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PREFACE 

 

 

 

 

This book extends the natural operations defined on intervals, 

finite complex numbers and matrices. The intervals [a, b] are such 

that a ≤ b. But the natural class of intervals [a, b] introduced by 

the authors are such that a ≥ b or a need not be comparable with b. 

This way of defining natural class of intervals enables the authors 

to extend all the natural operations defined on reals to these 

natural class of intervals without any difficulty. Thus with these 

natural class of intervals working with interval matrices like 

stiffness matrices finding eigen values takes the same time as that 

usual matrices. 

 

Secondly the authors introduce the new notion of finite 

complex modulo numbers just defined as for usual reals by using 
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the simple fact i
2
 = −1 and −1 in case of Zn is n – 1 so  = n − 1 

where iF is the finite complex number and iF’s value depends on 

the integer n of Zn. Using finite complex numbers several 

interesting results are derived.  

 

Finally we introduced the notion of natural product ×n on 

matrices. This enables one to define product of two column 

matrices of same order. We can find also product of m × n 

matrices even if m ≠ n. This natural product ×n  is nothing but the usual 

product performed on the row matrices. So we have extended this type 

of product to all types of matrices.    

 

We thank Dr. K.Kandasamy for proof reading and being extremely 

supportive. 

  

W.B.VASANTHA KANDASAMY 

FLORENTIN SMARANDACHE 

 



 
 
 
Chapter One 
 
 

 
 
INTRODUCTION  
 
In this chapter we just give references and also indicate how the 

arithmetic operations ‘+’, ×, ‘–’ and ÷ can be in a natural way 

extended to intervals once we define a natural class of intervals 

[a, b]; to be such that a > b or a < b or a = b or a and b cannot be 

compared.  This has been studied and introduced in [2 books].  

By making this definition of natural class of intervals it has 

become very easy to work with interval matrices; for working 

for interval eigen values or determinants or products further, it 

takes the same time as that of usual matrices (we call all 

matrices with entries from C or R or Q or Z or Zn as usual 

matrices).  The operations the authors have defined on the 

natural class of intervals are mere extensions of operations 

existing on R.  Thus this had made working with intervals easy 

and time saving. 

 

 Further the authors have made product on column matrices 

of same order, since column matrices can be added what 

prevents one  to have multiplication so we have defined this sort 

of product on column matrices as natural product.  Another 

reason is if the transpose of a row vector (matrix) is the column 

matrix so it is natural, one can take the transpose of a column 

matrix and find the product and then transpose it.  Thus the 

introduction of the natural product on matrices have paved way 

for nice algebraic structures on matrices and this is also a 

natural extension of product on matrices. 

 We call the existing product on matrices as usual product.  

On the row matrices both the natural product and the usual 
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product coincide.  Further the natural product is like taking max 

(or min) of two matrices of same order.  Finally this natural 

product permits the product of any two matrices of same order.  

This is another advantage of using natural product. 

 

 Thus if two rectangular array of numbers of same order are 

multiplied the resultant is again a rectangular array of numbers 

of the same order.  Natural product on square matrices of same 

order is commutative where as the usual product on square 

matrices of same order is non commutative. 

 

 Next we have from the definition of complex number i, 

where i
2
 = –1 developed to the case of finite modulo integers.  

For if Zn = {0, 1, 2, …, n – 1} the role of –1 is played by n – 1 

so we define finite complex number iF to be such that 2

Fi  = n – 1 

so that 3

Fi  = (n – 1)iF and 4

Fi  = 1 and so on. 

 

 One of the valid observations in this case is that the square 

value of the finite complex number depends on n for the given 

Zn.  Thus 2

Fi  = 7 for Z8, 
2

Fi  = 11 for Z12 and 2

Fi  = 18 for Z19.  

When we have polynomial ring C(Zn)[x] where C(Zn) = {a + biF 

| a, b ∈Zn and 2

Fi  = n – 1}, we see the number of roots for any 

polynomial in C(Zn)[x] can be only from the n
2
 elements from 

C(Zn); otherwise the equation has no root in C(Zn). For instance 

in C(Z2)[x];  x
2 

+ x + 1 = p(x) has no root in C(Z2). Thus we 

cannot be speaking of algebraically closed field etc as in case of 

reals. Introduction of finite complex numbers happen to be very 

natural and interesting [4]. 

 

 Finally authors have constructed matrices using the Boolean 

algebra P(X); the power set of a set X.  Study in this direction is 

also carried out and these matrices of same order with entries 

from P(X) happen to be a lattice under min and max operations.  

Thus this book explores the possibilities of extending natural 

operation on matrices, construction of natural class of intervals 

and employing all the existing operations on reals on them and 

finally defining a finite complex modulo number [4].  



 
 
 
 
 
 
Chapter Two 
 
 

 
 
EXTENSION OF NATURAL OPERATIONS 

TO INTERVALS 
 
 
 
In this chapter we just give a analysis of why we need the 

natural operations on intervals and if we have to define natural 

operations existing on reals to the intervals what changes should 

be made in the definition of intervals.  Here we redefine the 

structure of intervals to adopt or extend to the operations on 

reals to these new class of intervals.  

 

 Infact authors of this book often felt that the operations on 

the intervals (addition, subtraction multiplication and division) 

happen to be defined in such a way that compatability of these 

operations alone is sought.  But it is suprising to see why we 

cannot define an interval [a, b] to be such that a > b or a < b or a 

= b.  If operations can be so artificially defined to cater to the 

compatability what is wrong in accepting intervals of the form 

[a, b] where a > b; so if we make a very small change by 

defining an interval [a, b] in which a > b can also occur, 

certainly all the four operations defined on the reals can be very 

naturally extended. 
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 So we have over come the artificial way of defining product 

on intervals by redefining the intervals in a natural way, for 

these natural operations pave way for a simple working with 

interval matrices or any other form of interval structures like 

interval polynomials and so on. 

 

 Also we have already if f (x) is a function defined on [a, b] 

(a < b) then integral of f(x) in that interval is 
b

a

f (x)∫ dx and if we 

take integral from b to a we only make a small change by saying 
b

a

f (x) dx∫ = 

a

b

f (x) dx−∫ .   

 

So by all means the redefining has not resulted in any 

change or contradictions to the existing classical structures. 

 

 Infact these natural ways has only helped one with an easy 

computations of interval algebras or to be precise it takes the 

same time for computing with intervals or otherwise.   

 

Thus 

a

b

f (x) dx−∫  can be redefined as the integral defined on 

the interval [b, a], b > a.  So defining interval [x, y] with  

x > y will in no way contradict the working of integral or 

differential calculus. 

 

 Thus by defining [x, y]; x > y has become only natural in 

case of calculus.  Only we need to make simple and appropriate 

modifications while transferring the increasing to decreasing 

intervals and vice versa.  

 

 So in our opinion it is essential to have intervals of the form 

[a, b]; a > b (a, b ∈ R) also in the collection of intervals.  This 

must be recognized as a decreasing interval and in school 

curriculum and in college curriculum this must be introduced so 

that a sudden change does not take place in researchers mind but 



Extension of Natural Operations …  11 

 

the essential change is present in the their minds from the school 

days.   

 

Further this study in no way is going to make the school 

children in any way affected they will only appreciate the 

natural extension or natural way how the negative reals and 

positive reals in a reversed way occur.   

 

Thus making this sort of study at the school level is not only 

essential but is an absolute necessicity.   

 

Thus we call the collection of intervals  

{[a, b] | a > b or a < b or a = b where a, b ∈ R} to be the 

natural class of closed intervals and denote it by Nc(R). 

 

 Thus Nc(R) = {[a, b] | a > b or a < b or a = b; a, b ∈ R} we 

can define in a similar way the natural class of open intervals 

No(R) = {(a, b) | a > b or a < b or a = b; a, b ∈ R}. 

 

 Also Noc(R) = {(a, b] | a > b or a < b or a = b; a, b ∈ R} 

denotes the natural class of open closed intervals. 

 

 For example (5, 2], (∞, 7], (0, –7], (9, 11], (–∞, 8] and so 

on.  

 

 Nco(R) = {[a, b) | a > b or a < b or a = b; a, b ∈ R} denotes 

the natural class of closed open intervals. 

 

 [7, 0), [9, 12), [–∞, 0), [0, –∞) and [11, –5) are some of the 

examples.   

 

Now we can as in case of reals R define operations on 

Nc(R), No(R), Noc(R) and Nco(R) in a natural way. 

 

 Further we can also replace R by Q or Z and still these can 

be defined.  For instance No(Q) denotes the natural class of open 

intervals with entries from the rationals Q. 
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 Nc(R) = {[a, b] | a > b or a < b or a = b; a, b ∈ Q} denotes 

the natural class of closed rational intervals. 

 

 Similarly Noc(Q) and Nco(Q) denotes the natural class of 

open-closed rational intervals and closed-open rational intervals 

respectively. 

 

 Likewise we can define Nc(Z), No(Z), Noc(Z) and Nco(Z) to 

be the natural class of integer closed intervals, integer open 

intervals, integer open-closed intervals and integer closed-open 

intervals respectively.   

 

Now just for the sake of completeness we just recall the 

definition of the four arithmetic operations defined on the usual 

intervals.  (Throughout this book by the term usual interval we 

mean an interval of the form [a, b] ([a, b), (a, b], (a, b); a < b or 

a = b).  That is only increasing intervals will be termed as usual 

intervals. 

 

 We just recall the classical operation done on these usual 

intervals. 

 

[a, b] + [c, d] = [a + c, b + d] 

(a, b) + (c, d) = (a + c, b+d) 

(a, b] + (c, d]  = (a+c, b+d] 

[a, b) + [c, d) = [a+c, b+d) 

 

[a, b] – [c, d] = [a–c, b–d] 

(a, b) – (c, d) = (a–c, b–d) 

(a, b] – (c, d] = (a–c, b–d] 

[a, b) – [c, d) = [a–c, b–d) 

 

[a, b] × [c, d] = [min {ac, ad, bc, bd}, max {ac, ad, bc, bd}] 

[a, b) × [c, d) = [min {ac, ad, bc, bd}, max {ac, ad, bc, bd}) 

(a, b] × (c, d] = (min {ac, ad, bc, bd}, max {ac, ad, bc, bd}] 

(a, b) × (c, d) = (min {ac, ad, bc, bd}, max {ac, ad, bc, bd}) 

 

[a, b] ÷ [c, d] = [min {a/c, a/d, b/c, b/d}, max {a/c, a/d, b/c,b/d}] 

(a, b) ÷ (c, d) = (min {a/c, a/d, b/c, b/d}, max {a/c, a/d, b/c,b/d}) 



Extension of Natural Operations …  13 

 

[a, b) ÷ [c, d) = [min {a/c, a/d, b/c, b/d}, max {a/c, a/d, b/c,b/d}) 

(a, b] ÷ (c, d] = (min {a/c, a/d, b/c, b/d}, max {a/c, a/d, b/c,b/d}] 

 

(c ≠ 0 and d ≠ 0). 

 

 Now we proceed on to define and extended those classical 

operations on R to these 4 natural class of intervals Nc(R), 

No(R), Noc(R) and Nco(R). 

 

 However it is pertinent to mention here that we cannot have 

any compatible operations defined in between the four natural 

classes Nc(Q), No(Q), Noc(Q) and Nco(Q) as in case of usual 

intervals.  We just define and describe only for one class say 

Nc(R) and they can be developed for all the four classes.   

 

So we illustrate this by examples for other classes.  

 

 Let [a, b] and [c, d] ∈ Nc(R) we define  

[a, b] + [c, d] = [a+c, b+d]; clearly [a+c, b+d] ∈ Nc(R). 

 

 Suppose [–5, 0] and [7, 2] ∈ Nc(R); [–5, 0] is an increasing 

interval as –5 < 0 and [7, 2] is a decreasing interval as 7 > 2; 

now we find the sum of [5, 0] + [7, 2] = [2, 2] = 2 is a 

degenerate interval. 

 

 This is the marked difference between the usual closed 

intervals and natural class of closed intervals; for in the usual 

class of intervals only two degenerate intervals can add up to a 

degenerate interval. 

 

 Consider [3, 1] and [–7, 5] ∈ Nc(R), clearly [3, 1] is a 

decreasing interval and [–7, 5] is an increasing closed interval; 

we see their sum [3, 1] + [–7, 5] = [3+(–7), 1+5] = [–4, 6] is an 

increasing interval. 

 

 Consider [8, –5] and [–9, 0] in Nc(R), [8, –5] is a decreasing 

interval where as [–9, 0] is an increasing interval, but their sum 

[8, –5] + [–9, 0] = [–1, –5] is a decreasing interval. 
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 However the sum of two increasing intervals is again an 

increasing interval. Likewise the sum of two decreasing 

intervals is a decreasing interval. 

 

 Same type of addition and analysis hold good in case of the 

natural class of closed intervals No(R), Noc(R) and Nco(R). 

(similar results hold good even if R is replaced by Q or Z). 

 

 Now we proceed onto define the operation of subtraction on 

Nc(R).  Let [a, b] and [c, d] ∈ Nc(R).   

 

[a,b] – [c, d] = [a–c, b–d] ∈ Nc(R). 

 

 We define the ordinary subtraction in Nc(R). 

 

 Consider [8, 1] and [8, 3] ∈ Nc(R).  [8, 1] is a decreasing 

interval and [8, 3] is a decreasing interval. 

 

 We see [8, 1] – [8, 3] = [8–8, 1–3] = [0, –2] is a decreasing 

interval and [8, 3] – [8, 1] = [8–8, 3–1] = [0 2] is an increasing 

interval.  Let [3, –2] and [–4, 0] ∈ Nc(R).  Clearly [3, –2] is a 

decreasing interval and [–4, 0] is an increasing interval.   

 

Now [3, –2] – [–4, 0] = [3+4, –2–0] = [7, –2] is a decreasing 

interval [–4, 0] – [3, –2] = [–4, –3, 0 – (–2)] = [–7, 2] is an 

increasing interval. 

 

 Clearly the subtraction operation is non commutative. 

 

 We can define in the same way for the other three new 

classes of intervals No(R), Noc(R)  and Nco(R).   

 

Now we proceed onto define the product on the natural 

class of intervals Nc(R).  

 

 Consider [a, b] and [c, d] ∈ Nc(R).  We do not define 

product as in case of usual intervals.   

 

We will illustrate this by some examples. 
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 Let [3, 0] and [–3, 7] be two intervals in Nc(R) where [3, 0] 

is decreasing and [–3, 7] is an increasing interval.  

 

 [3, 0] × [–3, 7] = [–9, 0] is an increasing interval.   

 

Take [1, –5] and [–2, 10] ∈ Nc(R), [1, –5] is a decreasing 

interval and [–2, 10] is an increasing interval.  Now the product 

[1, –5] × [–2, 10] = [–2, –50] ∈ Nc(R); we see [–2, –50] is a 

decreasing interval in Nc(R). 

 

 Take [3/7, 1/9] and [7/3, 9] ∈ Nc(R); [3/7, 1/9] is a 

decreasing interval and [7/3, 9] is an increasing interval.   

 

 [3/7, 1/9] × [7/3, 9] = [1, 1] is a degenerate interval 1.  

 

 In the same way for all other natural class of intervals the 

operation of product can be defined. 

 

 Now we proceed onto define the division on the natural 

class of intervals Nc(R) (or No(R) or Noc(R) or Nco(R)). 

 

 Let [a, b] and [c, d] ∈ Nc(R) with c ≠ 0 and d ≠ 0. 

 [a, b] / [c, d] = [a/c, b/d] ∈ Nc(R). 

 

 (Clearly as in the case of integers we cannot define division 

of natural class of intervals on Nc(Z), No(Z), Noc(Z) and Noc(Z)).  

Let [5, 3] and [–7, 2] be in Nc(R) (or Nc(Q)).  Now [5, 3] / [–7, 

2] = [5/–7, 3/2] is in Nc(R) (or Nc(Q)). 

 

 Further [5, 3] is a decreasing interval and [–7, 2] is an 

increasing interval.  [–5/7, 3/2] is an increasing interval.  We 

find [–7, 2] / [5, 3] = [–7/5, 2/3] is again an increasing interval.  

Consider [2, 1] and [3,7] in Nc(Q). 

 

 [2,1] / [3,7] = [2/3, 1/7] is a decreasing interval. 

 

 Now we give the highest algebraic structures enjoyed by 

these operations on Nc(R) (or No(R) or Noc(R) or Nco(R)). 
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Result 1:  Nc(R) (No(R) or Noc(R) or Nco(R)) is a commutative 

ring with unit and zero divisors.  

 

 Clearly R ⊆ Nc(R) (Q ⊆ Nc(Q) and Z ⊆ Nc(Z)).  Thus Nc(R) 

is a Smarandache ring as R is a field contained in Nc(R).  

(Clearly this is not true in case of Nc(Z) or No(Z) or Noc(Z) or 

Nco(Z)).  We can define interval polynomials with natural closed 

interval coefficients or natural closed open interval 

coefficients). 

 

 Let  

Nc(R)[x] = i

i

i 0

a x
∞

=




∑ ai ∈ Nc(R)}, Nc(R) 

is a commutative ring with unit which is a Smarandache ring. 

On similar lines we can define Nc(Q)[x], No(R)[x], Noc(Q)[x], 

Noc(R)[x], Nco(R)[x] and so on. However Nc(Z)[x], No(Z)[x], 

Noc(Z)[x] and Nco(Z)[x] are not Smarandache rings. 

 

 Now we solve polynomial in the variable x with coefficient 

from the natural class of intervals.   

 

For if  

P(x) = i

i

i 0

a x
∞

=

∑  = [p1(x), q1(x)] where ai ∈ Nc(R)[x] 

where p1(x) = 1 i

i

i 0

a x
∞

=

∑  and q1(x) = 2 i

i

i 0

a x
∞

=

∑  where ai = 1 2

i i[a ,a ]  ∈ 

Nc(R). 

 

 Thus every interval coefficient polynomial is an interval 

polynomial and vice versa.   

 

We will illustrate this by a simple example. 

 

Let p(x) = [0,8]x
7
 + [–3, 2]x

3
 + [5,1]x + [6,7] 

 

= [p1(x), p2(x)] = [–3x
3
+ 5x + 6, 8x

7
 + 2x

3
 + x + 7]; 
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 p(x) is a polynomial with interval coefficient and [p1(x), 

p2(x)] is an interval polynomial.  So solving p(x) is equivalent to 

solving p1(x) and p2(x) and writing them in intervals.  So the 

roots are intervals. 

 

 Suppose  

 

p(x) = [–3, –4]x
2
 + [2,4]x + [1, 8] ∈ Nc(Q)[x] 

 

be a polynomial with interval coefficient.  

 

 p(x) = ([3, –2]x + [1, 4]) ([–1, 2]x + [1, 2]) 

 

so that x = [1, –1] and [–1/3, 2]. 

 

Now p ([1, –1]) = [–3, –4] [1, 1] + [2, 4] [1, –1] + [1, 8] 

    = [–3, –4] + [2, –4] + [1, 8] 

    = 0. 

 

p ([–1/3, 2])  = [–3, –4] [1/9, 4] + [2, 4] [–1/3, 2] + [1, 8] 

    = [–1/3  –16] + [–2/3+8] + [1, 8] 

    = 0. 

 

 Suppose we are interested in applying the solution of 

quadratic equations using the formula for ax
2
 + bx + c = 0; this 

gives  

x = 
2b b 4ac

2a

− ± −
 where 

 

 a, b, c ∈ R, we have to now define root of an interval. 

 

 [7,4]  = [ 7 , 2]; [16,9]  = [4, 3] and 

 

 [5, 3]−  = [ 5 , 3i] and so on. 

 

Let p(x) = [7, 2]x
2
 + [5, 3]x + [–3, 2]; 
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x  = 
[5,3] [25,9] 4[7,2][ 3,2]

2[7,2]

− ± − −
 

 

= 
[5,3] [25,9] [84, 16]

2[7,2]

− ± − −
 

 

= 
[5,3] [109, 5]

2[7,2]

− ± −
. 

 

We just recall [4, 5]
2
 = [16, 25] and [3

2
, 4

2
] = [9, 16] 

likewise for any power of an interval [2, 5]
7
 =  [2

7
, 5

7
] and so 

on. 

 

Now if we write the polynomial p(x) 

 

= [7,2]x
2
 + [5, 3]x + [–3, 2] 

= [p1 (x), p2(x)] 

= [7x
2
 + 5x – 3, 2x

2
 + 3x + 2]. 

 

Now roots of p(x) = [roots of p1(x), roots of p2(x)] 

 

= 
5 25 12 7 3 9 4 4

,
14 4

 − ± + × − ± − ×

 
 

. 

 

So working with interval polynomials or polynomials with 

interval coefficients can by no means make the solving time 

greater than that of usual polynomials (we say usual 

polynomials if the polynomials take its coefficients from R or Z 

or Q)  [3, 5]. 

 

 Now we can discuss about the matrices with interval entries.  

The matrices with entries from Z or Q or R are called usual 

matrices. 

 

 Now we see P = (aij)m×n matrix is an interval matrix if it 

takes its entries from the natural class of intervals that is; aij ∈ 
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Nc(R); 1 ≤ i ≤ m and 1 ≤ j ≤ n.  Suppose aij = [ 1

ija , 2

ija ] then  

P = (aij)m×n = ([ 1

ija , 2

ija ])  

 

 = [P1, P2] = [( 1

ija ), ( 2

ija )]. 

 

 We will illustrate this situation by an example. 

 

 Consider A = ([3, 2], [0, 5], [9, 4], [11,2]) row interval 

matrix. 

 

  A = (A1, A2) = [A1, A2]  

      = [(3, 0, 9, 11), (2, 5, 4, 2)].   

 

As in case of usual matrices we can find the product of two 

interval matrices of same order. 

 

 A × A  = [ 2

1A , 2

2A ] 

   = [(9, 0, 81, 121), (4, 25, 16, 4)] 

   = ([9, 4], [0, 25]. [81, 16], [121, 4]). 

 

 By this way the product with interval row matrices is 

similar to those of usual matrices. 

 

 Likewise addition of two interval row matrices are carried 

out.  More so is the addition of any m × n interval matrices or 

matrices with interval entries. 

 

 Now for more about these structures please refer [3, 5]. 

 

 Working again for interval eigen values and interval eigen 

vectors can be easily carried out as in case of usual matrices 

after writing the interval matrix as two usual matrices.  For 

instance if 

 

 

 A  = 
[8,6] [3, 2]

[1,4] [0,7]

− 
 
 

 = 
8 3 6 2

,
1 0 4 7

 −   
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  = [(A1, A2)]. 

 

 Eigen values for A1 and A2 can be found individually and 

finally the interval eigen values can be given [3, 5]. 

 

 One of the important and valid results about polynomials 

with interval coefficients and matrices with entries from the 

natural class of intervals is that, if p(x) and q(x) are polynomials 

in R[x] then   

 

P(x) = [p(x), q(x)]  = ([p0, q0] + [p1, q1]x + … + [pn qn] x
n
) 

 

is an interval polynomial with coefficients from Nc(R), where 

some of the qi’s and pj’s are non zero. 

 

 Thus from a pair of usual polynomials from R[x] we can 

construct an interval polynomial with coefficients from Nc(R)  

or No(R) or Noc(R) or Nco(R) and from interval polynomials with 

coefficients from Nc(R)[x] (or No(R)[x] or Noc(R)[x] or 

Nco(R)[x]) we can get back to usual polynomials in R[x]. 

 

 Likewise if we have two usual matrices A and B of same 

order with entries from R, we can get the interval matrix [A, B] 

((A,B), [A,B), (A,B]) and vice versa [3, 5].   

 

 We will just illustrate this situation by a simple example. 

 

Let A = 

3 2

1 5

7 3

 
 
 
  

 and B = 

0 1

5 2

1 0

 
 

− 
  

 

 

be any two usual matrices with entries from R.   

 

Now C = [A, B] = 

3 2 0 1

1 5 , 5 2

7 3 1 0

    
    

−    
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    = 

[3,0] [2,1]

[1,5] [5, 2]

[7,1] [3,0]

 
 

− 
 
 

  

 

is an interval matrix resulting from the usual matrices A and B. 

 

Also if P = 

[3,9) [5,2) [8,0) [0,11)

[1,2) [0,1) [10,1) [9,7)

[3,3) [5, 7) [ 3,0) [2,1)

 
 
 
 − − 

 

 

then 

3 5 8 0 9 2 0 11

1 0 10 9 , 2 1 1 7

3 5 3 2 3 7 0 1

    
   
   

   − −    

 = [P1, P2) 

 

where P1 and P2 are usual matrices.  For more please refer [3,5]. 

 

We can replace R by Q or Z, still the results hold good. 

Thus we by defining the natural class of intervals Nc(R) (or 

No(R), Noc(R) or Nco(R)) we have made it not only easy, but 

time saving to work with interval matrices and polynomials 

with interval coefficients.  

 

We can also define integration and differentiation of 

interval coefficient polynomials [3,5]. 

 

Now suppose we have intervals of the form [a, b] where a 

cannot be compared with b but still we have some elements 

lying between a and b then also we can work with these 

intervals.  When we say intervals of the type we will not call 

them as increasing intervals or decreasing intervals.   

 

First we will illustrate this situation by some examples. 

 

[I, 7] where I is a neutrosophic number and 7 the integer is 

an interval which has only the two element I and 7.  Clearly we 
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cannot compare I with 7 or 7 with I.  Likewise [–7 + 5i, 8I + 3i] 

is an interval in which no comparison is possible. 
 

Also [3, 12] and [7, 5] where 3, 12, 7, 5 ∈ Z25 (set of 

modulo integers) are intervals which is neither decreasing nor 

increasing.  However [3, 12] has elements (3, 4, 5, 6, 7, 8, 9, 10, 

12) in between 3 and 12 and including 3 and 12 and [7, 5] has 

(7, 6, 5) as its elements.   

 

Thus when we use intervals in Zn (n < ∞, n an integer) those 

intervals are not comparable as ordering cannot be made as they 

lie on the arc of a circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So interval is an arc 

 

 

 

 

 

 

 

 

 

 

 

[2,6]
�����

 or [6,2]
�����

. 

n = 0 
1 

2 

3 

4 

5 

6 
7 

n – 1 

8 

9 

0 = n 
1 

2 

3 

4 

5 

6 
7 

n–1 
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However if Nc(Zn) = {[a, b] | a, b ∈ Zn} then Nc(Zn) is 

closed under the operations of interval addition and 

multiplication.   

 

We will illustrate this situation by some simple examples. 

 

 Consider Nc(Z5) = {[0,1] [0,2],…,[4,3], [3,4], 0, 1, 2, 3, 4}. 

 

 Now [4, 3] + [2, 1] = [1, 4]. 

   [4, 3] × [2, 1] = [3, 3]. 

 

 So product of two non degenerate intervals can lead to a 

degenerate interval. 

 

[2, 2] [3, 2] = [1, 4]. 

  

Take Nc(Z3) = {[0,0], [1,1], [2,2], [0,1], [1,0], [0,2], [2,0], 

[1,2], [2,1]}.  Nc(Z3) has 9 elements.  

 

 We see No(Z3) is a commutative ring with (0, 0) as its 

additive identity and (1, 1) as its multiplicative identity.  Infact 

No(Z3) is a ring with zero divisors.  All elements are not 

invertible. 

   Only (2, 2) × (2, 2) = (1, 1), 

     (2, 1) × (2, 1) = (1, 1) 

and  (1, 2) × (1, 2) = (1, 1) are invertible. 

