New Expression of the Factorial of $n(n!, n \in N)$

S. Maiti*
Center for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India

Abstract

New Expression of the factorial of $n(n!, n \in N)$ is given in this article. The general expression of it has been proved with help of the Principle of Mathematical Induction. It is found in the form $$
\begin{equation*} 1+\sum_{i=1}^{n} a_{i}+\sum_{\substack{i, j=1 \\(i<j)}}^{n} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\(i<j<k)}}^{n} a_{i} a_{j} a_{k}+\cdots+a_{1} a_{2} \cdots a_{n}, \tag{1} \end{equation*}
$$ where $a_{i}=i-1$ for $i=1,2, \cdots, n$. More convenient expression of this form is provided in Appendix.

Keywords: Factorial, new expression of factorial

1 Introduction

In mathematics, the factorial of a non-negative integer n is denoted by $n!$. It is defined by the product of all positive integers less than or equal to n. Thus $n!=1 \times 2 \times 3 \times \cdots \times n$. For example, $1!=1,2!=2,3!=6,4!=24$ etc; while the value of $0!$ is 1 according to the convention for an empty product [1]. The most basic occurrence of factorial function is the fact that there are n ! ways to arrange n distinct objects into a sequence (i.e., number of permutations of the objects). To Indian scholars this fact was well known at least as early as the 12 th century [2]. Although the factorial function has its roots in combinatorics, the factorial operation is encountered in many different areas of mathematics such as permutations, algebra, calculus, probability theory and number theory.

[^0]
2 Theorem

The following expression holds for factorial of $n(n!, n \in N)$:

$$
\begin{equation*}
n!=1+\sum_{i=1}^{n} a_{i}+\sum_{\substack{i, j=1 \\(i<j)}}^{n} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\(i<j<k)}}^{n} a_{i} a_{j} a_{k}+\cdots+a_{1} a_{2} \cdots a_{n}, \tag{2}
\end{equation*}
$$

where $a_{i}=i-1$ for $i=1,2, \cdots, n$.

3 Proof

Case: $n=1$
$a_{1}=0, \sum_{i=1}^{n} a_{i}=a_{1}=a_{1} a_{2} \cdots a_{n}=0$ for this case. The value of right hand side (RHS) of (2) can then be obtained as 1 , while we know $n!=1$ for $n=1$. These show that the formula is valid for $n=1$.

Case: $n=2$
To prove the formula for this case, the values $a_{1}=0, a_{2}=1, \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}=1, \sum_{\substack{i, j=1 \\(i<j)}}^{n} a_{i} a_{j}=$ $a_{1} a_{2}=a_{1} a_{2} \cdots a_{n}=0$ have been used at RHS of (2). The computed value is then given as 2 that is the exact value of $n!$ for $n=2$. Thus the formula is valid for $n=2$.

Case: $n=3$
We have $a_{1}=0, a_{2}=1, a_{3}=2, \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}=3, \sum_{\substack{i, j=1 \\(i \neq j}}^{n} a_{i} a_{j}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}=2$, $\sum_{\substack{i, j, k=1 \\(i \neq j \neq k)}}^{n} a_{i} a_{j} a_{k}=a_{1} a_{2} a_{3}=a_{1} a_{2} \cdots a_{n}=0$. The value of RHS of (2) can be evaluated as 6 and we have $n!=6$ for $n=3$. So the formula has been verified for this case.

Case: inductive step $n=m$

Keeping the formula general, the help of the Principle of Mathematical Induction will be considered to prove the theorem for all natural values of n. It has been assumed that the formula is true for an arbitrary natural number $n=m$. Then

$$
\begin{equation*}
m!=1+\sum_{i=1}^{m} a_{i}+\sum_{\substack{i, j=1 \\(i<j)}}^{m} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\(i<j<k)}}^{m} a_{i} a_{j} a_{k}+\cdots+a_{1} a_{2} \cdots a_{m}, \tag{3}
\end{equation*}
$$

Case: $n=m+1$
To prove the formula for arbitrary natural number n, we have to prove the formula for $n=m+1$ when it is true for $n=1$ and is assumed true for an arbitrary $n=m$. Now from RHS of (2), we have

$$
1+\sum_{i=1}^{m+1} a_{i}+\sum_{\substack{i, j=1 \\(i<j)}}^{m+1} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\(i<j<k)}}^{m+1} a_{i} a_{j} a_{k}+\cdots+\sum_{\substack{i, j, \ldots, s_{t}=1 \\\left(i<j<\cdots<s_{r}\right)}}^{m+1} a_{i} a_{j} \cdots a_{s_{t}}+a_{1} a_{2} \cdots a_{m+1}
$$

where s_{t} stands for m;

$$
\begin{aligned}
& =1+\left(\sum_{i=1}^{m} a_{i}+a_{m+1}\right)+\left(\sum_{\substack{i, j=1 \\
(i<j)}}^{m} a_{i} a_{j}+a_{m+1} \sum_{i=1}^{m} a_{i}\right)+\left(\sum_{\substack{i, j, k=1 \\
(i<j<k)}}^{m} a_{i} a_{j} a_{k}+a_{m+1} \sum_{\substack{i, j=1 \\
(i<j)}}^{m} a_{i} a_{j}\right) \\
& +\cdots+\left(a_{1} a_{2} \cdots a_{m}+a_{m+1} \sum_{\substack{i, j, \ldots, s_{n}=1 \\
\left(i<j<\cdots<s_{r}\right)}}^{m} a_{i} a_{j} \cdots a_{s_{r}}\right)+a_{1} a_{2} \cdots a_{m+1},
\end{aligned}
$$

where $s_{r}=m-1$;

$$
\begin{aligned}
& =\left(1+\sum_{i=1}^{m} a_{i}+\sum_{\substack{i, j=1 \\
(i<j)}}^{m} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\
(i<j<k)}}^{m} a_{i} a_{j} a_{k}+\cdots+a_{1} a_{2} \cdots a_{m}\right) \\
& +a_{m+1}\left(1+\sum_{i=1}^{m} a_{i}+\sum_{\substack{i, j=1 \\
(i<j)}}^{m} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\
(i<j<k)}}^{m} a_{i} a_{j} a_{k}+\cdots+a_{1} a_{2} \cdots a_{m}\right)
\end{aligned}
$$

$$
\begin{equation*}
=m!+m \times m!=(m+1)!, \tag{4}
\end{equation*}
$$

which is the desired value of $n!$ for $n=m+1$. Hence the new expression of $n!(n \in N)$ has been proved by the Principle of Mathematical Induction.

Appendix:

Since $a_{1}=0$ in the new expression (2) of $n!$ for all $n \in N$, the formula can be represented as

$$
\begin{equation*}
n!=1+\sum_{i=1}^{n-1} a_{i}+\sum_{\substack{i, j=1 \\(i<j)}}^{n-1} a_{i} a_{j}+\sum_{\substack{i, j, k=1 \\(i<j<k)}}^{n-1} a_{i} a_{j} a_{k}+\cdots+a_{1} a_{2} \cdots a_{n-1} \tag{5}
\end{equation*}
$$

where $a_{i}=i$ for $i=1,2, \cdots, n-1$.

References

[1] Graham, R. L., Knuth, D. E., Patashnik and O. (1988) Concrete Mathematics, AddisonWesley, Reading MA. ISBN 0-201-14236-8, pp. 111
[2] Biggs, N. L., The roots of combinatorics, Historia Math. 6 (1979) 109136

[^0]: *E-mail: somnathm@cts.iitkgp.ernet.in

