we

are looking at is, precisely, what we are seeing.

Every observer will observe only one present at each proper time; we shall call it ‘proper’

because this present will differ from the ‘observed proper present’ of any other observer.

F. Received time t+ and emitted time t−.

From a graphic point of view, the postulate considers our presents are not the current

horizontal hyper planes in the Cartesian frame of reference (ct, x, y, z) any more, but they

are the hyper cones that form 45 grades with those horizontal hyper planes.

Therefore we have two time hyper planes (‘proper presents’) for each observer in each

proper time (measured by his own watch). These time hyper planes are the following:
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- The ‘Observed proper present’. It is the ‘proper present’ for each observer. (We label it

as ‘observed’ to avoid confusions respect the concept explained in the next paragraph).

It is the universe seen by the observer which coincides graphically, as we mentioned

before, with the past light cone. We shall call it ‘observed time cone’.

- The ‘Emitted proper present’ is the hyper cone formed when that observer is observed

in that proper time by the rest observers of the universe. It will coincide with the

future light cone. We shall call it ‘emitted time cone’. Really it is not another type of

present, it is simply the intersection of all the observed proper present of those other

observers that observe the first one.

We can consider these cones of time as all the straight lines that make them up (see Fig.

1).

r(t) = c(t - td) t

xdt
y

r(t) = -c(t - td) 

FIG. 1 New present hyper planes at td . We have removed a spatial dimension for graphically

represent the concept.

Those straight lines will be placed for each cone in different values of spherical angles ϕ, θ.

We shall call them ‘received lines’ and ‘emitted lines’ respectively. Obviously the equations

for these lines at any time td and in a system centered on the observer are

Emitted line: r(t) = c(t− td)

Received line: r(t) = −c(t− td)

⎫⎪⎬
⎪⎭ . (1)

Where, for every cone, all its straight lines will have the same values for r and t and

different values for ϕ and θ. Those lines coincide with the old trajectories of emitted and
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received photons. Since each line is part of the observer proper present in that proper time,

it will be assigned the value of that proper time to each line. It means the events happened

for an observer in an ‘observed proper present’ will be in a particular received line for him

that corresponds to a particular proper time; we shall call received time (t+). But this event

is also in an ‘emitted line’ with its corresponding proper time, that we shall call emitted

time (t−).

We are faced with the next change of coordinates:

t+ = t + r
c

t− = t− r
c

ϕ = ϕ

θ = θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (2)

and the inverse

r = c(t+−t−)
2

t = t++t−
2

ϕ = ϕ

θ = θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3)

We have changed from spherical coordinates (t, r, ϕ, θ) to the new ones (t−, t+, ϕ, θ).

So if an event happens in a star, in that proper moment of that star, this star will see our

watch, and that time it sees in our own watch will be our proper time t−. On the other hand

we shall see that same event happened in that star in our proper time t+. The emitted line

corresponding to t− coincides with the trajectory of a photon we emitted and arrives to the

star in the moment of that event. And at that moment the star can emit another photon

to us forming the trajectory of t+ for us (see Fig. 2).

This simple coordinate transformation is the mathematical translation of our postulate

(proper present concept), and it will cause that all the equations of Special Relativity are

simplified and uncoupled, as we shall see later.

We emphasize that ‘horizontal’ time axes t and the new times t+ and t− will coincide for

the frames of reference focused on each observer. And the old present will only coincide,

for each observer, with the new notion of proper presents in the observer himself. So the

‘horizontal’ time t, the time t− and the time t+ will have the same value for the observer

at the same observer. That is, the proper time that the observer measures is the same for
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Event(t,r)

t+

-t

y

x

t

t r

FIG. 2 New t−, t+ coordinates.

‘horizontal’ t, t− and t+ .What is different is the assignment of those values to the rest events

in the universe. We can demonstrate it if we put in Eq. (2) the position of the observer

himself (r = 0), so t = t− = t+.

Note that the line t− of an emitter is the same line t+′ for the corresponding receptor. No

matter the value of t− and t+′, the physical line that connects these events (emission and

reception) is the same for both systems of reference. So we shall note that line as [t−, t+′]

too.