 

Infact No(Z3) is a Smarandache ring. 

 

Let No(Zn) = {(a, b) | a, b ∈ Zn} be a ring of open intervals.  

We see o (No(Zn)) = |No(Zn)| = n
2
;  1 < n < ∞.  If n is a prime 

then certainly No(Zn) is a Smarandache ring.  If Zn is a 

Smarandache ring then No(Zn) (or Nco(Zn) or Noc(Zn) or Nc(Zn)) 

is also a Smarandache ring.  Every No(Zn) has zero divisors and 

units [3, 5].   

 

We can construct polynomials with interval coefficients 

from No(Zn). 
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No(Zn)[x] = i

i

i 0

a x
∞

=




∑  ai ∈ No(Zn)} 

is also an interval polynomial ring of infinite order.  These 

interval polynomial rings have zero divisors.  

 

We can replace open intervals using Zn by closed intervals, 

open-closed intervals and closed-open intervals.   

 

We can also define interval matrices with entries from 

No(Zn) A = {3 × 3 interval matrices with entries from No(Zn)}.  

A is a non commutative ring with unit and zero divisors.  

 

B = {7 × 4 interval matrices with entries from Nc(Z20)}.  B 

is only an abelian group with respect to addition modulo 20. 

 

M = {5 × 9 interval matrices with entries from Noc(Z11)}.  M 

is additive abelian group. 

 

We can as in case of R  write two usual matrices with 

entries from Zn into an interval matrix with intervals from 

No(Zn) (or Nc(Zn) or Noc(Zn) or Nco(Zn)) and vice versa. 

 

Now natural class of neutrosophic intervals can be 

constructed using the set  

 

〈Z ∪ I〉 = {a + bI | a, b ∈ Z}  

or 〈R ∪ I〉 = {a + bI | a, b ∈ R}  

or 〈Q ∪ I〉 = {a + bI | a, b ∈ Q};   

 

where I is the indeterminate such that I
2
 = I. 

 

Also we can construct using Zn,  

〈Zn ∪ I〉 = {a + bI | a, b ∈ Zn} . 

 

Thus No(〈Z ∪ I〉) = {(x, y) | x, y ∈ 〈Z ∪ I〉}  and so on.  

Here some of the intervals in No(〈Zn ∪ I〉) may be comparable 

and some may not be comparable. 
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If we replace 〈Z ∪ I〉 in No(〈Z ∪ I〉)  by 〈Q ∪ I〉 or 〈R ∪ I〉 
still the results continue to be true in case of these interval rings, 

that is  No(〈Q ∪ I〉) or No(〈R ∪ I〉).  The open intervals can be 

replaced by closed and closed-open intervals.  

 

We can build polynomial neutrosophic interval coefficients 

using Nc(〈Z ∪ I〉) or No(〈Q ∪ I〉) and so on.  

 

Nc(〈R ∪ I〉)[x] = i

i

i 0

a x
∞

=




∑ ai ∈ Nc(〈R ∪ I〉)} 

is a neutrosophic interval coefficient polynomial ring with zero 

divisors.  Infact Nc(〈R ∪ I〉)[x] is a commutative ring which is 

not an integral domain.  Likewise we can construct neutrosophic 

interval polynomial coefficient rings using 〈Zn ∪ I〉.   
 

Now we can also define neutrosophic interval matrices  

A = {all n × n neutrosophic matrices with entries from No(〈Z ∪ 

I〉)}; is a ring which is non commutative and has zero divisors. 

 

B = {all m × n neutrosophic interval matrices with entries 

form Nc(〈Q ∪ I〉)} is only an additive abelian group if m ≠ n. 

 

Interested reader can refer [3, 5].  Also all the properties 

enjoyed by these algebraic structures built using neutrosophic 

intervals can be studied and developed as a matter of routine;  

with simple appropriate modifications.   

 

Finally we can also develop intervals using Z
+
 ∪ {0} or Q

+
  

∪ {0} or R
+
 ∪ {0}.  We define  

Nc(Z
+
 ∪ {0}) = {[a, b] | a, b ∈ Z

+
 ∪ {0}}.  Nc(Z

+
 ∪ {0}) is 

only a semiring  and not a semifield as it has zero divisors.   

 

But if we consider Nc(Z
+
) ∪ [0,0] where Nc(Z

+
) = {[a, b] | a, 

b ∈ Z
+
} then Nc(Z

+
) ∪ [0,0] is a semifield.  No(R

+
 ∪ {0}) is 

only a semiring not a semifield.  Likewise Noc(Q
+
) ∪ [0,0] is a 
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semifield and Noc(Q

+
 ∪ {0}) is a semiring and is not a semifield 

but however Noc(Q
+
 ∪ {0}) is a Smarandache semiring.   

 

We can also work with matrices whose entries are from 

Noc(Q
+
 ∪ {0}).  Suppose  

 

P = {all m × n matrices with entries form Noc(Q
+
 ∪ {0})}, 

then P is only a semiring of interval matrices.  P has zero 

divisors. P is a S-semiring.  Of course these results hold good if 

in Noc(Q
+
 ∪ {0}), Q

+
 ∪ {0} is replaced by R

+
 ∪ {0} or Z

+
 ∪ 

{0}.   

 

Further if open-closed interval is replaced by open intervals 

or closed intervals or closed-open intervals still all the results 

hold good. 

 

Now we can develop the notion of semiring of interval 

coefficient polynomials. 

 

Let No(Z
+
 ∪ {0})[x] = i

i

i 0

a x
∞

=




∑ ai ∈ Nc(Z

+
 ∪ {0})} 

be the semiring of closed interval coefficient polynomials. 

 

For example  

 

p(x) = [7, 3] + [0,5]x + [12,1]x
3
 + [17,120]x

7
  

∈ Nc(Z
+
 ∪ {0})[x], 

 

we can replace Z
+
 ∪ {0} by R

+
 ∪ {0} or Q

+
 ∪ {0} and still the 

results hold good. 

 

Suppose  

(Nc(Z
+
) ∪ {0})[x] = i

i

i 0

a x
∞

=




∑ ai ∈ Nc(Z

+
) or ai = 0} 

be the closed interval coefficient polynomial semiring then 

(Nc(Z
+
)∪{0})[x] is a semifield.  This result holds good if Z

+
 is 

replaced by R
+
 or Q

+
. 



Extension of Natural Operations …  27 

 

 

Now having seen how the natural class of intervals gives 

various structures we can also define interval polynomials and 

interval matrices in the following in case of semirings.  

 

Let p(x) = [p1(x), p2(x)] where p1(x), p2(x) ∈ (Z
+
 ∪ {0})[x] 

then p(x) is an interval polynomial also  

 

p(x) = i

i

i 0

a x
∞

=




∑ ai ∈ Nc(Z

+
 ∪ {0})} = [p1(x), p2(x)], 

 

so even in case of semirings an interval polynomial is a 

polynomial interval of usual polynomials.   

 

Likewise matrices with interval entries is the interval 

matrices of a semiring.  If A = ([ 1

ija , 2

ija ]n×n then A = [A1, A2] 

where A1 = ( 1

ija )  and A2 = ( 2

ija ) are usual matrices with entries 

1

ija , 2

ija  ∈ Z
+
 ∪ {0} or [ 1

ija , 2

ija ] ∈ Nc(Z
+
 ∪ {0}).  Thus one can 

go from interval matrices to matrix intervals and vice versa. 

 

Now we can replace this study by complex numbers so that 

No(C) = {(a+ib, c+id) | a, b, c, d ∈ R; i
2
 = –1} is the collection 

of all open complex intervals.  No(C) is a ring with zero divisors 

which is commutative.  

 

We can write (a+ib, c+id), also as (a, c) + i(c, d); this 

represents the interval complex number.  It is easily verified that 

every complex interval is an interval complex number and vice 

versa.  Of course open intervals can be replaced by closed 

complex intervals, open-closed complex intervals and closed-

open complex intervals.   

 

Thus we can redefine interval complex number as A+iB 

where A, B ∈ No(R) (or Noc(R) or Nco(R) or Nc(R)).   
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On similar lines we can define interval neutrosophic 

numbers as A + BI where A, B ∈ No(R) (or Noc(R) or Nc(R) or 

Nco(R)). 

 

Further if [a+bI, c+dI] is a neutrosophic interval we can 

rewrite this as [a, c] + [b,d]I where a, b, c, d ∈R.  However we 

are not in a position to give any form of geometrical 

representation.  Further we say we can represent interval 

complex numbers or interval neutrosophic numbers in this form 

just like we represent complex numbers as a+bi, a, b ∈ R; we 

can write an interval neutrosophic number as A+BI where A 

and B are intervals from No(R) or Nc(R) or Noc(R) or Nco(R). 

 

Likewise our study can be made as in case of complex 

interval numbers. 

 

Thus Io(C) = {(a, b) + (c, d)I | (a, b) and (c, d) ∈ No(R)} 

denotes the collection of all interval complex numbers.  We see 

Io(C) is a ring which is commutative and has zero divisors.  

Further C ⊆ No(C) ⊆ Io(C) and R ⊆ No(R) ⊆ Io(C). 

 

Just we show how we define operations with them. 

 

Suppose x = (3, 4) + (2, –1)i and   

y = (–7, 2) + (0, 4)i ∈ Io(C); then  

 

x+y = {(3, 4) + (2, –1)i} + {(–7, 2) + (0, 4)i} 

= [(3, 4) + (–7,2)] + [(2, –1) + (0,4)]i 

= (–4, 6) + (2, 3)i ∈ Io(C). 

 

x × y = {(3, 4) + (2, –1)i} × {(–7, 2) + (0, 4)i} 

  =  (3, 4) (–7,2) + (2, –1) (–7,2)i + (3, 4)(0, 4)i + (2, –1)  

(0, 4)(–1) 

  = (–21, 8) + (–14, –2)i + (0, 16)i + (0, 4) 

  = (–21, 12) + (–14, 14)i. 

 

 Thus we have a ring structure  on open interval complex 

number Io(C). 
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 We can on similar lines define Ic(C), Ioc(C) and Ico(C) and 

all these structures are also rings which are commutative having 

unit (1,1) = 1 and has zero divisors and units. 

 

 Now likewise Io(〈R ∪ I〉) = {(a, b) + (c, d)I | (a, b) and (c, d) 

∈ No(R); I the indeterminate with I
2
 = I} is a collection pf open 

interval neutrosophic numbers.  Io(〈R ∪ I〉) is again a ring with 

unit, and is known as the open interval neutrosophic ring.   

 

On similar lines we can define closed interval neutrosophic 

ring, open-closed interval neutrosophic ring and closed-open 

interval neutrosophic ring.   

 

Just we show how the operations are carried out on 

elements of closed interval neutrosophic ring.  

 

Let x = [3, –2] + [5, 7]I and y = [0, 4] + [2, –1]I 

 

be in Ic(〈R ∪ I〉).  
 

 x+y   = [3, –2] + [5, 7]I + [0, 4] + [2, –1]I 

   = ([3, –2] + [0, 4]) + ([5, 7] + [2, –1]) I 

   = [3, 2] + [7, 6]I ∈ Ic(〈R ∪ I〉). 
 

 x × y   = [3, –2] + [5, 7]I × [0, 4] + [2, –1]I 

   = [3, –2]  × [0, 4] + [5, 7] [0, 4]I + [3, –2] [2, –1]I +  

   [5, 7]I [2, –1]I 

   = [0, –8] + ([0, 28] + [6, 2]) I + [10, –7]I    

(∵ I
2
 = I) 

   = [0, –8] + [16, 23]I ∈ Ic(〈R ∪ I〉). 
 

 Thus we see (Ic(〈R ∪ I〉), +, ×) is a commutative ring of 

closed interval neutrosophic numbers. 

 

 Now having seen these interval neutrosophic numbers we 

can construct polynomials with interval neutrosophic 

coefficients and matrices with entries from interval neutrosophic 

numbers.   
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Further we see using interval complex numbers also we can 

build polynomials and matrices.   

 

We will only illustrate these structures and show how 

operations can be carried out on them.   

 

In the first place we wish to state an interval complex 

number reduces to a complex number if both the intervals are 

degenerate intervals, that is if x = [a,a] + [b,b]i = a+bi ∈ C ⊆ 

Ic(C).  Infact this is true for all types of intervals open, open-

closed, or closed-open. 

 

 Let  

 

V = i

i

i 0

a x
∞

=




∑ ai ∈ Io(C) that is ai = ( 1 2

1 1a ,a ) + ( 1 2

1 1b ,b )i,  

i j

1 1a ,b  ∈ R; 1 ≤ i, j ≤ 2} 

be the interval complex number coefficient polynomial in the 

variable x.   

 

V is a ring defined as the interval complex number 

coefficient polynomial.   

 

Let p(x) = (3, 0) + (2, 5)i + [(7, 5) + (2, 1)i]x + [(5, 1) +  

(4, 3)i] x
3
 and  

 

q(x) = (1,2) + (7,8)i + [(9, 0) + (1,2)i]x
2
 be two interval 

complex coefficient  polynomials in V.   

 

Now we show how the operations ‘+’ and ‘×’ are defined on 

V. 

 

 p(x) + q(x) = {(3, 0) + (2, 5)i + [(7, 5) + (2,1)i]x + [(5, 1) + 

(4, 3)i]x
3
 and q(x) = (1,2) + (7, 8)i + [(9,0) + (1,2)i]x

2
 be two 

interval complex coefficient polynomials in V.   

 

Now we show how the operations ‘+’ and ‘×’ are defined on 

V. 
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 p(x) + q(x) = {(3,0) + (2,5)i + [(7,5) + (2,1)i]x + [(5,1) + 

(4,3)i]x
3
} + {(1,2)+(7,8)i + [(9,0) + (1,2)i]x

2
} = [(3,0) + (2,5)i] 

+ [(1,2) + (7,8)i] + [(7,5) + (2,1)i]x + [(9,0) + (1,2)i]x
2
 + [(5,1) 

+ (4,3)i]x
3
 = (4,2) + (9,13)i + [(7,5) + (2,1)i]x + [(9,0) + 

(1,2)i]x
2
 + [(5,1) + (4,3)i]x

3
 is again a interval complex number 

polynomial. 

 

 p(x) × (q(x)) = [(3,0) + (2,5)i + ((7,5) + (2,1)i)x + ((5,1) + 

(4,3)i]x
3
] × [(1,2) + (7,8)i + [(9,0) + (1,2)i]x

2
] 

 

 = [(3, 0) + (2,5)i] [(1,2) + (7,8)i] + [(3,0) + (2,5)i] × [(9,0) + 

(1,2)i]x
2
 + [(7,5) + (2,1)i]x [(1,2) + (7,8)i] + [(7,5) + (2,1)i]x 

[(9,0) + (1,2)i]x
2
 + [(5,1) + (4,3)i]x

3
 × (1,2) + (7,8)i + ((5,1) + 

(4,3)i]x
3
 × [(9,0) + (1,2)i]x

2 

 

 = (3,0) + (2,10)i + (21,0)i + (14,40) (–1) + {(3,0) (9,0) + 

(2,5)i (9,0) + (3,0) (1,2)i + (2,5) (1,2)i
2
] x

2
  + {(7,5) (1,2)x + 

(2,1) (1,2)i x + (7,5) (7,8)i x + (2,1) (7,8)i
2
 x} + {(7,5) (9,0) + 

(2,1) (9,0)i + (7,5) (1,2)i + (2,1) (1,2) (–1)]x
2
 + [(5,1) (1,2) + 

(4,3) (1,2)i + (5,1) (7,8)i + (4,3) (7,8)i
2
] x

3
 + {(5,1) (9,0) +  

(4,3) (9,0)i + (5,1) (1,2)i + (4,3) (1,2)–1] x
2
 

 

 = (–11, –40) + (23, 10)i+ {(25, –10) + (21,0)i} x
2
 + {(–7, 2) 

   + (51, 42)i} x + {(63,0) + (18,0)i + (7,10)i + (–2–2)]x
2 
+  

   {(–23–22) + (39,14)i} x
3
 + {(41–6) + (41,2)i} x

2
  

 

= (–11,–40) + (23,10)i + {(–7,2) + (51,42)i} x {(127,–18)  

   + (87,12)i} x
2
 + {(–23, –2) + (39,14)i} x

3
. 

 

 Now having seen how the operations are performed one can 

work with polynomial with complex interval coefficients. 

 

 Now we can replace Io(C) by Ic(C) or Ioc(C) or Ico(C) we can 

for these rings study the properties.  Clearly if C = {a+bi | a, b ∈ 

R or Q} then Io(C) is a Smarandache ring.  If C = {a+bi | a, b ∈ 

Z} then Io(C) is not a Smarandache ring. 
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 Clearly I = {(a, 0) + (b,0)i | a, b ∈ R} ⊆ Io(C) is an ideal of 

Io(C).  Also P = {(0,a) + (0,b)i | a, b ∈ R} ⊆ Io(C) is again an 

ideal of Io(C).  

 

 Thus these rings has ideals I and P and the ideals I.P = {0} 

and I ∩ P = {0}.  Further I + P = Io(C).  Such ideals happen to 

have very interesting substructures. 

 

 Similar study on polynomial rings with complex interval 

coefficients can be made and they have zero divisors and ideals. 

 

 If V = i

i

i 0

a x
∞

=




∑ ai  = ( 1

ija , 2

ija ) + ( 1

ijb , 2

ijb )i ∈ Io(C)}  

be the complex interval coefficient ring.   

 

Consider  

 

P = j

j

i 0

a x
∞

=




∑ aj  = ( j

1a ,0) + ( j

2a ,0)i ∈ Io(C)} ⊆ V 

 

is an ideal of V. 

 

 Likewise  

 

S = k

k

i 0

a x
∞

=




∑ ak  = (0, k

1a ) + (0, k

2a )i  ∈ Io(C)} 

 

is an ideal of V. Further S.P = {0}.  Every element p in P is such 

that for every s in S, p.s = (0).  Thus these ideals happen to have 

interesting structure in these rings.  

 

 Clearly Io(C) can be replaced by Ic(C) or Ioc(C) or Ico(C). 

 

 Now we proceed to define matrices with complex interval 

entries. 
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 Consider A = {m × n matrices with entries from Io(C)}. A is 

a group under addition.  If m ≠ n or 1 ≠ m then A is not 

compatible under usual product.   

 

We will illustrate this situation by some examples.  

 

 Let  

 

M = ((0,3) + (2,5)i, (7,1) + (4,2)i, (6,1) + (1,2)i, (10,8) +  

(–3, 2)i) and  

 

N = ((7,2) + (0,2)i, (8,4) + (3,3)i, (2,0) + (3,0)i, (2,7) +  

(–3,1)i) be the {set of all 1 × 4  matrices with entries from 

Io(C)} = A. 

 

 MN = ((0,3) + (2,5)i × (7,2) + (0,2)i, (7,1) + (4,2)i × (8,4) + 

(3,3)i,  (6,1) + (1,2)i × (2,0) + (3,0)i,  (10,8) + (–3, 2)i ×(2,7) + 

(–3,1)i)  

 

=  ((0, 6) + (14,10)i + (0,6)i + (0,10) (–1), (56,4) + (32,8)I + 

(21,3)i + (12,6) (–1), (12,0) + (2, 0)i + (18,0)i + (3,0) (–1), 

(20,56) + (–6,14)i + (–30, 8)i + (9,2) (–1)) 

 

= ((0,–4) (14,16)i, (44,–2) + (53,11)i, (9,0) + (20,0)i, 

(11,54) + (–36,22)i). 

 

Thus we see MN ∈ A 

 

M+N = ((0,3) + (2,5)i, (7,1) + (4,2)i, (6,1) + (1,2)i, (10,8) + 

(–3,2)i) + ((7,2) + (0,2)i, (8,4) + (3,3)i, (2,0) + (3,0)i, (2,7) +  

(–3,1)i); is in A. 

 

= ((7,5) + (2,7)i, (15,5) + (7,5)i, (8,1) + (4,2)i, (12,15) +  

(–6,3)i). 

 

Thus A is a ring. 

 

Likewise we can find product of m × m matrices with 

complex open interval entries. 
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We can also have m × n matrices with entries from complex 

closed intervals / complex open closed intervals or closed open 

intervals.   

 

In all these cases they are abelian groups under addition and 

if these structures are compatible with respect to product they 

are rings which may be commutative or non commutative.   

 

Now on similar lines we can define polynomials with 

interval neutrosophic coefficients and matrices with interval 

neutrosophic entries. 

 

We define and illustrate this situation by some simple 

examples. 

 

Let  

 

P = i

i

i 0

a x
∞

=




∑ ai  = ( 1

ija , 2

ija ) + ( 1

ijb , 2

ijb )I ∈ Io(〈R ∪ I〉)} 

 

be a interval neutrosophic coefficient polynomial in the variable 

x. P is a commutative ring with zero divisors and ideals.  

 

M = i

i

i 0

a x
∞

=




∑ ai  = ( 1

ia ,0) + ( 2

ia ,0)I  ∈ Io(〈R ∪ I〉); 

1

ija , 2

ija  ∈ R} ⊆ P 

 

is the ideal of P. Consider  

 

N = i

i

i 0

a x
∞

=




∑ aki  = (0, 1

ia ) + (0, 2

ia )I  ∈ Io(〈R ∪ I〉) 

1

ija , 2

ija  ∈ R} ⊆ P 

 

is again an ideal of P. 
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M and N are ideals of P such that M∩N=(0) and MN = (0). 

 

Thus every element x in M is such that x.y = (0) for every  

y in N. 

 

So P has infinite number of zero divisors. 

 

Let  

 

p(x) = (5,0) + (3,2)I + ((7,1) + (5,–1)I)x + ((3,11) + (2,0)I)x
3
  

 

and  

 

q(x) = (3,1) (1,1)I + ((5,2) + (3,7)I) x + ((1,2) + (3,0)I) x
2
 be 

in P.   

 

To find p(x) + q(x). 

 

p(x) + q(x) = (8,1) + (4,3)I + ((12,3) + (8,6)I) x + ((1,2) + 

(3,0)I)x
2
 + ((3,11) + (2,0)I) x

3
 is in P. 

 

Consider p(x) × q(x) = ((5,0) + (3,2)I) × ((3,1)+(1,1)I) + 

((7,1) + (5,–1)I) × (3,1) + (1,1)I)x + ((3,11) + (2,0)I) × ((3,1) + 

(1,1)I x
3
 + ((5,0) + (3,2)I) × ((5,2) + (3,7)Ix + ((5,0) + (3,2)I) × 

((1,2) + (3,0)I) x
2
 + ((7,1) + (5,–1)I)x × ((5,2) + (3,7)I)x + ((3,1) 

+ (2,0)I)x
3
 × ((5,2) + (3,7)I)x + (7,1) + (5,–1)I)x × ((1,2) + 

(3,0)I) x
2
 + ((3,11) + (2,0)I) x

3
 × ((1,2) + (3,0)I) x

2
  

 

= [(15,0) + (9,2)I + (5,0)I + (3,2)I] + [(21,1) + (15,–1)I 

(7,1)I + (5,–1)I]x + [(9,11) + 6,0)I + (3,11)I + (2,0)I]x
3
 + [(25,0) 

+ (15,4)I + (15,0)I + (9,14)I]x + ((5,0) + (3,4)I + (15,0)I + 

(9,0)I]x
2
 ((35,2) + (25,–2)I + (21,7)I + (15,–7)I]x

2
 + [(15,2) + 

(10,0)I + (9,7)I + (6,0)I]x
4
 + [(7,2) + (5,–2)I + (21,0)I + (15,0)I 

x
3
 + [(3,22) + (2,0)I + (9,0)I + (6,0)I]x

5
  

 

= (15,0) + (17,4)I + [(21,1) + (27,–1)Ix + [(9,11) + 

(11,11)I]x
3
 + [(25,0) + (39,18)I]x + [5,0) + (27,4)I]x

2
 + [(35,2) 

+ (61,–2)I]x
2
 + [(15,2) + (25,7)I] x

4
 + ((7,2) + (41,–2)I]x

3
 + 

[[(3,22) + (17,0)I]x
5
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= (15,0) + (17,4)I + [(46,1) + (66,17)I]x + [(40,2) + 

(88,2)I]x
2
 + [(16,13) + (55,9)I]x

3
 + [(15,2) + (25,7)I]x

4
 + [(3,22) 

+ (17,0)I]x
5
 ∈ P. 

 

Thus P is a ring.  Io(〈R ∪ I〉) can be replaced by Ic(〈R ∪ I〉) 
or Ico(〈R ∪ I〉) or Ioc(〈R ∪ I〉). 

 

Now we just show how matrices with open interval 

neutrosophic entires are defined and how operations on them are 

performed. 

 

Let P = {all m × n matrices with entries from Ic(〈R ∪ I〉)}; P 

is an abelian group under addition.  P is not compatible with 

respect to product.  However if m = 1, then P is a commutative 

ring with zero divisors.  If n = m then P is a non commutative 

ring.  

 

Infact P has ideals and zero divisors. We will just illustrate 

how product and sum are performed on 2 × 2 matrices with 

interval neutrosophic numbers from Io(〈R ∪ I〉). 
 

 

Let x = 
(6,1) (2,3)I (1,2) (3,4)I

(7,5) (11,6)I (1,2) (5, 1)I

+ + 
 

+ + − 
 

 

and y = 
(8,3) (5,3)I (7,3) (2,4)I

(1,7) (8,4)I (4, 1) (3, 2)I

+ + 
 

+ − + − 
 

 

be any two 2 × 2 matrices.  

 

x + y = 
(14,4) (7,6)I (8,5) (5,8)I

(8,12) (19,10)I (5,1) (8, 3)I

+ + 
 

+ + − 
  

 

is again a 2 × 2 matrix. 
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Now x × y 

 

 =
(6,1) (2,3)I (8,3) (5,3)I (1,2) (3,4)I (1,7) (8,4)I

(7,5) (11,6)I (8,3) (5,3)I (1,2) (5, 1)I (1,7) (8,4)I

+ × + + + × +


+ × + + + − × +
 

 

(6,1) (2,3)I (7,3) (2,4)I (1,2) (3,4)I (4, 1) (3, 7)I

(7,4) (11,6)I (7,3) (2,4)I (1,2) (5, 1)I (4, 1) (3, 2)I

+ × + + + × − + − 


+ × + + + − × − + − 
 

 
(48,3) (16,9)I (30,3)I (10,9)I (1,14) (3,28)I (8,8)I (24,16)I

(56,15) (88,18)I (35,15)I (55,18)I (1,14) (5, 7)I (8,8)I (40, 4)I

+ + + + + + +


+ + + + + − + + −
 

 

(42,3) (14,9)I (12,4)I (4,12)I (4, 2) (12, 4)I (3, 4)I (9, 8)I

(49,12) (77,18)I (14,16)I (22,24)I (4, 2) (20,1)I (3, 4)I (15,2)I

+ + + + − + − + − + − 


+ + + + − + + − + 
 

 

= 
(49,17) (91,73)I (46,1) (54,9)I

(57,29) (231,49)I (53,10) (151,57)I

+ + 
 

+ + 
  

 

is in the set of all 2 × 2  matrices with interval neutrosophic 

entries form Io(〈R ∪ I〉). 
 

Now we proceed onto first define the notion of complex 

neutrosophic intervals. 

 

Nc〈C ∪ I〉 = {[a,b] | a = a1 + a2i+ a3I + a4Ii    and  

 

b = b1 + b2i + b3I + b4iI where ai, bj ∈ R; 1 ≤ i, j ≤ 4}  

 

denotes the collection of all closed intervals with complex 

neutrosophic integers. 

 

Suppose x = [2+5i + 6I + 3iI, 7–10i + 12I + 14iI] 

 

Then the interval can be rewritten as [2,7] + [5i, –10i] + [6I, 

12I] + [3iI, 14iI] now each of these subintervals are comparable.  

Though we may not be in a position to compare elements in x as 

a totality.   
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Now we can define operations on Nc(〈C ∪ I〉).   
 

(It is pertinent to mention here that we can define on similar 

lines algebraic operations on No(〈C ∪ I〉), Noc(〈C∪ I〉) and 

Nco(〈C ∪ I〉).   
 

We can define both addition and product on Nc(〈C ∪ I〉) and 

Nc(〈C ∪ I〉) is a commutative ring with zero divisors and units.  

Just we show how addition is performed on Nc(〈C ∪ I〉). 
 

Now we proceed onto describe how operations on them are 

carried out. 

 

Suppose X = [a + bi + cI + dIi, x + yi + zI + tiI] and  

 

Y = [p + qi + rI + sIi, m + ni + tI + viI] are two neutrosophic 

complex number intervals then X + Y = [a + p + (b+q)i + (c+r)I 

+ (d+s)Ii,  x + m + (y+n)i + (z+t)I + (t+v)Ii]. 

` 

Thus X + Y is again a complex neutrosophic interval. 

 

Now we proceed to find the product of X with Y; X × Y = 

[(a + bi + cI + dIi) × (p + qi + rI + sIi), (x + yi + zI + tiI) × (m + 

ni + tI + viI)] 

 

= [(ap + bip + cpI + dpIi + aqi – bq + cqiI – dqI + arI + rbiI 

+ crI + drIi + saIi – sbI + scIi – dsI), (xm + ymi + zmI + tiIm + 

nxi – ny - nziI – ntI + tIx + tyIi + tzI + t
2
iI + vziI – vyI + xvIi–

tvI)] 

 

= [(ap – bq) +(bp + aq)i + (cp – dq + ar + cr – sb – ds)I+ (dp 

+ cq + rb + dr + sa + sc)iI, (xm – ny) + (ym + nx)i + (zm – nt + 

tx + tz – vy – tv)I + (tm + nz + ty + t
2 

+ vz + xv)Ii] is again an 

interval in Nc(〈C ∪ I〉).   
 

We can build like in case of other intervals in case of  

Nc(〈C ∪ I〉) also polynomial rings with complex neutrosophic 

interval coefficients and matrices with complex neutrosophic 
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entries.  This is considered as a matter of routine and hence is 

left as an exercise to the reader.   

 

Now we can also define interval complex neutrosophic 

numbers.  Number of the form [a, b] + [c, d]i + [e, f]I + [g, h]iI  

a, b, c, d, e, f, g, h ∈ R (or Z or Q) is defined as the interval 

complex neutrosophic numbers.   

 

We see if W = {[a, b] + [c,d]i + [e,f]I + [g,h]iI | a, b, c, d, e, 

f, g, h ∈ R (or Z or Q)} then W is a commutative ring with 

identity and W has zero divisors and ideals. 

 

 For instance P = {[a, 0] + [b,0]i + [c,0]I + [d,0]iI  | a, b, c, d 

∈ R} ⊆ W is an ideal of W.   

 

Likewise  

 

M = {[0, a] + [0, b]i +  [0,c]I + [0,d]iI | a, b, c, d ∈ R} ⊆ W is 

again an ideal.  Clearly M ∩ P = {0} and  

 

M × P = {mp | m ∈ M and p ∈ P} = {0}.  Several 

interesting properties in this direction can be derived. 

 

 It is pertinent to mention here that in W instead of taking 

closed interval [a,b], one can take the intervals from No(R) or 

Noc(R) or Nco(R) (R also replaced by Z or Q). 

 

 Further we wish to state that now we have got a relation or 

mapping between interval complex numbers and complex 

intervals. 

 

 For if x = ([a, b] + [c, d]i] then if y = ([a + ci, b + di]) ∈ 

Nc(C) then a map x � y as  [a, b] + [c, d]i = ([a + ci, b + di]) is 

a one to one map so the study from one to another is equivalent.  

 

 Likewise in case of neutrosophic intervals if 
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x = ([a, b] + [c, d]I and y = ([a + cI, b + dI]) ∈ Nc(〈R ∪ I〉) 
then the map x � y as  [a, b] + [c, d]I = ([a + cI, b + dI]) is a 

one to one map and both are equivalent. 

 

 Finally if x = ([a, b] + [c, d]i + [e, f]I + [g, h]iI) is a 

complex neutrosophic interval number than y = ([a + ci + eI + 

giI, b + di + fI + hiI]) ∈ Ic(〈C ∪ I〉) then a map x � y mapping 

= ([a,b] + [c,d]i + [e,f]I + [g,h]iI) →  ([a + ci + eI + giI, b + di + 

fI + hiI]) is again a  one to one map so both intervals can be 

treated  as equivalent.   

 

It is pertinent to mention here that we can replace closed 

intervals by open intervals or open-closed intervals or closed-

open intervals and all the results hold good. 



 
 
 
 
 
 
Chapter Three 
 
 

 
 
FINITE COMPLEX NUMBERS 
 
 
Before we start to describe and discuss about complex numbers 

we now proceed onto recall the history of complex numbers as 

given by O.Merino, www.math.uri.edu/~merino/ 

.../ShortHistoryComplexNumbers2006.pdf. The need for the 

imaginary or complex numbers did not arise in a single 

situation, when mathematicians tried to find the root of negative 

numbers they encountered with the problem of what is the root 

of –1.   

 

Yet another situation is finding a solution to the equation 

ax
2
 + bx + c = 0 a, b, c ∈ R. 

 

 x = 
2b b 4ac

;
2a

− ± −
 when b

2
 < 4ac, the term under the 

square root was negative this also gave the mathematicians a 

problem and how to encounter it.   

 

At the end of 15
th
 century an Italian mathematicians del 

Ferro and Nicolo Fontana (known as Tarlaglia) made progress 

towards solving cubic equations in 1539, Tartaglia 
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 communicated his insight to Girolamo Cardano.  Thus the first 

record of complex numbers dates back to 1545. 

 

 Rane Descartes in 1637 gives an informal version of the 

fundamental theorem of algebra and thinks zeros of the 

polynomials do not always correspond to any real quantity. 

 

 Isaac Newton in 1728 interprets complex roots of a 

polynomial merely as an explicity symptom of solutions which 

are not possible.  

 

Leonard Euler in 1768 says square roots of negative 

numbers are impossible numbers.   

 

In 1835 the formal interpretation of a complex number as an 

ordered pair of real numbers appears for the first time in the 

work of Sir William Rowan Hamilton.  To Hamilton we also 

owe the introduction to i as the square root of –1. 

 

 So we have no real number which solves the equation x
2
 =  

–1.  But imagine there is a number i with the special property 

such that i
2
 = –1.  Then the equation above has the solutions x = 

± i.  This is the one of the germs the complex numbers grew.  

i
2
= –1 where i is an imagined existence number. 

 

 z = x + iy  was the expression given to a complex number x, 

y ∈ R.  

 

 A complex number i is defined as 1−  or equivalently i
2
 = 

–1 so that i = 1− .  Clearly one is very well aware of the fact  

i
2
 = –1, i

3
 = –i, i

4
 = 1, i

5
 = i, i

6
 = –1 and so on. 

 

 Now we know using the ring of integers Z the notion of 

modulo integers can be defined. Suppose 2 is the integer;  

consider the ideal generated by 2. 

 

 〈 2 〉 = {all positive and negative integers greater than 2 with 

zero} 
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 Consider Z / 〈 2 〉 = {0 + 〈 2 〉, 1 + 〈 2 〉}. 

  

Now (0 + 〈 2 〉) + (0 + 〈 2 〉) = (0 + 〈 2 〉). 
 (1 + 〈 2 〉) + (1 + 〈 2 〉) = (2 + 〈 2 〉) = 0 + 〈 2 〉  

as 2 ∈ 〈 2 〉; 1 + 〈 2 〉 + 0 + 〈 2 〉 = 1 + 〈 2 〉.   
(0 + 〈 2 〉) (0 + 〈 2 〉)  = 0 + 〈 2 〉,   

 

(using the fact 〈 2 〉 (1 + 〈 2 〉) ×  (1 + 〈 2 〉) = 1 + 〈 2 〉  
 

(once again using the fact 〈 2 〉 is an ideal of Z. 

 

 Thus Z / 〈 2 〉= {0 + 〈 2 〉, 1 + 〈 2 〉} is isomorphic with the 

modulo integer 2 that is Z2 = { 0 , 1 }.   

 

Without any confusion we can also omit the bar on 0 and 1, 

for by the context of study it is clear.  Further if Zn = {0, 1, 2, 

…, n–1} then –1 = n–1 (mod n), –2 = n–2 (mod n) and so on. 

 

 We see depending on n the value of –1 also varies.  For in 

Z5, –1 = 4 (mod 5); –1 ≡ 7 (mod 8) in Z8 and in Z20 – 1 ≡ 19 

(mod 20).  Thus we see –1 also varies with the n we choose.  

 

 However no mention was made of finite complex number or 

modulo complex integers.  We authors in [4, 6] were just 

thinking and discussing that in the set of modulo integers  

Zn = {0, 1, 2, …, n–1} and 1 + n–1 = 0 (mod n) similar to  

1 + (–1) = 0 in reals, so we thought we can define a finite 

complex number 2

Fi  = n – 1.  Thus we are developing the theory 

of finite complex numbers [4, 6].  However, as Zn is not 

representable in a plane the same problem will also be 

encountered by complex modulo integers, so based on the fact 

n–1 = –1 (mod n) the authors define (n–1) = 2

Fi , where iF 

depends on the n which we choose. 

 

 Now we define finite modulo complex integer as follows: 

 

 Let Zn be the ring of integer modulo n.  The finite complex 

modulo integers,  
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 C(Zn) = {a + biF | a, b ∈ Zn; 
2

Fi  = n–1}.  We can define 

addition and product on C(Zn) in the following way. 

 

 (a+biF) + (c+diF)  = (a+c) (mod n) + (b+d)iF (mod n). 

 (a + biF) × (c+diF)  = ac + bciF + adiF + bd 2

Fi  

    = ac + (bc + ad)iF + bd (n–1)   

(∵ 2

Fi  = n–1) 

    = [ac + bd(n–1)] (mod n) + (bc + ad) iF (mod n). 

 

 We will illustrate this situation with elements from Z15. 

 

 Consider C(Z15) = {a + biF | a, b ∈ Z15, 
2

Fi = 14}.  Let 5 + 9iF 

and 12 + 4iF be in C(Z5). 

 

 (5 + 9iF) + (12 + 4iF) = 17 (mod n) + (13iF) = 2+13iF. 

 

 Now (5 + 9iF) × (12 + 4iF)  

= (60 + 108iF + 20iF + 36 2

Fi ) (mod 15)  

  = 0 + 3iF + 5iF + 6 × 14 (mod 15) 

  = 8iF + 9. 

 

 Thus C(Zn) is a commutative ring of finite order.  For more 

about complex modulo integers please refer (WBV finite comp]. 

 

 Now C = {a + ib | a, b ∈ R} is a field but here we may have 

C(Zn) to be a ring or a field.  C(Zn) need not be a field even if n 

is a prime.   

 

Inview of this we illustrate this situation by some simple 

examples.  

 

 C(Z2) = {0, 1, iF, 1+iF}; 

 

 Clearly C(Z2) is only a ring as (iF+1)
2
 = 2

Fi  + 2iF + 1  

= 1 + 2iF + 1 (mod 2) = 0. 
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 Consider C(Z3) = {0, 1, 2, iF, 2iF, 1+iF, 2+iF, 2+2iF, 2iF +1}. 

 

 We write the table of C(Z3) \ {0} under product. 

 

× 1 2 iF 2iF 

1 1 2 iF 2iF 

2 2 1 2iF iF 

iF iF 2iF 2 1 

2iF 2iF iF 1 2 

1+iF 1+iF 2+2iF iF +2 2iF +1 

2+iF 2+iF 1+2iF 2+2iF iF +1 

2iF +1 2iF +1 iF +2 1+iF 2+2iF 

2+2iF 2+2iF 1+iF 2iF+1 iF +2 
 

 

1+ iF 2+ iF 2iF +1 2+2iF 

1+ iF 2+ iF 2iF +1 2+2iF 

2+2iF 1+2iF iF +2 1+iF 

iF +2 2iF +2 1+iF 2iF +1 

2iF +1 iF +1 2+2iF iF +2 

2iF 1 2 iF +2 

1 iF 2iF 2 

2 2iF iF 1 

iF 2 1 2iF 

 

 

Clearly C(Z3) is a field of characteristic three.  However 

C(Z3) is not a prime field  for Z3
≠

⊂ C(Z3).   

 

Consider C(Z4); C(Z4) is only a ring. 

 

C(Zn); n not a prime is only a ring. 

  

Now consider C(Z5) = {a + biF | a, b ∈ Z5, 
2

Fi = 4}; C(Z5) is 

a ring.  Is it a field?  C(Z5) is not a field only a ring as  

(1+2iF) (2+iF) = 2 + 4iF + iF + 2. 2

Fi  

       = 2+5iF + 8   ( 2

Fi = 4) 

       = 0 mod 5. 
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 Thus we can say C(Zp) will be a field if and only if Zp \ {0} 

does not contain a, b such that a
2
 + b

2
 ≡ 0 (mod p). 

 

 We see C(Z7) is a field.  

C(Z13) is not a field only a ring as 3
2
 + 2

2
 = 13 (mod 13).   

 

C(Z17) is not a field as 17 ≡ 4
2
 + 1 and C(Z189) is a field.   

 

Consider C(Z23) is a field.  C(Z29) is not a field as 29 = 5
2
 + 

2
2
 and so on. 

 

 We have given algebraic structures to them and worked 

with them, refer [ , ].  We also just recall the graphical 

representation of them.  It has 3 layers, modulo integers which 

is the inner most layer and the middle layer consists of the only 

complex numbers and the outer layer consists of the complex 

modulo integers of the form a+biF.  a ≠ 0 and b ≠ 0, a, b ∈ Zn.   

 

The diagram for C(Z2) is as follows: 

 

 

 

 

 

 

 

 

 

 

The diagram for C(Z3) is as follows; 

 

 

 

 

 

 

 

 

0 

1 

iF 

1+iF 

0 

1 iF 
1+iF 

2 

2iF 

2+iF 

2iF+2 

2+2iF 
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and so on. 

 Clearly C(Zn) contains Zn.  Also several interesting results 

about C(Zn) are derived in [4, 6].  

 

 We just give the statements of them. 

 

THEOREM 3.1:  Let C(Z2p) be the finite complex ring, p a prime, 

p>2.  C(Z2p) is only a ring and (1+iF)
2
 = 2iF. 

 

THEOREM 3.2:  Let C(Zn) be the ring Zn ⊆ C(Zn) is a subring of 

C(Zn) and not an ideal of C(Zn). 

 

THEOREM 3.3:  Let C(Z2p) be a ring.  P = {0, p+piF} ⊆ C(Z2p) 

is an ideal of C(Z2p), p a prime. 

 

THEOREM 3.4:  Let C(Zp), p a prime be a complex modulo 

integer ring.  

 

 Then (i)  (a+aiF)
2
 = biF   b, a ∈ Zp and  

 

(ii) 
+ + 

+ 
 

2

F

p 1 p 1
i

2 2
 = 

+ 
 
 

F

p 1
i

2
  = 

+
F

( p 1)i

2
. 

 

THEOREM 3.5:  Let S = C(Zn) be a complex ring of modulo 

integers.  For x = a + (n–a)iF ∈ C(Zn) we have x
2
 = biF  for 

some b ∈ Zn (
2

F
i  = n–1). 

 

THEOREM 3.6:  Let R = C(Zn) be the ring of complex modulo 

integers (n not a prime).  Every x = a+biF in which a.b = 0 

(mod n) gives x
2
 to be a real value. 

 

THEOREM 3.7:  C(Zn) has ideals and subrings if n is not a 

prime and if n is a prime then C(Zn) has ideals and subrings 

only if  n = a
2
 + b

2
 (a, b ∈ Zn \ {0}). 

 

Now we can construct algebraic structures using C(Zn). 

 

 First we define complex modulo integer matrices. 
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 Let A = {all m × n matrices with entries from C(Zn)}. 

 

THEOREM 3.8:  A is an abelian group under addition. 

 

THEOREM 3.9:  If m = 1 in A; A is a semigroup under  

product ×. 

 

 We will just illustrate this situation before we proceed onto 

define more algebraic structures on A.  

 

Let x = 
F F F

F F F

3 2i 7 3i 1 5i

8 i 1 4i 2 i

+ + + 
 

+ + + 
 

 

and y = 
F F

F F F

1 i 8 7 3i

3i 4 2i 8i

+ + 
 

+ 
 

 

where x and y take its entries from C(Z9).   

 

Now x+y = 
F F F

F F

4 3i 6 3i 8 8i

8 4i 5 6i 2

+ + + 
 

+ + 
. 

 

 This way addition is performed.  

 

Infact product cannot be defined for x with y.  

 

 Let x = (10+3iF, 4+2iF, 12+10iF) and y = (3+ iF, 4iF, 3)  

 

be two row vectors with entries from C(Z13).   

 

Now x + y = (13+4iF, 4+6iF, 15+10iF) = (4iF, 4+6iF, 2+10iF) 

 

and x × y = ((10+3iF) × 3+ iF, (4+2iF) ×4iF, 12+10iF ×3)  

 

 = (30+9iF +10iF +3 2

Fi , 16iF + 8 2

Fi ¸ 36+30iF)  

(mod 13 and 2

Fi  = 12); 
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 thus x × y = (1+6iF, 3iF +5, 10+4iF). 

 

 Further x × y is defined hence we can have the following 

result the proof of which is left to the reader [4, 6]. 

 

THEOREM 3.10:  Let  

A = {collection of all 1 × m row vectors with entries from 

C(Zn)}.  A is a commutative ring with unit.  A has zero divisors.  

A is a Smarandache ring.   

 

Next we proceed onto study the structure of column 

matrices.  Let  

P = {collection of all m × 1  column matrices with entries 

from C(Zn)}; P is only an additive abelian group. 

 

 We will illustrate this by an example.   

 

Suppose C(Z10) = {a+biF | a, b ∈ Z10, 
2

Fi = 9} be the complex 

modulo integers. 

x = 

F

F

F

F

F

3 2i

9 i

8

3i

1 i

7 9i

+ 
 

+ 
 
 
 
 +
 

+  

 and y = 

F

F

F

F

F

7i

8 6i

9 i

9i 1

8i

6

 
 

+ 
 +

 
+ 

 
 
  

 

 

be any two 6 × 1 column vectors.   

 

We define x + y = 

F

F

F

F

F

F

3 9i (mod 10)

17 7i (mod10)

17 i (mod 10)

12i 1(mod 10)

1 9i (mod 10)

13 9i (mod 10)

+ 
 

+ 
 +

 
+ 

 +
 

+  

 = 

F

F

F

F

F

F

3 9i

7 7i

7 i

2i 1

1 9i

3 9i

+ 
 

+ 
 +

 
+ 

 +
 

+  

. 
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 We see the set of all column vectors with entries from 

C(Z10) is an additive abelian group.  However usual product 

cannot be defined on these column vectors. 

 

 Consider now the collection of all n × n matrices with 

entries from C(Zm); suppose  

 

P = {all n × n matrices with entries from C(Zm); 2

Fi = m–1}.  

P is a non commutative ring with zero divisors and units. 

 

 We will illustrate how sum and product are made.  

 

Consider P = {all 3 × 3 matrices with entries from C(Z6); 
2

Fi = 5}.  

 

Let x = 

F F

F F

F

3 i 0 2i

4 2 i 1 4i

i 2 0

+ 
 

+ + 
 
 

 and 

 

y = 

F F

F F F

i 2i 0

0 2 4

1 i 2 i 4i 1

 
 
 
 

+ + + 

 

 

be two elements from P.  We find x + y ; 

 

x+y = 

F F F

F F

F F

3 2i 2i 2i

4 4 i 4i

2i 1 4 i 4i 1

+ 
 

+ 
 

+ + + 

 ∈ P. 

 

 Now we find product x × y =  
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F F

F F

F

3 i 0 2i

4 2 i 1 4i

i 2 0

+ 
 

+ + 
 
 

F F

F F F

i 2i 0

0 2 4

1 i 2 i 4i 1

 
 
 
 

+ + + 

 

 

=

F F F F F F F F

F F F F F F F

2 2

F F

(3 i )i 0 2i (1 i ) 2i (3 i ) 0 2i (2 i )

4i 0 (1 i )(1 4i ) 4 2i 2(2 i ) (1 4i )(2 i )

i 0 0 2i 4 0

+ + + + + + + +


+ + + + × + + + + +


+ + + +

 

 

F F

F F F

0 0 2i (4i 1)

0 4(2 i ) (1 4i )(1 4i )

0 8 0

+ + + 


+ + + + + 


+ + 

 

 

= 

F F F

F F

5i 3 2 4i 2i 4

3i 3 2 i 4

5 2 3

+ + + 
 

+ + 
 
 

,  

 

using the fact 2

Fi  = 5 and it is modulo 6 addition / multiplication.  

Now one can use these complex modulo integer matrices with 

entries from C(Zn) for any arbitrary integer n.   

 

We see for any square complex modulo integer matrix only 

 

 In =  

1 0 ... 0

0 1 ... 0

0 0 ... 1

 
 
 
 
 
 

� � �
 acts as the multiplicative identity. 

Clearly the n × n zero matrix  

 

(0) = 

0 0 ... 0

0 0 ... 0

0 0 ... 0

 
 
 
 
 
 

� � �
 acts as the additive identity. 
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The n × n matrix contains zero divisors.  

 

 These collection of matrices with complex modulo integers 

can be used to define vector spaces over C(Zp) where p ≠ a
2
 + b

2
 

for any a, b ∈ Zp (p a prime). 

 

 We have proved the following theorem [4, 6]. 

 

THEOREM 3.11:  Let  

 

V = 

a a ... a

a a ... a

a a ... a

 
 
    

� � �
a ∈ C(Zp); p a prime} 

 

be the set of all n × n matrices of complex modulo integer linear 

algebra over Zp.   

 

(i)  V has no complex modulo integer linear subalgebra 

with entries of the matrix x = a+biF, a ≠ 0, b ≠ 0; a, b ∈ Zp. 

 

 (ii) M = 

x x ... x

x x ... x

x x ... x

 
 
    

� � �
x ∈ Zp} ⊆ V  

 

is a pseudo complex modulo integer linear subalgebra of V over 

Zp.   

 

Likewise we can define polynomials with coefficients from 

C(Zn). 

 

V = i

i

i 0

a x
∞

=




∑  ai ∈ C(Zn) 
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where ai = 1

ia + 1

ib iF; 
2

Fi = n–1, 1

ia , 1

ib  ∈ Zn} 

 

denotes the collection of all polynomials with coefficients from 

C(Zn). 

 

 V is a commutative ring with unit.  V has zero divisors if Zn 

has zero divisors. 

 

 We now show if 

 

 x
2
 = (n–1) then the root of x

2
 = (n – 1) is x = iF; since 

2

Fi  = x
2
 = (n–1) where x

2 
= n–1 ∈ C(Zn).   

 

Hence to solve equations in C(Zn)[x] and for finding the 

solution of x
2
 = (n–1) we have the root TO BE iF. 

 

 Further it is pertinent to mention here that we cannot use the 

quadratic equations. 

 

 For the quadratic equation ax
2
 + bx + c = 0 has 

 

 x = 
2b b 4ac

2a

− ± −
 where a, b, c ∈ R (reals only).   

 

So we have to use only the method of substitution of all values 

in Zn in the equation f(x) = ax
2
 + bx + c.  For instance if 

 

 f(x) = 2x
2
 + 3x + 1 ∈ Z5[x] then x ≠ 0; x ≠ 1, x ≠ 2, x ≠ 3 

and x ≠ 4 so f(x) has no solution in Z5[x]. 

 

Further in this book we are not using the concept of 

primitive roots of an irreducible polynomial p(x) ∈ Zp[x] 

(C(Zp)[x]), p only a prime. 

 

 Suppose f(x) ∈ C(Z5)[x] then  

 

 f(3+3iF) = 2 (3+3iF)
2
 + 3(3+3iF) + 1 
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    = 2 [9+9×4+18iF] + 9+9iF +1 

   = 36iF+9iF+10 = 0 (mod 5). 

 

So 3+3iF ∈ C(Z5) is a root of f(x); several problems arise in 

this situation.  Can one say every 2
nd

 degree equation (or 

polynomial of second degree) in C(Zn)[x] has two roots? 

 

 Or equivalently can one say a polynomial p(x) ∈ C(Zm)[x] 

of degree n can have n and only n roots? 

 

 This question remains a open problem for the authors are 

not in a position to solve this.  Further can every polynomial 

p(x) ∈ C(Zn)[x] has atleast one root in C(Zm); this also remains 

open atleast till one constructs a polynomial which has no 

solution. 

 

 Consider p(x) = x
2
 + 2x + 2, clearly 2+iF is a root, for  

 

p(2+iF) = (2|+iF)
2
 + 2(2+iF) + 2 

     =  4 + 2 + iF + 4 + 2iF + 2 

     =  0. 

 

2+2iF is a root of p(x). 

 

   p(2+2iF)  =   (2+2iF)
2
 + 2(2+2iF) + 2 

       =   4+ 4 × 2 + 8iF  + 4 + 4iF + 2 

       =   0 so 2+2iF is also a root of p(x).   

 

However we wish to see whether the rule if α and β are the 

roots of a equation x
2
 + bx + c = p(x) then b = – (α + β) and  

c = αβ.  

 

 Let α  = 2 + 2iF and β = 2 + iF.  Now the equation 

 

 (x – α) (x – β)  = (x + 1 + iF) (x+1+2iF) 

     = x
2
 + x + xiF + 1 x+1 + iF + 2iFx + 2iF + 4 

     = x
2
 + 2x +2. 

 

   α + β = (2+2iF) + (2+iF) = 1 
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   – (α + β) = 2. 

 

   αβ = (2+2iF) (2+iF) = 2. 

 

 Since –2 ≡ 2 (mod 4) we have the solution and equation 

behave in this case as that of reals.  Let 2+3iF, 4+2iF ∈ C(Z6).  

Consider the quadratic equation (x–(2+3iF))  (x–(4+2iF)) = 0 

 

 i.e., (x+4+3iF) (x+2+4iF) = 0. 

 

 x
2
 + 4x + 3iFx + 2x + 8 + 6iF + 4iFx + 16iF + 12 × 5 = 0; that 

is  

 x
2
 + iFx + 4iF + 2 = 0. 

 (α + β) = (2+3iF) (4+2iF)  = 5iF. 

 

  – (α + β) = + iF   and  αβ  = (4+3iF) (2+4iF)  

      =  8+6iF + 16iF + 12 2

Fi  

      =  2+4iF + 12 × 5. 

       αβ   =  2+4iF. 

 

 Thus α and β  are the roots of the equation  

x
2
 + iFx + 4iF + 2 = 0. 

 

 Let α = 3+7iF and β =  8+iF ∈ C(Z9) to find the quadratic 

equation satisfied by the roots α and β.  