It is also interesting to consider the change of coordinates related to the Cartesian coor-

dinates. That is, we move from (t, x, y, z) to (tα, tβ, y, z). This change is

tα = t + x
c

tβ = t− x
c

y = y

z = z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

and the inverse
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x = c(tα−tβ)
2

t = tα+tβ

2

y = y

z = z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (5)

We shall work on photon exchange processes between an emitter and a receptor (observer),

so that we can always choose the coordinate axes such that y = 0 and z = 0 for the entire

process. In this case the relation between spherical and Cartesian coordinates is

x = r x > 0

x = −r x < 0

⎫⎪⎬
⎪⎭ . (6)

So, for these cases, the relationship between our new spherical and Cartesian coordinates

is

t+ = tα (received line)

t− = tβ (emitted line)

ϕ = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
when x > 0 (7)

and

t+ = tβ (received line)

t− = tα (emitted line)

ϕ = π

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
when x < 0. (8)

Since, as we have said, we shall work with an emitter and an observer, we can choose

the systems of reference so that x and x′ are always positive. In this way we simplify the

equations, leaving us with the first identity Eq. (7) for most cases we study from now on:

t+ = t+ x
c

t− = t− x
c

y = y

z = z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

One can easily prove that we reached the same conclusions expressed herein for any other

values of x and x′.
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G. Proper instantaneity and simultaneity

We see that the photon interaction between an emitter k and a receptor k′ is totally

instantaneous for the receptor (observer), since the emission and its reception are produced

in the same line of proper time t+′ (i.e. [t−, t+′]) for the receptor and in the same t− (i.e.

[t−, t+′]) for the emitter. It means, if the emitter generates a photon, its coordinates will be

‘horizontal’ t1 and r1 = 0 because it is in the origin itself. And if it consecutively arrives to

a receptor in a subsequent ‘horizontal’ time t2 situated in a distance d, we have that, the

emission event coordinates and the reception event coordinates for the emitter k and the

receptor k′ will be

For the reference system located in the emitter:

Emission Reception

(t1, 0, ϕ, θ) (t2 = t1 +
d
c
, d, ϕ, θ).

(10)

For the reference system located in the receptor:

Emission Reception

(t′1,−d′, ϕ′, θ′) (t′2 = t′1 +
d′
c
, 0, ϕ′, θ′).

(11)

Replacing these values in Eq. (2):

For the reference system located in the emitter:

Emission Reception

t−1 = t1 t−2 = t1

t+1 = t1 t+2 = t1 + 2d
c

ϕ ϕ

θ θ

(12)

For the reference system located in the receptor:

Emission Reception

t−′
1 = t′1 − d′

c
t−′
2 = t′1 +

d′
c

t+′
1 = t′1 +

d′
c
t+′
2 = t′1 +

d′
c

ϕ′ ϕ′

θ′ θ′

(13)
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So t+′
1 = t+′

2 and since the values of ϕ′ and θ′ do not change, both events, emission and

reception, are in the same line of present for the receptor, therefore that process will be

‘proper instantaneous’ for that receptor. We have t−1 = t−2 for the emitter, but we can not

say that both events are instantaneous to the emitter because emission cone is not really a

present of the emitter as explained in II.F.

It is important to understand that, because it is proper instantaneous for receptor, all

the line [t−, t+′] will actually be a point for this receptor, where the emitter and the receptor

are joined for the receptor during that interaction.

It is also important to observe that this photon interaction will not be instantaneous for

an observer situated out of this line [t−, t+′], because the emission will be in a different line

t+′′
1 from the line t+′′

2 where this another observer will see the reception by the receptor.

From now on, when we say that a photon interaction is ‘proper instantaneous’, it will be

meant that it is ‘proper instantaneous’ for the receptor of that interaction.

It could be remembered that this instantaneity is concerned for the photon in the rela-

tivistic equation of lengths contraction when we say that the relative speed v is the speed

of light c, where L0 is any length measured by a frame of reference at rest with respect to

this length and L1 is that same length measured by the mobile (a photon). Let us see it:

L1 = L0

√
1−

(
v

c

)2

, if v = c L1 = 0.

It means, the distance between the emission and the receptor is zero for the photon.

III. KINEMATICAL PART.

A. Sinusoidal travel of the photon

We have realized that with this concept it makes no sense, for the receptor (observer),

to think that photons travel through the space. But if the travel of a photon is ‘proper

instantaneous’ for the receptor like we saw in II.G, should not vary nothing in the photon,

even the electromagnetic field. So, what is the electromagnetic field oscillation during the

‘apparent’ journey of the photon?. What does its sinusoidal travel through the space mean

for our theory? We shall demonstrate that, for the receptor, ‘that sinusoidal variation is

produced in the focus’ and that variation will take a value for each line t− in each proper
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instant. It means that if an exchange of that photon with a destination in a proper moment

t− happened; in that moment it would be a particular value of that sinusoidal function in

the focus itself. This value will be the one which will see the destination. We shall show

that, indeed, there is no variation in the presumed path of the photon.