 

 (x – α) (x – β) = (x + 6+2iF) (x+1+8iF) 

 = x
2
 + 6x + 2xiF + x + 6 + 2iF + 8iFx + 48iF + 16 × 8 ( 2

Fi = 8) 

 = x
2
 + 7x + 5iF + iFx + 8 

 = x
2
 + x (7+iF) + 2 + 5iF. 

 

–( α + β)  = –(3+7iF + 8 + iF) 

    = 7 + iF. 

 

   αβ  =  (3+7iF) (8+iF) 

    = 24 + 7 × 8 + 56iF + 3iF 

    = 8 + 5iF. 
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  Thus the rule of sum of the roots is valid in this case also.  

Now we see if the equation in C(Zn)[x] of degree three how to 

tackle it.  Let us consider C(Z7) and suppose α = 3+4iF, β = 2+iF 

and γ = 5+2iF ∈ C(Z7). 

 

 Consider (x–(3+4iF)) × (x–(2+iF))  × (x–5+2iF)) = (x+4+3iF) 

× (x+5+6iF) × (x+2+5iF) 

 

 = (x
2
 + 4x + 3iFx + 5x + 20 + 15iF + 6iFx + 24iF + 18 × 6) ×  

   (x + 2+5iF) 

 

 = (x
2
 + 2x + 2iFx + 4iF + 2) × (x + 2 + 5iF) 

 

 =  x
3
 + 2x

2
 + 2x

2
iF + 4xiF + 2x + 2x

2
 + 4x + 4iFx + 8iF + 4 +  

    5iFx
2
 + 10xiF + 10x × 6 + 20 × 6 + 10iF 

 

 = x
3
 + 4x

2
 + x (3 + 4iF) + 5 + 4iF. 

 

 α + β + γ =  3+4iF + 2 + iF + 5 + 2iF  = 3. 

 

 – (α + β + γ)  = –3 = 4 (mod 7). 

 

 αβ + βγ + γα  

 

= (3+4iF) (2+iF) + (2+iF) (5+2iF) + (3+4iF) (5+2iF) 

 

 = 6 + 8iF + 3iF + 4 × 6 + 10 + 5iF + 4iF + 2 × 6 + 15 + 20iF +  

   6iF + 8 × 6  = 3 + 4iF. 

 

   αβγ   =   (3 + 4iF) (2 + iF) (5 + 2iF) 

        =   (6 + 8iF + 3iF + 4 × 6) (5 + 2iF) 

      =   (2 + 4iF) (5+2iF) 

      =   10 + 20iF + 8 × 6 + 4iF 

              =   3iF + 2. 

 

  – αβγ =  –(3iF + 2)  = 4iF + 5. 

 

 Thus we see if α, β, γ are roots of a cubic equation 
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x

3
 + ax

2
 + cx + d = 0 in C(Zn)[x] then  

a = – ( α + β + γ)   c = αβ + βγ + γα     and d = – αβγ . 

 

However we are not in a position to talk about “conjugates” 

of a root or any other properties enjoyed by polynomials with 

coefficients from C = {a + bi | a, b ∈ R, i
2
 = –1}. 

 

As in case of usual polynomials even in case of polynomials 

in C(Zn)[x] it is not an easy task to solve.  However one of the 

advantages is that there can be only n
2
 roots and all the n

2
 values 

can be substituted in any polynomial to get the roots. 

 

With the advent of superfast computers it is easy to solve 

these equations.  However the authors wish to keep on record 

that interested researchers / computer scientists can give a 

programme for solving equations of polynomials p(x) of nth 

degree in C(Zm)[x].  This will simplify the problem of finding 

roots of the complex modulo integer coefficient polynomials.  

We do not discuss about the case when the roots are not in 

C(Zn). 

 

We can differentiate and integrate these polynomials also.  

Further we cannot define a continuous function or any notion of 

usual intervals but we use only the basic concept of derivative 

of every element in C(Zn) is zero.  With this in mind we can 

differentiate and integrate in a special way all polynomials in 

C(Zn)[x].   

 

We will just illustrate this by some simple examples.  

 

Suppose p(x) = 3x
4
 + (3+5iF)x

2
 + (7+3iF)x + 9 ∈ C(Z10)[x]. 

 

Now we find 

 

dp(x)

dx
 = 4.3x

3
 + 2(8+5iF) x + (7+3iF) 

 

= 2x
3
 + (6x) + 7 + 3iF. 
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 2

2

d p(x)

dx
= 6x

2
 + 6 and so on. 

However while integrating we face with several problems. 

 

(1) If C(Zp) is a field we can integrate all polynomial of all 

degree except of degree p. 

 

(2) Further we assume if a ∈ C(Zp); 
1

a
= a

–1
 only with this in 

mind we can integrate.  However if we integrate in C(Zn) 

where C(Zn) is not a field we encounter several problems 

for take C(Z25). We see 5 ∈ C(Z25), we do not know what 

1/5 means to us.  Also we are yet to study and analyse 

whether the integration is the reverse process of 

differentiation in C(Zn) [x]; n not a prime. 

 

As this study is at a very dormant state we are yet to find 

proper methods of doing these operations.  We will however 

describe these situations by some examples.  

 

Let C(Z7)[x] be a polynomial ring with coefficients from 

C(Z7). 

 

Let (3 + 4iF) x
3
 + 3x

2
 + 5iFx +3 = p(x) be in C(Z7) [x]. 

 

∫ p(x) dx = 
4 23

F F(3 4i )x 5i x3x 3x
C

3 1 2 1 1 1 0 1

+
+ + + +

+ + + +

 

 

= 2(3+ 4iF) + 5.3 x
3
 + 4 × 5iFx

2
 + 3x + C 

 

Now 
d

dx
∫ p(x) dx = 

3
2F

F

4(3 4i )x
3x 5i x 3

4

+
+ + +  

 

= (6+iF)x
4
 + x

3
 + 6iFx

2
 + 3x + C 

 

d

dx
∫ p(x) dx = 4 (6+iF)x

3
 + 3x

2
 + 12iF x + 3 
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= (3+4iF)x

3
 + 3x

2
 + 5iFx + 3. 

 

Simplify using inverse of 4.  Thus we see as long as we use 

the polynomial ring with complex coefficients from C(Zp) 

where C(Zp) is a field all results will hold good for polynomials 

of degree different from p–1. 

 

Consider p(x) = (7+8iF) x
5
 + (4+2iF)x

4
 + (8+5iF)x

3
 + 3iFx

2
  

+ 5x + 8 + 9iF ∈ C(Z11)[x] 

 

We find 
dp(x)

dx
 = 5 (7+8iF)x

4
 + 4(4+2iF)x

3
 + 3(8+5iF)x

2
  

   + 6iFx + 5 

 

= (2+7iF)x
4
 + (5+8iF)x

3
 + (2+4iF)x

2
 + 6iFx + 5. 

 

Now ∫ p(x) dx = 
6 5 4

F F F(7 8i )x (4 2i )x (8 5i )x

6 5 4

+ + +
+ + +  

 

   
3 2

F
F

3i x 5x
(8 9i )x C

3 2
+ + + +  

 

=    
6 5 4

F F F2(7 8i )x 9(4 2i )x 3(8 5i )x

2 6 9 5 4 3

+ + +
+ + +

× × ×

 

 

       
3 2

F
F

4.3i x 6 5x
(8 9i )x C

3 4 2 6

×
+ + + +

× ×

 

  

   = (3+5iF)x
6
 + (3+7iF)x

5
 + (2+4iF)x

4
 + iFx

3
 + 8x

2
 +  

   (8+9iF)x + C ∈ C(Z11) [x]. 

 

 If in C(Zn)[x] where C(Zn) is only a ring we cannot 

integrate.  Consider p(x) = 3x
3
 + 7x

2
 + (4+3iF) + 8 ∈ C(Z12).  

We now try to integrate p(x);  

 

∫ p(x) dx = 
24 3

F(4 3i )x3x 7x
8x C

4 3 2

+
+ + + +  
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Now clearly ∫ p(x) dx has no meaning as 
1 1 1

, ,
4 3 2

 has no 

place in C(Z12); now we cannot write 
1

4
 as an element in Z12 as 

4 is a zero divisor; similarly 3 and 2 are zero divisors, so  

∫ p(x)dx cannot be defined.  This is the justification for we 

cannot find in general integral of a polynomial in C(Zn)[x] if 

C(Zn) is a ring. 

 

However we can find the derivative of p(x),  

 

dp(x)

dx
= 9x

2
 + 14x + (4+3iF) = 9x

2
 + 2x

2
 + (4+3iF). 

 

We can always find the derivative of p(x), however we see 

the important result.  If p(x) ∈ C(Zn)[x] and C(Zn) only a ring 

with p(x) is of degree n then 
dp(x)

dx
 will be of degree less than 

n and we cannot always say that 
dp(x)

dx
 will be of degree n–1.  

Consider  

 

p(x) = 3x
4
 + (6+6iF)x

2
 + 7x + (5+3iF)x

3
 + 8 ∈ C(Z12)[x]. 

 

We find 
dp(x)

dx
 = 3.4x

3
 + 2.(6+6iF)x + 7 + 3(5+3iF)x

2
  

 

= 0 + 0 + (3+9iF)x
2
 + 7 ∈ C(Z12) [x];  

 

however degree of p(x) is 4 and that of p′(x) = 
dp(x)

dx
 is only 

two.  Hence the claim. 

 

Inview of this we have the following theorem. 
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THEOREM 3.12:  Let p(x) be a polynomial of degree n in 

C(Zm)[x]; where C(Zm) is only a ring and m a composite 

number, then the derivative of p(x) that is 
dp( x )

dx
is of degree 

less than n and in general it need not be n–1. 

 

Proof:   We prove this only by a counter example. 

  

Consider p(x) ∈ C(Z24)[x] where  

 

p(x) = (8+6iF)x
6
 + (12+12iF)x

4
 + (8+8iF)x

3
 + (7+3iF)x

2
 + 

(5iF+4)x + 9iF. 

 

 Clearly p(x) is a degree 6.  We find the derivative of p(x). 

dp(x)

dx
= p′(x) = 6(8+6iF)x

5
 + 4(12+12iF)x

3
 + 3(8+8iF)x

2
 + 

2+(7+3iF)x + (5iF+4) 

 

= 0 + 0 + 0 + (14 + 6iF)x + 5iF + 4 

 

= (14+6iF)x + 5iF + 4 ∈ C(Z24)[x]. 

 

 We see degree of 
dp(x)

dx
, that is p′(x), the derivative of p(x) 

is one, however degree of p(x) was six.  Hence the theorem. 

 

 This vital theorem leads to yet another result, which is not 

true in case of polynomials with coefficients from the complex 

modulo integer ring C(Zn). 

 

 Suppose p(x) is a polynomial in C(Zn)[x] of degree n and 

p(x) has n roots of which m roots are repeating then  

 

p′(x) = 
dp(x)

dx
 need not in general have (m–1) repeating roots. 

 

 We first illustrate this by an example. 
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  Suppose p(x) = [x+(3+3iF)]
6
 ∈ C(Z6)[x].  We see p(x) is a 

polynomial of degree 6. 

 Clearly p(x) has six repeating roots given by 3+3iF.  

Consider p′(x) = 
dp(x)

dx
 = 6[x+(3+3iF)]

5
 = 0 

 

 Since 6 is zero mod 6 in C(Z6)[x].  Thus p′(x) does not even 

have single repeating root. 

 

 Now another natural question would be what is the 

expansion of (x+3+3iF)
6
.  First of all it is pertinent to mention 

here binomial expansion of (x+a)
2
 and its higher powers may 

not be valid if the polynomial is in C(Zn)[x], n a composite 

number of n  cannot be defined nCr cannot be defined to this 

effect we find (x+3+3iF)
6
 just by finding the product  

(x+3+3iF) × … × (x+3+3iF) six times. 

 

  We know (x+3+3iF)
6
 ∈ C(Z6)[x] 

  (x+3+3iF) × (x+3+3iF) 

   = x
2
 + 2(3+3iF) x + (3+3iF) (3+3iF) 

   = x
2
 + 0 + 9 + 9iF + 9iF + 9 × 5 

   = x
2
. 

 

x
2
 × (x+3+3iF)  = x

3
 + (3 + 3iF)x

2
 (x

3 
+ 3 + 3iF)x

2
 (x + 3  + 3iF)  

= x
4
 + (3 + 3iF)x

3
 + (3 + 3iF)x

3
 + (3 + 3iF)2x

2
 

    = x
4
 + 0 + (0) 

    = x
4
  so we get 

 

(x + 3 + 3iF)
6
 = x

6
. 

 

 How to solve this? Can be assume an equation with 

repeating root is such that x
n
 – (α + ... + α)x

n–1
 + … +  so on.  

From this example it is very clear that such a theory cannot be 

stated so we can say at least for repeating roots we cannot write 

the polynomial of degree n as x
n
 –(sum of the roots takes one at 

a time)x
n–1

 + (sum of the product of roots taken two at a time) + 

… + (–1)
n
 (product of the n repeating roots).  However it is 

pertinent to note that the power of the linear polynomial in 



Finite Complex Numbers  63 

 

 
C(Zn) [x] is the same as that of n the characteristic of the ring Zn 

then the result is true. 

 We will study the case of repeating roots. 

 

p(x) = (x +2+2iF)
4
 ∈ C(Z4)[x]. 

  

p′(x) = 0 so no root exists for  p′(x). 

 

Now p(x) = (x+2+2iF) × (x+2+2iF) × (x+2+2iF) × (x+2+2iF)  

 

 = [(x+2+2iF) × (x+2+2iF)] × [(x+2+2iF) × (x+2+2iF)] 

 = [x
2
 + x(2+2iF) + x(2+2iF) + (2+2iF)

2
] ×[x

2
 + x (2+2iF)  

   + x (2+2iF) + (2+2iF)
2
] 

 = [x
2
 + 0 + 4 + 4 + 4 × 3] × [x

2
 + 0 + 4 + 4 + 4 × 3] 

 = x
4
 so, 

 

(x+2+2iF)
4
 = x

4
 = p(x). 

 

 So we see these sort of polynomials are not well defined in 

C(Zn)[x]. 

 

 Hence we see we can have C(Zn)[x] to be a polynomial ring 

where Zn is a ring but finding roots or well definedness of them 

or usual expansion of them using binomial theorem cannot hold 

good.  So we restrict ourselves to solving polynomials only if 

C(Zn) is a field or that Zn is a field.  

 

 Consider (x+2+2iF)
3
 ∈ C(Z3)[x];  

(x+2+2iF)
3
  

= (x+2+2iF)
2
 × (x+2+2iF) 

 = [x
2
 + (2+2iF)x + (2+2iF)x + (2+2iF)

2
] [x+2+2iF] 

 = [x
2
 + (1 + iF)x + (4 + 4 × 2 + 8iF)] × [x+2+2iF] 

 = (x
2
 + (1 + iF)x + 2iF) (x + 2 + 2iF) 

 = x
3
 + (1 + iF)x

2
 + 2iFx + (2+2iF)x

2
 + (2+2iF) (1+iF)x  

   + 2iF (2+diF) 

 = x
3
 + (1+iF + (2+2iF)) x

2
 + [2iF + (2+2iF)(1+iF)] x 

 = x
3
 + 2 + iF. 
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  2+2iF is a root repeating 3 times of (x+2+2iF)
3
 = p(x) then 

sum of the roots is 0 and sum of the product of the two roots is 

also zero.  Now product of the roots taken all at a time is iF + 2.  

Thus the rule if α is a 3 repeated root then we get values of 

(x+2+2iF)
3
 = x

3
+2+iF.  It is clear C(Z3)[x] is such that C(Z3) is a 

field.   

 

Consider C(Z5); C(Z5) is not a field.  Take the polynomial 

ring C(Z5)[x] with coefficients from C(Z5).  Take (x+2+2iF)
5
 = 

p(x).  To find the expansion of (x+2+2iF)
5
 and verify in the 

expansion coefficient of x
4
 corresponds to sum of the roots 

taken 4 times, the coefficient of x
3
 is the sum of the product of 

the roots taken two at a time and so on. 

 

 Consider  

 

(x+2+2iF)
5
  = (x+2+2iF)

2
 × (x+2+2iF)

3
  

= (x
2
 + 2(2+2iF)x + (2+2iF)

2
) × (x+2+2iF)

3
  

= (x
2
 + (4+4iF)x + 3iF)

2
 × (x+2+2iF) 

= (x
4
 + (4+4iF)

2
x

2
 + 9 × 4 + 2(4+4iF)x

3
 +  

   2(4+4iF)3iFx + 2.3iFx
2
) × (x+2+2iF) 

= (x
4
 + (16 + 16 × 4 + 32iF)x

2
 + 1 + (3 + 3iF)x

3
  

    + (4iF + 4 × 4)x + iFx
2
) (x+2+2iF) 

      = (x
4
+2iFx

2
 + 1 + (3+3iF)x

3
 + (1+4iF)x + iFx

2
) ×  

   (x+2+2iF) 

= x
5
+ 2iFx

3
 + x + (3+3iF)x

4
 + (1+4iF)x

2
 + iFx

3
 +  

   (2+2iF)x
4
 + (2+2iF)2iFx

2
 + 2+2iF+ (3+3iF)  

   (2+2iF)x
3
 + (1+4iF) (2+2iF)x + iF (2+2iF)x

2
 

   = x
5
 + 0x

4
 + (2iF + iF + 2iF)x

3
 + (1 + 4iF +  

   (4iF+16) + 2iF + 2 × 4)x
2
 + (1+2+2iF + 8iF +  

   8 × 4) x + 2 + 2iF 

= x
5
 + 0x

4
 + 0x

3
 + 0x

2
 + 0x + 2 + 2iF 

= x
5
 + 2 + 2iF. 

 

 Thus we get (x+2+2iF)
5
 is such that if α =  2+2iF then 

coefficient of x
4
 is α + α  + α  + α + α = 0. 

 

 Coefficient of x
3
 is α

2 
+ α

2 
+ α

2 
+ α

2 
+ α

2
=0. 
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 Coefficient of x

2
 is α

3 
+ α

3 
+ α

3 
+ α

3 
+ α

3
=0. 

 Coefficient of x is α
4 

+ α
4 

+ α
4 

+ α
4 

+ α
4
=0 and the constant 

term is – α
5
 = 2+2iF. 

 Inview of this we can have the following theorem.  

 

THEOREM 3.13:  Let C(Zp) be the ring of complex modulo 

integers.  C(Zp) has no nilpotent elements. 

 

Proof:   We know if a + biF ∈ C(Zp) then (a+biF)
p
 = a

p
 + b

p
 (iF)

p
 

and a
p
 ≠ 0 for a ≠ 0 in Zp and b

p
 ≠ 0 for any b ≠ 0 in Zp and (iF)

p
 

≠ 0.  Hence the claim.   

 

Using the above theorem we have the following result. 

 

THEOREM 3.14:  Let Zp be the finite field (p a prime).  C(Zp) be 

the complex modulo integer ring.  Then (x+a+biF)
p
 = x 

p
 + c + 

diF for any (x+a+biF)
p
 in C(Zp)[x]. 

 

 Proof is simple using number theoretic methods and the fact 

Zp is a field. 

 

 Thus we face with simple means of solving these equations.  

Now how to solve equations in the C(Zp)[x]  if C(Zp) is not a 

field. 

 

 Interested reader can work in this direction to get several 

properties which is not a matter of routine but can be done by 

appropriate changes. 

 

 Thus we have to show C(Zp), when Zp is a field has no 

nilpotents but has zero divisors when p = n
2
 + m

2
, m, n ∈ Zp \ 

{0}.  Now solving equations in C(Zp)[x] is not a difficult task as 

we have only a finite number of elements in C(Zp); viz, p
2
 

elements in it. 

 

 However it is an open problem “can p(x) ∈ C(Zp)[x] such 

that p(x) has no root in C(Zp)?  This problem is also little 

difficult at the outset as the number of elements in C(Zp)[x] is 

infinite. 
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 Whenever C(Zp) is a field we can also realize C(Zp)[x] as a 

linear algebra of infinite dimension over C(Zp). 

 Always C(Zp)[x] is a commutative module over C(Zp) even 

if C(Zp) is a ring. 

 

 One of the nice results is always Zp[x] ⊆ C(Zp)[x] but  

ZpiF = {aiF | a ∈ Zp} does not enjoy an algebraic structure except 

it is an abelian group under addition modulo p but is not closed 

under product.  However ZpiF is a vector space over Zp in this 

case Zp ⊆ ZpiF.  We see ZpiF[x] ⊆ C(Zp)[x] is only closed under 

addition.  Further ZpiF is not even a vector space over C(Zp) 

even if C(Zp) is a field.  ZpiF[x] is also a vector space over Zp 

and not over C(Zp), even if C(Zp) is a field.   

 

Thus while integrating or differentiating these polynomials 

in C(Zp)[x] we have problems and the several results true in 

case of usual C[x] are not true in case of C(Zp)[x].  Only with 

these limitations we work with these structures as they are not 

only interesting but gives an alternative way of approaching 

problems as all the problems encountered in general are finite 

and finite dimensional.  This alternate study will certainly lead 

to several applications and appropriate solutions. 

 

 Further these structures are not orderable though finite.  

Now having seen properties about polynomial with complex 

modulo integer coefficients now we proceed onto study 

matrices with these elements as its entries as vector space and a 

few properties enjoyed by them.  

 

 In the earlier part of this chapter we have introduced the 

notion of matrices with entries from C(Zn). 

 

 Now suppose V = {(x1, …, xn) | xi ∈ C(Zp), 1 ≤ i ≤ n} (Zp a 

field) then V is a vector space over Zp of finite dimension.  Also 

V is a linear algebra over Zp.  If C(Zp) itself is a field V is a 

strong complex modulo integer vector space / linear algebra 

over C(Zp).   
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Interested reader can study the dimension, basis etc of these 

structures. 

 

 We can also find / define orthogonal subspaces if the 

pseudo inner product is zero [4, 6].   

 

If C(Zp) is only a ring then we define V to be a 

Smarandache vector space / linear algebra over C(Zp) as C(Zp) 

is a Smarandache ring.  

 

 Suppose  

M = 

1

2

m

y

y

y

 
 
    

�
yi ∈ C(Zp) 1 ≤ i ≤ m}; 

 

M is only a vector space over Zp however M is a strong complex 

modulo integer vector space over C(Zp) if C(Zp) is a field.  If 

C(Zp) is only a ring then M is a Smarandache vector space over 

C(Zp).  

 

 Clearly M is not a linear algebra over Zp or C(Zp) however 

in the next chapter we show how this M is also made into a 

linear algebra over Zp or C(Zp). 

 

 Next if S = {collection of all m × n matrices m ≠ n; with 

entries from C(Zp) | Zp is a field}, then S is a vector space over 

Zp or a strong vector space over C(Zp) if C(Zp)is a field and S is 

a S-vector space if C(Zp) is a ring as C(Zp) is always a S-ring.  

One can study the dimension, basis and other properties of these 

vector spaces. 

 

 However S is only a vector space and not a linear algebra 

over Zp (or C(Zp)).  But by defining a natural product in the next 

chapter we can make S also a linear algebra or a S-linear 

algebra over Zp or C(Zp). Let K = {collection of all n × n 

matrices with entries from C(Zp)}; K is a vector space as well as 

a linear algebra over Zp and over C(Zp) if C(Zp) is a field and 
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 Smarandache vector space / linear algebra over the 

Smarandaceh ring C(Zp).  We have the usual multiplication 

defined on K. 

 

 Now we can for any n × n matrix A with C(Zp) define eigen 

values, eigen vectors and the characteristic equation.  Clearly 

the characteristic equation is of degree n.  A is a matrix of order 

A.  However the solution of the characteristic equation can take 

only p values if K is defined over Zp if A is over C(Zp) as a 

vector space the characteristic equation can take p
2
 values from 

C(Zp). 

 

 Now we will illustrate this situation by some simple 

examples. 

 

 Consider A = 

F F

F

F

2 2i 0 2 2i

0 i 2

0 1 1 i

+ + 
 
 
 + 

 to be a 3 × 3 matrix 

with entries from C(Z3).  To find the eigen values and eigen 

vectors associated with A. 

 

 |A – λ| = | λ – A| = 

F F

F

F

1 i 0 1 i

0 2i 1

0 2 2 2i

λ + + +

λ +

λ + +

 

 

= | λ + 1 + iF|  [(λ +2iF) (λ +2+2iF)+1] 

= (λ +1+iF) (λ
2 
+ 2iFλ + 2λ + 2iFλ +(iF+2)+1) 

= (λ +1+iF) (λ
2
 + λiF +2λ + iF) 

= 0;   λ = 2+2iF  and 

 

λ
2
 + (2+iF) + iF = 0 gives 

λ ≠ 0         λ  ≠ 1 if  λ = 2 

2
2
 + 2(2+iF) + iF = 1+1+iF+iF ≠ 0. 

So  λ ≠ 2 if  λ = iF 

2+iF (2+iF) +iF = 2+2iF + 2 + iF ≠ 0 so  λ ≠ iF. 

If  λ = 2iF 
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(2iF)

2
 + 2iF (2+iF) + iF = 4 × 2 + 4iF + 2 × 2 + iF ≠ 0. 

 

 

 

If   

λ = 1+iF; (1+iF)
2
 + (1+iF) (2+iF) + iF 

   = 1+2iF + 2 + 2 + 2iF + iF + 2 + iF ≠ 0 so  λ  ≠ 1 + iF. 

 

If  λ  = 2+2iF then 

(2+2iF)
2
 + (2+2iF) (2+iF)+ iF 

= 4 + 4 × 2 + 8iF + 4 + 4iF + 2iF +2 × 2 + iF ≠ 0. 

So  λ  ≠ 2+2iF 

 

Suppose  λ = 1+2iF then  (1+2iF)
2
 + (1+2iF) (2+iF) + iF 

= 1+4 × 2 + 4iF + 2+4iF + iF + 2 × 2 + iF ≠ 0. 

So  λ  ≠ 1+2iF . 

Take  λ = 2+iF; 

(2+iF)
2
 + (2+iF)

2
 + iF = 4+2 + 4iF + 4+2 + 4iF + iF = 0. 

 

So 2+iF is a root of the equation and it is a repeated root. 

In this way eigen values are found.  Now we as in case of 

usual vector spaces define and find eigen values and eigen 

vectors.   

 

We can define linear transformation provided they are 

defined over the same Zp or C(Zp). 

 

At times we have special linear transformation if one space 

is defined over Zp and other over C(Zp) [4, 6].  Now having seen 

how vector spaces / linear algebra using complex modulo 

integers function we proceed onto study intervals using them. 

 

Let No(C(Zp)) = {(a + biF, c+diF) | a, b, c, d ∈ Zp} be the 

collection of open intervals, we do not have any ordering in 

these intervals. Clearly Nc(C(Zp)), Noc(C(Zp)) and Nco(C(Zp)) 

can be defined.  Clearly No(C(Zp)) is a commutative  ring with 

zero divisors and units.  However we can replace Zp by any Zn; 

1 < n < ∞ still the results hold good.  We can build polynomials 
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 with coefficients from No(C(Zp)) or Nc(C(Zp)) or Noc(C(Zp)) or 

Nco(C(Zp)). 

 

Now No(C(Zp))[x] is a commutative ring with zero divisors.  

This ring has two ideals J = i

i

i 0

a x
∞

=




∑  ai = ( 1

ia , 0) ∈ No(C(Zp))} 

and I = i

i

i 0

a x
∞

=




∑  ai = (0, 2

ia ) ∈ No(C(Zp))} in No(C(Zp))[x].   

I and J are such that I.J = {0} and I ∩ J = {0}. 

 

Now we can in case of No(C(Zp))[x] solve equations in the 

following way.   

 

If p(x) =
n

i

i

i 0

a x
=

∑ , ai = ( 1

ia , 2

ia ) in No(C(Zp)) then we can 

rewrite p(x) as [p1(x), p2(x)] where p1 (x) = 
n

1 i

i

i 0

a x
=

∑  and p2(x) = 

n
2 i

i

i 0

a x
=

∑ we can solve pi(x) in C(Zp) and we have p
2
 possibilities 

for each i=1,2. 

 

So we get interval solutions for p(x) in No(C(Zp)). 

 

Similarly we can build matrices with entries from No(C(Zp)) 

or Nc(C(Zp)) or Noc(C(Zp)) or Nco(C(Zp)). 

 

Let P = {(a1, …, an) | ai = ( 1

ia , 2

ia ) ∈ No(C(Zp)) with 1

ia  and 
2

ia  ∈ C(Zp); 1 ≤ i ≤ n}, P is a commutative ring with unit and 

zero divisors. 

 

If x = (a1, …, an) 

 

= (( 1

1a , 2

1a ),( 1

2a , 2

2a ), …, ( 1

na , 2

na )) 

= (( 1

1a , 1

2a , …, 1

na ), ( 2

1a , 2

2a , …, 2

na )). 
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Then all working can be done as on intervals with entries 

from Zp or as usual row matrices. 

 

If  

 

P = 

1

2

m

a

a

a

 
 
    

�
ai = ( 1

ia , 2

ia ) in No(C(Zp)), 1 ≤ i ≤ m} 

then P is only an abelian group with respect to addition.  

However product is not defined on P; only natural product is 

defined on these structures in the following chapter so that P 

becomes a commutative ring.  

 

M = {all m × n matrices with entries from No(C(Zp))}  

(m ≠ n), M is only an additive abelian group with no product 

defined on it. Natural product on M is defined in chapter four.  

Suppose  

P = {all n × n square matrices with entries from No(C(Zp))}, 

P is a non commutative ring with zero divisors. 

 

Now we can define using these structures vector spaces / 

linear algebras. 

 

Let M = {(a1, a2, …, an) | ai =  ( 1

ia , 2

ia ) ∈ No(C(Zp)), Zp a 

field, 1 ≤ i ≤ n}.  M is a linear algebra over the field Zp.  If C(Zp) 

is a field; M is a linear algebra over C(Zp) also.  We see M is a 

Smarandache linear algebra over the S-ring No(C(Zp)). 

 

Let  

P= 

1

2

m

a

a

a

 
 
    

�
 ai = ( 1

ia , 2

ia ) in No(C(Zp)), 1 ≤ i ≤ m}. 
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 P is only a vector space over the field Zp or a S-vector space 

over No(C(Zp)).  

 

Consider  

 

P = {all m × n matrices with entries from Noc(C(Zp))}  

(m ≠ n); P is only a vector space (not a linear algebra) over Zp or 

over C(Zp) if C(Zp) is a field or a S-vector space over 

Noc(C(Zp)). 

 

Finally  

S = {all m × m matrices with entries from Noc(C(Zp))}; S is 

a linear algebra over Zp or over C(Zp) if C(Zp) is a field.  

However S is a S-linear algebra over the S-ring Noc(C(Zp)). 

 

We can find subspaces, dimension and other properties of 

these structures, but they are direct and hence left as an exercise 

to the reader.   

 

Now we just show how eigen values and eigen vectors of a 

square matrix which entries from  

Nc(C(Zn)) = {[a+biF, c+diF] | a, b, c, d ∈ Z3, 
2

Fi  = 2}. 

 

Consider the matrix A with its entries from Nc(C(Z3)) . 

 

A = 
F F F

F F

[2 i ,2i ] [2,i ]

[0,2 i ] [1 i ,0]

+ 
 

+ + 
 

 

= 
F F F

F F

2 i 2 2i i
,

0 1 i i 0

 +   
     +    

. 

 

[|λ – A|]  = 
F F F

F F

1 2i 1 i 2i
,

0 2 2i 2i

 λ + + λ +

 
λ + + λ 

 

 

= [(λ + 1 + 2iF) (λ + 2 + 2iF), λ (λ + iF) – 4 2

Fi ] 
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= [(λ

2
 + λ +2iF λ +2 λ +2+4iF + 2iF λ + 2iF + 4 × 2,  

 

   λ + λiF + 1] = [0,0]. 

 

So λ
2
 + iFλ + 1 = 0 and λ

2
 + λiF + 1 = 0 

 

Now  λ ≠ 0, λ ≠ 1, λ ≠ iF, λ ≠ 2  

λ ≠ 2iF, λ  = 1+iF, λ  ≠ 2iF + 1, 

λ = iF + 2; so λ  =1 + iF and λ = iF + 2  

 

are the two roots of λ
2
 + iF λ + 1 = 0.   

 

Sum of the roots = (1 + iF) + (iF + 2) = 2iF so sum of the roots is 

iF and product of the roots 

 

(1 + iF) (2 + iF) = 2 + 2iF + iF + 2 = 1. 

 

Thus the characteristic values associated with the matrix A 

is   [1+iF, 2+iF] and [2+iF, 1+iF].   

 

One can work with interval matrices for its eigen values.  

Now we have seen how to solve the polynomial equations with 

its coefficients from Nc(C(Zp)).    

 

Now we have complex neutrosophic numbers 〈C ∪ I〉, we 

can also define complex modulo integer neutrosophic numbers. 

 

Thus 〈C(Zp) ∪ I〉 = C(〈Zp ∪ I〉) 
= {a + biF + cI + dIiF | a, b, c, d ∈ Zp. 

2

Fi  = p – 1 and I
2
 = I}.  

 

We have this structure C(〈Zp ∪ I〉) to be a commutative ring 

with unit. 

 

C(〈Z3 ∪ I〉) = {0, I, iF, 2iF 2I, 1, 2, 1 + I, 2 + I, 1 + 2I, 2 + 2I, 

iF + 1, 2 + iF, 2 + 2iF, 2iF + 1, I + iF, 2I + iF, 2iF + 2I, I + 2iF, 1 + I 

+ iF, 1 + I + 2iF, …, 2 + 2I + 2iF + 2iF I}. 

 



74 Exploring the Extension of Natural … 

 

 

 Likewise we have C(〈Z4 ∪ I〉), C(〈Z5 ∪ I〉), C(〈Z6 ∪ I〉) and 

so on. 

 

Study of these structures are interesting and innovative we 

can use these structures to build polynomials with coefficients 

from C(〈Zn ∪ I〉) and matrices with entries from C(〈Zn ∪ I〉). 
 

We see C(〈Zn ∪ I〉)[x] = i

i

i 0

a x
∞

=




∑  ai = 1

ia  + 2

ia I + 3

ia iF + 

4

ia iFI  where j

ia  ∈ Zn; 1 ≤ j ≤ 4}.  Clearly C(〈Zn ∪ I〉) [x] is a 

ring which is commutative and contains the multiplicative 

identity 1.  

 

The interesting problems associated with this ring are 

 

(1) if n = p, a prime can C(〈Zp ∪ I〉)[x] be an integral  

domain? 

 

Will C(〈Zp ∪ I〉) be a field if p is a prime;  justify? 

 

Study C(〈Zn ∪ I〉) for varying n.  What is the structure 

enjoyed by C(〈Zp ∪ I〉) [x]? 

 

Study in these directions are interesting [4, 6]. 

 

Now finding roots of these polynomials with coefficients 

from C(〈Zp ∪ I〉) can be programmed for the number of 

elements in C(〈Zp ∪ I〉) is finite. 

 

Is o(C(〈Zp ∪ I〉) = p
4
? 

 

Now we can define matrices with entries from C(〈Zn ∪ I〉). 
 

M = {(a1, a2, …, an) | ai = 1

ia  + 2

ia  I + 3

ia  iF + 4

ia  iFI  where 
t

ia  ∈ Zn; 1 ≤ t ≤ 4} is a ring with zero divisors and units. 
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For if n = 2 and x = (2+3I + 4iF + iFI, 4 + 2I + 2iF + 3iFI) and 

y = (3 + 2I + iF + 4iFI, 1+3I + 2iF + 4iFI) where entries are from 

C(〈Z5 ∪ I〉).   
 

We find x + y = (0 + 0 + 0 + 0, 0 + 0 + 4iF, 2iFI) 

 

   = (0, 4iF + 2iFI) and  

 

x × y =  ((2+3I + 4iF + iFI) (3 + 2I + iF + 4iFI), (4 + 2I + 2iF   

+ 3iFI) (1 + 3I + 2iF + 4iFI))  

 

=  ((6 + 4I + 2iF + 8iFI + 9I + 6I + 3IiF + 12iFI + 12iF   

+ 8iFI + 4 × 4 +16I × 4 + 3iFI + 2IiF + 4I + 16I), (4   

+ 12I + 8iF + 16iFI + 2I + 6I + 4iFI + 8iFI + 2iF + 6iFI  

+ 4 × 4 + 4 × 8I + 3iFI + 9iFI + 6 × 4I + 12 × 4I) 

 

=  (2 + 3I + 4iF + iFI, 0 + 4I + 0 + 2iFI). 

 

Thus we see M is a commutative ring.  Clearly M has zero 

divisors and units. 

 

We can define V = {(a1, a2, …, an) | ai ∈ C(〈Zm ∪ I〉) where 

ai = 1

ia  + 2

ia iF + 3

ia I + 4

ia iFI ; 
t

ia  ∈ Zm; 1 ≤ t ≤ 4} to be a vector 

space / linear algebra over Zm (or C(Zm)) if Zm (or C(Zm)) is a 

field.  However if Zm is not a field V will be a S-vector space or 

S-linear algebra over the S-ring C(〈Zm ∪ I〉).  Study in the 

direction can be carried out by any interested reader.  

 

Now let  

 

P = 

1

2

t

a

a

a

 
 
    

�
 ai = i

1a  + i

2a I + i

3a iF + i

4a  iFI; 

i

ja  ∈ Zp; 1 ≤ j ≤ 4} 
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 be a collection of column vectors. We say P is a vector space 

over Zp or C(Zp) if Zp or C(Zp) is a field otherwise only a 

Smarandache vector space over the S-ring C(〈Zp ∪ I〉). 
 

We perform the operation of addition as follows: 

 

Suppose x = 

F F

F F

F F

F F

3 2i 7i I 2I

4 i I 5Ii

0 7i 2I 3i I

9 3i 2I 4i I

+ + + 
 

+ + + 
 + + +

 
+ + + 

 

 

and y = 

F F

F F

F

F

10 5i 2i I 7I

3 8i 10I 10i I

4 0 2i I 4I

3 i 0 2I

+ + + 
 

+ + + 
 + + +

 
+ + + 

 

 

be two column vectors with entries from C(〈Z11 ∪ I〉). 
 

We find x + y = 

F F

F F

F F

F F

2 7i 9i I 9I

7 9i 10I 4i I

4 7i 6I 5i I

1 4i 4I 4i I

+ + + 
 

+ + + 
 + + +

 
+ + + 

, 

 

x + y is again a column vectors with entries from C(〈Z11 ∪ I〉).  
However we are not in a position to define usual product on 

these column vectors. 

 Thus the collection of all column vectors of order t × 1 is a 

vector space over C(Zp) or Zp (C(Zp) if C(Zp) is a field) and the 

entries are from C(〈Zp ∪ I〉).  Thus this cannot be a linear 

algebra over the usual matrix product, however under natural 

product these column vectors are a linear algebra.   

 Now we proceed onto define m × n matrices m ≠ n with 

entries from C(〈Zp ∪ I〉).  Zp is a field or a ring when we assume 

it as a ring it should be a Smarandache ring so that we can 

define Smarandache vector space over the S-ring.  We just show 
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how the sum is done; the sum is got as that of the usual matrices 

adding componentwise.  

 Finally we define the set of square matrices with entries 

from C(〈Zn ∪ I〉).   
 

Let P = {all n × n matrices with entries from C(〈Zp ∪ I〉) | p 

is a prime}.  P is a non commutative ring with unit P contains 

zero divisors.  Now P has ideals and subrings which are not 

ideals.  Suppose Zp is a field and C(Zp) is a field, then P is a 

linear algebra over Zp as well as C(Zp).  However P is only a 

Smarandache linear algebra over C(〈Zp ∪ I〉).   
We now as in case of usual vector spaces / linear algebras 

find basis, subspaces, linear transformation and other properties.   

Now we just show how we find the usual product of two 

matrices in M. 

 Consider P = 
F F

F F

2 3i 4I 2i I

7 4i 2I 7i I

+ + +


+ + +
 

F F

F

0 3i 8I 3i I

1 0 5I 10i I

+ + + 


+ + + 
 

and   Q = 
F F F F

F F F F

1 2i 3I 4Ii 5 6i 7I 8i I

3 I i 4i I 6 2i I 3i I

+ + + + + + 
 

+ + + + + + 
 any 

2 × 2 matrices with entries from C(〈Z13 ∪ I〉).  PQ =    

 

F F F F

F F F F

F F F F

F F F

(2 3i 4I 2i I)(1 2i 3I 4i I)

(3i 8I 3i I)(3 I i 4i I)

(7 4i 2I 7i I)(1 2i 3I 4Ii )

(1 5I 10i I)(3 I i 4i I)

+ + + + + +

+ + + + + +



+ + + + + +
 + + + + +

 

F F F F

F F F F

F F F F

F F F

(2 3i 4I 2i I)(5 6i 7I 8i I)

(3i 8I 3i I) (6 2i I 3i I)

(7 4i 2I 7i I) (5 6i 7I 8i I)

(1 5I 10i ) (6 2i I 3i )

+ + + + + + 


+ + + × + + + 



+ + + × + + + 
+ + + × + + + 

 

 

 It can be simplified and the resultant is again a 2 × 2 matrix.  
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  Also given any n × n matrix with entries from C(〈Zn ∪ I〉) 
we can find the eigen values, eigen vectors and the 

characteristic polynomials, we just indicate it for a 2 × 2 matrix. 

 

Let A = 
F F F

F F

2i 3I 2 3I 4i 3 4i I

0 2i I 3 i

+ + + + + 
 

+ + 
 

 

be a 2 × 2 matrix with entries from C(〈Z5 ∪ I〉). 
 

| λ – A| = 
F F F

F F

3 2I 3i 2I i 2 i I

0 3i I 2 4i

λ + + + + + + 
 

λ + + + 
 

 

 = (λ +3+2I+3iF) (λ +3iFI+2+4iF) 

 = λ
2
 + λ (3+2I+3iF + 3iFI + 2+4iF) + (3+2I + 3iF) ×  

   (3iFI + 2+4iF) 

 = λ
2
 + λ (2I+2iF+3iFI)+ (9iFI + 6iFI + 9 × 4 × I + 6 + 4I + 6iF  

   + 12iF + 8iFI + 12 × 4) 

 = λ
2
 + λ (2I + 2iF + 3iFI) + (3iFI + 4 + 3iF). 

 

 The roots are λ =  2+3I + 2iF and λ =  2iFI + 3 + iF.  Thus we 

can find eigen values in case of square matrices with entries 

from C(〈Z5 ∪ I〉). On similar lines one can work with these 

structures.  

 

Now we proceed onto define natural class of intervals using 

C(〈Zn ∪ I〉) and build algebraic structures using them. 

  

 Let NcC(〈ZN ∪ I〉) = {[a, b] | a, b ∈ C(〈ZN ∪ I〉) where a = a1 

+ a2I + a3iF + a4iFI and b = b1 + b2I + b3iF + b4iFI with ai, bi ∈ ZN, 

1 ≤ i ≤ 4 and 2

Fi  = N–1 where I
2
 = I}. 

 Clearly Nc(C(〈ZN ∪ I〉)) is a commutative ring with zero 

divisors and units. 

 

 We just show how sum and product are formed.   

 

If x = (a + biF + cI + diFI, x+yiF + zI + tiFI) 
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 and y = (m+niF + pI + qiFI, e+fiF + gI + riFI) are in  

 

 

 

No(〈ZN ∪ I〉) with a, b, c, d, …, r ∈ ZN, then  

 

x + y =  (a + m + (b + n) iF + (c + p)I + (d + q) iFI, x + e + (y + f) 

iF + (z + g)I + (t + r) iFI) ∈ No(〈ZN ∪ I〉). 
 

 Now we find product  

 

x × y = ((a + biF + cI + diFI) × (m + niF + pI + qiFI),  

(x + yiF + zI + tiFI) × (e + fiF + gI + riFI)) 

 

 =  ((ma + mbiF + mcI + mdiFI + naiF + nb × (N–1) + ncIiF  

+ ndI (N–1) + paI + pbIiF + pcI + pdiFI + aqiFI  

+ bq(N–1)I + cqiFI + qd(N–1)I) (mod (N), (xe + yeiF  

+ ezI + etiFI + fxiF + fy (N–1) + zfiFI + tfI (N–1) + gxI  

+ gyiFI + gzI + gtIiF + xriFI + ry (N–1)I + rziFI  

+ tr(N–1)I) (mod N) 

 

 =  (ma + nb (N–1) + (mc + nd (N–1) + pa + pc + bq (N –1)  

+ qd (N–1)I + (mb+na) iF + md + nc + pb + pd + aq  

+ cq) iF [mod N], (xe + fy (N – 1) + (eZ + tf (N – 1)  

+ gx + gz + ry (N–1) + tr (N – 1)]I + (ye + fx)iF + (et  

+ zf + gy + gt + xr + rz) iFI] (mod N)] 

 

 =  ((ma + nb (N–1) + mc + pa + pc + (nd + bq + qd)  

(N–1)] I + (mb + na) iF + md + nc + pb + pd + aq + cq)  

(mod N), ((xe + fy (N–1) + (ez + gx + gz + (tf + ry + tr) 

(N–1))I + (ye + fx) iF + (et + zf + gy + gt + xr + rz) iFI 

(mod N)). 

 

 Suppose we take J = {(a, 0) | a = a1 + a2iF + a3I + a4IiF where 

ai ∈ ZN; 2

Fi  = N–1 and I
2
 = I} ⊆ No(C(〈Zn ∪ I〉)). 

 Consider K = {(0, a) | a = a1 + a2iF + a3I + a4iFI with ai ∈ ZN; 

1 ≤ i ≤ 4; I
2
 = I and 2

Fi  = N–1} ⊆ No((〈Zn ∪ I〉)).   
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 We see K ∩ J = (0) also KJ = (0); so the two ideals are 

orthogonal.   

 

On similar lines we can work with No(C〈ZN ∪ I〉) or 

Noc(C〈Zn ∪ I〉) or Nco(C〈Zn ∪ I〉).   
 

Now we can also view these No(C〈ZN ∪ I〉) etc as vector 

space / linear algebra over Zn or C(Zn) is a field otherwise they 

will be Smarandache vector spaces / linear algebra if Zn or 

C(Zn) or C(〈Zn ∪ I〉)) is a S-ring. 

 

 Now we can build polynomial with coefficients from 

No(C(〈Zn ∪ I〉)).  Let V = i

i

i 0

a x
∞

=




∑  ai = ( 1

ia , 2

ia )  ∈ No(C(〈Zn ∪ 

I〉)) that is 1

ia  = 1

1a + 1

2a iF + 1

3a I + 1

4a IiF and 2

ia  = 2

1a  + 2

2a iF + 
2

3a I + 2

4a IiF; 
t

ja  ∈ Zn; 1 ≤ t ≤ 2 and 1 ≤ j ≤ 4};  

 

V is a commutative ring with ideals and subrings.  Any 

polynomial of finite degree if it has a root will lie in No(C(〈Zn ∪ 

I〉)).  Now likewise  

 

P = {all m × m matrices with entries from No(C(〈Zn ∪ I〉))}, 

P is a non commutative ring with zero divisors.  P has both 

ideals and subrings.   

 

Finding eigen values related to a m × m matrix with entries 

from No(C(〈Zn ∪ I〉)) is a matter of routine and is left as an 

exercise to the reader. Study in this direction will lead to several 

applications and once the problem of polynomial with 

coefficients from C(〈Zn ∪ I〉) has its roots in C(〈Zn ∪ I〉) is 

established we have several nice applications as finding roots 

for any finite degree polynomial can be programmed as the 

number of elements in C(〈Zn ∪ I〉) is finite.  However we have 

not discussed with p(x) ∈ V such that p(x) is an irreducible 

polynomial.  

 



 
 
 
 
 
 
Chapter Four 
 
 

 
 
NATURAL PRODUCT ON MATRICES 
 
 
 

 

In this chapter we just define natural product on matrices [7].  In 

a compilation of the history of matrix theory, [1] provides the 

following brief and interesting history, “The history of matrices 

goes back to ancient times.  The term matrix was not applied to 

the concept until 1850. The origin of mathematical matrices lie 

with the study of simultaneous linear equations.  An important 

Chinese text from between 300 BC and 200 AD.  Nine chapters 

of the mathematical art (Chiu Chang Suan Shu) gives the first 

known example of the use of matrix methods to solve 

simultaneous equations.  In the treatise’s of seventh chapter 

“Too much and not enough” the concept of a determinant first 

appears, nearly too millennia before its supposed invention by 

the Japanese mathematician Seki Kowa  in 1683 or his German 

contemporary Gottfried Leibnitz.  More use of matrix-like 

arguments of numbers appear in chapter eight, method of 

rectangular arrays in which a method is given for solving 

simultaneous equations using a counting board that is 

mathematically identified to the modern matrix method of 

solution outlined by Carl Friedrich Gauss (1777 - 1855), known 

as Gaussian elimination.” 
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 “Since their first appearance in ancient China, matrices have 

remained important mathematical tools.  Today they are used 

not simply solving systems of simultaneous linear equations, 

but also for describing quantum mechanics of atomic structure, 

designing computer game graphics, analyzing relationships and 

even plotting complicated dance steps. (1906 - 1995) Olga 

Taussky Todd a female mathematician was the torch bearer for 

matrix theory who began to use matrices to analyse vibrations 

on airplanes during world war II.” 

 

 Thus matrix theory has been very vital from the day of 

world war.  We have made three types of exploration in matrix 

theory. 

 

1. Define the notion of natural product on matrices. 

2. Construct matrix using the subsets of a set X; that is the 

power set P(X) of X using ‘∪’ and ‘∩’ operations on 

matrices ‘∪’ akin to ‘+’ and ‘∩’ just like natural product ×n. 

3. Using rectangular /square array of linguistic terms as 

matrices.  This structure can be used in linguistic modeling 

leading to fuzzy linguistic graphs, fuzzy linguistic matrices 

and fuzzy linguistic models. 

 

Now in the first place the authors give justification for 

defining the natural product on matrices. 

 

Suppose we have two row matrices of same order say;   

X = (a1, a2, …, an) and Y = (b1, b2, …, bn) then we can find 

X × Y = (a1, a2, …, an) × (b1, b2, …, bn) = (a1b1, a2b2, …, anbn).  

If we transpose X we get X
t
 and if we transpose Y we get Y

t
 

however X
t
 × Y

t
 is not defined.  Also if we can multiply two 

row matrices of same order then why cannot we multiply two 

column matrices of same order, keeping this in mind and (XY)
t
 

= Y
t
 X

t
 =  X

t
 Y

t
 we multiply two column matrices and call / 

define that product as natural product and denote it by ×n.   

 

We just illustrate this by a simple example.   
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Let X = 

5

3

2

1

0

 
 
 
 −

 
 
  

 and Y = 

1

2

0

5

1

 
 
 
 
 
 
 − 

 be two  5 × 1 column matrices. 

 

 

X ×n Y = 

5

3

2

1

0

 
 
 
 −

 
 
  

 ×n 

1

2

0

5

1

 
 
 
 
 
 
 − 

 = 

5 1

3 2

2 0

1 5

0 1

× 
 

× 
 − ×

 
× 

 × − 

 = 

5

6

0

5

0

 
 
 
 
 
 
  

. 

 

It is pertinent to mention that we always find the sum of two 

column matrices of same order, when that is allowed  what 

prevents us to define product or replace ‘+’  sum of two column 

vectors by ‘×n’ in the column vectors? 

 

Also if X and Y are two row vectors matrices and X
t
 Y

t
 is a 

column vector which is the natural product of two column 

vectors which are transposes of X and Y respectively. 

 

Thus this natural product ×n on column vectors enables us to 

define the following algebraic structures. 

 

(1) If S = {Collection of all n × 1 column vectors with entries 

from R or C or Q or Z}, then S is a group under addition.  

Infact (S, +) is an abelian group. 

 

(2) By defining the natural product ×n on S; (S, ×n) is a monoid  

 

      I  = 

n 1

1

1

1
×

 
 
 
 
 
 

�
 acts as the multiplicative identity. 
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(S, ×n) has zero divisors and units only if S takes its entries 

from Q or C or R.  Infact (S, ×n) is a commutative monoid. 

 

(3) Consider (S, +, ×n); S is a commutative ring with unit and 

zero divisors.  

 

Consider x = 

3

0

1

2

5

0

 
 
 
 
 
 
 
 
  

 and y =

0

3

0

0

0

7

 
 
 
 
 
 
 
 
  

 in S. 

 

Clearly x ×n y = 

0

0

0

0

0

0

 
 
 
 
 
 
 
 
  

. 

 

 Clearly x
–1

 and y
–1

 does not exist.  

 

If x = 

7

3

5/ 2

1/ 5

2

 
 
 
 
 
− 
  

 in S and take its entries from Q then 

x
–1

 = 

1/ 7

1/ 3

2 / 5

5

1/ 2

 
 
 
 
 

− 
  

; 
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clearly xx
–1

 = x
–1

x = 

1

1

1

1

1

 
 
 
 
 
 
  

. 

 

(4) {S, min} is an idempotent semigroup. 

 

 If x = 

8

0

5

1

2

3

 
 
 
 
 
− 
 
 
  

 and y = 

7

1

2

0

1

4

 
 
 
 
 
 
 
 
  

 are in S, then 

 

 min {x, y} = 

min{8,7}

min{0,1}

min{5,2}

min{ 1,0}

min{2,1}

min{3,4}

 
 
 
 
 

− 
 
 
  

 = 

7

0

2

1

1

3

 
 
 
 
 
− 
 
 
  

. 

 

(5) {S, max} operation is an idempotent semigroup;  

 

max {x, y} = 

8

1

5

0

2

4

 
 
 
 
 
 
 
 
  

. 
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(6) {S, +, ×n}, the commutative ring, has both ideals and 

subrings which are not ideals. 

 

(7) {S, +} is a linear algebra over Q, if S takes its entries from 

Q or R. 

 

(8) If P = {all n × 1 column matrices with entries from Z
+
 ∪ 

{0} or Q
+
 ∪ {0} or R

+
 ∪ {0}}, then P is a semigroup under 

‘+’. 

 

(9) P is a semigroup under ×n. 

 

(10) {P, +, ×n} is a semiring, P is infact a strict semiring but P 

is not a semifield. 

 

(11) If we take K = {all n × 1 column matrices with entries 

from Z
+ 

or Q
+
 or R

+
} ∪ 

n 1

0

0

0
×

 
 
 
 
 
 

�
,  then K is a semifield.  