Photon is considered as an electromagnetic wave that travels through the space. As we

know the general solution of the electromagnetic wave equation is a linear superposition of

waves:

�E = g(�k · �r − wt)

�B = g(�k · �r − wt)

⎫⎪⎬
⎪⎭ . (14)

If we take up the case for the photons in which (�k · �r = kx). And since k = w
c
:

E = g(w
c
x− wt) = g(−wt−)
B = g(−wt−)

⎫⎪⎬
⎪⎭ . (15)

Then we see the field applies to this scenario in a proper instantaneous way. As well as

the sinusoidal variation takes place in the focus itself for the receiver.

Let us see graphically:

If we represent Eq. (14) when (�k ·�r = kx) and t = 0, we obtain the known wave function

(see Fig. 3).

X

E

E

E

t = 0 => E = EO f(k · x)

E

E

FIG. 3 Wave function (t=constant, x).

But if we represent the same function depending on time and space, by drawing the same

function for times (separated by the constant λ) t0, t1, ..., tn such that c = x
t
(see Fig. 4),

we can see that for the photon path we have that

For the point (x0, t0), we have
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E0 = g(w(
x0
c

− t0)).

For the point (x1, t1) = (x0 + cλ, t0 + λ), we have

E1 = g(w(
x0
c

+ λ− t0 − λ)) = g(w(
x0
c

− t0) = E0.

...

For the point (xn, tn) = (x0 + ncλ, t0 + nλ), we have

En = g(w(
x0
c

+ nλ− t0 − nλ)) = g(w(
x0
c

− t0)) = E0.

We realize that for all the points in the trajectory of the photon, the value E is constant.

We can make the same argument with B.

So far we have seen that for the photon path (line [t−, t+′]), no sinusoidal variation occurs.

The photon does not travel sinusoidally, not even it travels, we have seen before that it is

an instantaneous process.

B. Space-time role in our theory

If we emit a photon in a proper ‘horizontal’ time ta from A to a star situated in B and

it will be received in its proper ‘horizontal’ time tb, it makes no sense to think that for the

star the photon travels through space because we have said it is a ‘proper instantaneous’

process for the receptor. And if that star in B emits it again to us in a ‘horizontal’ time t′b,

in its next proper time (we receive it in our proper ‘horizontal’ time ta), that exchange will

be proper instantaneous for us too, according to the concept of ‘proper presents’. But this

new concept does not require that the lapse of proper ‘horizontal’ time t′b − tb, that takes

(xo, to)

(x1, t1)

(x2, t2)

t

E

x

Photon path

FIG. 4 No wave on photon path.
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the star to emit it again, is equal to the lapse of proper ‘horizontal’ time t′a − ta that takes

since we emit the photon until we receive it again. That difference ((t′a − ta) − (t′b − tb))

‘makes the space’ (as we deduce from Eq. (3)). As consequence the space concept has no

sense when we consider only the exchange of an only photon. This fact turns the theory

into a relational theory of space-time.

C. The mass-energy conservation law and the speed of light

Under this new interpretation, the law of mass-energy conservation implies the upper

speed limit (the speed of light). Let us prove this assertion by showing that the violation

of this law carries a higher speed than the speed of light. Suppose a particle (o) traveling

with constant velocity v from the negative side of the x axis toward the positive one (of

the observer’s reference system k). If we take into account two points of its path P1(x1, t1)

(at the negative side) and P2(x2, t2) (at the positive side), the equation of the line that the

particle describes is

(t1 − t2) =
c

v
(
x1
c

− x2
c
). (16)

This observer k can see the particle (o) at the point P1 and at the point P2. If we apply

our change of coordinates for these points we have

t+1 − t1 = −x1
c

(17)

and

t+2 − t2 =
x2
c
. (18)

That, as stated above, these equations are the trajectories of the photons that connect

these points P1 and P2 with the observer k at time and place of the observation (t = t+1 ,

x = 0) for P1 and (t = t+2 , x = 0) for P2.

Substituting Eq. (17) and Eq. (18) in Eq. (16) we obtain

t+1 − t+2 = −x1 + x2
c

+
c

v
(
x1
c

− x2
c
). (19)
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Suppose now that the observer k sees the point P1 and the point P2 at the same instant,

ie t+1 = t+2 . Given this fact and our postulate we obviously see that it violates the law of

mass-energy conservation. That is, for the observer k there will be two objects (o) at time

t+1 = t+2 located at two different points in space (P1 and P2).

We have P1 in the negative side of the x axis, and P2 in the positive, thus x1 = −|x1|
and x2 = |x2| so, clearing v from Eq. (19) and considering t+1 = t+2 we have

v = c
|x1|+ |x2|
|x1| − |x2| . (20)

It is clear that, for any value of x1 and x2, v < −c or v > c which means a higher speed

than the speed of light. On the other hand, it also means that a lower speed than the speed

of light will not void the second member of Eq. (19).