 

(12) P mentioned in (8) is a semivector space over Z
+
 ∪ {0} or 

Q
+
 ∪ {0} or R

+
 ∪ {0} depending on the fact; from which 

P takes its entries.  Infact P is a semilinear algebra over 

the appropriate semifield. 

 

(13) P is also a semilinear algebra over the semifield K defined 

in (11) 

 

 Now thus we see giving a natural extension of product 

‘×n’  to column matrices one can define several nice 

algebraic structures on them. 

 

 We will be calling these product which exists / defined on 

matrices as usual product and the product ×n defined on 

matrices will be known as the natural product.  It is pertinent to 
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 record that usual products cannot be defined on column 

matrices. 

 

Now we proceed onto work with the natural product ×n on 

rectangular matrices. 

 

Let  

 

P = {all m × n matrices with entries from C or Z or Q or R} 

m ≠ n.  We know we can define only addition on P.  The usual 

product on matrices cannot be defined for we do not have the 

compatibility. 

 

However we can define the natural product.   

 

When we have a row vector we see the natural product and 

the usual product coincide so we extend the natural product on P 

with m = 4 and n = 6. 

 

We will illustrate it by an example. 

 

Let x = 

3 0 1 2 0 1

1 1 0 1 5 2

0 7 2 5 0 1

8 0 1 2 1 3

 
 
 
 
 
 

 and 

 

y = 

7 2 0 1 0 5

4 1 1 0 2 3

1 2 3 4 5 6

7 8 0 1 0 2

 
 

− 
 
 
− − − 

 

 

be any two 4 × 6 matrices.  Certainly we cannot define the usual 

product ×.  Now we define the natural product ×n.   
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x ×n y = 

3 0 1 2 0 1

1 1 0 1 5 2

0 7 2 5 0 1

8 0 1 2 1 3

 
 
 
 
 
 

 ×n 

7 2 0 1 0 5

4 1 1 0 2 3

1 2 3 4 5 6

7 8 0 1 0 2

 
 

− 
 
 
− − − 

  

 

= 

21 0 0 2 0 5

4 1 0 0 10 6

0 14 6 20 0 6

56 0 0 2 0 6

 
 

− 
 
 
− − 

 ∈ P. 

 

This is the way the natural product is defined.  Consider  

 

x + y=

3 0 1 2 0 1

1 1 0 1 5 2

0 7 2 5 0 1

8 0 1 2 1 3

 
 
 
 
 
 

+ 

7 2 0 1 0 5

4 1 1 0 2 3

1 2 3 4 5 6

7 8 0 1 0 2

 
 

− 
 
 
− − − 

 

 

 

= 

10 2 1 3 0 6

5 0 1 1 7 5

1 9 5 9 5 7

1 8 1 3 0 1

 
 
 
 
 

− 

 ∈ P.   

 

We see if + is replaced by ×n the product we get is x ×n y.  

 

It is important to note that when + and × are related on the 

reals on row vectors we can give a natural extension of product 

on a rectangular array of numbers of same order. 

 

Further we see the unit in case of a m × n matrix is a m × n 

rectangular array of ones.   
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That is 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

 
 
 
 
 
 

acts as the unit under natural  

 

product ×n on 4 × 6 matrices with entries from Q or Z or R or C.  

 

 

Thus if x = 

3 2 1 0 1 1

2 1 0 1 0 5

4 3 2 1 6 1

7 0 8 0 9 0

 
 
 
 
 
 

 and 

 

    I = 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

 
 
 
 
 
 

 then x ×n I 

 

     =  I ×n x = 

3 2 1 0 1 1

2 1 0 1 0 5

4 3 2 1 6 1

7 0 8 0 9 0

 
 
 
 
 
 

 = x. 

 

Rectangular array of all ones acts as the multiplicative 

identity. 

 

Now we give the algebraic structure enjoyed by  

P = {all m × n matrices with entries from Q or Z or R or C}; 

m ≠ n. 

 

(1) P is an abelian group under addition. 

 

(2) P under ×n; the natural product is a semigroup with unit or a 

monoid.  
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 (P, ×n) is a commutative semigroup with zero divisors.  

Further this semigroup in general has subsemigroups and 

ideals. 

 

(3) (P, +, ×n) is a commutative ring with unit and has zero 

divisors.  Elements in P has inverse only if the entries of P 

are from Q or R or C. 

 

 P has ideals and subrings which are not ideals.  P is a S-ring 

if P takes its entries from Q or R or C.  

 

(4) We know P is a vector space over Q (or R or C) if it takes 

its entries from Q (or R or C). 

 

 However P is not a linear algebra under usual product. P can 

be given the linear algebra status by defining natural 

product ×n on P. 

 

(5) If S = {all m × n matrices m ≠ n  with entries from Z
+
 ∪ {0} 

or Q
+
 ∪ {0} or R

+
 ∪ {0}}, then S is a semigroup under 

usual addition. 

 

(6) (S, ×n) is a semigroup under the natural product ×n. 

 

(7) (S, +, ×n) is a semiring. 

 

(8) (S, +, ×n) is not a semifield however (S, +, ×n) is a strict 

semiring with unit under ×n. 

 

(9) Suppose we define T = {all m × n (m ≠ n) matrices with 

entries from Z
+
  or Q

+
 or R

+
} ∪ {(0)m×n} then (T, +, ×n) is a 

semifield.  

 

(10) S in (5) is a semivector space or semilinear algebra over the 

semifield T. 
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  Several other interesting properties can be derived and (S, 

×n) is a commutative semigroup having ideals and 

subsemigroups.  

 

 All properties associated with semivector spaces / 

semilinear algebras can be studied in the case of these 

structures also. 

 

 Now without the notion of natural product ×n we will not be 

in any position to study these algebraic structure. 

 

 Further we can use on these collection S or P ‘min’ or ‘max’ 

operations and they under ‘min’ (or max) operation are 

idempotent semigroups of infinite order.  Also usual 

operations can be done on these matrices:  

 

 This sort of using min or max operation of rectangular 

matrices (under usual product) can be used in mathematical 

models when the entries in specific are taken from the unit 

interval [0, 1]. 

 

 Thus solving or working with natural product will become 

popular in due course of time, that is once the working 

becomes common among researchers. 

 

 Next we proceed onto define natural product on square 

matrices.  

 

 Let  

 V = {all n × n matrices with entries from Z or Q or C or R}.  

V is a non commutative ring under usual product of 

matrices.  But (V, +, ×n) is a commutative ring under natural 

product.   

 

 I = 

1 1 ... 1

1 1 ... 1

1 1 ... 1

 
 
 
 
 
 

� � �
 acts as the identity for natural product ×n.   
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 However In×n = 

1 0 ... 0

0 1 ... 0

0 0 ... 1

 
 
 
 
 
 

� � �
 is a zero divisor in V under 

the natural product ×n. 

 

The following are the algebraic structures enjoyed by V. 

 

(i) (V, +) is an abelian group under addition. 

 

(ii) (V, +) is a vector space / linear algebra over Q or R or 

C if V has entries in Q or R or C respectively.  

 

(iii) (V, ×) is a non commutative monoid with zero 

divisors and ideals. 

 

(iv) (V, ×n) is a commutative monoid with zero divisors 

ideals and subsemigroups. 

 

(v) (V, +, ×) is a non commutative ring with unit and zero 

divisors. 

 

(vi) (V, +, ×n) is a commutative ring with unit, zero 

divisors ideals and subrings. 

 

(vii) (V, ×n) is also a linear algebra over the field Q or R or  

C if the entries of V are from Q or R or C 

respectively. 

 

(viii) If S = {all n × n matrices with entries from R
+
 ∪ {0} 

or Q
+
 ∪ {0} or Z

+
 ∪ {0}} then V is a semiring under 

×n and not a semifield. 

 

(ix) S is a non commutative semiring under the natural 

product and is not a semifield. 
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 (x) If P = {all n × n matrices with entries from Z
+
 or R

+
 or 

Q
+
} ∪ {(0)} then P is a semifield under natural 

product. 

 

(xi) S is a semilinear algebra / semivector space over the 

semifield Z
+
 ∪ {0} (or  Q

+
 ∪ {0} or R

+
 ∪ {0}). 

 

(xii) S is infact a semilinear algebra / semivector space 

over the semifield P mentioned in (x). 

 

Several properties enjoyed by these structures can be 

derived by any interested reader.  Thus using natural product on 

matrices enables the natural extension of product defined on 

row matrices.  However the usual product can be realized as a 

special product that can be used to determine operations on 

them and finding product of two order of matrices of different 

orders. 

 

Now having seen the notion of natural product we just make 

a mention in case of fuzzy entries the natural product ×n on 

them is compatible. Further we can say that if A is a matrix with 

entries from [0, 1] and no entry in A is 1 then we can say  

A ×n A ×n A … ×n A say A
m
 (m very large) will tend to the 

zero matrix of same order as that of A. 

 

So this property of fuzzy matrices may be helpful to us if 

we are interested in finding approximately a matrix tending to a 

zero matrix.  However if we replace ×n by min (or max) A will 

continue only to be A that is min {A, A} = A and max {A, A} = 

A. 

 

We will illustrate the natural product ×n on a fuzzy matrix. 

 

Let A = 

0.003 0.02 0.0001

0.001 0.001 0.004

0.012 0.0015 0.01

 
 
 
  

 be a 3 × 3 fuzzy matrix. 
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A ×n A =  

0.000009 0.0004 0.00000001

0.000001 0.000001 0.000016

0.000144 0.00000225 0.0001

 
 
 
  

 

 

A ×n A ×n A ×n A = 

  

11 7 16

12 12 10

8 12 8

8.1 10 1.6 10 1 10

1 10 1 10 2.56 10

2.0736 10 5.0625 10 1 10

− − −

− − −

− − −

 × × ×

 
× × × 

 × × × 

; 

 

so we see A under natural product that is A
m
 = 

n n n

n times

A A ... A

−

× × ×
�������

 tends to (0) for m just large.  

  

Now we proceed onto make a mention that this natural 

product can be used for matrices with polynomial entries. 

 

That is if A = 
3 2

2

x 1 5x 1 7x x 1

3x 4 6 4x

 + − + +

 
− 

 and 

 

B = 
2

2 3

x 3x 1 0

4 7x 2x 1 13x 1

 +

 
+ + + 

 

 

are two matrices with polynomial entries we can find  

 

A ×n B = 
5 2 2

2 2 4

x x 15x 2x 1 0

12x 16 4x 12x 6 52x 4x

 + + −

 
− + + + 

. 

 

 Also we know differentiation and integration can be done 

on A.  

 

dA

dx
 = 

2
3x 5 14x 1

6x 0 4

 +

 
 

. 
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∫ A dx = 

4 2 3 2

1 3 3

3 2

2 5 6

x 5x 7x x
x c x c x c

4 2 3 2

3x 4x
4x c 6x c c

3 2

 
+ + − + + + + 

 
 

− + + +  

. 

 

 Now if A is matrix of any order the product ×n, 

differentiation and integration can be performed, where A takes 

its entries from R[x].  

 

 Now we can also work with polynomials with matrix 

coefficients.  

 

 For instance  

P = i

i

i 0

a x
∞

=




∑  ai = 

1

i

2

i

3

i

4

i

a

a

a

a

 
 
 
 
 
  

, t

ia  ∈ R, 1 ≤ t ≤ 4}, 

P is a commutative ring with unit 

1

1

1

1

 
 
 
 
 
 

 under natural product ×n. 

 

Take p(x) = 

3

0

1

5

 
 
 
 
 
 

 + 

2

1

0

7

 
 
 
 
 
 

x + 

5

1

2

0

 
 
 
 
 
 

x
3
 

 

and   

q(x) = 

4

2

1

0

 
 
 
 
 
 

x + 

1

0

7

2

 
 
 
 
 
− 

x
8
 in P. 
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p(x) + q(x) = 

3

0

1

5

 
 
 
 
 
 

+ 

6

3

1

7

 
 
 
 
 
 

x + 

5

1

2

0

 
 
 
 
 
 

x
3 
+

1

0

7

2

 
 
 
 
 
− 

x
8
. 

 

p(q) ×n q(x) = 

3

0

1

5

 
 
 
 
 
 

 ×n 

4

2

1

0

 
 
 
 
 
 

x + 

2

1

0

7

 
 
 
 
 
 

×n 

4

2

1

0

 
 
 
 
 
 

x
2
 + 

5

1

2

0

 
 
 
 
 
 

 ×n 

4

2

1

0

 
 
 
 
 
 

x
4
  

 

+  

3

0

1

5

 
 
 
 
 
 

 ×n 

1

0

7

2

 
 
 
 
 
 

x
8
 + 

2

1

0

7

 
 
 
 
 
 

 ×n 

1

0

7

2

 
 
 
 
 
 

x
9
 + 

5

1

2

0

 
 
 
 
 
 

 ×n 

1

0

7

2

 
 
 
 
 
 

x
11 

 

= 

12

0

1

0

 
 
 
 
 
 

x + 

8

2

0

0

 
 
 
 
 
 

x
2
 + 

20

2

2

0

 
 
 
 
 
 

x
4
 + 

3

0

7

10

 
 
 
 
 
 

x
8
 + 

2

0

0

14

 
 
 
 
 
 

x
9
 + 

5

0

14

0

 
 
 
 
 
 

x
11

. 

 

 Thus P under ×n is a semigroup thus P is a commutative 

polynomial ring with 4 × 1 column matrix coefficients. 

 

 We can also replace the column matrix coefficients with a 

row matrix coefficients or a rectangular matrix coefficients or a 

n × n square matrix coefficients still P will continue to be a 

commutative ring with zero divisors. 

  

We see usual polynomial rings over R or Z or Q do not have 

zero divisors however these polynomial rings have zero 

divisors.  
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  Suppose  

S = i

i

i 0

a x
∞

=




∑  ai = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  

 aj ∈ R; 1 ≤ j ≤ 15} 

 

be a polynomial ring with coefficients as 5 × 3 rectangular 

matrices.  (S, +, ×n) is a ring which is communicative and has 

zero divisors.  We can integrate or differentiate these 

polynomials provided the entries of these matrices are from R or 

Q.   

 

We just give a simple illustration. 

 

p(x) = 

7 0 1

5 3 2

1 1 0

2 0 1

5 7 5

 
 
 
 
 
 
  

 + 

1 1 2

2 1 3

4 5 1

6 7 8

3 0 5

 
 
 
 −

 
 
  

x
2
 + 

11 0 1

1 2 3

5 6 1

7 8 3

0 1 4

 
 
− 
 −

 
 
  

x
4 

 

be in S.   

 

 

Now differentiating with respect to x we get 

 

dp(x)

dx
 = 2

1 1 2

2 1 3

4 5 1

6 7 8

3 0 5

 
 
 
 −

 
 
  

x + 4 

11 0 1

1 2 3

5 6 1

7 8 3

0 1 4

 
 
− 
 −

 
 
  

x
3 
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= 

2 2 4

4 2 6

8 10 2

12 14 16

6 0 10

 
 
 
 −

 
 
  

x + 

44 0 4

4 8 12

20 24 4

28 32 12

0 4 16

 
 
− 
 −

 
 
  

x
3
. 

 

Clearly 
dp(x)

dx
 is in S. 

 

 Consider ∫p(x) dx =  

 

7 0 1

5 3 2

1 1 0

2 0 1

5 7 5

 
 
 
 
 
 
  

x + 

1 1 2

2 1 3
1

4 5 1
3

6 7 8

3 0 5

 
 
 
 −

 
 
  

 x
3
 + 

11 0 1

1 2 3
1

5 6 1
5

7 8 3

0 1 4

 
 
− 
 −

 
 
  

x
5
 + c 

 

= 

7 0 1

5 3 2

1 1 0

2 0 1

5 7 5

 
 
 
 
 
 
  

 + 

1/ 3 1/3 2 / 3

2 /3 1/3 1

4 /3 5/ 3 1/3

2 7 / 3 8/ 3

1 0 5/3

 
 
 
 −

 
 
  

x
3 

 

+ 

11/5 0 1/5

1/5 2 /5 3/5

1 6 /5 1/5

7 /5 8/5 3/5

0 1/ 5 4 / 5

 
 
− 
 −

 
 
  

x
5
  + c is in S. 

 

 Thus integration and differentiation on these polynomial 

rings with matrix coefficients can be done provided these 

matrices take their entries from Q or R. 
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  We can also define polynomial rings with square matrix 

coefficients.  We can using usual matrix product get a non 

commutative ring and using natural product we get a 

commutative ring. 

 

 We just see they are not isomorphic further if  

 

p(x), q(x) ∈ P = i

i

i 0

a x
∞

=




∑  ai = 

a b

c d

 
 
 

 with a, b, c, d ∈ R} 

 

is the polynomial ring with matrix coefficients and if  

 

p(x) = 
2 0

1 2

 
 
 

 + 
1 2

0 0

 
 
 

 x + 
1 0

0 7

 
 
 

x
3
 and 

 

q(x) = 
9 2

1 0

 
 
 

 + 
0 7

2 0

 
 
 

x
2
 are in P; 

 

to find p(x) × q(x) the usual product. 

 

p(x) × q(x) = 
18 4

11 2

 
 
 

 + 
0 14

4 7

 
 
 

x
2
 + 

11 2

0 0

 
 
 

x 

 

+ 
4 0

0 0

 
 
 

x
3
 + 

9 14

1 0

 
 
 

x
3
 + 

0 7

2 0

 
 
 

x
5
 ∈ P. 

 

Now p(x) ×n q(x) = 
18 0

1 0

 
 
 

 + 
0 0

2 0

 
 
 

x
2
 + 

9 4

0 0

 
 
 

x 

 

+ 
0 14

0 0

 
 
 

x
3
 + 

9 0

0 0

 
 
 

x
3
 + 

0 0

0 0

 
 
 

x
5
 ∈ P. 

 

 Clearly p(x) × q(x) is of degree 5 where as p(x) ×n q(x) is of 

degree three.  
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 We see in general the rules of usual polynomials need not in 

general be true for polynomials with matrix coefficients. 

 

 However if the matrix coefficients are column matrices or 

rectangular matrices those are not polynomial rings under usual 

product they are polynomial commutative rings only under the 

natural product, ×n. 

 

 We see we can define integration and differentiation, 

however we cannot say all polynomials can be made monic 

even under natural product ×n.  

Under natural product 
1 1

1 1

 
 
 

 or (1 1 1 1 1 1) or 

1

1

1

1

1

 
 
 
 
 
 
  

 or  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

 
 
 
  

 

 

are the units and under usual product 
1 0

0 1

 
 
 

 to be more 

precise 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 or 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 

 are the units; but they are  

 

zero divisors under natural product ×n. 

 

Next we can say  

 

P = i

i

i 0

a x
∞

=




∑  ai’s are row matrices with entries from R or Q} 
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 is a vector space as well as linear algebra over R or Q both 

under usual product as well as under natural product. 

 

Consider  

M = i

i

i 0

a x
∞

=




∑  ai = 

1

2

n

b

b

b

 
 
 
 
 
 

�
  where bj ∈ Q or R; 1 ≤ j ≤ n}; 

 

M is only a vector space under as usual product is not defined 

where as M is a linear algebra under the natural product.  We 

see likewise if the coefficients of the polynomial are rectangular 

matrices then they are only vector spaces but under natural 

product we see they are linear algebras. 

 

Finally if  

 

S = i

i

i 0

a x
∞

=




∑  ai’s are square matrices with entries from R or 

Q} then S is a linear algebra over R both under the usual 

product and under the natural product.   

 

We see we can also define semirings and semifields. 

 

Let  

P = i

i

i 0

a x
∞

=




∑  ai = (x1, x2, …, xn) where xi ∈ R

+
 ∪ {0}  

or Q
+
 ∪ {0} or Z

+
 ∪ {0}, 1 ≤ i ≤ n}, 

be a semiring under + and × (or under ×n).  P is only a semiring; 

P is a strict semiring but is not a semifield as p(x), q(x) ∈ P can 

be such that p(x) × q(x) = (0).   

 

Now some modification be made so that P can be a 

semifield; this is done in a special way. 
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Let  

S = i

i

i 0

a x
∞

=




∑  ai = (x1, …, xn) where xi ∈ R

+
 or Q

+
  or Z

+
  

together with a0 = (0, 0, …, 0) , 1 ≤ i ≤ n}. 

 

S is a semifield under ×n or × as both the natural product and the 

usual product on row matrices are identical.   

 

S is a semilinear algebra over Q
+
 ∪ {0} or Z

+
 ∪ {0} or  

R
+
 ∪ {0} depending on where the entries of ai’s are taken. 

 

Also if F = {(x1, x2, …, xn) where xi ∈ Q
+
 or R

+
 or Z

+
; 1 ≤ i 

≤ n} ∪ {(0, 0, …, 0)} then F is a semifield. 

 

We see S is also a semilinear algebra over the semifield F; 

depending on the choice of the semifield we see the dimension 

of S varies. 

 

Consider  

T = i

i

i 0

a x
∞

=




∑  ai = 

1

2

m

y

y

y

 
 
 
 
 
 

�
 where yi ∈ Q

+
 ∪ {0} or Z

+
 ∪ {0} 

or R
+
 ∪ {0}; 1 ≤ i ≤ m}; 

 

T is a semilinear algebra if ×n the natural product is defined on 

T; however T is only a semivector space for the usual product 

cannot be defined on T over the semifield Z
+
 ∪ {0} or Q

+
 ∪ {0} 

or R
+
 ∪ {0} according as the set over which T is defined. 

 

Let B = 

1

2

m

a

a

a

 
 
    

�
 ai ∈ Z

+
 or Q

+
 or R

+
; 1 ≤ i ≤ m} ∪

0

0

0

  
  
   
  
    

�
; 

then B is a semifield under ‘+’ and ×n. 
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Now T is a semilinear algebra over the semifield B.  

Likewise we can define semivector space / semilinear algebra 

over Q
+
 ∪ {0} or R

+
 ∪ {0} or Z

+
 ∪ {0} or  

 

A = {all m × n (m ≠ n) matrices with entries from Z
+
 or Q

+
 or 

R
+
} ∪ {(0); m × n zero matrix}.  A is a semifield under ×n, the 

natural product. 

 

Consider P = i

i

i 0

a x
∞

=




∑  ai’s are m × n (m ≠ n) rectangular 

matrices with entries from Q
+
∪{0} (or Z

+
∪{0} or R

+
∪{0})}; P 

is a semivector space over Q
+
∪{0} (or Z

+
∪{0} or R

+
∪{0}).  

But P is a semilinear algebra over the semifield;  under the 

natural product ×n.  This varying definition directly affect the 

dimension of P over which ever semifield they are defined.  

 

Finally when we take a square matrix as coefficients of a 

polynomial say P = i

i

i 0

a x
∞

=




∑  as = n × n matrices with entries 

from Z
+
 ∪ {0} or Q

+
 ∪ {0} or R

+
 ∪ {0}}.   P is a semivector 

space / semilinear algebra over the semifield Z
+
 ∪ {0} or Q

+
 ∪ 

{0} or R
+
 ∪ {0}. 

 

We can find all properties associated with it.  If we take  

F = {all n × n matrices with entries from Z
+
 or R

+
 or Q

+
} ∪ 

{(0)} then F is a semifield and P is a semivector space or a 

semilinear algebra over the semifield F. 

 

Interested reader can find dimension of P over F. 

 

Now having seen polynomials with matrix coefficients and 

polynomials as semivector spaces / semilinear algebras we now 

proceed onto define and describe interval matrices and matrices 

with interval entries.  

 



104 Exploring the Extension of Natural … 

 

Let V = {([ 1 1

1 2a ,a ], [ 2 2

1 2a ,a ], …, [ n n

1 2a ,a ]) | t

ia  ∈ R; 1 ≤ i ≤ 2 

and 1 ≤ t ≤ n} be a row interval matrix with entries from Nc(R).  

V is a ring of row interval matrices.  

 

Consider W = {[( 1 1

1 2a ,a , …, n

1a ), ( 1 2

2 2a ,a , …, n

2a )] | t

ia  ∈ R; 1 

≤ i ≤ 2 and 1 ≤ t ≤ n};  W is a interval row matrix.  W is also a 

ring.   

 

We see there is a one to one correspondence between V and 

W. 

 

Define η : V → W as   η(([ 1 1

1 2a ,a ], [ 2 2

1 2a ,a ], …, [ n n

2 2a ,a ]))  

    = ([ 1 1

1 2a ,a , …, n

1a ], [ 1 2

2 2a ,a , …, n

2a ]);  

 

η is one to one and on to. 

 

Suppose we define 

 

φ : W → V by   φ ([ 1 1

1 2a ,a , …, n

1a ], [ 1 2

2 2a ,a , …, n

2a ]) 

= ([ 1 1

1 2a ,a ], [ 2 2

1 2a ,a ], …, [ n n

1 2a ,a ]) 

 

then φ is also one to one and onto and η o φ = identity map V 

and φ o η is the identity map on W.   

 

Now having got a one to one on to correspondence we can 

work with V or W; they are infact, isomorphic as rings. 

 

Suppose  

 

M = 

1 1

1 2

2 2

1 2

m m

1 2

[a ,a ]

[a ,a ]

[a ,a ]

 
 
     

�
 [ t t

1 2a ,a ] ∈ Nc(R); 1 ≤ t ≤ m}; 

we define M as a column matrix with interval entries.  
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 Consider  

N = 

1 1

1 2

2 2

1 2

m m

1 2

a a

a a
,

a a

    
    
                     

� �

t

ia  ∈ R; 1 ≤ i ≤ 2 and 1 ≤ t ≤ m};  

 

N is an interval column matrix.  Clearly both M and N are rings 

under natural product of matrices.  

 

If x = 

1 1

1 2

2 2

1 2

m m

1 2

[a ,a ]

[a ,a ]

[a ,a ]

 
 
 
 
 
  

�
 and y = 

1 1

1 2

2 2

1 2

m m

1 2

[b ,b ]

[b ,b ]

[b ,b ]

 
 
 
 
 
  

�
 are in M then 

 

x ×n y =

1 1 1 1

1 1 2 2

2 2 2 2

1 1 2 2

m m m m

1 1 2 2

[a b ,a b ]

[a b ,a b ]

[a b ,a b ]

 
 
 
 
 
  

�
. 

 

M is a commutative ring.   

 

Consider a = 

1 1

1 2

2 2

1 2

m m

1 2

a a

a a
,

a a

    
    
    
    
            

� �
 and b = 

1 1

1 2

2 2

1 2

m m

1 2

c c

c c
,

c c

    
    
    
    
            

� �
 in N. 

 

a ×n b =  

1 1 1 1

1 1 2 2

2 2 2 2

1 1 2 2

m m m m

1 1 2 2

a c a c

a c a c
,

a c a c

    
    
    
    
            

� �
 ∈ N. 
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N is also a commutative ring with 

1 1

1 1
,

1 1

    
    
    
    
     
    

� �
 as unit we can  

 

define  

 

η : M → N by  

η 

1 1

1 2

2 2

1 2

m m

1 2

[a ,a ]

[a ,a ]

[a ,a ]

 
 
 
 
  
 

�
 =

1 1

1 2

2 2

1 2

m m

1 2

a a

a a
,

a a

    
    
    
    
            

� �
. 

 

η is a one to one onto homomorphism from the ring M to N.   

 

Consider φ : N → M given by  

 

φ  

1 1

1 2

2 2

1 2

m m

1 2

a a

a a
,

a a

    
    
    
    
            

� �
 =

1 1

1 2

2 2

1 2

m m

1 2

[a ,a ]

[a ,a ]

[a ,a ]

 
 
 
 
  
 

�
. 

 

φ is also a one to one onto homomorphism from N to M.  

Clearly φ o η is an identity on N and (η o φ) is an identity on M. 

 

Thus we see we can go from an interval column matrix ring 

to a column interval matrix ring and vice versa. 

 

Likewise we can define a rectangular matrix with intervals 

entries and interval rectangular matrix as follows: 
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Let X = 

1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

m1 m1 m2 m2 mn mn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
 

� � �  

 

where [ 1 2

ij ija ,a ] ∈ Nc(R); m ≠ n, 1 ≤ i ≤ m and 1 ≤ j ≤ n} 

be the collection of all m × n matrices with interval entries from 

Nc(R).  It is easily verified X under natural product ×n, and 

componentwise addition is a commutative ring with unit; 

  

I =

[1,1] [1,1] ... [1,1]

[1,1] [1,1] ... [1,1]

[1,1] [1,1] ... [1,1]

 
 
 
 
 
 

� � �
. 

Let  

 

Y = 

1 1 1 2 2 2

11 12 1n 11 12 1n

1 1 1 2 2 2

21 22 2n 21 22 2n

1 1 1 2 2 2

m1 m2 mn m1 m2 mn

a a ... a a a ... a

a a ... a a a ... a
,

a a ... a a a ... a

    
    
                     

� � � � � �
 

 
t

ija ∈ R; 1 ≤ t ≤ 2, 1 ≤ i ≤ m and 1 ≤ j ≤ n, (m ≠ n)} 

be the collection of all rectangular or m × n interval matrices Y 

under matrix addition and natural product ×n is a commutative 

ring with   

 

I = 

1 1 ... 1 1 1 ... 1

1 1 ... 1 1 1 ... 1
,

1 1 ... 1 1 1 ... 1

    
    
    
    
     
    

� � � � � �
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as the multiplicative identity.  It can be easily proved that X is 

isomorphic to Y as rings.  Thus one can always identity a 

interval rectangular matrix with interval entries and vice versa. 

 

This is infact the main property which enables one to find 

easily the eigen value or eigen vectors finding determinant 

values etc., for square matrices with interval entries.  

 

We will just describe this situation in a line or two. 

 

Let  

P = 

1 2 1 2 1 2

11 11 12 12 1n 1n

1 2 1 2 1 2

21 21 22 22 2n 2n

1 2 1 2 1 2

nn nn nn nn nn nn

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

[a ,a ] [a ,a ] ... [a ,a ]

 
 
 
 
   

� � �
 

 

where [ 1 2

ij ija ,a ] ∈ Nc(R); 1 ≤ i, j ≤ n} 

be the collection of all n × n matrices with interval entries from 

Nc(R).  P is a non commutative ring under usual product.  

 

However  

 

L = 

1 1 1 2 2 2

11 12 1n 11 12 1n

1 1 1 2 2 2

21 22 2n 21 22 2n

1 1 1 2 2 2

n1 n 2 nn n1 n2 nn

a a ... a a a ... a

a a ... a a a ... a
,

a a ... a a a ... a

    
    
                     

� � � � � �
 

 
t

ija ∈ R; 1 ≤ t ≤ 2, 1 ≤ i, j ≤ n} 

is the collection of all interval n × n square matrices.  L under 

usual product is a non commutative ring.  Infact P is isomorphic 

with L when both P and L enjoy the usual matrix product.  

However if we define the natural product ×n on both P and L we 

see both P and L are commutative rings and P is isomorphic 

with L and vice versa. 
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 We will just illustrate this situation by 2 × 2 matrices. 

 

Let  

X = 
3 1 7 2

,
2 5 1 5

    
     −    

 and Y = 
1 2 5 1

,
3 4 6 2

 −   
     −    

 

 

be two elements in L.  We find X × Y using the usual matrix 

product.  

 

X × Y = 
3 1 1 2 7 2 5 1

,
2 5 3 4 1 5 6 2

 −       
         − −        

 

 

= 
6 10 23 3

,
13 16 25 9

 −   
     
    

 and 

 

Y × X = 
1 2 3 1 5 1 7 2

,
3 4 2 5 6 2 1 5

 −       
× ×         − −        

 

 

=
1 11 34 5

,
1 23 40 2

 − − −   
     
    

. 

 

 Clearly X × Y ≠ Y × X.   

 

Now we consider the natural product of X with Y; that is  

 

X ×n Y =  
3 1 7 2

,
2 5 1 5

    
     −    

 ×n 
1 2 5 1

,
3 4 6 2

 −   
     −    

 

 

= n n

3 1 1 2 7 2 5 1
,

2 5 3 4 1 5 6 2

 −       
× ×         − −        
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= 
3 2 35 2

,
6 20 6 10

 −   
     − −    

 ∈ L. 

 

 Now we can write the interval matrix  

 

X = 
3 1 1 2

,
2 5 3 4

    
     −    

 

as the matrix with interval entries as  

 

X′  =  
[3,1] [1,2]

[ 2,3] [5,4]

 
 

− 
and Y = 

1 2 5 1
,

3 4 6 2

 −   
     −    

 as 

 

Y′ = 
[1, 5] [2,1]

[3,6] [4, 2]

− 
 

− 
. 

 

Now X′ ×n Y′ = 
[3,1] [1,2]

[ 2,3] [5,4]

 
 

− 
 ×n 

[1, 5] [2,1]

[3,6] [4, 2]

− 
 

− 
 

 

= 
[3,1][1, 5] [1,2][2,1]

[2,3][3,6] [5,4][4, 2]

− 
 

− 
 

 

= 
[3, 5] [2,2]

[ 6,18] [20, 8]

− 
 

− − 
. 

 

X′ × Y′ = 
[3,1] [1,2]

[ 2,3] [5,4]

 
 

− 
 × 

[1, 5] [2,1]

[3,6] [4, 2]

− 
 

− 
 

 

= 
[3,1][1, 5] [1,2][3,6] [3,1][2,1] [1,2][4, 2]

[ 2,3][1, 5] [5,4][3,6] [ 2,3][2,1] [5,4][4, 2]

− + + − 
 

− − + − + − 
 

 

= 
[3, 5] [3,12] [6,1] [4, 4]

[ 2, 5] [15,24] [ 4,3] [20, 8]

− + + − 
 

− − + − + − 
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= 

[2,2] [10,10]

[12,12] [6,6]

 
 
 

. 

 

A × B = 
[2,1] [1,2] [5,2] [4,3] [2,1] [2,5] [5,2] [1,6]

[3,4] [1,2] [6,1] [4,3] [3,4] [2,5] [6,1] [1,6]

× + × × + × 
 

× + × × + × 
 

 

= 
[22,8] [9,17]

[27,11] [12,26]

 
 
 

. 

 

Suppose A′ = 
2 5 1 2

,
3 6 4 1

    
     
    

  and B′ = 
1 2 2 5

,
4 1 3 6

    
     
    

 

 

A′ ×n B′ = 
2 10 2 10

,
12 6 12 6

    
     
    

 

 

and A′ × B′ = 
2 5 1 2 1 2 2 5

,
3 6 4 1 4 1 3 6

        
× ×         

        
 

 

= 
22 9 8 17

,
27 12 11 26

    
     
    

 

 

= 
[22,8] [9,17]

[27,11] [12,26]

 
 
 

 and so on. 

 

 Thus the value of A × B and A′ × B′  are the same likewise 

A ×n B and A′ ×n B′  are also the same. 

 

 Thus we can go from interval matrices to matrix with 

interval entries and vice versa. 

 

 Now we just find the determinant of both the interval square 

matrix and the square matrix with interval entries. 
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Let A = 
3 4 7 6

,
5 2 5 4

    
     
    

 and   A′  = 
[3,7] [4,6]

[5,5] [2,4]

 
 
 

 

 

be the interval square matrix and matrix with interval entries 

respectively. 

 

Now det A = 
3 4 7 6

,
5 2 5 4

 
  
 

 

 

  = [–14, –2]. 

 

det A′ = |A′| = 
[3,7] [4,6]

[5,5] [2,4]
 

 

= [6, 28] – [20, 30] 

 

= [–14, –2]. 

 

We see |A′| =  |A|. 

 

 Now this method of writing a matrix with interval entries 

into an interval matrix helps us to find all properties in a 

feasible time for all matrices with interval entries can be 

realized as interval matrices and vice versa. 

 

 At this juncture the authors wish to state that instead of 

defining product of intervals in a round about manner one can 

extend the product in a natural way using the natural class of 

intervals.  This definition happens to be in keeping with the 

operations on the reals and so only we define these new class of 

intervals as natural class of intervals and product on these 

matrices with interval entries or product of any m × n matrix 

with itself as the natural product.  This has helped us in many 

ways by solving the compabity of the product.  

 

Next we proceed onto define matrices with entries from 

subsets of a set. 
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  Let X be a finite set.   

 

P(X) = {collection of all subsets of X together with φ and 

X}; P(X) is a Boolean algebra.   

 

Now we can define matrices with entries from P(X) and 

define operations of union ‘∪’ and intersection ‘∩’ and 

complementation.  We will just see the algebraic structure 

enjoyed by these matrices.  

 

Let M  = {(a, b) | a, b ∈ P(X) = P ({1, 2, 3})}. 

  |M| = o(M) = 8 × 8 = 64. 

 

 A = ({1}, {3}),  A
C
 = ({2, 3}, {1, 2}). 

 A ∪ A
C
 =  {(X, X)} and A ∩ A

C
 = {(φ, φ)}. 

 

 

 A ∩ (B ∪ C) = ({1,2}, {1}) ∩ (({2},{3}) ∪ ({1,2}, {1,3})) 

           = ({1, 2} {1}) ∩ ({1, 2}, {1, 3}) 

        = ({1, 2}, {1}). 

 

 A ∪ (B ∩ C) = ({1,2}, {1}) ∪ {({2},{3}) ∩ ({1,2}, {1,3})  

     ({1, 2} {1})  ∪ ({2}, {3}) 

       = ({1, 2}, {1, 3}). 

 

 Consider (A ∩ B) ∪ (A ∩ C) 

   = [({1,2},{1}) ∩ ({2},{3})] ∪ [({1, 2},{1}) ∩  

   ({1,2}, {1, 3})] 

        = ({2}, φ) ∪ ({1, 2}, {1}) 

        = ({1, 2}, {1}). 

 

 Thus A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 

 

 We see M is again a Boolean algebra.  We can extend the 

row matrix with entries from the power set P (X) of a set X. 
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 Let P = {(a1, a2, …, an) | ai ∈ P(X); 1 ≤ i ≤ n} be the 

collection of all row matrices with entries from the sets in P(X) 

or subsets of X. 

 

 P under the operation ∪ and ∩ is a Boolean algebra will be 

known as the row matrix Boolean algebra.  

 

Let  

 

S = 

1

2

m

a

a

a

 
 
    

�
 ai ∈ P(X); P(X) the power set of a set X; 1 ≤ i ≤ m} 

be the set of all column matrices with subsets of X or from the 

elements of the power set P(X).  We can define ‘∪’ and ‘∩’ on 

S as follows: 

 

If x = 

1

2

m

a

a

a

 
 
 
 
 
 

�
 and y = 

1

2

m

b

b

b

 
 
 
 
 
 

�
  are in S then 

 

x ∩ y = 

1 1

2 2

m m

a b

a b

a b

∩ 
 

∩ 
 
 

∩ 

�
 and x ∪ y = 

1 1

2 2

m m

a b

a b

a b

∪ 
 

∪ 
 
 

∪ 

�
 are in S. 

 

 We will illustrate this situation by an example.   

 

Let X = {1, 2, 3, 4} P (X) = {φ, X, {1}, {2}, {3}, {4}, {1, 

2}, {1, 3}, …, {2, 3, 4}}. 

 

 Clearly |P (X)| = 2
4 
= 16. 
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 Consider S = 

1

2

3

a

a

a

 
 
 
  

ai ∈ P(X), 1 ≤ i ≤ 3}. 

 

 We just show how ‘∪’ and ‘∩’ are defined on S. 

 

Let x = 

{3,4}

{1,2,3}

{4,2}

 
 
 
  

 and y = 

{2,3}

{3,4,2}

{1,2,3}

 
 
 
  

 be in S. 

 

x ∪ y =

{2,3,4}

{1,2,3,4} X

{1,2,3,4} X

 
 

= 
 = 

 

 

= 

{2,3,4}

X

X

 
 
 
  

. 

 

x ∩ y = 

{3}

{3,2}

{2}

 
 
 
  

 both x ∩ y and x ∪ y are in S. 

 

Now x
c
 = 

{1,2}

{4}

{1,3}

 
 
 
  

 and x ∪ x
c
 =

X

X

X

 
 
 
  

. 

 

Consider  

x ∩ x
c
 =  

φ 
 
φ 
 φ 

. 
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Likewise  

 

y
c
 = 

{1,4}

{1}

{4}

 
 
 
  

, y ∪ y
c
 = 

X

X

X

 
 
 
  

 and y ∩ y
c
 =

φ 
 
φ 
 φ 

. 

 

Clearly S is a Boolean algebra of column matrices.   

 

 Let us define the collection of all m × n matrices with 

entries from P (X). 

 

 P = {all m × n (m ≠ n) matrices with entries from P (X); the 

power set of a set X}. 

 

 (P, ∪, ∩, ′) is a Boolean algebra.   

 

We will just illustrate this situation for X = {1, 2, 3, 4, 5}.  

P (X) = {φ, X, {1}, …, {5}, {1, 2}, …, {4, 5}, …, {1, 2, 3, 4}}. 

 

 Clearly |P (X)| = 32. 

 

 

 Take  

x = 

11 12 13 14

21 22 23 24

31 32 33 34

a a a a

a a a a

a a a a

 
 
 
 
 

 where aij ∈ P(X);  

 

1 ≤ i ≤ 3 and 1 ≤ j ≤ 4. 

 

 Suppose  

 

P = {collection of all 3 × 4 matrices with entries from P(X)}; P 

is a Boolean algebra of 3 × 4 matrices.   
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We see if x = 

{1} X {2,3}

{2} {3,5} {1,2,3} X

{1,3} X {4,5,1}

φ 
 
 
 

φ 

 is in P, then 

 

x
c
 = 

X {2,3,4,5} {1,4,5}

{1,3,4,5} {2,1,4} {4,5}

{2,4,5} X {2,3}

φ 
 

φ 
 

φ 

 ∈ P. 

 

Now x ∪ x
c
 =  

X X X X

X X X X

X X X X

 
 
 
 
 

 and 

 

x ∩ x
c
 = 

φ φ φ φ 
 

φ φ φ φ 
 

φ φ φ φ 

 ∈ P. 

 

Clearly 

c
X X X X

X X X X

X X X X

 
 
 
 
 

 =

φ φ φ φ 
 

φ φ φ φ 
 

φ φ φ φ 

 

 

and 

c
φ φ φ φ 
 

φ φ φ φ 
 

φ φ φ φ 

 =

X X X X

X X X X

X X X X

 
 
 
 
 

. 

 

 Suppose y = 

{1,2,3} {4,5} X

{2,3} {1,5,2} {3} {4,2}

{1,4,3} {1,5} {1,2} {3,4}

φ 
 
 
 
 

 ∈ P. 

 

We find x ∪ y = 

{1,2,3} {1,4,5} X X

{2,3} {1,3,5,2} {1,2,3} X

{1,4,3} X {1,2} {1,4,5,3}
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and  x ∩ y = 

{1} {2,3}

{2} {5} {3} {4,2}

{1,3} {1,5} {4}

φ φ 
 
 
 

φ 

are in P. 

 

One can verify (P, ∪, ∩, ′) is a Boolean algebra of 3 × 4 

matrices. 

 

 Finally let us consider S = {all n × n matrices with entries 

from P(X), the power set of a set X}; S is a Boolean algebra.   

 

We can also define usual product on these square matrices 

with entries from P(X). 

 

 Let M = {all 3 × 3 matrices with entries from P (X) where  

X = {1, 2, 3}}. 

 

 Consider  

 

x = 

{1,2} X

{2} {1,3} {3,2}

X {3} {1}

φ 
 
 
 
 

 in M.  x
c
 = 

{3} X

{1,3} {2} {1}

{1,2} {2,3}

φ 
 
 
 

φ 

 

 

is in M.   

 

x
c
 ∪ x = 

X X X

X X X

X X X

 
 
 
 
 

  and x
c
 ∩ x =

φ φ φ 
 

φ φ φ 
 

φ φ φ 

 is in M. 

 

Let y = 

{3,1} {1,2} {2,3}

X {1} {2}

{3} {1,3} {1}

 
 
 
 
 

 be in M. 
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We find x ∩ y = 

{3} {2,3}

{1,3}

{1}

φ 
 

φ φ 
 

φ φ 

 ∈ M. 

 

x
c
 ∪ y = 

{1,3} {1,2} X

X {1,2} {1,2}

{3} {1,2,3} X X

 
 
 
 

= 

 ∈ M. 

 

(x
c
 ∪ y)

c
 = 

{2} {3}

{3} {3}

{1,2}

φ 
 

φ 
 

φ φ 

 

 

x
c
 ∪ y

c
 = 

{3} X

{1,3} {2} {1}

{1,2} {2,3}

φ 
 
 
 

φ 

 ∪ 

{2} {3} {1}

{2,3} {1,3}

{1,2} {2} {2,3}

 
 

φ 
 
 

 

 

= 

{2,3} {3} X

{1,3} {2,3} {1,3}

{1,2} {1,2} {2,3}

 
 
 
 
 

 ∈ M. 

 

(x ∪ y)
c
 = 

c
X X {2,3}

X {1,3} {2,3}

X {1,3} {1}

 
 
 
 
 

 

 

= 

{1}

{2} {1}

{2} {2,3}

φ φ 
 

φ 
 

φ 

 ∈ M. 

 

x
c
 ∩ y

c
 =  

{1}

{2} {1}

{2} {2,3}

φ φ 
 

φ 
 

φ 

 ∈ M. 



120 Exploring the Extension of Natural … 

 

 

(x ∪ y)
c
 = x

c
 ∩ y

c
. 

 

 Several related results can be obtained.   

 

Now we show how usual multiplication can be carried out 

on square matrices with entries from a power set P(X). 

 

Let x  = 

{2} {1,3}

X {3} {2,1}

{1} {2}

φ 
 
 
 

φ 

 and y = 

{1,3} {2} X

{2,3} {1}

{1,2} {3}

 
 

φ 
 

φ 

 

 

be two elements in M.  To find x × y the usual matrix product of 

x with y.   

 

 

x × y = 

{2} {1,3}

X {3} {2,1}

{1} {2}

φ 
 
 
 

φ 

 ×

{1,3} {2} X

{2,3} {1}

{1,2} {3}

 
 

φ 
 

φ 

 

 

 =  

({2} {1,3}) ( ) {1,3} {1,2} {1,3}

{1,3} {1,2} {2} {3}

{1} {2}

∩ ∪ φ ∩ φ ∪ ∩ φ ∪ φ ∪


∪ φ ∪ ∪ ∪ φ


∪ φ ∪ φ φ ∪ ∪ φ

 

 

  

{2} {3}

X { }

{1}

∪ φ ∪ 


∪ φ ∪ φ 


∪ φ ∪ φ 

 

 

= 

{1} {1,3} {2,3}

X {2,3} X

{1} {2} {1}

 
 
 
 
 

. 
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Consider y × x = 

{1,3} {2} X

{2,3} {1}

{1,2} {3}

 
 

φ 
 

φ 

×

{2} {1,3}

X {3} {2,1}

{1} {2}

φ 
 
 
 

φ 

 

 

= 

{2} {1} {2} {1,3} {2}

{2,3} {1} {3} {2}

{2} { } {1} {0}

φ ∪ ∪ φ ∪ φ ∪ ∪ ∪ φ 
 

φ ∪ ∪ φ ∪ ∪ φ φ ∪ ∪ φ 
 

∪ φ ∪ φ φ ∪ φ ∪ φ ∪ φ ∪ 

 

 

= 

{1,2} {2} X

X {3} {2}

{2} {1}

 
 
 
 

φ 

 ∈ M. 

 

 We see x × y ≠ y × x in general for x, y ∈ M.  We do not 

call this structure with {M, ∪, ×} as a Boolean algebra for  

(i) ‘×’ is not commutative on M. (ii)  × is not an idempotent 

operation on M. 

 

 Further, will x  × (y ∪ z) = x × y ∪ x × z?  We first verify 

this. 

  

Consider S = {all 2 × 2 matrices with entries from P(X) 

where X = {1, 2, 3, 4}}. 

 

 Take  

 

x =
{1} X

{2,3} {4}

 
 
 

, y = 
{1,2,3}

{3,4} {1,4}

φ 
 
 

 and 

 

z = 
{1,2} {3,4}

{4,1} {1,3,4}

 
 
 

 in S. 

 



122 Exploring the Extension of Natural … 

 

 Consider x × (y ∪ z)  

 

= 
{1} X

{2,3} {4}

 
 
 

 × 
{1,2} X

{1,3,4} {1,3,4}

 
 
 

 

 

=
{1,3,4} {1,3,4}

{2,4} {2,3,4}

 
 
 

  I 

 

 Consider x × y ∪ x × z 

 

= 
{1} X

{2,3} {4}

 
 
 

 × 
{1,2,3}

{3,4} {1,4}

φ 
 
 

 ∪ 

 

{1} X

{2,3} {4}

 
 
 

 × 
{1,2} {3,4}

{4,1} {1,3,4}

 
 
 

 

 

= 
{3,4} {1,4}

{4} {2,3,4}

 
 
 

 ∪ 
{1,4} {1,3,4}

{2,4} {3,4}

 
 
 

 

 

= 
{1,3,4} {1,3,4}

{2,4} {2,3,4}

 
 
 

   II 

 

 I and II are equal.  Thus S can only be a non commutative 

semiring.   

 

Thus using matrices with entries from the power set we can 

build semirings which are also semifields under rational 

product.  Using usual product we may get a non commutative 

semiring provided the matrices are square matrices.  Finally just 

see we can build polynomials with matrix coefficients and the 

entries of these matrices are from P(X), X a power set we define 

polynomial semiring with coefficients from P(X). 
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  Let  

 

S = i

i

i 0

a x
∞

=




∑  ai ∈ P(X); X a set and P(X) the power set of X}.   

 

We define operation on S.  For any ai x
n
 and bix

m
 (m > n); 

 

aix
n
 ∩ bix

m
 = (ai ∩bi)x

(min n and m) 

 

aix
n
 ∪ bix

m
 = (ai ∪bi)x

(min n and m)
. 

 

 We see (S, ∪, ∩) is a semiring which is commutative.  This 

will be known as the Boolean polynomial semiring. 

 

 We can define several properties associated with it. 

 

 Further we see several properties associated with these 

Boolean polynomial semirings can be derived in case of these 

semirings also, this task is left as an exercise to the reader.   

 

We now define matrix coefficient polynomial semiring 

where the entries of the matrices are from the power set.  Thus 

we can have polynomial matrix coefficient Boolean semiring. 

We can as in case of usual semirings derive several of the 

properties associated with it.  Since the power set of a set X is 

only a Boolean algebra it cannot be a semifield so keeping this 

in mind we can only define Smarandache polynomial 

semivector spaces / semilinear algebras. 

 

 Thus we can realize polynomial Boolean semirings as 

Smarandache Boolean polynomial semivector spaces / 

semilinear algebras.  Such study will certainly contribute to 

several nice results. 

 

 We will just show how matrix polynomial coefficient 

Boolean semiring functions.  
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 Let us take X = {1, 2, 3, 4} to be a set, P (X) the power set 

of X.  Let S = i

i

i 0

a x
∞

=




∑  ai ∈ P(X) where X = {1, 2, 3, 4} be a 

polynomial semiring}.   

 

Take  

 

p(x) = {1, 4} ∪ {3, 2, 1}x ∪ {1,2}x
3
 and 

q(x) = {4,2} ∪ {1,3}x
2
 in S. 

 

We find p(x) ∩ q(x)  

 

= ({1,4} ∪ {3,2,1}x ∪ {1,2}x
3
) ∩ ({4,2} ∪ {1,3}x

2
) 

 

  = {1,4} ∩ {4,2} ∪ {3,2,1} ∩ {4,2} x
o 
 ∪ {1,2}  

∩ [4,2}x
o
 ∪ {1,4} ∩ {1,3} x

o
 ∪ ({1,2,3} ∩ {1,3}) x 

∪ {1,2} ∩ {1,3}x
2
 

 

  = {4} ∪ {2} ∪ {2} ∪ {1} ∪ {1,3}x ∪ {1}x
2
 

  

  = {1, 2, 4} ∪ {1,3}x ∪ {1}x
2
. 

 

 Thus p(x) ∪ q(x) = {1,2,4} ∪{1,2,3}x ∪ {1,2}x
3
 ∪ {1,3}x

2
. 

 

 Hence (S, ∪, ∩) is a semiring we have several interesting 

properties associated with it.  We have to work on these 

polynomial semirings with coefficients from P(X). 

 

Now we can define also intervals with entries from P(X).  

For we see any two subsets in P(X) are not always comparable 

so our interval can be of the following types.   

 

If A, B ∈ P(X) we may have [A, B] in which A ⊆ B or B ⊆ 

A or A and B are comparable.  For example if we take X = {1, 

2, 3} .   

 

P(X) = {φ, {1}, {2}, {3}, X, {1, 2}, {2, 3}, {1,3}} we see 

[{1}, {2}] is an interval in which the terms are not comparable 
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 where as [{2}, {1,2}] is such that {2} ⊆ {1,2} is a comparable 

set.  [{3,1} {1}] is an interval in which {3,1} ⊇ {1}.  We can 

define increasing or decreasing or not comparable interval.   

 

Let Nc(P(x)) denote the collection of all closed intervals 

with entries from P(X).  Nc(P(x)) is an idempotent semigroup 

under ‘∪’ or ‘∩’.  Nc(P(X)) is a semiring will be known as the 

interval semiring.  Likewise using the interval semiring we can 

construct polynomial semiring with interval coefficients from 

Nc(P(X)) or No(P(X)) or  Noc(P(X)) or Nco(P(X)).   

 

Also we can construct matrices whose entries are from 

Nc(P(X)) or No(P(X)) or Noc(P(X)) or Nco(P(X)).  Another 

advantage of using P(X) is we can vary the set X and by varying 

X we can get different interval semirings of different finite 

orders. 

 

P = 
1 1 2 2

3 3 4 4

[a ,b ] [a ,b ]

[a ,b ] [a ,b ]

 
 
 

 [ai, bi] ∈ Nc(P(X))  where X = {1, 

2, 3, 4, 5} and P(X) is the power set of a set X}. We can define 

∪ and ∩ on P so that P is a semiring.   

 

We just show how this is carried out. 

 

Let T = 
[{3}, ] [X,{1,2,4}]

[{2,3},{5}] [{1,2,3,4},{5}]

φ 
 
 

 and 

 

B = 
[{2,3},X] [{1,2},{3,5}]

[{5,2},{2,1}] [{1,2,3},{1,2}]

 
 
 

 

 

T ∩ B = 
[{3}, ] [{1,2},{ }]

[{2}, ] [{1,2,3}, ]

φ φ 
 

φ φ 
 ∈ P. 

 

Consider T ∪ B = 
[{2,3},X] [X,X]

[{2,3,5},{1,2,5}] [{1,2,3,4},{1,2,5}]

 
 
 

, 
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Clearly T ∪ B also ∈ P. 