We have shown that for every moving object, the existence of a higher speed than the

speed of light is a violation of the law of mass-energy conservation and vice versa. We can

generalize our statement because we can always put a reference system between two points

of a path.

It is easy to understand it from a visual point of view (see Fig. 5).

D. Velocities

If we are observing an object (o) moving with a constant velocity v, approaching or

moving away from us along our x axis, we can locate that object with the values of the new

coordinates t+ and t− for this object in each our proper moment (we can choose ϕ and θ

in such a way that it equals zero as the object moves along the x axis). By taking t− as

parameter, we define a new speed ϑ as the change tax of received time t+ with respect to

that parameter t−. The new speed will be

ϑ =
dt+(o)

dt−
.

Note: Do not confuse ϑ with the usual speed v (space/time).

Let’s consider the relationship between our new velocity ϑ and the velocity v (space /

time)

v(o) =
dx(t)

dt
,
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FIG. 5 A velocity faster than the speed of light leads to the mobile to be seen by the observer, at one

same instant, at two different points. This assertion violates the law of mass-energy conservation.

By contrast, a slower speed than the speed of light leads the mobile to be seen by the observer at

a single point at each instant and there will be no violation of the law.

taking our change of coordinates

v(o) =
d

dt−

(
c
t+(t−)− t−

2

)
dt−

dt
,

we easily obtain that

ϑ =
c+ v

c− v
(21)

and the inverse

v = c · ϑ− 1

ϑ+ 1
. (22)

If that object stops moving (v = 0) we come to the conclusion that

ϑ = 1, that is
dt+(o)

dt−
= 1.

If that object moves at speeds near the speed of light (v → c), then ϑ will tend to infinite,

that is, dt+(o)
dt− will tend to infinite. So there is not an upper speed limit for our new speed ϑ.
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If that object moves at speed of light (v = c) with respect a reference system k, we shall

obtain that, according to Eq. (21), ϑ is undetermined since this object would move along

a line [t−, t+′] which means v = c, therefore, for k′, that object will have always the same

value for the coordinate t+′, but it will have infinite values for t−′. It means that every travel

at speed of light is, in our theory, an instantaneous process for the arrival point but not for

all other points of space-time, which is the concept of proper instantaneity defined before.

We shall prove that we are faced with a local theory. It means, we shall demonstrate that

the speed of light, as covered space in an elapsed time v, continues having the superior limit

c. That is, if we observe the equation described before Eq. (22), whatever value of ϑ, the

relation ϑ−1
ϑ+1

will be always lower than the unit, and therefore v will be always lower than c.

It means that this value keeps being the superior threshold of speeds.

As review, we can identify our new speed ϑ with the concept of rapidity φ provided by

Whittaker (1910) as

eφ =
√
ϑ.

E. Coordinates transformation of two reference systems in relative movement

Let us consider the events in which y = 0 and z = 0. It means, those events situated

in the plane containing two systems (k and k′) that are in relative movement v. This case

is important because the lines of the proper presents for those events (old trajectories of

photons emitted by these events) are shared by both observers.

If we put into practice our change of coordinates Eq. (9), we have for each reference

system:

t+ = t+ x
c

t+′ = t′ + x′
c

t− = t− x
c

t−′ = t′ − x′
c

y = y = 0 y′ = y′ = 0

z = z = 0 z′ = z′ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (23)

The Lorentz transformation was
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x = γ(x′ − vt′)

t = γ
(
t′ − vx′

c2

)
y = y′ = 0

z = z′ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (24)

where

γ =
1√

1− v2

c2

.

Note: we shall obviate the transformation of coordinates y and z because they are always

void.

Replacing Lorentz equations in the first relation of Eq. (23):

t+ =
1√

1− v2

c2

[
t′ − vx′

c2
+

(x′ − vt′)
c

]

=
c√

c2 − v2

[
t′
(
1− v

c

)
+
x′

c

(
1− v

c

)]

=
(c− v)√
c2 − v2

(t′ +
x′

c
) =

√
c− v

c+ v
· (t′ + x′

c
) =

1√
ϑ
t+′.

It can also be demonstrated that

t− =
√
ϑ · t−′.

Therefore the equivalents of Lorentz equations in our theory for this case are

t− =
√
ϑ · t−′, t+ =

1√
ϑ
t+′. (25)

We observe that equations are uncoupled and simplified.

In order to see the inverse transform we clear up t−′ and t+′ in function of t− and t+

respectively. We must consider the frame of reference k′ will not see v but −v and if we

observe the transformation of velocities Eq. (21) we shall see that if we swap v for −v then

ϑ will turn into 1
ϑ
. Therefore that inverse transformation will be

t−′ =
√
ϑ · t−, t+′ =

1√
ϑ
t+.

That is exactly the same transformation that we had seen for the system k. This trans-

formation will obviously work with all the magnitudes we shall see next, which use the same

transformation.
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F. The Composition of Velocities

If a frame of reference k sees an object moving along the x axis at a velocity w, then

another frame of reference k′ at relative velocity v with respect to k along the x axis direction,

will see the object moving at velocity w′. Where, according to the Special Relativity Theory

(Einstein, 1905), that composition is given by

w =
w′ + v

1 + w′v
c2

. (26)

If we use the transformation of velocities previously deducted, we see:

v = c · ϑ− 1

ϑ+ 1
, w = c · ϕ− 1

ϕ+ 1
, w′ = c · ϕ

′ − 1

ϕ′ + 1
.

Where ϑ, ϕ, ϕ′ are the corresponding velocities in the new coordinates for both systems.

If we replace those velocities in the relativistic equation of composition of velocities Eq. (26)

we shall obtain the equation of composition of velocities for our theory:

ϕ =
ϕ′

ϑ
. (27)

That it is simplified again.

Special Relativity incorporates the principle that the speed of light is the same for all

inertial observers. We can see that if the object is moving at the speed of light (w = c)

with respect to the observer k, then if we use our transformation of velocities Eq. (21), the

corresponding velocity in our theory will be ϕ = ∞. If we replace this value ϕ = ∞ in the

above equation Eq. (27), then we can see that the speed ϕ′ with which the other observer

k′ sees the object is also infinite. We see that it still meets the relativistic principle that

ensures that the speed of light is the same for all inertial frames.

IV. DYNAMICAL PART

A. Energy and momentum transformation

Let us consider a frame of reference k that sees an object with mass m moving along

the x axis at a velocity vx. Let us also consider another frame of reference k′ at relative

velocity v with respect to k along the x axis direction. That second frame of reference k′
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will measured that object with a velocity v′x. The Special Relativity Theory (Einstein, 1905)

says that the momentum and energy transformation of the object that is measured at each

reference system is given by

E = γ(E ′ − vP ′
x)

Px = γ(P ′
x − v

c2
E ′)

Py = P ′
y = 0

Pz = P ′
z = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (28)

where γ =
1√

1− v2

c2

.

If we include in Eq. (28) our speeds transformation Eq. (22) we get easily

E = 1√
ϑ

(E′+cP ′
x)

2
+
√
ϑ (E′−cP ′

x)
2

cPx = 1√
ϑ

(E′+cP ′
x)

2
−√

ϑ (E′−cP ′
x)

2

⎫⎪⎬
⎪⎭ . (29)

Note: We have removed the equations for the components y and z of momentum because

they are always void.

In Eq. (29) we can identify a pattern very similar to that developed in the coordinate

transformation Eq. (2). This fact leads us to make the following transformation of momen-

tum and energy to their corresponding quantities for our theory:

E+ = E + cPx

E− = E − cPx

⎫⎪⎬
⎪⎭ , (30)

where E+ and E− are the resulting from the x momentum and the energy component

(time momentum).

Their inverses are

E = E++E−
2

cPx = E+−E−
2

⎫⎪⎬
⎪⎭ . (31)

Substituting Eq. (30) in Eq. (29) and adding and subtracting the resulting equations we

get

E+ = 1√
ϑ
E+′

E− =
√
ϑE−′

⎫⎪⎬
⎪⎭ . (32)
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So we have new physics magnitudes E+ and E− instead Energy E and Lineal momentum

P .

In the particular case in which the frame of reference k′ is at rest with respect the object

(P ′
x = 0), we obtain

E+′ = E−′ = E

and also

E+ = 1√
ϑ
E ′

E− =
√
ϑE ′

⎫⎪⎬
⎪⎭ . (33)

If we further assume that the reference systems now have a relative speed c (ϑ = ∞), we

have that

E+ = 0

E− = ∞

⎫⎪⎬
⎪⎭ . (34)

B. De Broglie hypothesis and the energy and momentum transformation

Considering the conditions of movement between the reference systems k, k′ and object

(o) described in point IV.A. De Broglie showed in his thesis (Broglie, 1924) that every object

(o) of mass m has a wavelike nature, obtaining the following relationship between energy,

momentum and frequency for each reference system k and k′:

E = hν

P = h
λ
= hf = hν

vx

⎫⎪⎬
⎪⎭ for the reference system k, (35)

E ′ = hν ′

P ′ = h
λ′ = hf ′ = hν′

v′x

⎫⎪⎬
⎪⎭ for the reference system k′, (36)

where ν and ν ′ are the temporal frequencies in hertz and f and f ′ are the spatial fre-

quencies in cycles per meter.