 

The matrix 
[X,X] [X,X]

[X,X] [X,X]

 
 
 

 = I 

 

is such  that I ∩ A = A and I ∪ A = I.   

 

The matrix φ  = 
[ , ] [ , ]

[ , ] [ , ]

φ φ φ φ 
 

φ φ φ φ 
 in P is such that I ∩ A = I  and  

φ ∪ A = A. 

 

I acts as the zero under ∩ and I acts as identity under ‘∪’.  

 

Also we see {P, ∪, ∩} is a semiring.  P can be any m × n 

matrix with m ≠ n. 

 

 Thus we can get several Boolean semirings of varying 

order.  Further these matrices can also be found; product in 

different ways. 

 

 Suppose x = (a1, a2, a3, …, an) where ai ∈ P(X) then  

 

x
t
 = 

1

2

n

a

a

a

 
 
 
 
 
 

�
 we can also find x × x

t
 or x

t
 × x. 

 

We will first illustrate this by some examples.  

 

 Let X = {1, 2, 3, 4}; P(X) the power set of X.  x = ({1, 2}, 

φ, {2, 4}, X, {3, 2}) and y = ({43}, {3}, {1,2}, {3,4}, X) be in 

P= {collection of all 1 × 5 row vectors with entries from P(X)}. 

 

 Now x ∩ y = (φ, φ, {2}, {3, 4}, {3,2}). 

 

 x ∪ y = (X, {3}, {1,2,4}, X, X). 
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Now x ∩ y
t
 = ({1, 2}, φ, {2, 4}, X, {3, 2}) ∩ 

{4,3}

{3}

{1,2}

{3,4}

X

 
 
 
 
 
 
  

 

 = (φ ∪ φ ∪ {2} ∪ {3, 4} ∪ {3, 2}) 

 = {2, 3, 4}. 

 

 x ∪ y
t
 = ({4, 1, 2, 3} ∩ {3} ∩ {1, 2, 4} ∩ X ∩ X 

 

      = φ. 

 

 We find x
t
 ∩ x = 

{1,2}

{2,4}

X

{3,2}

 
 

φ 
 
 
 
  

 ∩ ({1,2}, φ, {2, 4}, X, {3, 2}) 

 

   = 

{1,2} {2} {1,2} {2}

{2} {2,4} {2,4} {2}

{1,2} {2,4} X {3,2}

{2} {2} {3,2} {3,2}

φ 
 

φ φ φ φ φ 
 φ

 
φ 

 
φ 

. 

 

Suppose  

x
t
 ∪ x = 

{1,2} {1,2} {1,2,4} X {1,2,3}

{1,2} {2,4} X {3,2}

{1,2,4} {2,4} {2,4} X {3,2,4}

X X X X X

{1,2,3} {3,2} {2,3,4} X {3,2}

 
 

φ 
 
 
 
 
 

. 

 

 Clearly x
t
 ∪ x ≠ x

t
 ∩ x. 
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 We can also use the same type of product with interval 

matrices.  This will be just illustrated.  

 

Let x = ([{2}, {3,4}] [φ, {2}] [X, {3, 1}]) 

 

and x
t
 = 

[{2},{3,4}]

[ ,{2}]

[X,{3,1}]

 
 

φ 
  

 

 

be the row interval matrix and its transpose. 

 

 x ∩ x
t
  = [{2}, {3, 4}] ∩ [φ, {2}] ∩ [X, {3, 1}] 

   = [{2} ∩ φ ∩ X, {3, 4} ∩ {2} ∩ {3, 1}] 

   =[φ, φ]. 

 

 Consider x ∪ x
t
 = {[{2}, {3,4}] ∪ [φ, {2}] ∪ [X, {3, 1}] 

     = [{2} ∪ φ ∪ X, {3, 4} ∪ {2} ∪ {3, 1}] 

     = [X, X]. 

 

 

We find  

 

x
t
 ∩ x = 

[{2},{3,4}]

[ ,{2}]

[X,{3,1}]

 
 

φ 
  

 ∩ ([{2}, {3,4}], [φ, {2}], [X, {3,1}]) 

 

= 

[{2},{3,4}] [ , ] [{2},{3}]

[ , ] [ ,{2}] [ , ]

[{2},{3} [ , ] [X,{3,1}]

φ φ 
 

φ φ φ φ φ 
 φ φ 

. 

 

 We can also find product of a row interval matrix with a 

suitable square / rectangular interval matrix with entries from 

P(X). 

 

 Let us consider a row matrix with entries from P(X), where 

X = {1,2,3,4,5} and a 5 × 3 matrix with entries from P(X). 
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Let x = ({3,2}, {1,5},{4,2,3},{4,1}, X) and 

 

A = 

{3} {4,3} {5,1}

{4,1} {2,3,1}

{5} X {1,2}

X {1,2,3}

{2,3} {4,3} X

 
 

φ 
 
 

φ 
  

 

 

be two matrices with entries from the power set P(X). 

 

x ∩ A = ({3} ∪ {1}∪{4,1} ∪ {2,3}, {3}∪φ∪{4,2,3} ∪ {1}  

    ∪ {4, 3}, φ ∪ {1} ∪ {2} ∪ φ ∪ {X}) 

 

  = ({1, 2, 3, 4}, {1, 4, 2, 3}, X). 

 

 

Now consider x ∪ A  

 

=  ({3, 2} ∪ {1, 4, 5} ∪ {4, 2, 3, 5} ∪ X ∪ X, {4, 2, 3}  

    ∪ {1, 5} ∪ X ∪ {1, 2, 3, 4} ∪ X, {1, 5, 2, 3}  

    ∪ {1, 5, 2, 3} ∪ {1, 2, 3, 4} ∪ {1, 4} ∪ X) 

 

  = (X, X, X). 

 

 We can also find the product of two matrices for which the 

product can be defined with entries from the power set P (X). 

 

Let A = 

{3} {1,2} {5,1}

{2,4} {1,3,4}

X {1,4}

 
 

φ 
 

φ 

 and 

 

B = 

{1} X {4} {1,5,2} X

{2,1} X {4}

{3,4} {1} {1,2,3} {5}

 
 

φ φ 
 

φ 
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be two matrices with entries from P(X) where X = {1,2,3,4,5}. 

 

 To find  

A ∩ B = 

{3,1,2} {1,2} {1} {3,5}

{3,4} {2,4} {1,4} {1,2,3} {2,4}

{1} X {1,4} {1,5,2,4} X

φ 
 
 
 
 

. 

 

We now find A ∪ B = 

X X X X X

{1,2,3,4} X X X X

X X X X X

 
 
 
 
 

. 

 

 We see A ∩ B ≠ A ∪ B.  We call this sort of product as 

usual product.  However natural product cannot be defined for 

A with B.   

 

Now we can define  as in case of usual matrices with entries 

from P(X) for matrices with intervals entries from Nc(P(x)) (or 

No(P(x))  or Noc(P(x)) or Nco(P(x)). 

 

 We will only illustrate these situations. 

 

 Consider X = {1, 2, 3, 4} and P (X) the power set of X.  

Take 

 

 x = ([{3}, φ], [{1,2}, X], [{3, 4, 2}, {1}]) 

 and y = ([{4}, {2, 3}], [{4}, {2, 4}], [{1}, φ]) in   

 

M = {all 1 × 3 row matrices with interval entries from 

Nc(P(x))}. 

 

 Now x ∩ y = ([φ, φ],  [φ, {2, 4}], [φ,φ]) and  

x ∪ y = ([{3, 4}, {2, 3}, [{1, 2, 4}, X], [X, {1}]).   

 

Clearly x ∩ y and x ∪ y ∈ M but x ∩ y ≠ x ∪ y. 

 

 Consider x
c
 = ([{1, 2, 4}, X], [{3, 4}, φ], [{1}, {2, 3, 4}]). 
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   x
c
 ∪ x = ([X, X], [X, X], [X, X]) and  

  

  x
c
 ∩ x = ([φ,φ],[φ,φ],[φ,φ]). 

 

 Clearly (M, ∪, ∩) is a semiring which is commutative and 

every element in M is an idempotent with respect to ∪ and ∩.  

Also M is a Boolean algebra.  

 

Next we consider the set P = {all m × 1 column matrices 

with entries from Nc(P(X)) where P(X) is the power set of X}. 

 

 We see (P, ∪, ∩) is again a semiring and also a Boolean 

algebra. 

 

 Suppose we take X = {1, 2, 3, 4, 5, 6} and P to be the 

collection of all 5 × 1 column matrices with entries from 

Nc(P(X)).   

 

 

Let x = 

[{3,1},{1,2}]

[ ,{1,2,3}]

[X,{4,6}]

[{3,6,2},{4,2}]

[{6,1},{1,3,5}]

 
 

φ 
 
 
 
 
 

 and  y = 

[ ,X]

[{1},{3,4}]

[{5},{6}]

[{5,1}, ]

[{3,2},{4,3}]

φ 
 
 
 
 

φ 
 
 

 be in P. 

 

 

x
c
 = 

[{2,4,5,6},{3,4,5,6}]

[X,{4,5,6}]

[ ,{1,2,3,5}]

[{1,45},{1,3,5,6}]

[{2,3,4,5},{2,4,6}]

 
 
 
 φ

 
 
 
 

 ∈ P. 
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Clearly x
c
 ∩ x = 

[ , ]

[ , ]

[ , ]

[ , ]

[ , ]

φ φ 
 

φ φ 
 φ φ

 
φ φ 

 φ φ 

 and  x
c
 ∪ x = 

[X,X]

[X,X]

[X,X]

[X,X]

[X,X]

 
 
 
 
 
 
  

. 

 

Consider x ∩ y = 

[ ,{1,2}]

[ ,{3}]

[{5},{6}]

[ , ]

[ ,{3}]

φ 
 

φ 
 
 

φ φ 
 φ 

 and 

 

x ∪ y = 

[{1,3},X]

[{1},{1,2,3,4}]

[X,{4,6}]

[{1,2,3,5,6},{4,2}]

[{1,6,2,3},{1,3,4,5}]

 
 
 
 
 
 
  

. 

 

 Both x ∪ y and x ∩ y ∈ P.   

 

We can in a similar way define for Nc(P(X)) take  

 

x = {1 × m row matrix with entries from Nc(P(X))} and  

 

y = {m × 1 column matrix with entries from Nc(P(X))} we 

can find x ∪ y, x ∩ y, y ∩ x and y ∪ x.   

 

We will first illustrate this situation by an example. 

 

 Consider X = {1, 2, 3} and P(X) the power set of X and 

Nc(P(X)) the collection of all closed intervals. 

 

 Consider x = ([{3}, φ], [{1, 2}, x], [{1}, {2}], [{1, 3}, {3, 

2}], [{2}, {3}]) 
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y = 

[{1},{2}]

[ ,{3}]

[{1,3}, ]

[{1,2},X]

[{3,2},{2}]

 
 

φ 
 φ

 
 
  

 

 

be two matrices with column entries from Nc(P(X)). 

 

x ∩ y = ([φ,φ] ∪ [φ,{3}] ∪ [{1},φ] ∪ [{1},{3,2}] ∪ [{2},φ]) 

 

  = [{1,2}, {3,2}]. 

 

 Consider  

 

y ∩ x= 

[ , ] [{1},{2}] [{1},{2}] [{1},{2}] [ , ]

[ , ] [ ,{3}] [ , ] [ ,{3}] [ ,{3}]

[{3}, ] [{1}, ] [{1}, ] [{1,3}, ] [ , ]

[ , ] [{1,2},X] [{1},{2}] [{1},{3,2}] [{2},{3}]

[{3}, ] [{2},{2}] [ ,{2}] [{3},{2}] [{2}, ]

φ φ φ φ 
 

φ φ φ φ φ φ φ 
 φ φ φ φ φ φ

 
φ φ 

 φ φ φ 

. 

 

 We can find usual product using matrices.   

 

Finally let  

 

x = ([{3}, X], [{1,2},φ], [{1,3},{3,2}], {φ, {1,2}] and  

 

y = 

[{3,2},X] [{2}, ] [{1,2},{3}] [{1}, ]

[{2,1}, ] [{3,1},{2}] [X,X] [{2},{3}]

[{1,3},{2}] [X,{1,3} [{1,2}, ] [{3,1},{2}]

[{1},{3}] [{2},{3}] [{1},{3}] [X, ]

φ φ 
 

φ 
 φ

 
φ 

 

 

 Now we find  

 

x ∩ y; x ∩ y = ([X, X], [{1, 3}, {3}], [X, {3}], [X, {2}]). 
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 Thus we can find the usual product by taking ‘∩’ as usual 

product.  Now interested reader can work with this type of 

interval matrices with entries as the sets of a power set P(X). 

  

Suppose X = {1, 2}, P(X) = {φ, X, {1}, {2}} be the power 

set of X.  The interval set Nc(P(X)) = {[φ, φ], [X, X], [φ, {1}], 

[φ, {2}], [φ, X], [X. {1}], [X, {2}], [X, φ], [{1}, X], [{1}, φ], 

[{1}, {1}], [{1}, {2}], [{2}, X], [{2},φ], [{2}, {2}], [{2}, {1}]}  

where the number of elements in Nc(P(X)) is 16.  

 

We now draw the lattice diagram associated with Nc(P(X)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a Boolean algebra of order 16 = 2
4
. 

 

 Likewise if X = {1, 2, 3}, then P(X) is a Boolean algebra of 

order 64.  Thus every Nc(P(X)) is a Boolean algebra. 

 

 Similarly one can easily verify that a row matrix of order  

1 × 3; we see we get a Boolean algebra of order 64 if X = {1, 2} 

• 

• 

• 

• 

• • • 

• • • • • 

• • • 

• 

[X,X] 

[{1},X] 

[{2},X] [X,{1}] [X,{2}] 

[X,φ] [{2},{2}] 
[{2},{1}] [{1},{2}] [{1},{1}] 

[φ,φ] 

[φ, X] 

[φ,{1}] 

[{2},φ] [{1},φ] [φ,{2}] 
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 and so on.  Thus we can using X = {1, 2} get all finite Boolean 

algebras. 

 

 Now we proceed onto recall and discuss about the linguistic 

matrices using linguistic terms. We first briefly recall the 

linguistic set and its related concepts.  Suppose we have a set S 

of linguistic terms say S = {good, bad, very bad, very good, fair, 

very fair, worst, best, 0} qualify the performance of a student in 

a class. We say S is a comparable fuzzy linguistic set / space.  

Mostly authors felt while using fuzzy models, we have a 

membership function from a set X to the unit interval [0, 1].  An 

element in X can be a member and may not be a member.  If an 

element is not a member we say the membership is 0 otherwise 

it takes values form [0, 1] \ {0}.  Likewise here our membership 

will be from the set of linguistic set / space in which every 

element is comparable.  So we replace [0, 1] by the set S and ‘0’ 

if the element has no membership.   

 

So it is always assumed 0 ∈ S (for that matter any fuzzy 

linguistic set).  The fuzzy linguistic set can be constructed 

mainly based on the problem under study.  For instance our 

problem is to find the speed of the vehicles at peak hours in the 

important city roads, then the fuzzy linguistic set / space 

associated with this problem would be {0, very fast, often, very 

fast, fast, just slow, often slow, slow, medium, speed and so 

on}.  At the signals the speed would be zero.  While reaching 

the signal the speed would ‘often medium’ in the empty road the 

speed can be very fast or fast depending on the drivers capacity 

to control the vehicle in which he / she is traveling and the 

nature of the vehicle (car or bus or bicycle or scooter or so on). 

 

 Similarly we can measure the social stigma suffered by 

PWDs or by HIV/AIDS patients and so on.  

 

Now we take L to be a fuzzy linguistic set together with 0 

and any pair of elements in L are comparable.   
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We call M = {(a1, a2, …, an) | ai ∈ L, 1 ≤ i ≤ n} the 

collection of all row matrices as the fuzzy linguistic matrices.  

We perform either the min or max operation.   

 

Clearly [M, min, max} operation is a lattice. 

 

 We will just illustrate by a simple example.  Consider L = 

{0, good, bad, fair, v.fair, v.bad, v.good, best, worst}.  Take x = 

(0, good, bad, fair) and y = (bad, worst, best, bad) be any two 

row matrices with entries from L.   

 

min {x, y} = {(0, worst, bad, bad)}.  

 max {x, y} = (bad, good, best, fair). 

 

 Now if  

P = {collection of all n × 1 column vectors with entries from L}; 

{P, min} is a semilattice {P, max} is also semilattice.  

 

 {P, min, max} is a lattice.  We just show how the operations 

on them are carried out. 

 

Let a = 

good

good

worst

best

fair

 
 
 
 
 
 
  

 and b = 

bad

good

best

worst

v.fair

 
 
 
 
 
 
  

 

 

be any two 5 × 1 column matrices.  

 

min {a, b} = 

bad

good

worst

worst

fair

 
 
 
 
 
 
  

 and max {a, b} = 

good

good

best

best

v.fair

 
 
 
 
 
 
  

. 
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 We can also find the effect of a 1 × n row matrix with a n × 1 

column matrix.   

 

This will only be illustrated by an example. 

 

 Let x = (bad, good, best, best, v.fair) 

 

and y = 

good

bad

best

fair

good

 
 
 
 
 
 
  

 to find 

 

min {max {x, y}} and max {min {x, y}}. 

 

min {max {x, y}} = good. 

 

max {min {x, y}} = best. 

 

 We can also calculate min {y, x} and max {y, x}. 

 

min {y, x} = 

bad good good good v.fair

bad bad bad bad bad

bad good best best v.fair

bad fair fair fair fair

bad good good good v.fair

 
 
 
 
 
 
  

 and 

 

max {y, x} = 

good good best best good

bad good best best v.fair

best best best best best

fair good best best v.fair

good good best best good

 
 
 
 
 
 
  

. 
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 Now having seen examples we can also define rectangular 

and square linguistic matrices with entries from L. 

 

 Let S = {all m × n (m ≠ n) matrices with entries from L}.  

We can define two types of operations on matrices from S.  Let 

A, B ∈ M we have min {A, B} and max {A, B}. 

  

Consider A = 

good 0 bad worst 0

best bad 0 best fair

fair best good 0 bad

 
 
 
  

 

 

and B = 

0 bad good 0 best

best 0 good best bad

fair good 0 fair 0

 
 
 
  

 

two linguistic matrices with entries from L.   

 

min {A, B}= 

0 0 bad 0 0

best 0 0 best bad

fair good 0 0 0

 
 
 
  

and 

 

max {A, B} = 

good bad good worst best

best bad good best fair

fair best good fair bad

 
 
 
  

. 

 

 Now for square matrices A, B we can have 6 types of 

operations on them namely, min {A, B}, max {A, B}, min {max 

{A, B}}, and max min {A, B}, min {min {A, B}} and max max 

{A, B}.   

 

We will illustrate all the six operations by some examples. 

 

Let A = 

good bad best

0 good fair

best 0 bad

 
 
 
  

 and  B = 

bad good good

best 0 fair

best best 0
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be any two 3 × 3 matrices with entries from L. 

 

min {A, B} = 

bad bad good

0 0 fair

best 0 0

 
 
 
  

, 

 

max {A, B} = 

good good best

best good fair

best best bad

 
 
 
  

, 

 

max {min {A, B}} = 

best best good

good fair fair

bad good good

 
 
 
  

, 

 

min {min {A, B}} = 

bad 0 0

0 0 0

0 0 0

 
 
 
  

 and 

 

max {max {A, B}} = 

best best best

best best good

best best best

 
 
 
  

. 

 

 We can also find products like 1 × n row fuzzy linguistic 

matrix with n × m rectangular fuzzy linguistic matrix. 

 

 We will illustrate this first by an example with possible 

operations on them. 
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 Let A = (good   bad   best   fair) 

 

and B = 

bad 0 best bad best

good bad 0 good fair

fair good bad 0 good

bad bad good 0 good

 
 
 
 
 
 

 

 

be two fuzzy linguistic matrices. 

 

 max {min {A, B}} = (fair, good, good, bad, good). 

 

 max {max {A, B}}  = (best, best, best, best, best). 

 

 min {max {A, B}} = {fair, bad, bad, fair, fair}. 

 

 min {min {A, B}} = (bad, 0, 0, 0, bad). 

 

 Now on similar lines we can find the product of a n × m 

fuzzy linguistic matrix with a m × 1 fuzzy linguistic column 

matrix.   

 

This will also be illustrated by the following example.  

 

 Consider the fuzzy linguistic 3 × 5 matrix  

 

A = 

bad 0 fair bad good

best good bad 0 best

0 fair v.good fair bad

 
 
 
  

 and 

 

B = 

bad

fair

good

best

bad

 
 
 
 
 
 
  

 

a fuzzy linguistic column matrix;  
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min {max {A, B}} = 

bad

good

bad

 
 
 
  

. 

 

max {min {A, B}} = 

0

bad

0

 
 
 
  

. 

 

In the same way we can calculate max {max {A, B}} and min 

{min {A, B}}.  This simple task is left as an exercise to the 

reader. 

 

 Now having defined fuzzy linguistic matrices and 

operations on them, we proceed onto define fuzzy linguistic 

intervals. 

 

 Let L be a fuzzy linguistic set in which every pair is 

comparable Nc(L) = {[a, b] | a, b ∈ L} is the natural class of 

fuzzy linguistic intervals built using L.   

 

On similar lines we can define No(L), Noc(L) and Nco(L). 

 

 We can define for any two intervals [a, b] and [c, d] in 

Nc(L) min {[a, b], [c, d]}  

 

 = [min {a, c}, min {b, d}] and max {[a, b], [c, d]}  

= [max {a, c}, max {b, d}}. 

 

 For instance [good, fair] and [bad good] be two fuzzy 

linguistic intervals then max {[good, fair], [bad, good]} 

 

= [max {good, bad}, max {fair, good}] 

 

= [good, good]. 
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 min {[good, fair], [bad, good]} = [bad, fair] {Nc(L), min} is 

an idempotent semigroup.  {Nc(L), max} is again an idempotent 

semigroup. {Nc(L), min, max} is a lattice. 

 

 Now using these intervals we can construct matrices called 

the fuzzy linguistic interval matrices.  

 

 Let L be a fuzzy linguistic space.   

R = {(a1, a2, …, an) | ai ∈ Nc(L); 1 ≤ i ≤ n} is a row fuzzy 

linguistic interval matrix.   

 

We see {R, min, max} is a lattice.  

 

Similarly  

P = 

1

2

m

b

b

b

 
 
    

�
 bi ∈ No(L); 1 ≤ i ≤ m} 

 

is a fuzzy linguistic interval column matrix {P, min, max} is a 

lattice. 

 

 Now  

S = {(aij)m×n (m ≠ n) | aij ∈ Noc(L); 1 ≤ i ≤ m and 1 ≤ j ≤ n} 

 

is a set of all fuzzy linguistic interval rectangular m × n matrices 

{S, min, max} is a lattice.  Finally  

 

T = {(aij)n×n | aij ∈ No(L); 1 ≤ i, j ≤ n} is the collection of all 

n × n fuzzy linguistic interval square matrix {T, min, max} is 

also a lattice.   

 

We just describe how the operations are defined on these 

sets. 
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Let L be as before.   

 

Let  

 

A = ([good, bad], [fair, fair], [fair, good], [best, worst])  and   

 

B = ([bad, bad], [good, fair], [best, good], [best, good])  be 

two 1 × 4 interval matrices. 

 

 min {A, B} = ([bad, bad], [fair, fair], [fair, good], [best, 

worst]). 

 

 max {A, B} = ([good, bad], [good, fair], [best, good], [best, 

good]). 

 

 We can take entries from No(L) or Noc(L) or Nco(L). 

 

 Let us consider two fuzzy linguistic interval column 

matrices of same order  

 

 

A = 

[good,best]

[best,bad]

[bad,good]

[0,fair]

[fair,worst]

[good,0]

 
 
 
 
 
 
 
 
  

 and B = 

[bad,bad]

[good,good]

[0,fair]

[best,0]

[best,bad]

[good,bad]

 
 
 
 
 
 
 
 
  

 

 

 

be two 6 × 1 column fuzzy linguistic interval matrices.  We find 

both min {A, B} and max {A, B}. 
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min {A, B} = 

[bad,bad]

[good,bad]

[0,fair]

[0,0]

[fair,worst]

[good,0]

 
 
 
 
 
 
 
 
  

 

 

max {A, B} = 

[good,best]

[best,good]

[bad,good]

[best,fair]

[best,bad]

[good,bad]

 
 
 
 
 
 
 
 
  

. 

 

 On similar lines we can find max {A, B} when A and B 

rectangular interval matrices of same order or square fuzzy 

linguistic interval matrices of same order.   

 

Now we can find the product (i.e., max or min) of a n × 1 

interval fuzzy linguistic matrix with a 1 × m interval fuzzy 

linguistic matrix.  This is described by the following example. 

 

Let A = 

[good,bad]

[0,best]

[fair,0]

[fair,good]

[bad,bad]

[good,best]

 
 
 
 
 
 
 
 
  

 and 

 

B = ([bad, good], [best, 0], [good, good], [0, good], [fair, good], 

[best, good] [0, bad]) be two fuzzy linguistic interval matrices. 
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  To find max {A, B}  

 

= 

[good,good] [best,bad] [good,good] [good,good]

[bad,best] [best,best] [good,best] [0,best]

[fair,good] [best,0] [good,good] [fair,good]

[fair,good] [best,good] [good,good] [fair,good]

[bad,good] [best,bad] [good,good] [bad,good]

[good,best] [best,best] [good,best] [good,best]











 

 

     

[good,good] [best,good] [good,bad]

[fair,best] [best,best] [0,best]

[fair,good] [best,good] [fair,bad]

[fair,good] [best,good] [fair,good]

[fair,good] [best,good] [bad,bad]

[good,best] [best,best] [good,best]











. 

 

 On similar lines we can find min {A, B}. 

 

 Now we can find max {min {A, B}} where  

 

A = ([good, bad], [0, best], [bad, 0], [bad, best], [best, good]) 

 

and 

B = 

[0,bad]

[good,good]

[fair,fair]

[best,0]

[bad,worst]

 
 
 
 
 
 
  

; 

 

 max {min {A, B}} = max {[0, bad], [0, good], [bad, 0], 

[best, 0], [bad, worst]} 

 

 = [max {0, 0, bad, best, bad}, max {bad, good, 0, 0, worst}] 
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 = [best, good]. 

 

 Likewise we can find min {min {A, B}}, max {max {A, 

B}} and min {max {A, B}}. 

 

 For square linguistic matrices with fuzzy linguistic entries 

of same order we can find max {max {A, B}}, max {min {A, 

B}}, min {max {A, B}}, and min{min {A, B}}. 

 

Let A = 

[good,best] [0,good] [bad,best]

[best,fair] [good,good] [worst,fair]

[fair,0] [fair,bad] [best,0]

 
 
 
  

 

 

and B = 

[best,best] [good,good] [bad,bad]

[good,0] [good,bad] [0,good]

[0,fair] [best,fair] [fair,0]

 
 
 
  

 

 

be two square fuzzy linguistic interval matrices.  

 

To find  

 

max {min {A,B}} = 

[good,best] [good,good] [bad,good]

[best,fair] [good,fair] [bad,good]

[fair,0] [best,bad] [fair,bad]

 
 
 
  

. 

 

 Likewise the reader is left with the task of finding min {min 

{A, B}} max {max {A, B}} and min {max {A, B}}.  We can 

construct using these operations and matrices fuzzy linguistic 

models [8].  Thus we have introduced several types of matrices 

and different types of operations on them. 
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