Substituting Eqs. (35) and (36) in Eq. (28), and adding and subtracting we can easily

obtain
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ν+ = 1√
ϑ
ν+′

ν− =
√
ϑν−′

⎫⎪⎬
⎪⎭ , (37)

where

ν+ = ν + cf = ν(1 + c
vx
)

ν− = ν − cf = ν(1 − c
vx
)

⎫⎪⎬
⎪⎭ for k (38)

and

ν+′ = ν ′ + cf ′ = ν ′(1 + c
v′x
)

ν−′ = ν ′ − cf ′ = ν ′(1− c
v′x
)

⎫⎪⎬
⎪⎭ for k′, (39)

where its inverse are

ν = ν++ν−
2

cf = ν+−ν−
2

⎫⎪⎬
⎪⎭ for k (40)

and

ν ′ = ν+′+ν−′
2

cf ′ = ν+′−ν−′
2

⎫⎪⎬
⎪⎭ for k′. (41)

Let’s see what are the physical meanings of these new frequencies ν+ and ν−.

We can define ν+ of an object that an observer (system k) measures as: The

number of ‘received lines’, spaced by a time 1
ν
for the observer, cutted by this object while

traveling c meters (see Fig. 6).

We can define ν− of an object for a reference system k as: The number of ‘received

lines’, spaced by a time 1
ν
for the system k, that the object sees that the system of reference

cuts while the object travels c meters (see Fig. 7).

Note: For seeing this concept graphically we have chosen a simplified case in which we

have considered the reference system k′ comoving with the object (v′ = 0) for both figures.

Note: The system of reference k will measure 1
ν
, but the system of reference in the object

will measure 1
ν′ . Obviously both are related by Eq. (25).

C. Force transformation

Differentiating Eq. (28) we can obtain the known transformation of forces that exists over

an object (o). This transformation relates the forces measured by an observer k at rest with
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FIG. 6 Graphical explanation of Eq. (38) for ν+.

that object (o), with the forces measured by another observer k′ in relative motion, on a

common axis x, with the previous reference frame. We can easily get that this transformation

is

Fo = γ(F ′
o − vF ′

x)

Fx = γ(F ′
x − v

c2
F ′
o)

Fy = F ′
y = 0

Fz = F ′
z = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (42)

If we follow the same pattern we have taken so far in Eqs. (30), we can call

F+ = Fo + cFx

F− = Fo − cFx

⎫⎪⎬
⎪⎭ . (43)

Because Fo =
∂E
∂t

and Fx = ∂Px

∂t
and using the relations we have seen above Eq. (35) and

Eq. (36) we can deduce

F+ = h∂ν+

∂t

F− = h∂ν−
∂t

⎫⎪⎬
⎪⎭ . (44)
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FIG. 7 Graphical explanation of Eq. (38) for ν−.

These equations show a graphic evidence: ‘The variation in the value of the number of

cutted lines (ν+, ν−) indicates the presence of a force (modification of linear momentum)

and vice versa’.

Substituting in Eqs. (43) the values of force transformation Eq. (42) and using our

change of speed Eq. (21) we get our new force transformation

F+ = 1√
ϑ
F+′

F− =
√
ϑF−′

Fy = F ′
y = 0

Fz = F ′
z = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (45)

V. ELECTRODYNAMICAL PART

A. Relativistic Doppler effect

Assume the observer k and a light source k′ are moving away from each other with a

relative velocity v. Let us consider the problem from the reference frame of the source.

Suppose one light wavefront arrives at an observer at rest relative to the source k′. The
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next wavefront is then at a distance λ′ = c/ν ′ away from him (where λ′ is the wavelength, ν ′

is the frequency of the wave the source emitted, and c is the speed of light). Since the light

wavefront moves with velocity c and the observer moves with velocity v, the time observed

between crests is

t′ =
λ′

c− v
=

1

(1− v/c)ν ′
.

However, due to the relativistic time dilation, the observer k will measure this time to be

t =
t′

γ
=

1

γ(1− v/c)ν ′
,

where

γ =
1√

1− v2

c2

and taking the inverse

ν =
1

t
= γ(1− v

c
)ν ′.

If we make our change of velocities Eq. (22) we shall obtain

ν =
1√
ϑ
ν ′. (46)

To keep the notation used in Eq. (25) we shall call ν+ = ν so

ν+ =
1√
ϑ
ν+′, (47)

where

1√
ϑ

(48)

is the Doppler factor of the source relative to the observer in our theory.

If we draw the path of the light wavefront in Fig. 7 we can easily deduce that ν− = ν−′ =

0. We can also reach this same conclusion considering that, for the observer, there is not

variation in the photon during it’s journey, as we saw in Section III.A. So, for a photon we

have

ν+ = 1√
ϑ
ν+′

ν− = ν−′ = 0

⎫⎪⎬
⎪⎭ . (49)
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B. Photon energy

Since the energy of the photon in two reference systems k and k′ with relative movement

v are respectively

E = hν and E ′ = hν ′,

where h is Planck’s constant.

Taking the Doppler Effect relation Eq. (46) and substituting in the equation of energy,

we can obtain the photon energy relation for both systems:

E =
1√
ϑ
hν ′.

And comparing this equation with the concept of energy that we saw earlier in section

IV.A Eq. (29). Or easier, by multiplying Eqs. (49) by the Planck’s constant h, we deduce

for the photon

E− = E−′ = 0,

E+ = hν+ =
1√
ϑ
hν+′ =

1√
ϑ
E+′.

C. About Wheeler-Feynman absorber theory and The Transactional Interpretation

of Quantum Mechanics

Wheeler and Feynman (1945, 1949) showed there exist another solution of Maxwell’s

equations that is

�E = g(�k · �r + wt)

�B = g(�k · �r + wt)

⎫⎪⎬
⎪⎭ . (50)

Which is a wave traveling to the past. And if we proceed in the same way like in the

previous point, we have

E = g(w x
c
+ wt) = g(wt+)

B = g(wt+)

⎫⎪⎬
⎪⎭ . (51)

The ‘Transactional Interpretation of Quantum Mechanics’ (TIQM) (Cramer, 1986) calls

Eq. (14) as ‘retarded wave’ that is a wave that travels into the future, and the new one Eq.
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(50) as ‘advanced wave’ that is a wave that travels to the past. TIQM describes quantum

interactions like an agreement that occurs when the absorber accepts an interaction. The

absorber communicates this acceptation to the emitter by an confirmation wave that is an

‘advanced wave’ from the absorber to the emitter. The interaction is offered by the emitter

with an offered wave that is an ‘retarded wave’ from the emitter to the absorber.

These trips into the future and to the past can be eliminated by assuming our change of

coordinates that return Eqs. (15) and (51). Thus far now the old retarder and advanced

waves are in a proper line for the emitter and for the absorber. So there do not exist travels

to the future or to the past because this process is ‘proper instantaneous’.

VI. QUANTUM MECHANICAL PART

In the following points we shall see that our theory explains, in a simple way and keep-

ing what previously we have deducted, the quantum effects that come from the quantum

entanglement phenomenon which seems to be against local theories.

A. Entanglement, Schrödinger’s cat and Einstein-Podolsky-Rosen paradox

The concept of entangled states is considered the hardest concept to understand of Quan-

tum Mechanics. It says that if, for example, there is a bit of radioactive substance, so small

that perhaps in half an hour, any electron of it decays, or, with equal probability, perhaps it

does not, the only thing we can ensure is that it is in a ‘decayed - non decayed’ superposition

until we observe its state.

Schrödinger made his famous thought experiment (Schrödinger, 1935) by joining the bit

of radioactive substance with a trigger that killed a cat in case of decay. He placed everything

into a closed box in such a way that, until the moment in which the observer looks into the

box, the cat was in the superposed state ‘death cat - alive cat’.

The real problem is that if during a particular ‘horizontal’ time t there is a decay, the cat is

considered under the mentioned combination of states till the moment in which the observer

receives the information that this decay has occurred, (observation concept explained in the

paragraph II.B). That is a time t + r/c, where r is the space that separates us from the

decay. It is supposed that is our measurement that makes the state collapses in one of the

28



two possible values. This effect is difficult to understand by using the quantum physics,

but it has a very simple explanation taking into account the new concept of proper present,

because the decay happens at the moment we observe it (observation, paragraph II.B). This

moment is t+ = t + r
c
(both events will be ‘proper instantaneous’) and there will never be

linear combination of states, neither ‘decayed - non decayed’ combination, nor ‘alive cat -

dead cat’ linear combination.

The quantum explanation for the following case of entanglement is also difficult. Let’s

suppose that two entangled photons are emitted in a ‘horizontal’ time t towards two points

A and B separated between each other. According quantum physics, both photons travel

through the space to their respective destinations with the properties of each photon entan-

gled with the same property of the other photon, i.e. what affects one of them, also affects

the other one. If we measure in A one of the photons, that measurement will have direct

influence on the other photon no matter how far it is. Thus it would receive information

immediately, that is, the information will go through a big amount of space instantly, what

it contradicts Special Relativity Theory by violating the maximum speed limit (non - lo-

cality). This fact is the origin of the famous Einstein–Podolsky–Rosen paradox (Einstein

et al., 1935) and it is one of the main obstacles in physics nowadays. As in Schrödinger’s

cat experiment (Schrödinger, 1935), this effect can easily be explained by introducing the

new concept of proper presents. We shall see how it works:

The emission, from the origin of the photon till its arriving to A (measuring), is made in

a proper present line [t−, t+′]. Thus that process is instantaneous for the receptor A being a

proper instantaneous exchange. That is, the A machines are directly measuring in the origin

forcing the photon to collapse in either of the two states. Then that measurement will affect

the other photon, that will be forced to take the other state, as is in the same point (origin)

and, at the same proper time, this other photon is joined to B through another [t−, t+′] line.

The problem lies in thinking about photons travel through the space.

So we resolve Einstein–Podolsky–Rosen paradox (Einstein et al., 1935), since, as we have

seen, the exchanges of photons are proper instantaneous for receptors, but not for the rest

of points out of that line [t−, t+′].

Entanglement: We see now that before measuring, for the one who is measuring, the

photon is not in an intermediate space between the emitter and the receptor, the photon

has not being emitted yet. Therefore the entanglement represents the probability that each
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possible state has to be the one who will takes the photon when is emitted-measured. This

is the correct entanglement effect observed by quantum. But, if we do not take the new

concept of proper present, the entanglement seems to travel with each photon. Let’s see

graphically in Fig. 8.

Emission

t+
o(A)

t+
o(B)

t+
-1(A)

t+
-2(A)

t+
-1(B)

Measurement

Measurement

A2

A1

A0

A-1

B3

t

x

FIG. 8 A-B Experiment.

We can see that in the ‘horizontal’ scenario of presents the emission occurs in A0. In this

same scenario at A1 the photons are traveling through the space at an intermediate point

between the emission and the reception (with entangled properties), and is finally measured

at A2 were it collapses and the entanglement disappears. But if we consider the new scope

of presents (inclined dotted lines), for the observer A at A0 and at A1 the emission has not

happened yet. And at A2 the emission and measurement occurs, at the same time, for this

observer (because the emission and measurement are in the same line t+0 (A) for the observer

A).

B. Double-slit experiment

Let us consider the famous Young’s double-slit experiment (Young, 1804). We have two

slits separated by a distance and a screen placed a distance from the slits. A light source

generates photons that arrive to the screen through the slits.
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The electric field in a point p of the screen is caused by the superposition of the photons

wave functions owing to each slit and it is proportional to the real part of

ψtot = ψ1 + ψ2 = A
[
ei(kr1−wt) + ei(kr2−wt)

]
,

where

ψ1 = Aekr1−wt and ψ2 = Aekr2−wt.

They are wave functions of photons due to each slit and A is the amplitude of both waves.

Because k = w
c
and making our change of coordinates Eq. (2) we have

ψtot = ψ1 + ψ2 = A
(
e−iwt−1 + e−iwt−2

)
.

We see that there will be two different values of t−, t−1 and t−2 in every instant for each

point p on the screen, which define two emitted lines for the source.

The total electromagnetic energy that reaches the screen in the point p is proportional

to the square of ψtot:

P (y)αRe (ψtot · ψ∗
tot) = A2 · 2 · Re

[
1 + e−iw(t−2 −t−1 )

]

= A2 · 2 · Re
[
1 + cos(wΔt−) + i sin(wΔt−)

]

= A2 · 2
[
1 + cos(wΔt−)

]

= A2 · 4 cos2(cπṽΔt−), (52)

where w = 2cπṽ (ṽ is the wave number).

Then the maximums will appear when

Δt− =
n

cṽ
(n = 0, 1, 2, . . .)

and the minimums

Δt− =
n

2cṽ
(n = 1, 3, 5, . . .).

We see the famous Young’s interference pattern (Young, 1804). Quantum mechanics

explains that pattern will appear even though we emit an only photon. It means that

photon will interfere with itself like if it passed trough both slits. This effect has to do
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with the quantum entanglement of states again, because the state of that photon, before

arriving to the screen, is considered as the linear combination of the corresponding states

to the photon going trough both slits. That interference pattern disappears if we block one

of the slits. But how does the photon know that a slit has been blocked? Quantum has no

answer for this question; however it can be answered in a simple way using the new theory.

Photon knows which paths are available because the probability of reaching p, Eq. (52),

depends only on its own wave number and the time lines t−1 and t−2 , being two instantaneous

proper lines. That is, the photon is just, in the emission moment, in direct contact (proper

instantaneity) with p through the available paths (either t−1 , t
−
2 or both)

VII. REGARDING BELL’S THEOREM

With the new change of concept we have a theory that, as we have proved, satisfies

the local reality. It also agrees with the experimental evidence described by the quantum

mechanics and that it is not contradictory to Bell’s theorem (Bell, 1964) because hidden

variables have not been used.
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